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Objective vortex detection in an astrophysical dynamo
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ABSTRACT
A novel technique for detecting Lagrangian vortices is applied to a helical magnetohydrody-
namic dynamo simulation. The vortices are given by tubular level surfaces of the Lagrangian
averaged vorticity deviation, the trajectory integral of the normed difference of the vorticity
from its spatial mean. This simple method is objective, i.e. invariant under time-dependent
rotations and translations of the coordinate frame. We also adapt the technique to use it on
magnetic fields and propose the method of integrated averaged current deviation to determine
precisely the boundary of magnetic vortices. The relevance of the results for the study of
vortices in solar plasmas is discussed.
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1 IN T RO D U C T I O N

The analysis of fluid or plasma flows can be a daunting task, given
the number of temporal and spatial scales involved, especially in
turbulent or strongly chaotic systems. In order to achieve some com-
plexity reduction, one can try to detect certain coherent structures
that act as protagonists in the dynamics, in the sense that they pro-
vide the most attracting or repelling regions of the flow, acting as
transport barriers and dividing the phase space in regions with qual-
itatively different behaviour. Coherent structures have been roughly
defined as ‘persistent localized features in time-varying fields’ (Pea-
cock, Froyland & Haller 2015). In velocity fields, such structures
are usually defined in terms of the vorticity of the flow or some
related quantity, being identified as vortices or eddies. There is no
standard way to define a vortex, with definitions adopting a Eule-
rian or a Lagrangian approach. In Eulerian definitions, the vortices
are extracted from the velocity field at a given time (see e.g. the
Q-criterion; Rempel et al. 2013), whereas in the Lagrangian ap-
proach the evolution of a set of fluid particles in space and time
is taken into account. This has led to the theory of Lagrangian
coherent structures (LCSs) in the past two decades (Haller 2015;
Peacock et al. 2015). There are several different kinds of LCSs,
depending on whether one wants to describe hyperbolic, parabolic
or elliptic regions of the flow. Recently, a new kind of LCS has been
identified based on the integrated deviation of the vorticity from its
spatial mean along fluid particles. These rotational LCSs (Haller
et al. 2016) are formed by material tubes of particles that exhibit
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the same average rotation, identified from a new dynamic version
of the classic polar decomposition (Haller 2016).

Magnetic coherent structures are often associated with magnetic
flux tubes/ropes. One of the common features of flux ropes is that
the magnetic field lines at one location along the rope must wind
around and not diverge away from each other over a sufficiently
long distance to look like a piece of an ordinary rope (Lukin 2014).
Thus, magnetic flux tubes are a bundle of magnetic field lines in
a cylindrical region inside which the axial magnetic field is much
larger than the magnetic field outside, whereas a magnetic flux rope
is a twisted flux tube, with helical field lines. Flux tubes and ropes
need not be straight, and their cross-sections can be neither circu-
lar, nor uniform along their lengths. The definition above leaves
out a precise description of what is the boundary of a flux rope,
since one needs to arbitrarily specify where magnetic field lines
are considered inside or outside the rope, based on a pre-defined
magnetic field threshold or rope width. An accurate detection of
the boundary of coherent structures is fundamental for the study of
astrophysical turbulence, e.g. the determination of the front and rear
boundary layers of magnetic flux ropes in the solar wind is essen-
tial for locating the preferential sites for genesis of interplanetary
intermittent turbulence (Chian et al. 2016). Similarly, knowledge
of the magnetic topology of emerging flux ropes in the solar atmo-
sphere is important to understand the reconnection of the rope with
the coronal field, with implications for solar eruptions (MacTaggart
and Haynes 2014).

In this Letter, we employ rotational LCSs to find kinematic vor-
tices in the problem of a magnetohydrodynamic (MHD) dynamo.
We also adapt the definition to use it on magnetic fields and pro-
pose a method to detect with precision the boundary of magnetic
vortices.
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2 EU L E R I A N A N D L AG R A N G I A N VO RT I C E S

Consider a spatial flow domain U, with a velocity field u, its
vorticity ω = ∇ × u and let ω̄ be the instantaneous spatial mean
of ω. Fluid particle trajectories (pathlines) are solutions of the
system ẋ = u(x, t), with the initial condition x(t0) = x0. De-
fine the instantaneous vorticity deviation (IVD) of a particle as
IVD(x, t) := |ω(x, t) − ω̄(t)|. The Lagrangian averaged vorticity
deviation (LAVD) is defined by Haller et al. (2016) as the inte-
grated IVD along a fluid particle trajectory, i.e.

LAVDt0+τ
t0

(x0) :=
∫ t0+τ

t0

|ω(x(s), s) − ω̄(s)|ds. (1)

From that, for a given finite time interval [t0, t0 + τ ], a rotationally
coherent Lagrangian vortex is defined as an evolving material do-
main VL(t) such that VL(t0) is filled with a nested family of convex
tubular level surfaces of LAVDt0+τ

t0
(x0) with outward-decreasing

LAVD values; the boundary of VL(t) is the outermost convex tubu-
lar level surface of LAVDt0+τ

t0
(x0) in VL(t0). Each of the tubular

level surfaces belonging to VL(t) is called a rotational LCS. Sim-
ilarly, a rotationally coherent Eulerian vortex is a set VE(t) filled
with a nested family of convex tubular level sets of IVD(x, t) with
outwards non-increasing IVD values; the boundary of VE(t) is the
outermost convex tubular level surface of IVD(x, t) in VE(t). All
these definitions follow from considerations based on the dynamic
polar decomposition of the deformation gradient (Haller 2016).

The intersection of Lagrangian (Eulerian) vortices with a plane in
the domain U can be readily extracted from velocity fields by com-
puting the LAVD (IVD) field from a grid of initial particles at the
plane, detecting the initial positions of vortex centres as local max-
ima of LAVD (IVD), then seeking vortex boundaries as outermost
convex closed contours of LAVD (IVD) that encircle vortex centres.
In practical implementations, the level curves will be strictly speak-
ing non-convex polygons due to their jaggedness caused by finite
data resolution. Thus, we accept a small convexity deficiency, ε, de-
fined as the ratio of the area difference between the curve and its con-
vex hull to the area enclosed by the curve. The choice of ε does not
depend on the original flow resolution, but on the interpolated LAVD
field. A generally good choice for ε for an interpolated field with
5123 points, as used here, is between 10−3 and 10−5, which tends to
eliminate non-convexity due to numerical discretization, yet avoids
classifying numerical approximations of non-convex structures as
convex. We illustrate the technique showing vortex detection for the
stationary ABC (Arnold–Beltrami–Childress) flow, uABC = Af/

√
3

[(sin kfz + cos kfy)x̂ , (sin kfx + cos kfz) ŷ, (sin kfy + cos kfx) ẑ] ,

where Af is the amplitude and kf the wavenumber of the forcing
function. Fig. 1(a) shows a Lagrangian velocity vortex in the sta-
tionary ABC-flow for Af = √

3 and kf = 1; the vortex boundary
(white curve) was obtained from the LAVD field at the plane z = 0
using a convexity deficiency of the order of 10−5. Also plotted are
the forward-time (green) and backward-time (red) maximum finite-
time Lyapunov exponent (FTLE) fields, that have frequently been
associated with repelling and attracting barriers to particle transport
in flows (see however, Haller 2015 for caveats). Fig. 1(b) depicts
the pathlines of initial conditions on the blue curve, which is the
same as the white curve in the upper panel. Note that these particles
spiral around a tubular region of the flow. If a slightly wider curve
is used for the initial conditions, the particle trajectories lose their
global coherence and spread throughout the box, as in Fig. 1(c).
This shows the importance of accurately finding the vortex bound-
ary. A similar analysis of LAVD-based vortices in the ABC flow
appears in Haller et al. (2016).

Figure 1. Lagrangian vortex in a stationary ABC-flow. (a) The forward-
(green) and backward- (red) time FTLE for initial conditions on a plane at
z = 0. The white line represents the coherent Lagrangian vortex obtained
from the LAVD field of the ABC-flow; (b) 3D Lagrangian coherent vortex
revealed by the pathlines of initial conditions on the blue curve, which is the
same as the white curve in the upper panel; (c) the pathlines from a curve
slightly wider than the one in (b).

3 R ESULTS

The dynamo model adopted consists of the compressible MHD
equations for an isothermal fluid, as described by Rempel, Proctor &
Chian (2009). The computational domain is a box with sides L = 2π

and periodic boundary conditions, so the smallest wavenumber is
k1 = 1. The sound speed is cs = 1, so the time unit is (csk1)−1 and
the unit of viscosity ν and magnetic diffusivity η is cs/k1. Space
is measured in units of k−1

1 , the velocity field u in units of cs, the
density ρ in units of the mean density ρ0, the magnetic field B in
units of (μ0ρ0)1/2cs, where μ0 is the constant magnetic permeability.
We add to the momentum equation an external forcing given by the
ABC function, f (x) = uABC, with kf = 5 as the forcing scale, and
an amplitude regulated by Af = 0.1. The MHD equations are solved
with the PENCIL CODE,1 which employs an explicit sixth-order finite
differences scheme in space and a variable-step third-order Runge–
Kutta scheme for time integration. Following Rempel, Proctor &
Chian (2009) and Rempel, Chian & Brandenburg (2011), we set
ν = 0.005, η = 0.01 and the numerical resolution of 643 mesh
points is chosen.

After an initial exponential growth of the magnetic energy in
the so-called kinematic dynamo phase, the field growth is non-
linearly saturated as shown in Fig. 2(a). The kinetic (dashed line)
and magnetic (solid line) energy spectra at t = 700 are shown in
Fig. 2(b). The Bz component in the initial kinematic phase is shown
in Fig. 2(c), whereas Bz in the saturated phase is shown in Fig. 2(d),
where a large-scale field pattern is noticed.

First, we obtain objective Eulerian and Lagrangian vortices from
the velocity field of the dynamo simulations and check the behaviour
of fluid particles in those vortices. In order to solve the equation
ẋ = u to obtain the particles’ pathlines, we need a velocity field that

1 http://pencil-code.googlecode.com/
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Figure 2. Non-linear dynamo simulation. (a) The magnetic energy time
series, showing the initial exponential growth of the seed field, followed
by its non-linear saturation. (b) The magnetic (red solid line) and kinetic
(black dashed line) power spectra at t = 750. Note that the main peak for
the kinetic spectrum is at the energy-injection wavenumber k = 5, whereas
for the magnetic field the main peak is at k = 1. (c) The Bz component of
the magnetic field for t = 50 and (d) for t = 700, showing the appearance of
a large-scale mean-field amidst the small-scale fluctuations.

Figure 3. Objective Eulerian vortex detection for the unsteady dynamo
simulation. (a) The contour plot of the IVD for the velocity field at z = 0;
the black curve is the boundary of a Eulerian vortex. (b) The pathlines of a
set of particles initially on the Eulerian vortex boundary shown in (a).

is continuous in space and time. For that matter, we save the velocity
field every 0.2 time units from t0 − τ to t0 + τ , using t0 = 700 and
τ = 10, and adopt cubic splines to interpolate the three-dimensional
fields in time and space. The pathlines are obtained from the inter-
polated fields using a fourth-order Runge–Kutta integrator with a
time step �t = 0.002.

We compute objective Eulerian vortices in the velocity field by
using the IVD at t = 700. Fig. 3(a) shows the contour plot of IVD for
u at z = 0. The black curve is the boundary of a vortex found with the
method described in Section 2. Fig. 3(b) shows the pathlines of a set
of fluid particles initially placed on the vortex boundary, revealing
that the Eulerian vortex detection using instantaneous vorticity is not
useful to determine coherent structures in this case, since it is based
on a single plane of the domain and it does not take into account the
time evolution of the velocity field. This was to be expected, since
the purpose of IVD is to give an objective assessment of short-term
coherence, not to forecast long-term Lagrangian coherence.

Next, we solve equation (1) for t0 = 700, τ = 10 and a grid of
points x0 on z = 0. The contour plot of this LAVD field is shown

Figure 4. Objective Lagrangian vortices in the unsteady dynamo simula-
tion. (a) The contour plot of the LAVD of the velocity field at z = 0. The
black curves represent two Lagrangian vortex boundaries; (b) superposition
of the Lagrangian vortices on the forward-time (green) and backward-time
(red) FTLE fields; (c) enlargement of a region near the rightward vortex in
(b), showing the Lagrangian vortex surrounded by lines of local maxima of
the FTLE fields.

Figure 5. 3D Lagrangian velocity vortices in the unsteady dynamo simula-
tion. (a) The pathlines of initial conditions on the rightward vortex in Fig. 4;
(b) the pathlines of initial conditions on the leftward vortex in Fig. 4.

in Fig. 4(a), together with two selected vortices extracted with a
convexity deficiency of the order of 10−3. Fig. 4(b) shows the same
vortices superposed on the forward-time (green) and backward-time
(red) FTLE. Fig. 4(c) is an enlargement of a box in Fig. 4(b). By
integrating the fluid particles from the vortex boundaries found in
Fig. 4, one can see that the material coherence of the vortex is kept
through space and time, as depicted in Fig. 5.

In order to extract objective magnetic vortices, we propose an
adaptation of the LAVD operator for the magnetic field. Consider
a parametrization of a magnetic field line at time t0 given by x(s),
where s is a parameter related to the distance l along the field line by
dl = |B|ds. Then, the field-line equation at t0 is given by (Sonsrettee
et al. 2015)

dx
ds

= B(x(s), t0), x(s0) = x0. (2)
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Figure 6. Objective magnetic vortices in the unsteady dynamo simulation.
(a) The contour plot of the IACD of the magnetic field at z = 0 and t0 = 700.
The black curves represent two Lagrangian magnetic vortex boundaries; (b)
magnetic field lines from initial conditions on the lower vortex boundary
shown in (a); (c) magnetic field lines from initial conditions on the upper
vortex boundary in (a).

The integrated averaged current deviation (IACD) field can be
computed for B in essentially the same way as LAVD is for u, by
using J = ∇ × B/μ0 in place of ω = ∇ × u:

IACDs0+ξ
s0

(x0) :=
∫ s0+ξ

s0

|J(x(s), t0) − J̄(t0)|ds, (3)

where x(s) is a solution of equation (2) and J̄(t0) is the mean
current density of the box at t0. Note that, different from LAVD,
here the calculations are done for a fixed time t0, since the field-
line equations, equation (2), are defined for a fixed time. For a
given parameter interval [s0, s0 + ξ ], we define a magnetic vortex
as a domain VL(t0) such that VL(t0) is filled with a nested family
of convex tubular level surfaces of IACDs0+ξ

s0
(x0) with outward-

decreasing IACD values; the boundary of VL(t0) is the outermost
convex tubular level surface of IACDs0+ξ

s0
(x0) in VL(t0).

The intersection of a magnetic vortex with a plane can be ex-
tracted from a magnetic field by computing the IACD field at the
plane, detecting the initial positions of vortex centres as local max-
ima of IACD, then seeking vortex boundaries as outermost convex
closed contours of IACD that encircle vortex centres. In analogy
with LAVD, the IACD is an objective and dynamically consistent
measure of magnetic element rotation. Specifically, μ0 × IACD
gives twice the rotation angle generated by the relative dynamic
rotation tensor of equation (2) about its own axis of rotation. The
relative rotation tensor is obtained by applying the dynamic po-
lar decomposition (Haller 2016) to the gradient of the flow map
generated by the equation (2). The dynamic consistency of IACD
then ensures its additivity along magnetic lines, while its objec-
tivity guarantees its invariance under arbitrary, continually varying
observer changes along magnetic lines.

The results of applying IACD to the magnetic field of the dynamo
simulation at t0 = 700, z = 0 and using ξ = 10 on equation (3)
are shown in Fig. 6. The upper panel shows the contour plot of
the IACD field, with two vortex boundaries indicated (again, a
convexity deficiency of the order of 10−3 is adopted). The same

vortices are used as sources of initial conditions for magnetic field
lines shown in the other two panels. Note that the integrated field
lines are twisted and do not diverge away from each other.

The choice of τ directly impacts the size of the vortices found,
both in LAVD and IACD. Larger τ leads to smaller (thinner) vor-
tices, since the layers near a vortex boundary tend to disperse with
longer integrations, due to interaction with other vortices and recon-
nection. We chose τ = 10 because this produces vortices that are
not too small in comparison with the energy-injection scale (2π/5).

4 D I S C U S S I O N A N D C O N C L U S I O N S

The techniques of LCSs can improve our understanding of the dy-
namics and structures of solar and astrophysical plasmas. Rempel
et al. (2011) showed that LCSs are useful for an in-depth analy-
sis of particle transport in dynamo simulations, e.g. the detection
of attracting material lines of the velocity field provides the path-
ways that are more likely to be followed by passive scalars in the
plasma; furthermore, the combined detection of attracting and re-
pelling LCSs allows the identification of the main mixing zones of
the plasma, which is essential for the study of plasma heating. Chian
et al. (2014) studied solar photospheric flows in an active-region
plage in the vicinity of AR10930 using the horizontal-velocity data
derived from Hinode/Solar Optical Telescope magnetograms and
demonstrated the correspondence of the network of high magnetic
flux concentrations to the attracting LCSs of the velocity field in
the intergranular lanes, comparing the results with numerical sim-
ulations of a dynamo driven by turbulent compressible convection
with uniform horizontal shear and rotation. Rempel et al. (2013)
applied the LCSs method to detect coherent structures straight from
the magnetic field of MHD simulations. See also Falessi, Pegoraro
& Schep (2015) for a recent work on LCSs and plasma transport
processes.

All the aforementioned works deal specifically with hyperbolic
LCSs, which are generalizations of stable and unstable manifolds in
classic dynamical systems. This Letter presents a work on rotational
LCSs in plasmas, where the recent technique of LAVD-based vor-
tex detection is employed to detect vortices in a three-dimensional
MHD dynamo simulation. We also adapt the technique to determine
the position of magnetic vortices based on the IACD. Both LAVD
and IACD provide objective definitions of the vortex boundaries,
from where the integrated fluid particles or magnetic field lines dis-
play helical pathways with little dispersion. These techniques can
aid the study of vortices in solar plasmas, a topic of growing in-
terest from theoretical, numerical and observational points of view.
For example, Stenflo (1975) proposed a model for the formation
of filament structures of magnetic fields induced by vortical mo-
tions around the downdrafts in the solar supergranulation network
and active-region plages. Compressive MHD simulations of turbu-
lent convection of solar-type stars performed by Brandenburg et al.
(1996) showed that an initially weak magnetic field is amplified
and maintained by dynamo action and can be self-organized into
magnetic flux tubes that are wrapped around magnetic vortex tubes.
Brandt et al. (1988) and Bonet et al. (2008) used the Swedish Solar
Telescope at La Palma to detect vortex structures at the downdrafts
of the solar atmosphere where the hot buoyant plasma driven by
convection returns to the solar interior after cooling down. The pat-
tern of a vortex is derived from the spiral trajectory of magnetic
bright points being engulfed by a downdraft (Bonet et al. 2008).
Kitiashvili et al. (2012) used radiative MHD simulations to study the
formation and dynamics of magnetic vortex tubes generated by tur-
bulent convection, characterized by strong downflows and swirling
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motions, which are concentrated mostly in the intergranular lanes
of the quiet-Sun. Radiative MHD simulations of magnetoconvec-
tion carried out by Shelyag et al. (2011) produced two types of
vortices in the photosphere: non-magnetic vortices induced by the
baroclinic motions of the phosphoric plasma and magnetic vortices
induced by the magnetic tension in the intergranular magnetic flux
concentrations. This study indicated that magnetic bright points are
subject to rotary motions in the intergranular lanes and are magnet-
ically connected to vortices in the upper photosphere. Wedemeyer
et al. (2012) combined ground observations of the Swedish Solar
Telescope at La Palma with space observations of Solar Dynamics
Observatory to identify the swirling motions in the chromosphere
as the manifestation of rapidly rotating magnetic structures known
as magnetic tornadoes, which reach from the convection zone to the
upper solar atmosphere and provide an energy channel from lower
to upper solar atmosphere. Their numerical simulations confirmed
that the bright points at the photospheric surface are the footprints
of magnetic flux concentrations connected to the chromospheric
swirls.

In conclusion, the previous demonstration that the technique
of hyperbolic LCSs is useful for the analysis of the dynamics of
velocity and magnetic fields in numerical simulations (Rempel
et al. 2011, 2013) and satellite observations (Chian et al. 2014)
of solar plasmas indicates that the novel technique of rotational
LCSs can be readily employed to improve the detection of velocity
and magnetic vortices in solar and astrophysical turbulence.
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