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ABSTRACT 

 

Modern fixed head star trackers are among the most accurate attitude sensors 
available for spacecraft use. Their principle of operation is basically to take 
pictures of the celestial sphere and identify stars present on these images, using 
the identified stars as references for attitude determination. This process 
encompasses tasks such as image pre-processing, image segmentation, 
centroiding, star identification and attitude determination from vector observa-
tions. In the task of stellar identification, this work investigates how brightness 
information (magnitudes) and color information (when available) can be used to 
improve the reliability and speed in star identification. Incorporating magnitude 
and color information checks in an state-of-the-art star-ID algorithm resulted in a 
reduction in the misidentification rate by more than two orders of magnitude. 
Many other improvements were proposed and implemented in this state-of-the-
art star identification algorithm. Other contributions of this work are in the use of 
color indexes (common in Astronomy, but new to the area) to represent color 
information in star trackers, with advantages over the previous representation 
used in the literature, and a methodology to evaluate the suitability of different 
color indexes in stellar identification. An investigation on existing technologies for 
color star tracking is performed, with image sensors based on stacked pixels 
showing good potential for future application. This work also presents a simple 
image pre-processing technique capable of removing column bias in CMOS 
image sensor, developed for star trackers with limited memory and low 
computational power. An estimate of the theoretical lower bounds of attitude 
knowledge achieved by star trackers is derived. This lower bound represents, in 
a certain way, a fundamental limit to the accuracy attainable by star trackers that 
depends only on the stellar distribution in our stellar neighborhood, star tracker 
dimensions and the length of the temporal window used for observations; thus, 
being completely independent on star tracker technology employed. The 
usefulness of this estimate is that it provides a benchmark for comparing different 
star tracker designs. This estimate is computed using data from the Hipparcos, 
Tycho and 2MASS star catalogs. To the best knowledge of the author, the 
computation of this lower bound is a novel contribution to this research field. 
 
keywords: star trackers. star identification algorithms. image processing. 
photometric systems. fundamental limits. computer simulations. 





xi 
 

TÉCNICAS E ALGORITMOS DE IDENTIFICAÇÃO DE ESTRELAS 

APRIMORADOS PARA SENSORES DE ESTRELAS COLORIDOS E 

MONOCROMÁTICOS 

RESUMO 

Sensores de estrelas de cabeça-fixa modernos estão entre os sensores de 
atitude mais precisos disponíveis para uso em veículos espaciais. Seu princípio 
básico de operação consiste em adquirir imagens do céu e identificar as estrelas 
presentes nestas imagens, usando as estrelas identificadas como referências de 
atitude. Este processo engloba tarefas como pré-processamento de imagens, 
segmentação de imagens, cálculo de centroides, identificação de estrelas e 
determinação de atitude a partir de versores observados. Na tarefa de 
identificação de estrelas, este trabalho investiga como as informações de brilho 
(magnitudes) e cor (quando disponível) podem ser aproveitadas para melhorar a 
confiabilidade e a velocidade do processo de identificação de estrelas. Ao se 
incorporar verificações de magnitude e cor em um algoritmo de identificação de 
estrelas estado da arte, obteve-se uma redução na taxa de identificações 
incorretas maior que duas ordens de grandeza. Várias outras melhorias foram 
propostas e implementadas neste algoritmo de identificação de estrelas. Outras 
contribuições deste trabalho estão no uso de índices de cor (comum em 
astronomia, mas novo neste campo) na representação de cor em sensores de 
estrelas, com vantagens em relação à representação anteriormente usada na 
literatura, e no desenvolvimento de uma metodologia para avaliar a adequação 
de diferentes índices de cor no processo de identificação de estrelas. Uma 
investigação sobre tecnologias para imageamento a cores voltada para sensores 
de estrelas é realizada, na qual se verificou que sensores de imagem baseados 
em pixels empilhados apresentam potencial para aplicações futuras. Este 
trabalho também apresenta um algoritmo de pré-processamento de imagens 
simples para remoção da não uniformidade de coluna em sensores CMOS, 
desenvolvido para sensores de estrelas com pouca memória e baixo poder 
computacional. Uma estimativa do limite teórico para a precisão de sensores de 
estrelas é apresentada. Este limite representa, de certa forma, um limite 
fundamental para a precisão de sensores de estrelas que depende apenas da 
distribuição de estrelas na nossa vizinhança estelar, das dimensões físicas do 
sensor de estrelas e da duração da janela de tempo usada para observação das 
estrelas, sendo, portanto, completamente independente da tecnologia empre-
gada. A utilidade desta estimativa é que ela provê uma referência ao qual se 
podem comparar diferentes sensores de estrelas. Esta estimativa foi calculada 
usando dados dos catálogos de estrelas Hipparcos, Tycho e 2MASS. Até onde 
o autor tenha conhecimento, o cálculo desta estimativa é uma contribuição 
original para esta área de pesquisa. 
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palavras-chave: sensores de estrelas. algoritmos de identificação de estrelas. 
processamento de imagens. sistemas fotométricos. limites fundamentais. 
simulações em computador. 
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1 INTRODUCTION 

For most space missions, in addition to precisely control spacecraft orbit or 

trajectory, it is also of utmost importance to properly control spacecraft 

orientation, also known in the field as attitude. This is especially true for missions 

with stringent pointing requirements, such as Earth observing spacecraft and 

space telescopes. For example, for Earth observing spacecraft, it is important 

that its remote sensing cameras be pointed towards Earth’s center (nadir 

direction). In order to accomplish this, the spacecraft employs a variety of attitude 

sensors to determine its orientation in space. This work focuses on one type of 

attitude sensor: star trackers, and on the algorithms they use. A brief description 

of modern star trackers is given in Chapter 2. 

1.1 Objectives / Purposes 

With technological advancements and the need to reduce costs of space 

missions, there exists a trend to reduce size, mass, and power consumption of 

future spacecraft, while at the same time increasing spacecraft autonomy and on-

board processing (WERTZ; LARSON, 1999). One way to achieve the desired 

capability and reliability in small spacecraft is to perform redundancy via 

instrument reconfiguration instead of duplicating the same hardware, in other 

words, use the same hardware for different purposes. For example, instead of 

carrying a backup star tracker powered off, a spacecraft could reconfigure one of 

its general-purpose cameras as a star tracker in the event one of its primary star 

tracker fails, by loading the appropriate software into that camera. Given that a 

multifunctional camera which is also capable of being used as a star tracker may 

be equipped with a color image sensor to satisfy the requirements of its other 

uses (a Navcam or scientific camera, for example), this work investigates the 

benefits that color information can bring to star identification reliability. 

Another goal is to improve robustness and speed of a state-of-the-art star 

identification algorithm. This work presents many improvements to the Pyramid 
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star identification algorithm (MORTARI, 2001; MORTARI et al., 2004), also 

exemplifying how the use of additional information such as magnitude and color 

information can improve the robustness of stellar identification. 

The development of techniques that can improve the performance of a star 

tracker, particularly, in older designs with limited memory and computational 

power, was also pursued. 

Finally, a study about the ultimate limits imposed by the laws of Physics and 

stellar distribution in our stellar neighborhood is performed, in order to derive an 

approximate lower bound on attitude accuracy, that cannot be overcome with 

technological advancements. 

1.2 Motivation / Utility 

Considering that star trackers are used in virtually any mission with stringent 

pointing requirements (errors smaller than one arc-minute = 290 µrad) and there 

is a trend that these requirements will become even tighter for future missions, 

any development in the direction of improving the robustness of stellar 

identification, improving accuracy of centroids, and improving attitude 

determination in star trackers will be of great help. 

As missions with more stringent pointing requirements are becoming more 

common, star trackers should become more widely used. For example, many 

future space missions to be developed by INPE, such as remote sensing 

satellites and scientific spacecraft, will have payloads with stringent pointing 

requirements, making the use of star trackers for attitude control a necessity. Yet, 

on the other end of the spectrum, there are nanosatellites and picosatellites, such 

as cubesats, which are becoming increasingly more common. These small 

systems cannot afford to have multiple redundant equipment, due to mass, power 

and space constraints. In these small systems, a key concept to achieve the 

required functionality and reliability is to have flexibility in its instruments. This can 

be achieved, for example, with the use of multifunctional cameras, capable of 
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working as a science camera, as a navigation camera, as a star tracker, as a 

horizon sensor, etc., just with a change in its software or operating mode. The 

reuse of the same hardware for a different purpose is not an entirely new concept. 

There are many examples of cameras normally used as star trackers that have 

been used for other purposes, such as the Clementine mission, where one of its 

star trackers was used as a scientific camera (KORDAS et al., 1995) and the 

navigation cameras (NAVCAM) of the Rosetta spacecraft (NASA, 2017). 

The motivation for studying star identification algorithms that are capable of 

making use of color information comes from the fact that a multifunctional camera 

that is capable of working as a star tracker may provide color information due to 

other reasons, and this could be used to improve star identification. For some 

tasks, such as target recognition or optical navigation, color information is very 

important, being sometimes the only way to confidently discriminate an object 

(POLLOCK, T., 2016, personal communication). Considering that the same 

hardware can be used for multiple purposes, it is advantageous to use algorithms 

that are capable of making use of this extra information, given that any additional 

information gathered about observed stars may be helpful in confirming the 

identity of these stars, thus reducing the risk of misidentifications. 

1.3 Contributions 

The main contributions of this work to the field are: 

• improvements in one of the state of the art star-identification algorithm, 

both in terms of robustness (reliability in star identification) and speed; 

• use of magnitude and color indexes as additional verification methods in 

the aforementioned star identification algorithm; 

• derivation of an estimate for the theoretical lower bound on attitude 

accuracy that can be achieved by star trackers in our stellar neighborhood, 

that is independent of star tracker technology; 
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• development of a technique to estimate the image sensor bias and column 

amplifier bias without having to sample all pixels in an image, which makes 

it suitable for embedded hardware with limited memory and computational 

power. 

1.4 Thesis structure 

Chapter 2 provides an overview of star trackers, giving a general explanation on 

how these attitude sensors are able to derive attitude information from raw 

images captured from the sky. It also introduces the basic concepts and 

terminology used in the field. Chapter 3 presents a discussion on how magnitude 

and color information can be helpful in increasing the reliability of stellar 

identification, especially in the cases where few stars are observed. This chapter 

also presents a discussion about the trade-offs that commonly have to be made 

with existing technologies to enable color determination, and some consid-

erations whether they are worthful or not. It concludes with an analysis of a night 

sky test, performed with a camera using the new concept of stacked pixels for 

stellar identification, with promising results. Chapter 4 describes the simulation 

environment which was used for the Monte Carlo simulations performed in the 

following chapter. Chapter 5 introduces the many improvements made to the 

Pyramid star identification algorithm. Chapter 6 presents improvements in image 

processing algorithms with the purpose of improving centroiding accuracy and 

star detection. Chapter 7 introduces an original theoretical study that determines 

an estimate for the lower bound of attitude accuracy achievable in the vicinity of 

the Solar System. The results of this study provide a benchmark in which to 

compare different star tracker designs. Chapter 8 summarizes the main 

contributions of this work, proposing ideas for future works and pointing out areas 

that need more in-depth research. 
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2 BASIC CONCEPTS 

This chapter gives a brief introduction to concepts and terminology used in the 

field. These concepts are briefly discussed here to provide to the reader a 

background on the subjects developed in this thesis. 

A modern star tracker (STR) is basically a computerized camera that uses stars 

as references for attitude determination. In essence, the task of a STR is to 

determine or provide information that allows the determination of the relation 

between a reference frame that rotates with it with a reference frame that does 

not rotate (as defined in Section 2.5.2). This relation is nothing more than the 

STR attitude. Since the STR is rigidly mounted on the spacecraft, once the STR 

attitude is known, the spacecraft attitude can be easily computed.  

In the following sections, an introduction to the many types of star sensors is 

provided, followed by a brief description of the typical modes of operation of a 

fixed head STRs, a detailed explanation of the process of attitude determination 

from observed stars in fixed head STRs and a brief description of the star 

identification techniques used. This chapter concludes with a brief description of 

the reference frames typically used in STRs. 

2.1 Classification of star trackers 

Star trackers are currently the most accurate attitude sensors generally available 

for spacecraft use, being able to provide absolute attitude measurements with 

errors smaller than few arc-seconds (few tens of microradians) (LIEBE, 2002). 

Nowadays, most star trackers are fixed head autonomous star trackers, capable 

of delivering three-axis attitude measurements at rates typically between 0.5 Hz 

and 10 Hz (LIEBE, 2002; ENRIGHT et al., 2010; MARKLEY; CRASSIDIS, 2014). 

These modern attitude sensors are basically computerized solid-state cameras, 

with a pattern recognition software that attempts to match the stars it observes 

with an on-board catalog of stars. 
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According to the classification given by Fallon III (1978), star trackers belong to 

a larger class of attitude sensors known as star sensors. In his scheme, star 

sensors are grouped into three large classes, according to its physical structure 

and operation: star scanners, gimbaled star trackers and fixed head star trackers. 

Star scanners include the simplest star sensors. Usually they consist of a “V” 

shaped slit and one or more detectors. They use the spacecraft rotation to acquire 

attitude information, as the star light passes through its slit. Gimbaled star 

trackers use mechanical gimbals to track a bright star, reading its position from 

the encoders in the gimbals. Fixed head star trackers have their optical head 

rigidly mounted on the spacecraft, scanning their field of view electronically. In 

this group, we encounter the most complex designs. Since modern fixed head 

star trackers are capable of observing many stars simultaneously, they are also 

known as star cameras. Like star scanners, and in contrast to gimbaled star 

trackers, they have no moving parts. Early models of fixed head star trackers 

were based on image dissector tubes or vidicons. Nowadays most fixed head 

star trackers are based on solid state image sensors, such as CCD image 

sensors and CMOS APS image sensors.  

Another classification can be done regarding the field of view (FOV) and STR 

accuracy, where they can be classified in two large classes: coarse star sensors 

having wide FOV and fine pointing star sensors having narrow FOV (LIEBE, 

1995). Modern STRs with wide fields of view (typically in the range of 8° × 8° to 

25° × 25°) can determine the direction of their optics boresight axis with an 

uncertainty typically between 1” and 10” (1σ). Star trackers with narrow field of 

view (typically less than 3° × 3°) and accuracies better than one arc-second are 

less common. These ultra-fine star sensors are typically used in missions with 

very stringent pointing requirements, such as space telescopes. 

A third classification is based on autonomy. An autonomous star sensor is 

capable of determining its own attitude without the aid of any external information 

or processing. In other words, they are capable of determining their attitude even 

when the spacecraft is in a lost in space situation, when no attitude estimate 
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exists. On the other hand, a non-autonomous star sensor is not able to find an 

attitude solution if a previous attitude estimate does not exist, or does not have 

the software routines needed to identify stars and determine attitude, relying on 

external processing. With technology advancements, most star trackers being 

used in modern spacecraft are autonomous star sensors. 

This work focuses exclusively on fixed head autonomous star trackers with solid 

state detectors, having a wide FOV and accuracy in the determination range of 

1” to 10” (1σ), as this is the most used type in three-axis stabilized spacecraft. 

With many types of star sensors presented by Fallon III becoming obsolete and 

the market being dominated by fixed head star trackers (MARKLEY; CRASSIDIS, 

2014), the distinction between the terms star tracker, star sensor and star camera 

seems to have lost its importance. Therefore, these terms will be used as 

synonyms in this work. 

2.2 Modes of operation of a star tracker 

A fixed head star tracker presents many modes of operation. Typically, the 

following modes are found (FIALHO, 2007; FIALHO; PERONDI; MORTARI, 

2016): 

• start-up/basic Initialization mode; 

• a stand-by mode; 

• Autonomous Attitude Determination mode: 

o Attitude Acquisition, 

o Attitude Tracking 

• imaging mode; 

• diagnostic modes; 

• configuration modes. 

The start-up/initialization modes include the basic tasks that are performed once 

a star tracker is powered up, or after a processor reset. In the stand-by mode the 
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star sensor sits idle, waiting for commands sent from an external source (e.g., 

commands sent by the AOCS computer). The Autonomous Attitude 

Determination mode is the mode where the star tracker works as a star tracker. 

This can be subdivided into Attitude Acquisition and Attitude Tracking sub-

modes. The Attitude Acquisition sub-mode is entered when the star sensor is in 

a lost-in-space condition (when no a priori attitude knowledge exists) or when 

only a poor attitude estimate exists. In the “Attitude Tracking” sub-mode, the star 

tracker has a good knowledge of its angular velocity and previous attitude state, 

so it can predict where stars will be in the next frame. Thus, in “Attitude Tracking”, 

the star tracker needs to read only pixels inside small rectangular windows placed 

around the expected positions of stars in the next image frame, reducing by two 

or three orders of magnitude the number of pixels that must be processed, which 

makes this mode extremely fast. The transition between the “Attitude Acquisition” 

and “Attitude Tracking” sub-modes is discussed in detail in the work of Brum et 

al. (2013). The present work discusses only the algorithms used in the “Attitude 

Acquisition” sub-mode. 

It's very common for a modern star tracker to include an imaging mode, where a 

raw image is captured and made available for download. This mode is useful for 

checking the health of the imaging element in a star tracker. It can also be used 

when the star sensor is used as a general-purpose camera or as a scientific 

imaging camera. 

Besides the modes previously discussed, a star tracker typically includes 

maintenance modes, such as in-orbit test modes, software update mode, 

diagnostic modes, etc. Sometimes with the proper software, a star tracker can 

also operate in other functions, such as a scientific camera (KORDAS et al., 

1995), a space awareness camera, a space navigation camera (NASA, 1997) or 

even as a horizon sensor operating in the optical regime (e.g., using the 

atmospheric luminescence to detect the Earth’s limb at night). 
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2.3 Attitude acquisition in a fixed head star tracker 

In modern, fixed head star trackers, attitude acquisition usually proceeds as 

depicted in Figure 2.1 (FIALHO, 2007), which may be phrased as follows: 

Figure 2.1 - Attitude determination from a star field image 

 

Source: Drawn by the author. 
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a) the hardware acquires an image; 

b) an image processing algorithm extracts stars from this image, generating 

a list of centroids; 

c) by taking into account optics parameters (focal length, pixel pitch, aperture 

and distortions introduced by the optics) this list of centroids is converted 

to a list of observed stars, whose coordinates are given in the star tracker 

reference frame (STRF); 

d) a star-ID algorithm attempts to associate every star in the list of observed 

stars with a star in the on-board star catalog, generating a list of identified 

stars. The main goal of this process (stellar identification) is to discover the 

coordinates of observed stars in a non-rotating reference frame (NRRF) 

used in the working copy of the star catalog (see Section 2.5.2); 

e) this list of identified stars is supplied to an attitude determination algorithm. 

By comparing the coordinates in the STRF with coordinates in the NRRF 

for each star in this list, this algorithm is capable of finding a relation 

between these two reference frames. This relation is nothing more than 

the star tracker attitude. 

The star tracker attitude is usually the final output. This information is provided to 

the spacecraft attitude determination and control subsystem's computer, 

responsible for merging this measurement with measurements from other attitude 

sensors when computing the spacecraft attitude. 

In many star sensors, the coordinates of both observed stars and cataloged stars 

are complemented with brightness information (stellar magnitudes), as this 

information is helpful in confirming the identity of stars, and in sorting the 

observed stars, so those stars that have the least probability of being false stars 

(usually the brightest stars) are used first. Also, many star-ID algorithms employ 

stellar magnitudes as a rough filter when selecting candidate stars from the star 



11 
 

catalog. When magnitude information is used, the pixel values belonging to the 

observed stars are also utilized to compute their observed instrumental 

magnitudes, usually at step c) - Centroid Processing. 

2.4 Star identification 

As stated in the previous section, the goal of star identification is to discover the 

coordinates of observed stars in a reference frame used for attitude determination 

(the reference frame used in the working copy of the star catalog, as explained in 

Section 2.5.2). To do so, the star-ID algorithms attempt to associate each 

observed star with a star in the star catalog, using one method or a combination 

of different methods. The outcome of the star identification process can be 

(CARVALHO, 2001): 

a) correct identification: the observed star is correctly associated with the 

catalog star that corresponds to it; 

b) ambiguous identification: there are many potential matches with stars in 

the catalog; 

c) no identification: no star from the star catalog matches within 

measurement tolerances the observed star – this can happen if the 

observed star is a false star or a star absent in the star catalog; 

d) incorrect identification (misidentification): the observed star is incorrectly 

assigned to a single catalog star that does not correspond to it. 

In case of an ambiguous identification, the star-ID algorithm might attempt to 

solve the ambiguity by performing additional tests to improve the correct 

identification rate. However, if the ambiguity cannot be easily solved, or if the 

ambiguity resolution has a relatively large probability of misidentification, it is 

preferable to reject the identification than to risk returning an incorrect 

identification. As pointed out by Carvalho (2001), in real star trackers, there’s no 

way to differentiate between a correct star identification from a misidentification, 
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since the true star identities are unknown. This is especially important during the 

attitude acquisition phase, when the STR has no attitude knowledge. Therefore, 

in a real application, a misidentification can have much more severe 

consequences than no identification (CARVALHO, 2001; MORTARI et al., 2004). 

A misidentification can lead to a significantly incorrect attitude estimate being 

returned by the star tracker. An incorrect attitude provided to the spacecraft’s 

attitude and orbit control subsystem (AOCS), if not properly filtered, can cause 

the spacecraft to reorient itself in space in an incorrect way, with potentially 

catastrophic consequences, including mission loss. On the other hand, if the star 

tracker does not provide an attitude solution, the AOCS can rely on the 

information gathered from other attitude sensors or propagate attitude from 

previous measurements, provided these attitude measurement dropouts are 

infrequent. A typical specification for a star tracker would be: availability > 99% 

and incorrect attitude determination probability < 10-6 (DEA – Divisão de 

Eletrônica Aeroespacial, 2005, personal communication), where an incorrect 

attitude means an attitude with errors large enough to degrade or put a mission 

at risk. In summary, a good star identification algorithm should have a high 

success rate and a very low misidentification rate. 

Many methods do exist for stellar identification. One of the first attempts to 

classify star identification methods was performed by Gottlieb (1978), with more 

recent classifications performed by Carvalho (2001), Spratling and Mortari 

(2009), Brätt (2013) and Zhang (2017). 

2.5 Reference frames 

For the process of star identification and attitude determination alone, only two 

reference frames would be needed: a reference frame that rotates with the star 

tracker and another reference frame with axes fixed in inertial space, serving as 

a reference for attitude determination. However, due to the effects of stellar 

aberration (explained in Section B.1.1 in the appendices) and stellar parallax, it 

is often necessary to define an intermediate reference frame between the inertial 
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reference frame used in the star catalog and the other reference frame that 

rotates with the star tracker. For a spacecraft orbiting Earth, stellar aberration can 

result in an attitude determination error up to 28 arc-seconds if it is not properly 

treated (ALBUQUERQUE; FIALHO, 2005). The effect of stellar parallax is much 

smaller and needs to be corrected only for high accuracy star trackers or for 

missions to the Outer Solar System and beyond, being discussed in Section 

B.1.2. Therefore, this section provides a brief description of these reference 

frames. A more comprehensive treatment of how the effects of stellar aberration 

and stellar parallax can be corrected or compensated is provided by Shuster 

(2003). 

2.5.1 Master catalog inertial reference frame (IRF) 

This reference frame is an inertial reference frame adopted by the master star 

catalog stored on-board in the star trackers simulated in this work. 

Since the master star catalogs used in our work were derived from the Hipparcos 

star catalog (ESA, 1997), the inertial reference frame adopted here is the same 

as the one used in this star catalog, known as HRF (Hipparcos Reference 

Frame). This reference frame has its origin at the center of mass of the Solar 

System with its fundamental axes defined in a way to be backwards compatible 

with the old equatorial coordinate system used by astronomers using the equinox 

and poles of J2000.0 (Section A.2.1 in the appendices). Nevertheless, its defining 

axes are defined by a set of extragalactic sources and distant stars, being 

completely decoupled from the complex movements performed by the Earth. The 

HRF along other practical realizations of the ICRS (International Celestial 

Reference System) are currently the reference frames that best approach a truly 

inertial reference frame in spacecraft work. These reference frames are in 

essence the “J2000 reference frame” used by the Astronautical community. 

Figure 2.2 illustrates the inertial reference frame used in this work. Sections A.2 

and A.2.2 in the appendices give a more detailed explanation of the HRF, ICRS 

and their historical background. 
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To better illustrate how the x, y and z axes of the HRF are defined, Figure 2.2  

also shows the Earth on its orbit around the Sun, marking the approximate 

positions of the Earth during the solstices and equinoxes of the year 2000. In this 

figure, the Sun is at the center, practically coincident with the origin of the HRF. 

The Earth is on the background, just behind the Sun. The x axis is approximately 

aligned with the vernal equinox of the year 2000 (the straight line starting from 

Earth and going in the direction of the Sun during the spring equinox of March 

2000), in the image, pointing towards the reader. The z axis points approximately 

to the north pole of the celestial sphere, and y is defined in such a manner that 

x, y, z define a right-handed coordinate system. For a definition of the 

astronomical terms see Appendix A. 

Figure 2.2 – inertial reference frame used in this work (see text for explanations). 

 

Source: adapted from Fialho (2007). 

From the theoretical point of view, the HRF and any other reference frame defined 

at the barycenter of the Solar System is not truly inertial, due to the small 

gravitational acceleration of the Solar System as a whole caused by nearby stars, 

by the center and the remaining of our galaxy and to a lesser degree by 

extragalactic bodies. By this reason, the HRF is more appropriately defined as a 

“quasi-inertial” reference frame. However, the accelerations from these sources 

are so small that they may be ignored even for accurate work (FIALHO, 2007). 
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2.5.2 Spacecraft non-rotating reference frame (NRRF) 

This reference frame has its origin in any point inside the spacecraft or inside the 

star tracker, but the directions of its defining axes remain fixed in space and 

parallel to the defining axes of the inertial reference frame used in the master star 

catalog. It is against this reference frame that the star tracker attitude is 

computed. For accurate attitude determination, coordinates of stellar vectors from 

the star catalog used in the process of star identification should be represented 

in this reference frame. These coordinates can be obtained from the master star 

catalog after including the effects of stellar aberration and (depending on the 

accuracy required) stellar parallax. Explanation of these phenomena and how to 

include their effects is given in Appendix B, sections B.1.1 and B.1.2. 

An accurate method to compensate the effects of stellar aberration and parallax 

is to create a working copy of the star catalog including these effects at regular 

intervals. In particular, the effects of stellar aberration can be included by 

distorting star catalog coordinates using the approximate Equation (B.1), as 

described in Section B.1.1 of the appendices. The star coordinates in this working 

copy of the star catalog will be in an inertial frame that is a good approximation 

to the spacecraft NRRF. Table B.1 shows the magnitude of the residual 

aberration error versus the star catalog update interval. 

The exact location of the origin of this reference frame inside the spacecraft has 

no practical importance in attitude determination. The distances to the stars are 

so vast in comparison to the dimensions of even the largest spacecraft, and 

differences in the velocity vector among different parts in the spacecraft (e.g., due 

to spacecraft rotation) are so small in comparison to the speed of light, that the 

spacecraft as a whole can be considered as a point, unless measurements in the 

micro-arc-second range are being made, where the differential stellar aberration 

effect among different parts of the spacecraft might become important. 
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2.5.3 Star tracker reference frame (STRF) 

The star tracker reference frame, also known as the body reference frame, is 

attached to the star tracker optical head, being usually defined by the image 

sensor’s matrix and optical axis. Figure 2.3 illustrates the STR reference frame. 

Figure 2.3 – STR reference frame 

 

Source: Fialho (2007). 

As previously stated, the star tracker attitude is simply the relation between this 

reference frame with the NRRF defined in the previous section. 

2.6 Minimum number of observed stars for autonomous attitude 

determination 

When only one star is observed, it is not possible to determine the STR attitude, 

even when its identity is already known (e.g., from previous identifications in 

tracking mode), since the minimum number of vector observations needed for 

attitude determination is two, and these need to be non-collinear. It is easy to 

understand the reason for that. With only one identified star (only one reference 

vector for attitude determination), the spacecraft could rotate around the line that 

joins the spacecraft to that star without changing its position on the STR FOV. 
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Thus, there are infinitely different attitudes providing exactly the same scene for 

the STR. The same situation happens when there are only two vector 

observations and these are collinear. 

To determine attitude from vector observations, where each vector coordinates 

are known both in the body frame and in an inertial reference frame, the absolute 

minimum number of vectors needed is two and these vectors must be non-

collinear. However, with only two observed stars it is not possible to determine 

their identity in a lost in space situation based solely on their position (McVITTIE, 

2013), since a rotation of 180 degrees around an axis that passes through the 

center of the line joining these stars will give the same image. With the inclusion 

of additional information about the stars, such as magnitude or color index, 

identification with only two stars become possible in theory. Nevertheless, for the 

typical measurement tolerances of modern star trackers, there exist multiple 

potential matches from the star catalog to the observed pair of stars, even when 

using additional information such as stellar magnitudes and color indexes to aid 

star identification, which makes identification based solely on two stars in a lost-

in-space scenario extremely unreliable. Therefore, most star-ID algorithms used 

in the attitude acquisition mode require at least three stars in the STR field of view 

to attempt identification. 
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3 USE OF MAGNITUDE AND COLOR INFORMATION FOR STAR 

TRACKERS 

3.1 Introduction 

When an attitude estimate is available, from a previous identification or from 

another attitude sensor, it can be used to filter the number of candidate stars from 

the catalog by selecting only those cataloged stars which are expected to be 

close or within the star tracker FOV (or FOVs for a multiple head STR). By 

reducing the size of the search space, this procedure reduces the dangers of 

misidentifications. However, this is not possible when no attitude estimate is 

available, i.e., when the spacecraft is in a lost in space condition. In that case, 

the star tracker faces the difficult task of finding the correct match among 

thousand stars from the star catalog. In this scenario, any information about the 

stars being identified made available to the star-ID algorithm can be helpful in 

reducing the probability of a misidentification happening. 

The primary information about stars that is typically used in star identification 

algorithms is their geometric configuration, since this is in almost every case the 

most accurate information available for star identification – unit vectors repre-

senting stars are typically available with uncertainties in the order of few arc-

seconds (few tenths of microradians). Besides unit vectors, observed star 

brightness information is also usually available, typically being represented by a 

magnitude in the star tracker natural magnitude scale (for a definition of the 

magnitude scale used in Astronomy, the reader is referred to Appendix C in this 

work). Magnitude information is much less accurate than positional information, 

precluding its use as the sole mean of star identification (magnitude measure-

ments typically have uncertainties in the range 0.05 to 0.5 magnitudes, which 

means that many stars will have the same magnitude within measurement 

tolerance). Nevertheless, it can be used to filter candidate stars, speeding up 

stellar identification; and to confirm the identity of stars, reducing the probability 

of a misidentification. Most star trackers (or cameras that can be used as star 
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trackers) are monochromatic (color insensitive). However, if the hardware can 

capture color information, this could be exploited to improve stellar identification 

speed and reliability. 

This chapter starts with a description of the reasons to use magnitude and color 

information (when available) in stellar identification, followed by a discussion 

among different hardware classes that could be used for color sensitive star 

sensors. Some parts of this chapter have been derived from a conference paper 

presented by the author (FIALHO; MORTARI; PERONDI, 2016). 

3.2 Benefits of magnitude use 

The number of stars brighter than a certain magnitude follows, to a good 

approximation, a power law (LIEBE, 2002; RAO, BHAT, ALEX, 2005). Using data 

from the Hipparcos catalog (after merging stars that are closer than 0.05° into a 

single equivalent star) and visual magnitudes, the following relation was fitted by 

Fialho (2007, p. 95): 

𝑁 = 𝑎 · 10𝑏·𝑚𝑣 (3.1) 

where: 

N = number of stars with magnitude lower (brighter) than mv, after 

merging stars closer than 0.05° into a single equivalent star. 

mv  = magnitude in the Johnson’s V (visual) band given in the 

Hipparcos star catalog; 

with 𝑎 = 5.520546 and 𝑏 = 0.49386. 

If magnitude information is available, it can be used to filter the candidate stars 

from the star catalog, as shown in Figure 3.1.  Let mobs be the observed star 

magnitude and tol_mag the magnitude tolerance used. A simple magnitude filter 

would accept all stars within magnitude range [mobs – tol_mag, mobs + tol_mag] 

and reject all stars outside that range. The blue curve shown in this figure 

presents the relation between star position in a star catalog (horizontal axis) 
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versus stellar magnitude (vertical axis), after sorting this star catalog by 

magnitude (brightest stars first). Detailed explanation of how this catalog was 

prepared will be given in Section 4.2. 

Figure 3.1 – Use of magnitude filtering to reduce number of candidate stars 

 

Source: Drawn by the author. 

The worst situation where this magnitude filter is least effective happens when 

mobs = mmax – tol_mag, being mmax the limiting magnitude in the star catalog. For 

this scenario, the ratio between the number of stars after filtering (𝑁𝑚𝑓,𝑤𝑐) and 

before (𝑁), is given by: 

𝑁𝑚𝑓,𝑤𝑐

𝑁
= 1 − 10−2·𝑏·𝑡𝑜𝑙_𝑚𝑎𝑔 (3.2) 

Here the 𝑤𝑐 subscript is used to indicate values in the worst-case situation. 

Table 3.1 presents the ratio between stars after magnitude filtering and before. 

Values shown have been computed for the worst case using Equation (3.2). As 
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can be seen, the magnitude filter with a magnitude tolerance of ± 2.0 is very 

ineffective, since almost all the stars are retained, except if the observed star has 

a low magnitude, i.e., it is a bright star. The filtering becomes more effective when 

the tolerance is tightened. However, if the tolerance is too tight, the candidate 

star that really corresponds to the observed star has a higher probability of being 

filtered out, increasing the failure rate in star identification. Another potential issue 

with very tight tolerances is the intrinsic variability in brightness of some stars. 

Therefore, the optimal value to be used for the magnitude tolerance depends on 

how well the star tracker is able to measure accurately stellar magnitudes and 

also on the intrinsic variability in the brightness of some stars, being this a subject 

for future investigations. 

Table 3.1 – Ratio between the number of candidate stars after and before filtering by 
magnitude, versus magnitude tolerance used, computed using Equation (3.2) 

magnitude 
tolerance 
(tol_mag) 

fraction of stars 
retained after 
filtering 

magnitude 
tolerance 
(tol_mag) 

fraction of stars 
retained after 
filtering 

0.02 ≤ 4.5% 0.3 ≤ 49.5% 

0.05 ≤ 10.7% 0.5 ≤ 67.9% 

0.1 ≤ 20.3% 1.0 ≤ 89.7% 

0.2 ≤ 36.5% 2.0 ≤ 98.9% 

Source: Created by the author. 

By reducing the number of candidate stars, magnitude filtering has the potential 

of decreasing the time spent in star identification. Another benefit is the reduction 

in the frequency of incorrect matches between observed stars and cataloged 

stars, reducing the probability that an incorrect attitude will be provided by the 

star tracker, even though it might increase the probability that no matching 

cataloged star will be found (identification failure). 
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3.3 Potential benefits and drawbacks of color information use 

In the same way as magnitude information can improve star identification 

robustness by limiting the number of catalog stars that can match an observed 

star, so does color information. Besides this obvious advantage, a camera 

equipped with a color sensitive image sensor has the following advantages over 

monochrome cameras (FIALHO; MORTARI; PERONDI, 2016): 

• for star trackers with refractive optics, color information makes it possible 

to measure and better compensate chromatic aberration in the optics; 

• for refractive optics, there is the possibility to detect optics aging due to 

ionizing radiation, usually manifested as a reddening in the optics 

elements; 

• additional information available to discriminate observed targets (stars, 

planets, moons, satellites, debris) when used as a navigation camera; 

• possibility to perform multiband photometry in targets of scientific interest. 

Despite all these potential advantages, to date, there is little scientific literature 

on using color information to increase the robustness of stellar identification 

process. This can be in part explained by the difficulties in obtaining a reliable 

and compact hardware with good performance for star tracking capable of color 

discrimination with existing technologies. 

The main disadvantage of a color STR versus a monochrome STR is the added 

system complexity (both in hardware and in software) needed to acquire and 

correctly interpret color information. Another important aspect is if a color STR 

will be able to compute centroids with the same accuracy of a traditional 

monochrome STR. If the centroid accuracy of a color STR is much worse than 

that of a monochrome STR, the gains obtained by filtering stars with color 

information are lost by the need of increasing the positional tolerances in the star-

ID algorithm and decreased accuracy of the estimated attitude.  
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Another challenge to algorithms using magnitude and color index for stellar 

identification is the existence of variable stars, stars whose brightness and color 

varies in a periodic or irregular fashion. Fortunately, it seems that for most stars 

the variation in their output and temperature is very small or negligible, as can be 

inferred from the small size of catalogs of variable stars (SAMUS et al., 2017) in 

comparison to all-sky surveys containing hundreds of millions or even billions of 

stars. Nevertheless, a more detailed study in this subject should be performed in 

the future, so that the impact of variable stars in the star-ID speed and success 

rate can be assessed, especially for tight tolerances (tighter than ± 0.05 mag.). 

3.4 Technologies for color imaging in space 

3.4.1 Image sensors with color filter array (CFA) 

Most consumer cameras use image sensors with a color filter pattern over the 

pixel array, each pixel with a different spectral filter deposited over it, in a 

repeating pattern, as shown in Figure 3.2 (FIALHO; MORTARI; PERONDI, 2016). 

This technology has also found applications in space, such as the Mars Science 

Laboratory rover (GHAEMI, 2009), more popularly known as Curiosity rover. 

Figure 3.2 – A color filter array scheme commonly used for color discrimination in color 
image sensors. 

 

Source: Drawn by the author. 
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However, this kind of technology has many drawbacks for star trackers: 

a) photon flux reduction: Each color filter absorbs a significant portion of the 

incoming light. This presents a problem for star trackers, as a reduction in 

the photon flux will increase the minimum exposure time required for 

assuring that a minimum number of stars needed for stellar identification 

will be detected for any spacecraft attitude, especially in regions with few 

bright stars, like the galactic poles. This increase in the minimum exposure 

time causes a decrease in the update rate and in the maximum acceptable 

angular velocity of the star tracker. As a matter of fact, most star sensor 

optics have apertures as wide as practical in order to collect as much light 

as possible. Even so, the minimum exposure time required for star 

detection (in the order of tens to hundreds of milliseconds) is the bottleneck 

of many star trackers, as is the case with the star tracker being developed 

in our group (FIALHO; PERONDI; MORTARI, 2016); 

b) difficulties for centroid computation: Each pixel of the image having a 

different spectral response from its neighbors makes it more challenging 

to compute star centroids accurately. In order to overcome these 

difficulties, the star spot size must increase, usually by increasing the 

defocusing, so that more pixels are covered. This has the effect of 

degrading signal to noise ratio, as there will be more pixels contributing to 

noise (in comparison to a monochrome image sensor with a smaller star 

spot size). This leads to a degradation of the centroid accuracy; 

c) color filters may degrade: color filters deposited over the image sensor 

may be subject to degradation caused by exposure to ionizing radiation 

present in space. 

3.4.2 Use of dichroic prisms and multiple monochrome image sensors 

Another approach for multispectral imaging consists in the use of dichroic prisms 

or interference mirrors for spectral separation and multiple monochrome image 
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sensors. This alternative has been explored by McVittie in his PhD thesis (2013) 

for a three-spectral band star tracker. A sketch of an optical setup based on this 

concept can be seen in Figure 3.3. 

Figure 3.3 – A setup with three monochrome image sensors and a trichroic prism 
assembly for spectral separation. A detailed explanation of this trichroic 
prism assembly principle of operation is given in an European patent 
(VARINTELLIGENT LIMITED, 1999). 

 

Source: Drawn by the author. 

Advantages of this setup include excellent noise performance (if image sensors 

with low readout noise are used) and low attenuation of incoming optical 

radiation. However, the need to triplicate the focal plane and associated 

electronics, plus the issue of precisely aligning the image sensors so that 

corresponding pixels in different image sensors receive light from the same 

object, makes this solution less desirable for star trackers. 

3.4.3 Use of a filter wheel with a monochrome camera 

A commonly used method in space probes for multispectral imaging is to use a 

filter wheel in front of a monochrome camera (PORCO et al., 2004; ROBINSON; 

MALARET; WHITE, 2003; SMITH et al., 1997). This approach has the advantage 
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that custom spectral bands can be designed by redesigning the filter without 

having to redesign the image sensor. It is much easier to design and manufacture 

a custom filter than to design an image sensor with custom spectral bands. 

Unfortunately, this solution has many drawbacks for star trackers, which makes 

it unfeasible for star trackers and navigation cameras. An example of a filter wheel 

is shown in Figure 3.4. 

Figure 3.4 – Filter wheel of the HST WFC3 camera. 

 

Source: STScI ([2015?]). 

Following is a list of the most important issues of using a filter wheel in a STR: 

a) only one spectral band can be imaged at a time: this introduces several 

hurdles in calibration, especially if we consider that the spacecraft can be 

rotating; 

b) spectral filters need to reject a portion of incoming light in order to narrow 

down the incoming light flux to the prescribed spectral band. This worsens 

the problem of minimum exposure time required to detect stars (current 

bottleneck of most star trackers); 

c) a filter wheel involves moving mechanical parts. Mechanical parts are one 

of the greatest reliability concerns in spacecraft. 
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3.4.4 Remote sensing cameras 

Multispectral (few wavelengths) and hyperspectral (up to thousands of 

wavelengths) cameras for space application, such as remote sensing cameras, 

do exist, however these cameras are generally not suitable to be used as star 

trackers. Besides being usually heavy and bulky, most of the traditional remote 

sensing cameras work more like scanners, projecting part of the scene onto a 

few detectors (whiskbroom configuration) or onto a linear image sensor 

(pushbroom configuration) (WERTZ; LARSON, 1999) that is rapidly read out by 

the electronics. These whiskbroom and pushbroom cameras depend on the 

orbital motion of the spacecraft coupled with accurate spacecraft rotation to scan 

the ground and form an image. A fixed head star tracker, on the contrary, needs 

to image simultaneously many stars, to avoid distortions introduced by the 

spacecraft rotation, even when it is rotating slowly. Thus, fixed head STRs 

typically employ matrix image sensors. In addition to that, there are huge 

differences in the exposure time required to image scenes on the ground and to 

image stars. Nevertheless, with current technology, it is not inconceivable to 

design a space camera that can work as a remote sensing camera, as a horizon 

sensor, as a navigation camera and as a star tracker, given that there exist matrix 

image sensors (both CCDs and CMOS) containing millions of pixels with 

exposure time electronically adjustable in the large range needed for remote 

sensing (less than a millisecond) and stellar imaging (tens to hundreds of 

milliseconds). This makes the use of color information more interesting for stellar 

identification, since color information required by the other functions of this 

multifunctional camera will be available anyway. 

3.5 Image sensors with stacked photodiodes 

In a previous work we explored the idea of using an image sensor with stacked 

pixels for color sensitive star trackers (FIALHO; MORTARI; PERONDI, 2016). 

Albeit this technology has been available for more than a decade (MERRIL, 2003; 

GILBLOM et al., 2003) we have not found any research article suggesting the 
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use of this technology in star sensors preceding our work. In this section, a 

discussion about this technology is provided. The basic idea behind this 

technology is to use the image sensor’s material as a spectral filter, as can be 

seen in Figure 3.5. 

Figure 3.5 – Example of an image sensor with a) two stacked pixels and with b) three 
stacked pixels. 

 
a)         b) 

Source: Drawn by the author. Used previously in (FIALHO; MORTARI; PERONDI, 2016). 

The main advantage of this approach in comparison to competing technologies 

is the possibility of getting multispectral data with minimum light attenuation using 

a compact hardware, while at the same time avoiding centroiding issues that arise 

when adjacent pixels in the image plane have different spectral responses. 

Since microelectronics techniques are more advanced for silicon, it is very likely 

that the first star tracker or navigation camera employing this idea will have its 

spectral bands dictated by silicon absorption spectrum and pixel thickness, as 

can be seen in Figure 3.5. However, this idea could also be used with other 

materials, if another suitable material is found. Figure 3.6 presents the photon 

penetration depth in silicon. Note that lower energy photons (longer wavelengths) 

penetrate deeper into silicon. Figure 3.9 (on page 40) presents the spectral 
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response for each pixel layer, plus the combined responses, in an image sensor 

with three stacked pixel layers. 

Figure 3.6 – Silicon spectral absorptivity (GREEN, 2008). 

 

Source: Drawn by the author. Used previously in (FIALHO; MORTARI; PERONDI, 2016). 

3.5.1 First generation 

The first generation of image sensors employing this technology, commercially 

known as Foveon X3 technology (MERRIL, 2003; GILBLOM et al., 2003) contains 

three layers of pixels, providing measurements in three spectral bands. However, 

it has the drawback that it employs the simpler 3T pixel architecture (HOLST; 

LOMHEIM, 2011), that does not permit to perform a true CDS (correlated double 

sampling) to remove pixel kTC reset noise (as briefly explained in Section B.2.1), 

making it a noisy image sensor in low light conditions. An explanation of the CDS 

technique can be found in Holst and Lomheim (2011). 
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3.5.2 Second generation and possible improvements 

A possible solution for the low light performance of the first generation of stacked 

pixel architecture comes from a patent filed by Mansoorian et al. (2015). This 

patent proposes the use of two (or more) silicon wafers bonded together. This 

approach enables the use of a pinned photodiode pixel architecture, enabling a 

significant reduction in sensor noise, possibly bringing low light performance to 

the same level of conventional monochrome image sensors. An excellent review 

of the pinned photodiode structure, explaining why it provides better low light 

performance is given by Fossum and Hondongwa (2014). 

Another possible improvement for the stacked pixel concept comes from the 

incorporation of a distributed Bragg reflector (DBR), as proposed by Angazira and 

Fossum (2015). This is shown in Figure 3.7. The DBR improves spectral 

separation between spectral bands, leading to better color discrimination 

between targets, benefiting stellar identification in star trackers. 

Figure 3.7 – A sketch of an image sensor with two layers of stacked pixels (two silicon 
wafers bonded together) using a DBR stack for improved spectral band separation. 

 

Source: Drawn by the author. Used previously in (FIALHO; MORTARI; PERONDI, 2016). 
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3.6 Experimental work 

3.6.1 Camera selection 

Knowing the limitations of the first generation of stacked pixel sensors, and the 

development of second generation stacked pixel sensors (MANSOORIAN et al., 

2015; ANZAGIRA; FOSSUM, 2015), the author of this thesis contacted groups 

working with this new technology with the purpose of obtaining a prototype 

camera using a second-generation image sensor with stacked pixels. However, 

at the time this search was performed, many of these developments were still in 

a conceptual phase or pre-prototyping stage. Hence, a camera employing a 

stacked image sensor from the first generation was selected for experimental 

work instead. The selected camera was a Condor Foveon industrial camera 

(QUEST INNOVATIONS, [2015?]) employing the F13 image sensor (FOVEON, 

2006). This section presents results of preliminary work performed with this 

camera. Due to delays in the selection and procurement phases, a more 

extensive experimental work could not be performed. Figure 3.8 presents a photo 

of the camera used in the experimental work. 

Figure 3.8 – The Condor Foveon camera used in the experimental work. 

 

Source: Photo taken by the author. 
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3.6.2 Night sky tests 

Using the Foveon camera, some images were captured during a night test, and 

a preliminary data analysis was performed with these images. Table 3.2 presents 

the specifications of the system and some of the settings used in the test. 

Table 3.2 – Technical details of the setup used in the night tests 

Parameter / Feature Value / Description 

Camera Quest C1-RGB-FV-CL 

Image sensor Foveon X3 F13 

  Imager resolution 2652 x 1768 x 3 

  Pixel size 7.8µm x 7.8µm 

Optics used Nikkon 35mm f/1.4 

exposure time selected 400 ms 

Bit depth setting used 12 bits per pixel per each RGB channel 

Source: Created by the author. 

From the hundreds of images acquired during that night, eight images of the 

constellation Cygnus were selected for analysis. These images were captured 

using an exposure time (integration time) of 400 ms and the optics set at its widest 

opening (f# = 1.4). The focus used was the best that could be found visually. 

A series of about 200 dark frames was acquired on the same night using the 

same exposure time (400 ms) of the light images. The average of these dark 

frames was subtracted from the light images in order to remove fixed pattern 

noise and dark current (components bij and cij of Equation (B.12) in the appen-

dices). 

The observing conditions were not the best during that night. Occasionally some 

clouds would cross the sky. Also, there was significant light pollution on the site 

where the tests were performed. From the location used for these tests, there 

was no clear view of the zenith, hence images were taken from a part of the sky 
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at an elevation of about 30° from the horizon, leading to a path length through the 

atmosphere roughly twice the one would be obtained if the camera was pointed 

to the zenith. A longer path length in the atmosphere (larger air mass in 

astronomical parlance) results in more distortion and attenuation in starlight. 

These images were captured in College Station, TX, on December 25, 2016. 

3.6.3 Star extraction and centroiding 

Star extraction was performed with a simple algorithm, designed initially for a 

monochrome star tracker with limited memory and CPU power (FIALHO; 

PERONDI; MORTARI, 2016). Images taken by the Foveon camera are 

multispectral, consisting of three image planes, each at a different spectral band. 

Since the algorithm used in this preliminary test cannot handle multispectral 

images, the image planes at each spectral band were processed separately. 

This algorithm starts by removing column bias, using a method which will be 

better described in Section 6.2. Once column bias has been removed, the 

algorithm removes row bias on the resulting image using the same method. After 

that, the algorithm samples 32×34 = 1088 pixels distributed in a rectangular grid 

with uniform spacing, covering the whole image. The sampled pixels are stored 

in a list. From this list, the 64 brightest pixels are removed. This step is performed 

to remove occasional hot pixels or illuminated pixels from the sample. The 

resulting 1024 pixels are then used to estimate the average level (μbkg) and 

standard deviation (σbkg) of the image background, used to compute the threshold 

that will be used for detecting stars. In our tests, the threshold was set at 

μbkg + 5σbkg. 

After image pre-processing, the next step is to extract stars from the image. This 

is done by searching for clusters of contiguous pixels having pixel values above 

the threshold. Following is a description of the method used1. 

                                            
1 According to the nomenclature used in the field of image processing, the method used is an 
image segmentation algorithm (RANGAYYAN, 2004, Section 5.4, p. 393). 
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The search starts at the top left corner of the image and progresses in raster scan 

mode until a pixel above the threshold (a lit pixel) is found. Once a lit pixel is 

found, the algorithm scans all contiguous lit pixels that are adjacent both 

vertically, horizontally and diagonally, while at the same time computing 

centroiding moments and marking the pixel as used. Once all pixels in the cluster 

are found, a check on the number of pixels is performed. If the cluster pass this 

test, its centroid is computed using a simple center of mass algorithm, and saved 

to the list of detected stars (Figure 2.1). After processing a cluster, the algorithm 

resumes its raster scan operation from where it was interrupted, skipping all 

pixels marked as used, until finding another lit pixel, which will necessarily belong 

to another cluster. To avoid the inclusion of hot pixels as detected stars, a cluster 

is considered valid only if it has at least 3 contiguous lit pixels. To avoid extended 

bodies being considered as stars, if a cluster has more than 200 pixels it is 

rejected. 

To compute the centroid, using the simple center of mass algorithm, the following 

moments are computed while pixels belonging to a cluster are scanned: 

𝐵 = ∑𝑏𝑖 − 𝑏𝑅

𝑛

𝑖=1

 (3.3) 

𝑆𝑥 = ∑𝑥𝑖 ⋅ (𝑏𝑖 − 𝑏𝑅)

𝑛

𝑖=1

 (3.4) 

𝑆𝑦 = ∑𝑦𝑖 ⋅ (𝑏𝑖 − 𝑏𝑅)

𝑛

𝑖=1

 (3.5) 

where 𝐵 is the cluster brightness, 𝑏𝑖 is the value of the i-th pixel in the cluster, 𝑛 

is the number of pixels in the cluster, 𝑏𝑅 is the average background level of the 

image, (𝑥𝑖, 𝑦𝑖) are the coordinates of the center of pixel i and 𝑆𝑥 and 𝑆𝑦 are the 

first order moments along a row and a column, respectively. From the cluster 

brightness and first order moments, the pixel centroid (𝑥𝑐 , 𝑦𝑐) is computed using 

the following equations: 
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𝑥𝑐 = 𝑆𝑥/𝐵  (3.6) 

𝑦𝑐 = 𝑆𝑦/𝐵 (3.7) 

These equations assume that the imager response is linear. If the image sensor 

response departs significantly from linearity, then the pixel value 𝑏𝑖 used in these 

equations must be corrected. 

3.6.4 Centroiding noise 

Table 3.3 gives the differences in centroid positions for seven selected stars, 

computed from the eight images analyzed. 

Table 3.3 – Night sky test results – centroiding noise 

star* 
number of pixels in the 

cluster 
differences in centroid column 

coordinates in pixel units 

name mV 
blue green red 𝑥𝑐,𝑏 − 𝑥𝑐,𝑔 𝑥𝑐,𝑏 − 𝑥𝑐,𝑟  𝑥𝑐,𝑔 − 𝑥𝑐,𝑟 

𝑛 𝑠𝑛 𝑛 𝑠𝑛 𝑛 𝑠𝑛 𝛿𝑥𝑐 𝑠𝛿𝑥𝑐
 𝛿𝑥𝑐 𝑠𝛿𝑥𝑐

 𝛿𝑥𝑐 𝑠𝛿𝑥𝑐
 

Deneb 1.25 81.8 11.6 92.1 13.3 105.5 9.2 0.01 0.03 -0.07 0.05 -0.08 0.05 

Sadr 2.23 34.9 6.2 52.4 7.4 71.8 9.9 0.03 0.07 0.15 0.07 0.12 0.06 

ε Cyg 2.48 35.4 5.3 44.0 3.0 54.0 4.8 0.07 0.07 0.24 0.05 0.18 0.05 

δ Cyg 2.87 20.4 4.2 23.2 3.9 28.0 3.0 -0.01 0.09 0.04 0.13 0.06 0.15 

ν Cyg 3.94 11.8 2.1 13.0 2.8 10.5 1.4 0.02 0.11 0.17 0.21 0.15 0.18 

32 Cyg 3.98 8.6 1.1 15.5 3.1 25.5 5.1 -0.14 0.22 -0.26 0.18 -0.12 0.17 

54 Cyg 4.54 6.1 1.1 7.4 2.6 5.3 1.3 -0.04 0.16 0.30 0.28 0.34 0.27 

* Sources: First two columns: data from the SIMBAD Astronomical Database (WENGER 
et al., 2000)2, remaining columns: data obtained by the author from images. 

The first column gives the star name and their apparent magnitudes in the 

Johnson’s V band. The second set of columns gives the average (indicated by  

𝑛) and sample standard deviation (indicated by 𝑠𝑛) of the number of pixels in the 

clusters from where the stars were extracted, for each spectral band. The third 

                                            
2 http://simbad.u-strasbg.fr/simbad/ 
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set of columns gives centroid coordinates differences along the x direction 

between different bands, being 𝑥𝑐,𝑏 the centroid coordinate in the blue band, 𝑥𝑐,𝑔 

the centroid coordinate computed in the green band and 𝑥𝑐,𝑟 the centroid 

coordinate computed in the red band. 𝛿𝑥𝑐 is the mean and 𝑠𝛿𝑥𝑐
 is the sample 

standard deviation of the centroid coordinate differences for the same star 

computed using two different spectral bands. For conciseness, only centroiding 

differences along the x coordinate are shown in the table. 

From these measurements, perhaps the most interesting are the 𝑠𝛿𝑥𝑐
 which give 

an idea of the noise equivalent angle (NEA) of the Foveon camera. It should be 

noted that 𝑠𝛿𝑥𝑐
 also depends on the centroiding and image segmentation 

algorithms used. 

3.6.5 Measured magnitudes and color indexes 

From the raw cluster brightness, computed from Equation (3.3), the magnitudes 

of clusters of pixels (hereafter, detected stars) were computed using the following 

equation: 

𝑚𝑜𝑏𝑠 = −2.5 ∗ log10(𝐵/𝐵𝑟𝑒𝑓)  (3.8) 

where 𝐵𝑟𝑒𝑓 is the reference brightness that define the zero point of the magnitude 

scale. Since the Foveon camera provides data in three spectral bands, three 

different magnitude scales can be defined, each for each spectral band. The 

reference brightness that define the zero points of the measured magnitude 

scales were set to 179,013 digital units for the blue channel, 202,580 digital units 

for the green channel and 166,114 digital units for the red channel, after scaling 

the images to 16 bits per pixel per channel, during preprocessing. These values 

were chosen so that the measured magnitudes of Vega, if it were observed by 

the camera, would be close to the adopted conventional value of 0.03 for Vega 

in all bands, making comparisons easier with standard photometric systems used 

in Astronomy, as will be explained later in Section 3.6.6. A “digital unit” is a 
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quantization step in the preprocessed images. Since during preprocessing the 

pixel values were scaled by a factor of 16 (to 16 bits per pixel per channel), each 

“digital unit” in the preprocessed image corresponds to 1/16 digitization units of 

the original 12 bits per pixel per channel image. 

The differences between magnitudes of the same object taken at different 

spectral bands is termed color index (plural: color indexes or color indices). For 

each one of the eight images analyzed, the magnitudes in each band and the 

associated color indexes were computed for seven selected stars. Table 3.4 

presents the results.  

Table 3.4 – Night sky test results – photometric measurements 

star 

standard 
magnitudes* 

measured 
instrumental 
magnitudes 

uncertainties in 
measured 

magnitudes 

uncertainties in 
measured color 

indexes 

B V I b g r σb σg σr σb-r σb-g σg-r 

Deneb 1.34 1.25 1.04 1.25 1.25 1.12 0.12 0.11 0.10 0.08 0.05 0.04 

Sadr 2.90 2.23 1.40 2.50 2.25 1.96 0.13 0.14 0.15 0.07 0.04 0.06 

ε Cyg 3.52 2.48 1.19 2.76 2.48 2.12 0.15 0.12 0.12 0.07 0.06 0.04 

δ Cyg 2.85 2.87 2.90 3.47 3.49 3.49 0.10 0.08 0.10 0.11 0.10 0.08 

ν Cyg 3.96 3.94 3.89 4.50 4.52 4.70 0.17 0.18 0.17 0.12 0.13 0.16 

32 Cyg 5.50 3.98 1.86 4.91 4.36 3.86 0.12 0.16 0.21 0.23 0.17 0.08 

54 Cyg 4.43 4.54 4.69 5.43 5.43 5.74 0.20 0.27 0.27 0.17 0.23 0.18 

* Sources: First four columns: data from the SIMBAD Astronomical Database (WENGER 
et al., 2000), remaining columns: data obtained by the author from images. 

For comparison, this table also presents the magnitudes of these stars in the 

standard Johnson-Cousins photometric system on the first set of columns, 

showing magnitudes in the B (blue), V (visual) and I (near infrared) standard 

bands. The second set of columns present the average of the measured 

magnitudes in the natural photometric system of the camera, with b indicating 
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magnitudes obtained from the blue channel3, g magnitudes from the green 

channel and r magnitudes from the red channel. The third set of columns presents 

an estimate of the standard deviation of the magnitude measurements. The last 

set of columns presents an estimate of the standard deviation of the color index 

measurements. 

To enable a comparison of the results obtained in the natural photometric system 

of the camera with a standard photometric system, it must be characterized. This 

is done in the next section. 

3.6.6 A photometric system for the Foveon camera 

To make comparisons easier with the UBVRI standard photometric system, we 

have decided to set the zero point of the red, green and blue magnitude scales 

of the Foveon camera such that the synthetic magnitudes of Vega (alpha Lyr.) 

are also 0.03 in these scales (0.03 is the magnitude of Vega in the V passband 

as reported by the Hipparcos catalog), thus making the non-standard photometric 

system we are creating for the Foveon camera also a VEGAMAG-type system 

(BESSELL; MURPHY, 2012, Section 7). To compute synthetic magnitudes of a 

star in this photometric system from its spectrum, the procedure described in 

Section C.3 of the appendixes can be followed. The photometric system defined 

here is also called a natural (or instrumental) photometric system for the Foveon 

camera, since magnitude measurements performed by this camera will be in that 

system, unless a transformation is applied to these magnitudes to transform them 

to another photometric system. 

To obtain the camera response in the red, green and blue channels, we need to 

consider both the detector response and optics transmission. Figure 3.9 presents 

the quantum efficiencies in each band, plus the combined quantum efficiency of 

the image sensor of the Foveon camera. 

                                            
3 Our b magnitudes should not be confused with the b magnitudes of the Strömgren uvby 
system, which are defined with a much narrower spectral band. 
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Unfortunately, the transmission spectrum of the optics used in the test was 

unknown to the author and data provided for the image sensor used in the camera 

spanned only the 400nm-1000nm range. Not having the means to measure the 

transmittance of the optics in the range 350nm-1000nm and image sensor 

response in the near UV in time, the author of this thesis considered a flat 

transmission of the optics in the 400nm-1000nm range and no transmission 

outside this range. The spectral response and computed color indexes for black-

bodies will not be exactly equal to those of the true photometric system of the 

camera used in the tests, but will be close enough for a preliminary analysis. In a 

series of computer simulations performed by the author, considering the 

transmission spectra of similar lenses to that used in the test (NAGASAWA et al., 

2016) and assuming a set of probable values of image sensor response in the 

near-UV (obtained by extrapolation), he found that the computed color indexes 

for black-bodies would typically stay within 20% of the values derived here.  

Figure 3.9 – Quantum efficiency of the Foveon X3 F13 image sensor. 

 

Source: Drawn by the author using data provided by Gilblom 

(2017, personal communication). 
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Multiplying the quantum efficiencies by the assumed optics transmission (flat in 

the 400nm-1000nm range and none outside this range) and by the wavelength 

(to convert from photon units to responsivity in energy units), somewhat rough 

approximations to the response functions of the Foveon camera were found and 

have been adopted in this work. These are plotted in Figure 3.10 as solid lines, 

together with the response functions of the standard B, V and I bands of the 

Johnson-Cousins system (BESSELL; MURPHY, 2012) plotted as dashed lines. 

Figure 3.10 – Energy response functions adopted in this work 

 

Source: Drawn by the author. 

The author of this thesis could have adopted, instead, response functions that 

extends into the near UV (wavelengths shorter than 400 nm) and deeper in the 

IR (for wavelengths longer than 1000 nm) following a smooth extrapolation curve. 

This would give curves closer to reality. However not having enough data to 

accurately predict how the detector response functions would extend into the near 

UV and considering that there might be significant differences in the transmission 

curve even among similar optics, it was considered to be safer to adopt an optics 

transmission that is zero outside the 400nm-1000nm range and flat within this 
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range. At least this makes it very evident the limitations in the data used to derive 

the adopted response functions, since no real optical system presents abrupt, 

stepwise changes in their spectral response functions as the ones we have 

adopted. The unphysical assumption that there is no response for wavelengths 

shorter than 400 nm should affect mostly computations in the blue band for bluer 

(hotter) stars. The assumption of no response for wavelengths longer than 

1000 nm is not so severe, as the response in all three bands is already very low 

at 1000 nm. The assumption of no response for wavelengths longer than 

1000 nm also partially compensates the small drop in the infrared transmittance 

which was observed by Nagawasa et al. (2016) for some similar optics. 

Using a procedure that will be described in more detail in Section 7.2.5, the 

relations between black-body temperatures with magnitudes and color indexes 

were found, as shown in Figure 3.11. In this figure, the horizontal axis gives the 

multiplicative inverse of the temperature, considering black-body temperatures in 

the range of 250,000 K (left edge of the plots) to 3000 K (right edges). 

From Figure 3.11.a we can see that for black-bodies, the b magnitudes in the 

Foveon camera system are similar to the Johnson’s V magnitude, while the g and 

r magnitudes are intermediate between the V and I standard magnitudes. The 

magnitudes given are the apparent magnitudes of black-bodies for a hypothetical 

observer situated on its surface. Figure 3.11.b gives the relation between 

reciprocal of temperature and the color indexes. The higher the slope of these 

curves, the more sensitive is the color index to changes in the temperature (or 

more accurately, the reciprocal of the temperature) of the black-body. This can 

be seen better in Figure 3.12 which gives the derivative of the color indexes with 

the reciprocal of the temperature. 
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Figure 3.11 – Magnitudes and color indexes for black-bodies versus reciprocal of the 
temperature 

          (a)                                                          (b) 

    

Source: Drawn by the author. 

A color index that varies little with temperature or other relevant physical 

characteristic of stars is not very useful for stellar identification, unless 

measurements in that color index can be made with a very low uncertainty. 

Assuming that stars can be approximated as black-bodies, from Figure 3.12 we 

can see that the best color index for identifying different stars among those 

studied would probably be the V−I color index. In the photometric system of the 

Foveon camera, the best color index for stellar identification seems to be the b-r 

color index, which has about the same discrimination power of the standard B−V 

color index, except for cooler stars with temperature lower than 5000 K (1/T > 

2∙10-4 K-1), where it is lower. Overall, for making comparisons between these two 

color indexes possible, we could say that the discrimination power of the b-r color 

index is roughly 0.9 times the discrimination power of the B−V color index. 
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Figure 3.12 – Variation of color indexes for black-bodies with the reciprocal of the 
temperature 

 

Source: Drawn by the author. 

If we approximate stellar spectra with the spectra of black-bodies, only one color 

index is needed, since from one color index, the temperature of the black-body 

and any other color index can be obtained, as will be explained in Chapter 7. 

Table 3.4 shows that the measurement error in the b-g and g-r color indexes tend 

to be smaller than the measurement error in the b-r color index. However, 

analyzing this data together with Figure 3.12 it can be seen that the b-r color index 

would be still a better choice for stellar identification than the b-g and g-r color 

indexes. The reason is that the b-r color index is twice as much sensitive for 

temperature variations among black-bodies than the b-g and g-r color indexes. 

For the b-g and g-r color indexes to outperform the b-r color index, their 

measurement uncertainties should be less than half the measurement 

uncertainty of the b-r color index. 

It is true that the spectra of stars are not exactly equal to black-bodies spectra, 

as exemplified in Section 7.3.2. However, the spectra of many stars can be 
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approximated by the spectra of black-bodies to a good precision (HOLLOW, 

2006), making the black-body model suitable for a preliminary analysis. 

3.6.7 Discussion 

The dataset of eight images used in this preliminary analysis is too small to draw 

solid conclusions. Nevertheless, some trends can be observed. Referring to 

Table 3.3 and Table 3.4, we can see that the centroiding noise and uncertainties 

in the measured magnitudes and measured color indexes are lower for bright 

stars (e.g., Deneb with V magnitude of 1.25 (mv = 1.25)) and higher for dim stars 

(e.g., 54 Cyg with mv = 4.54), as would be expected, considering that dimmer 

stars have a lower signal to noise ratio. 

From Table 3.4, we can see that the measurement uncertainty in the b-r color 

index is roughly 0.07 magnitudes for the brightest stars (at mv = 1.2 to 2.5) and 

0.17 for the dimmest star analyzed (at mv = 4.5). Assuming that the b-r color index 

discrimination power is roughly 0.9 times that of the B−V color index, these 

measurement uncertainties are equivalent to 0.08 and 0.19 magnitudes in the 

B−V color index, respectively. Ignoring differences in exposure time and optics 

aperture, the measured uncertainties in the b-g and g-r color indexes, for stars of 

similar magnitudes, are comparable4 to those obtained by McVittie (2013) for the 

Colour Filter Array STR, despite the unfavorable observing conditions of our test. 

This is certainly an encouraging result. However, to perform a fair comparison, 

we should have taken into consideration the exposure time used, the optics 

aperture and the precise spectral response of the system he used in his tests. 

                                            
4 comparable within a multiplicative error factor of 2 or 3. 
Color ratios (Λ𝑎𝑏) can be converted to color indices (𝑎 − 𝑏) via the equation: 𝑎 − 𝑏 =
−2.5 log10(Λ𝑎𝑏). From this equation, the following relation can be found between standard 

deviations, when they are sufficiently small: 𝜎𝑎−𝑏 =
2.5

ln(10)
⋅

𝜎Λ𝑎𝑏

E{Λ𝑎𝑏}
, with E{Λ𝑎𝑏} representing the 

expected value of Λ𝑎𝑏 , 𝑎 and 𝑏 representing two different spectral bands. 
The r, g and b bands in McVittie’s work are certainly not identical to ours, but we are ignoring 
these differences in this rough comparison. 
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Regarding magnitude errors, the standard deviation of magnitude measurements 

was higher than expected, particularly for bright stars. From the definition of color 

indexes as the difference between two magnitudes, we would expect that the rms 

errors in color indexes would be roughly √2 times larger than the rms error in 

magnitudes. A possible explanation for this unexpected high standard deviation 

of magnitude errors lies in the probable presence of cirrus clouds and contrails 

during the night sky test and the apparent positions of stars from the viewpoint of 

the camera moving to regions of different cloud density as the Earth rotated 

during measurements. Clouds attenuate star light, but, since they affect all 

wavelengths in the optical regime equally, they do not affect color. 

From the curves shown in Figure 3.11.a, it is possible to establish relations linking 

the standard BVI magnitudes to the custom bgr magnitudes we have developed 

for the Foveon camera. These relations are valid for stars which do not depart 

too much from the spectra of black-bodies. Using these relations, it is possible to 

estimate the b, g and r magnitudes from the cataloged B, V and I magnitudes for 

the seven stars shown in Table 3.4. Comparing these estimated magnitudes with 

the measured magnitudes shown in that table, a significant bias (of roughly one 

magnitude) is observed for the dimmest stars (32 Cyg and 54 Cyg), whereas a 

much smaller bias is observed for the brightest stars (Deneb and Sadr). The 

explanation for this bias lies in how the image segmentation algorithm described 

in Section 3.6.3 works and on the poor focusing that could be achieved manually. 

For the brightest stars, most pixels illuminated by the star will be above the 

segmentation threshold, so a large fraction (~ 70%) of their luminous signal will 

be summed when computing the cluster brightness (Equation (3.3)), whereas for 

dim stars, only the most illuminated central pixels will be above the segmentation 

threshold, so only a small fraction (~ 30%) of their luminous signal will be 

summed. This points to the need of using better algorithms for computing the 

observed magnitudes, or calibrating the bias introduced by this algorithm. 

To summarize, we could say that this preliminary test had many limitations: the 

observation conditions were not the best; there were some issues with focus 



47 
 

adjustment, there were problems with the method used to compute magnitudes 

and the dataset gathered was too small. To overcome these limitations, additional 

night sky tests will be needed. Ideally, hundreds or thousands of images should 

be analyzed for each setting used in the camera (exposure time and optics 

aperture used) to get statistically sound results. For the future, we plan to perform 

additional night sky tests with better observing conditions (camera pointing to the 

zenith, in a clear night with no clouds, and in a site with less light pollution), and 

use better algorithms for centroiding and magnitude estimation. 

3.7 Concluding remarks 

Despite all the limitations in the experimental work performed, preliminary results 

were encouraging. We believe that significantly better results will be obtained in 

future experimental works. This means that the technology of stacked pixels for 

color star tracker is very promising and should be investigated more deeply in the 

future. 

An interesting subject for future research would be to investigate how image 

sensors with stacked pixels would behave in space environments. The main 

concern being the effects of ionizing radiation on the image sensor. 
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4 SIMULATION ENVIRONMENT 

The simulation environment used in this thesis is an improved version of the 

simulation environment, named PTASE, used in previous works by the author 

(FIALHO, 2003, 2007). This simulation environment has been used in the Monte 

Carlo simulations that will be described in Chapter 5, Section 5.4. 

4.1 Simulation model for Monte Carlo simulations 

Figure 4.1 illustrates how star ID algorithms are tested in PTASE. 

Figure 4.1 – Flowchart for testing star-ID algorithms under PTASE. 

 

Source: Adapted from (FIALHO, 2007, page 122) 

Observe that the output normally fed by a centroiding processing algorithm (see 

Figure 2.1) is replaced by an algorithm (gen_sia_inputx) that simulates the list of 
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observed stars from a star catalog, after corrupting observed star unit vectors and 

observed magnitudes with a random noise. 

The catalog used by the simulated star tracker (inside the dashed box) can be 

derived from the main catalog loaded in the program (to the left) or from a second 

catalog loaded in the program for the purposes of star identification. When the 

catalog used for the simulated star tracker is derived from the main catalog 

loaded in the program, it contains all stars in that catalog up to a limiting 

magnitude configured by the user. 

4.2 Catalog preparation 

The star catalogs used in the simulations have been prepared from the Hipparcos 

Catalog (ESA, 1997) with the programs READCAT and PROC_CAT, as 

described in the author’s master thesis (FIALHO; 2007), and shown in Figure 4.2.  

A detailed description of the processing steps is given in the following sections. 

Figure 4.2 – Catalog generation for simulations in PTASE. 

 

Source: Drawn by the author for this work. 

The star catalogs prepared by READCAT and PROC_CAT are generated in a 

very compact format that is most suitable for storage in systems with limited non-

volatile storage, like the Brazilian star tracker (FIALHO; PERONDI; MORTARI, 

2016). When the catalog is loaded by PTASE, it is converted to another format, 

suitable for storage in the working memory (usually a RAM memory). This format 

uses twice as much memory, but is typically 10 to 100 times faster to use. This 

conversion has also to be performed by the star tracker, but since it is performed 

very occasionally (only in initialization, or to update corrections for stellar 
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aberration), it has little impact in its performance. Section 4.2.3 describes in more 

detail this conversion and the format used in these catalogs. 

4.2.1 Processing by READCAT 

The program READCAT takes as input the Hipparcos star catalog and user 

defined parameters passed to the program, generating a star catalog in a very 

compact format that is suitable to be used in the constrained environment of a 

star tracker (low memory and limited processing power). 

The user can specify a maximum magnitude during processing. All stars in the 

catalog with visual magnitude in the Johnson-Morgan UBV photometric system 

(JOHNSON; MORGAN, 1953) greater than the specified magnitude (stars 

dimmer than the specified magnitude) are ignored. 

The program also reads the B−V and V−I color indices in the Hipparcos catalog, 

retaining them in the color version of the star catalog. For the monochrome star 

catalog, these color indices can be used to compute estimates of the instrumental 

magnitudes of stars (magnitudes in the instrument spectral band), according to 

this expression: 

𝑚𝑖 = 𝑚𝑣 + 𝑘𝑏𝑣(𝐵 − 𝑉) + 𝑘𝑣𝑖(𝑉 − 𝐼) (4.1) 

where: 

𝑚𝑖 = instrumental magnitude, written to the target catalog; 

𝑚𝑣= visual magnitude in the Johnson-Morgan UBV photometric 

system, read from field H5 in the Hipparcos Catalog; 

(𝐵 − 𝑉) = blue minus visual color index in the Johnson UBV system, 

read from field H37 in the Hipparcos Catalog; 

(𝑉 − 𝐼) = Visual minus near infrared color index in the Cousins UBVRI 

photometric system (itself an extension to the Johnson UBV 

system), read from field H40 in the Hipparcos Catalog; 

𝑘𝑏𝑣, 𝑘𝑣𝑖  = multiplication factors. 
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Since the exact spectral response of a star tracker changes from one design to 

the other, leading to different 𝑘𝑏𝑣, 𝑘𝑣𝑖 factors for each star tracker model, for 

simplicity we have considered these factors to be zero, effectively taking the 

cataloged visual magnitudes as instrumental magnitudes for the simulations. In 

other words, we have assumed that the simulated star tracker spectral response 

matches the V spectral band. 

For generating a star catalog for a colored star tracker like the Foveon camera 

discussed in Section 3.6, it would probably be better to store the instrumental 

magnitudes  (for the Foveon camera, these are 𝑚𝑏, 𝑚𝑔 and 𝑚𝑟) or the color 

indexes in the natural photometric system of the camera (e.g.: 𝑚𝑏 − 𝑚𝑟 and 𝑚𝑔 −

𝑚𝑟) instead of storing the standard 𝐵 − 𝑉 and 𝑉 − 𝐼 color indices, thus saving the 

STR the work of converting observed magnitudes and color indexes to the UBVRI 

standard system. The ability to compute these color indices in the photometric 

system of the instrument is planned for future releases of the program. 

The program also has some options for controlling the handling of star entries 

flagged as binary/multiple in the Hipparcos Catalog. The user may use these 

options to include or exclude these entries from the destination catalog. 

Another useful feature of the program is the possibility to propagate star positions 

from the mean epoch used in the Hipparcos Catalog (J1991.25 ≈ April 2nd, 1991) 

to the mission epoch, e.g. J2020.0 (January 1st, 2020)5, by using the stellar proper 

motions given in the source catalog. It should be noticed, however, that 

READCAT does not perform any transformation of coordinates between different 

reference frames, nor any corrections due to Earth’s nutation and precession 

movements which are not needed for the reference frame used in Hipparcos. The 

reference frame used in READCAT is the same used in the Hipparcos Catalog, 

which is completely decoupled from the complex orbital and rotational motions 

                                            
5 Dates converted from Julian epoch to Gregorian Calendar using the IAU SOFA (Standards of 
Fundamental Astronomy) library (IAU, 2017). Julian epoch is a method of specifying the 
date/time (JULIAN EPOCH, 2012). 
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performed by Earth, as described in Section 2.5.1 and in Section A.2 in the 

appendices. 

When generating the mission star catalog, it is better that the merging step be 

performed with all stars in the Hipparcos star catalog, and only when the merging 

process has been completed the mission catalog should be trimmed to the 

desired limiting magnitude. The reason for this recommendation is that very dim 

stars that would normally be trimmed from the mission catalog can influence the 

position of the photometric center of an observed brighter star if it is close enough 

to that brighter star to be merged with it. 

4.2.2 Processing by PROC_CAT 

The program PROC_CAT reads star catalogs generated by READCAT and 

outputs a star catalog in the same file format as those generated by READCAT. 

It’s main task is to merge stars that are very close to each other to the point of 

not being distinguishable by the star tracker as different stars – stars closer than 

the resolving power of the star sensor. Another task performed by PROC_CAT is 

to sort stars by magnitude. Many algorithms implemented in PTASE require that 

the star catalog to be sorted by increasing magnitude (decreasing brightness) 

order. 

In the star catalogs used in PTASE, the merge radius used in PROC_CAT was 

set to 0.05° = 3’. This is the typical resolving power of a wide field of view star 

tracker, such as the one being developed at INPE (FIALHO; PERONDI; 

MORTARI, 2016). 

Two or more stars within a merge radius of r are merged into a single 

photometrically equivalent star. The position of this photometrically equivalent 

star is computed by using the brightness of individual stars as weights. This can 

be expressed mathematically as: 
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𝑹𝑒𝑞 =
∑𝐵𝑖𝑹𝑖

‖∑𝐵𝑖𝑹𝑖‖
 (4.2) 

where: 

𝑹𝑒𝑞 = unit vector representing the equivalent star; 

𝐵𝑖 = brightness of an individual star i being merged; 

𝑹𝑖 = unit vector representing the star i before merging. 

The brightness of the combined resulting star will be the sum of the individual 

brightness ( 𝐵𝑒𝑞 = ∑𝐵𝑖). 

The brightness used in the equation above are obtained from cataloged stellar 

magnitudes, using the equation: 

𝐵𝑖 = 10−0.4 𝑚𝑖 (4.3) 

where 𝑚𝑖 indicates the instrumental magnitude for the star i.  The number 10+0.4 

≈ 2.512 is known as Pogson’s ratio, being the brightness ratio between two stars 

that differ in magnitude by 1 (see Appendix C for a detailed explanation about 

stellar magnitudes). The minus sign in the exponent in equation (4.3) is due to 

the fact that the magnitude scale is an inverted logarithmic scale, with dimmer 

stars having higher magnitudes than brighter stars. 

PROC_CAT also gives some statistics, like the number of stars in the input 

catalog, the number of stars merged and equivalent stars created, and the total 

number of entries (single stars or equivalent photometric center of multiple star 

systems / groups) written to the target catalog. 

Since PROC_CAT does not check if the resulting merged stars fall within the 

merge radius of other existing catalog stars or resulting merged stars, it must be 

executed multiple times with the same merging radius to assure that all stars 

within a merging radius of r have been properly merged. To do this, the output of 

the last execution of PROC_CAT must be supplied as the input to PROC_CAT 

until no further merge occurs. Figure 4.3 explains the reason why PROC_CAT 
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must be executed multiple times. The left pane (a) shows the input for the first 

run of PROC_CAT. The middle pane (b) shows the output of the first run of 

PROC_CAT which is also feed to PROC_CAT in the second run. The right pane 

(c) shows the output of the second run. 

Figure 4.3 – A group of stars needing multiple passes to complete merging. 

 

Source: Drawn by the author for this work. 

In this example, there are three stars labeled A, B and C nearing each other with 

a distance close to the merging radius r. During the first pass, PROC_CAT first 

finds star C, selecting it as a pivot star. Since there’s no star within an angular 

separation r from C, PROC_CAT keeps star C in the database and searches for 

another pivot star. After a while, still during the first pass, it selects star A as a 

pivot star. However, for star A it finds star B within the merging radius r (Figure 

4.3.a). When multiple stars are found within a radius r of the pivot star, 

PROC_CAT computes their photometric center using Equation (4.2) and replace 

them with their photometric center. For stars A and B their photometric center is 

labeled AB in Figure 4.3.b. The results of this first pass are saved to the output 

catalog. Notice that for this particular example, now star C falls within a merging 

radius r of the equivalent star AB written to the catalog. However, PROC_CAT 

does not catch this. It’s the user responsibility to perform as many passes as 

needed to completely merge all stars in the database separated by an angular 

distance smaller than r. This is done by running PROC_CAT multiple times, each 

time using the output of the last execution as the input for the next. The user 
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knows that no further merges are possible when PROC_CAT informs the user 

that no merging has occurred. 

4.2.3 Storage catalog and working catalog 

This section briefly describes the catalog formats used for monochrome and color 

star trackers in PTASE and how the conversion between one format to the other 

is performed (FIALHO, 2003). 

4.2.3.1 Storage Catalog 

The catalogs generated by READCAT and PROC_CAT are in a storage catalog 

format, as described in Appendix D. This format was created with the goals of 

minimizing the amount of storage memory required and at the same time avoiding 

the need of complex decompression algorithms. The reason for this is that many 

star trackers of the early 2000’s (the period when PTASE was conceived) had 

very limited amount of non-volatile memory and low processing power. There are 

two variants of this star catalog format: one for monochrome star trackers and 

another for color star trackers with two spectral bands. The detailed specification 

of these formats is given in Appendix D. 

Note that we do not store the distance to the stars in the catalog, since this 

information is not needed for most star trackers, except for very accurate star 

cameras working in the sub-arcsecond range or for deep space missions, much 

beyond the orbit of Jupiter. Stars are so far away from each other, that even from 

the closest star to our Sun (Proxima Centauri), and imagining that the dwarf 

planet Pluto (which lies around 40 times farther from the Sun than Earth) were as 

bright as the Sun, a human observer located near Proxima Centauri would not be 

capable of resolving the Sun from Pluto at its greatest angular separation from 

the Sun (around 30 arc-seconds). From Proxima Centauri, Pluto (if it were a star) 

would become discernible from the Sun only with the aid of a binoculars or a 

small telescope. The distances used in this computation can be obtained from 
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any good textbook in Astronomy, e.g., the book by Zeilik and Gregory (1998), and 

the typical human visual acuity from works discussing eye physiology, e.g. the 

work by Hartridge (1922) and the course webpage created by Stokes (2014). 

4.2.3.2 Working Catalog 

By using only two numbers (right ascension and declination) to specify the 

coordinates of every star in the celestial sphere, the storage catalog is very 

compact, which makes it suitable for storage in systems with limited amount of 

non-volatile memory. However, the representation of star coordinates in terms of 

spherical coordinates (e.g., right ascension and declination) in the storage 

catalog leads to the need of complicated and slow trigonometric functions during 

stellar identification and attitude determination, which makes the direct use of the 

storage catalog format unfeasible. 

Hence, during the initialization phase, a STR typically converts the storage 

catalog to another format when loading the catalog in volatile memory (RAM). 

This format, which exists solely in volatile memory and is used for stellar 

identification and attitude determination, is termed in this work as working catalog. 

In this format, the stars (or more appropriately, the directions to each star) are 

represented by unit vectors pointing to points in the celestial sphere. This format 

has the disadvantage that each unit vector has three components, versus two 

components for the right ascension - declination representation, with one of them 

being redundant. However, the extra memory needed for this redundant 

component is more than compensated by the much faster manipulation with unit 

vectors and the avoidance of singularities at the poles of the spherical coordinate 

system used in the storage catalog. 

The unit vector components can be calculated from the spherical coordinates by 

the following equations, derived from Figure 4.4: 
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𝑃𝑥 = cos 𝛼 cos𝛿 (4.4) 

𝑃𝑦 = sin𝛼 cos 𝛿 (4.5) 

𝑃𝑧 = sin 𝛿 (4.6) 

where: 

𝑃𝑥  , 𝑃𝑦, 𝑃𝑧 = components of the unit vector 𝑷 representing a star 

𝛼 = right ascension of the star 

𝛿 = declination of the star 

Figure 4.4 – Conversion between a spherical coordinate system and a Cartesian 
coordinate system. 

 

Source: Fialho (2007). 

In PTASE and in the Brazilian star tracker, the components of the unit vector P 

representing a star are computed in double precision floating-point values 

(IEEE 754 binary64 format (IEEE, 2008)) since the shorter single precision 
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floating-point value (IEEE 754 binary32 format) with only 24 bits of mantissa 

might not provide enough accuracy for some computations during attitude 

determination6. By representing unit vectors components with double precision 

floating-point values (52 bits of mantissa), the maximum rounding error is on the 

order of 1.1·10−16 rad ≈ 2.3·10−11 arcsec. 

In PTASE, stellar magnitudes are represented in the working catalog also as 

double floating-point values, also taking 8 bytes each. However, as this format 

has much more precision than required, in future releases the datatype used for 

stellar magnitudes may change. Currently, each entry in the working catalog 

takes 32-bytes, this is twice the memory requirements for the storage catalog. 

4.3 Catalog preparation for color star trackers 

The catalog preparation for color star trackers is met with new challenges not 

found for monochrome star trackers. One of these is introduced by the existence 

of double and multiple stars where the angular separation between individual 

stars is so small to the point of making them not resolvable by the star tracker, so 

that the star sensor will observe the whole group as a single equivalent star with 

a brightness equal to the sum of the brightness of individual stars and located at 

the photometric center of the group. 

If the individual stars that compose this group have different colors, as usually 

happens, the position of the photometric center of that group will depend on the 

spectral band used by the star tracker. This effect is illustrated in Figure 4.5. The 

existence of binary or multiple systems is very common, about 58% of the entries 

listed in the Hipparcos catalog (ESA, 1997) brighter than visual magnitude 5 are 

flagged in Hipparcos as being components of binary or multiple systems or the 

photometric center of a binary/multiple star system. 

                                            
6 Even though with a 24-bit mantissa the least significant bit represents an angle of about 0.049 
arc-seconds for angles approaching 𝜋, which should suffice for a wide field of view star tracker, 
a detailed numerical analysis would have to be performed to ensure that no unacceptable loss 
of precision would occur with single precision floating point format due to cancellation errors. 
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Figure 4.5 shows a simulated binary system composed of stars A and B where 

each component has a different color in two spectral bands: band 1 (blue) and 

band 2 (red). They are closer to each other than the resolving power of the star 

tracker, so they are seen by it as a single star, but the exact position of this 

equivalent star depends on the spectral band used. The left pane shows the 

system in color, at high magnification, with the center positions of stars A and B 

indicated. A scale at the bottom of this pane gives the size of one pixel. The 

middle pane shows the same figure in band 1, where star A is stronger, whereas 

the pane to the right shows the system in band 2, where star B is stronger. Notice 

how the photometric center changes with spectral band – it is indicated by letter 

C in band 1 and letter D in band 2. 

Figure 4.5 – Photometric centers in different spectral bands for a binary system. 
Detailed view in the image plane at a great magnification. Left: composite 
color image from the middle and right images. Middle: simulated image in 
spectral band 1. Right: simulated image in spectral band 2. The letters A 
and B indicate the true positions of stars A and B. The photometric center 
in band 1 is indicated by letter C. Letter D indicates the photometric center 
in band 2. 

   

Source: Drawn by the author for this work. 

There are three ways of coping with this: 

a) adding together data from different spectral bands before doing 

centroiding, in effect, computing the star centroid in a new spectral band 



61 
 

that is the result of the merge of all spectral bands of the star tracker, and 

compute the photometric center in this spectral band. 

b) creating a different star catalog for each spectral band, or, alternatively, 

creating a catalog that stores all the positions of the photometric center of 

group of stars in different spectral bands. 

c) neglecting this effect, by computing the centroid using only one spectral 

band. 

Option a) has the advantage of providing a simple solution, with no significant 

changes in the star catalog format. If this option is chosen, the only modification 

in the star catalog is the addition of additional magnitude or color index fields, 

each for additional spectral band. 

Option b) has the advantage of providing more information about the stars, at the 

expense of a greater complexity of the star tracker on-board software. Option b), 

for example, allows to better measure chromatic distortions introduced by the 

optics. 

Option c) is the simplest approach, but is also the least accurate. Our current 

implementation in proc_cat.exe uses this option when generating a star 

catalog containing B−V color indices, but we plan to replace this approach with a 

better solution (either a or b) in a future release of the program. 

4.4 List of observed stars 

During Monte Carlo simulations, the list of observed stars that is fed to the star-

ID algorithm under test is generated in the program PTASE (FIALHO; 

SAOTOME, 2005) by the algorithms gen_sia_input5, gen_sia_input6, 

gen_sia_input7 or gen_sia_input8. These algorithms generate a simulated list of 

observed stars from a star catalog that can be the same catalog from where the 

catalog used by the star-ID algorithms is derived or a different one, depending if 

only one or two star catalogs are provided to PTASE when loading the program. 
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The name gen_sia_input comes from an abbreviation of the expression “generate 

star identification algorithm input.” The last number (5, 6, 7 and 8) is a version 

number distinguishing older from more recent implementations of this algorithm. 

gen_sia_input5 is the original algorithm used by Fialho (2007), whereas the 

remaining algorithms are improvements over gen_sia_input5 created for this 

work. 

The list of observed stars is generated by scanning all stars that can be within 

the field of view of the star tracker. Those that are inside the simulated field of 

view have their coordinates converted from the star catalog reference frame to 

the STR reference frame. Then star coordinates and magnitudes are corrupted 

by adding a Gaussian noise, whose standard deviation depends on cataloged 

magnitude. This is modeled in gen_sia_inputx (with x being either 5, 6, 7 or 8), 

as can be seen in the continuous blue curves in Figure 4.6 and in Figure 4.7 

(FIALHO, 2007). This is done so more representative values are used, as it would 

be on a real star sensor. The model also includes a parameter named moffset 

which is used in to shift the whole curves to the right or to the left, simulating the 

effect of an increase or decrease in star tracker sensitivity, e.g., due to a change 

in the exposure time in the acquisition of the images. 

These curves were obtained by running a centroiding algorithm multiple times 

and performing a best fit on the results (FIALHO, 2007). For magnitudes (Figure 

4.7), an additional uncertainty of 0.25 magnitude has been quadratically added 

(FIALHO, 2007) to the magnitude standard deviation used in the model. This is 

to account for miscalibration, change in optics transmittance with aging and 

variability intrinsic to some stars. Likewise, for the centroid position (Figure 4.6), 

an additional uncertainty of 0.05 pixel per axis has been quadratically added to 

the per axis position standard deviation (FIALHO, 2007). This is to account for 

uncertainties introduced by miscalibration, thermo-elastic deformations, etc.  



63 
 

Figure 4.6 – Variation of centroid standard deviation versus magnitude for 
gen_sia_inputx. 

 

Source: Fialho (2007) 

Figure 4.7 – Variation of observed magnitude standard deviation versus cataloged 
magnitude for gen_sia_inputx. 

 

Source: Fialho (2007) 
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These values of 0.25 magnitude and 0.05 pixel which were quadratically added 

to the model (FIALHO, 2007) were chosen based on the expected errors in 

magnitude and position due to miscalibration, stellar variability and thermo-elastic 

deformations for the Brazilian star tracker (FIALHO; PERONDI; MORTARI, 

2016). However, these values should be reviewed once a better characterization 

of this star tracker is performed. Considering the preliminary results obtained in 

Section 3.6, this additional magnitude error of 0.25 magnitude could, perhaps, be 

revised downwards. 

As expected, the standard deviations in magnitude and position increase with 

magnitude, since dimmer stars (higher magnitudes) have worse signal to noise 

ratio. For very bright stars, with magx = mcat – moffset < 1, we can see the effects 

of image sensor saturation, causing an increase in the magnitude and position 

errors as their brightness increase (magx decreasing from 1 to 0). For stars 

brighter than magnitude 0, which cause a very strong saturation in the detector, 

we observe oscillations of the position and magnitude standard deviations with 

increasing star brightness. These are caused by complex interactions between 

the adopted PSF (point spread function), saturation in the detector distorting the 

observed PSF and the centroid algorithm used. In any event, the exact behavior 

of these curves for magx < 0 is of little importance for the simulations (which will 

be presented in Chapter 5), since there are very few stars brighter than a visual 

magnitude of zero in the sky, as can be seen by the exponential relation between 

the number of stars and limiting magnitude described by Equation (3.1) in Section 

3.2. 

Note that for magnitudes we have to consider the existence of a bias that is 

dependent on magnitude for very bright and very dim stars, even for a perfectly 

calibrated star tracker, as can be seen in Figure 4.8. The algorithms 

gen_sia_inputx also models the probability of detection of stars in function of 

cataloged magnitude, as can be seen in Figure 4.9. 
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Figure 4.8 – Variation of observed magnitude versus cataloged magnitude for 
gen_sia_inputx. 

  

Source: Fialho (2007) 

Figure 4.9 – Probability for detection modeled in gen_sia_inputx. 

 

Source: Fialho (2007) 
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The origin of the magnitude bias for low magnitude stars (bright stars) is the 

saturation of the detector array, which makes the observed brightness being 

lower than the actual brightness (observed magnitude higher than the cataloged 

instrumental magnitude). On the other hand, for dim stars which are on the limit 

of detection, these will normally be detected only if the random noise in the 

system contributes to the gray level of the pixels illuminated by the star, pushing 

them above the threshold used for star detection during image processing. This 

causes a skew in the sampling space, such that the dimmest stars that had been 

detected will have a brightness almost always higher than their actual brightness 

(observed magnitudes smaller than their true magnitudes). This effect was 

captured by the simulations used to derive these curves, being first observed by 

us in 2005 (FIALHO; LOPES; SAOTOME, 2005). 

Note that the centroiding algorithm used in the simulations performed to derive 

the curves adopted in this model is not the same algorithm described in Section 

3.6.3. The main difference being that the centroiding algorithm used in these 

simulations utilizes all pixels of a 3x3 matrix centered on the true position of the 

star when computing its centroid, whereas the algorithm described in Section 

3.6.3 considers only pixels above the detection threshold, causing a very different 

behavior in magnitude estimation. In a real application where the true position of 

the star is unknown, the algorithm used here would center the 3x3 matrix on the 

brightest pixel of the star image. 

In the model used to derive the curves presented in this section, the point spread 

function (PSF) is considered to follow a Gaussian distribution with standard 

deviation for the vertical and horizontal axes of 0.4065 pixel (MATOS, 2005, 

personal communication). Even though this representation is not very accurate it 

has been adopted due to its simplicity. Also for simplicity, this model disregards 

spectral content of stars, assuming all stars having the same spectra as of the 

Sun. Due to lack of accurate pixel geometry information, this model assumes that 

the sensitive area of each pixel in the STAR-1000 image sensor is a square 

covering 70% of the total area of the pixel. Further details of the model used are 
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given in Fialho (2007). Even though this model has many limitations, it better 

represents the behavior of real star trackers than simple models commonly used 

in the literature (ZHANG, 2017) that do not take into account the dependence of 

centroiding error and magnitude error with stellar brightness. 

The curves used in gen_sia_inputx (with x ≥ 5) have been derived from a camera 

with the following specification (FIALHO, 2007): 

• image sensor: STAR-1000 

• imager resolution (pixels): 1024 x 1024; 

• pixel size: 15 µm x 15 µm; 

• STAR-1000 analog gain factor = 1 

• A/D converter input range = 2 volts 

• A/D converter resolution: 10 bits 

• A/D converter non-linearity: 1.4 ADU (1σ) 

• A/D converter bias (dark level) = 20.6 ADU 

• conversion factor in the A/D converter per photoelectron collected = 11.4 

µV/e− 

• dark current per pixel: 3135 e− 

• PRNU: 1.34% (1σ) 

• readout noise: 50 e− (1 σ) 

• FPN: 300 e− (1 σ) 

• fill-factor: 70% 

• optics aperture area: 4.6 cm2 

• optics transparency (transmittance) : 80% 

• image sensor quantum efficiency: 14.38% 

• exposure time (integration time) : 350 ms. 
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4.4.1 Versions of gen_sia_inputx 

gen_sia_input5 was the original algorithm developed by the author for his master 

thesis defended in 2007. gen_sia_input6, gen_sia_input7 and gen_sia_input8 

are improvements to gen_sia_input5 done for this doctorate thesis. The following 

features were introduced with each new version: 

• gen_sia_input6 introduces a new parameter which specifies the resolution 

of the image sensor. For the same field of view, the higher is the resolution 

of the image sensor, the smaller is the angular width and height subtended 

by central pixels in the imager, and lower is the standard deviation of the 

noise added to observed stars’ unit vectors. Hence, this new parameter 

can be used as a scaling factor for the position noise added to observed 

stars. 

• gen_sia_input7 introduces support for B−V color index in star catalogs with 

color information. To simulate in a more realistic way the noise behavior in 

the B−V color index, instead of using a fixed standard deviation we have 

used a standard deviation in the B−V color index that changes with 

cataloged magnitude, following the same curve used for magnitude 

standard deviation (Figure 4.7). 

• gen_sia_input8 introduces support for V−I color index in star catalogs 

derived from Hipparcos. The simulated noise behavior in V−I color index 

also follows the same curve used for magnitude standard deviation. 

4.4.2 False stars 

A limitation of gen_sia_inputx (with x ≤ 8) is that they are not capable of inserting 

false stars (spikes) in the list of observed stars. However, to properly evaluate the 

reliability of star identification algorithms it is very important that these algorithms 

be tested with scenes containing false stars. The inclusion of false stars in the list 

of stars generated by gen_sia_inputx is a planned improvement for future 
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releases of PTASE. With current versions of gen_sia_inputx the only way to 

include false stars in the simulation is to use a star catalog containing false stars. 

An imperfect way to simulate the effects of false stars with current versions of 

gen_sia_inputx is to limit the star catalog used for star identification to a 

magnitude that is smaller (brighter) than the dimmest cataloged stars used by 

gen_sia_inputx. With this method, observed stars generated by gen_sia_inputx 

from stars beyond the magnitude limit of the catalog used for star identification 

would be seen by the star-ID algorithm as false stars. 

4.5 Computation of attitude errors in PTASE 

One way to define the attitude error is as the angle in which the axes of the 

estimated body frame have to be rotated around the Euler axis (of the Euler 

axis/angle representation of the corrective attitude matrix 𝐶𝑇𝐶𝐸
𝑡) to coincide with 

the axes of the true body frame (MORTARI, 2002). Using this definition, which 

was adopted in this work, the attitude error is given by the equation: 

𝜃 = acos(
tr(𝐶𝑇𝐶𝐸

𝑇) − 1

2
) (4.7) 

With 𝐶𝑇 being the true attitude matrix and 𝐶𝐸
𝑇 the transpose of the estimated 

attitude matrix 𝐶𝐸, determined from the stars that were identified by a star ID 

algorithm. tr(𝑀) indicates the trace of a square matrix 𝑀. However, when the 

attitude error is small (small 𝜃), a first order approximation can be employed, 

leading to the following approximate equation: 

𝜃 ≈
1

√2
‖𝐶𝐸 − 𝐶𝑇‖ = √

1

2
 ∑∑(𝑐𝐸,𝑖𝑗 − 𝑐𝑇,𝑖𝑗)

2
3

𝑗=1

3

𝑖=1

 (4.8) 

For very small attitude errors, the numerical computation of the approximate 

equation becomes more accurate than the computation of the exact equation, 

because the arc-cosine is numerically not stable for arguments close to 1 or −1 
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(its derivative exhibit a singularity at +1 and −1). Also, the approximate equation 

is faster, since it does not require the computation of an inverse trigonometric 

function. Hence, in PTASE attitude errors are computed using the approximate 

Equation (4.8). 
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5 IMPROVEMENTS TO THE PYRAMID STAR-ID ALGORITHM 

This chapter presents many improvements that were made to the Pyramid star 

identification algorithm by the author, plus the result of Monte Carlo simulations 

used to assess these improvements. 

5.1 Why Pyramid 

According to Spratling and Mortari (2009), the Pyramid star-ID algorithm was one 

of the fastest star identification algorithms which was still suitable for being 

embedded in a star tracker, this being one of the reason Pyramid was chosen for 

this work. Faster algorithms do exist, such as the algorithm proposed by Hong in 

2000 using neural networks, however these algorithms require the use of 

massively parallel processing which is not available in space hardware 

(SPRATLING and MORTARI, 2009). Another factor in favor of Pyramid is its flight 

heritage aboard the HETE spacecraft and high success rate even in the presence 

of many false stars (MORTARI et al., 2004). 

The name Pyramid comes from the fact that the algorithm initially identifies a set 

of three stars from the list of observed stars and confirms this identification with 

a fourth observed star forming a pyramid (a set of four stars) with those three 

initially identified stars. 

5.2 Introduction to the Pyramid star-ID algorithm 

Before presenting the improvements made by the author in Pyramid, a brief 

introduction to the Pyramid star-ID is made in this section. A flowchart of the 

original version of the Pyramid star identification algorithm is shown in Figure 5.1. 

When less than 3 stars are observed, Pyramid fails, since its original version uses 

only positional information from the stars for identification. In that case, the 

absolute minimum number of stars needed for star identification is three, as 

explained in Section 2.6. 
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Figure 5.1 – Flowchart of the original version of Pyramid 

 

Source: adapted from Mortari et al. (2004) 
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5.2.1 Identification with three stars 

When only three stars are observed, Pyramid attempts to identify the only triangle 

that can be formed. This process is depicted by the “Identify i, j, k” boxes of Figure 

5.1, being described in detail in Section 5.2.5. The output of this step is a list of 

candidate triangles from the star catalog that match the observed triangle within 

measurement tolerance. If this list is empty, the algorithm returns with an error 

code (not shown in the diagram), otherwise it proceeds to the next step, which is 

to purge specular (mirror) solutions from this list. This is done to to reduce the 

probability of a misidentification or ambiguous identification happening. This 

second step is explained better in Section 5.2.7. In cases where more than one 

candidate triangle remains after the purging operation, there exists an ambiguity 

which cannot be solved, so Pyramid returns an error code. 

5.2.2 Identification with four or more stars 

When at least four stars have been observed (indicated by n > 3 in the flowchart), 

the first step in Pyramid is to select a subset of three observed stars (a kernel), 

and to attempt to identify it before identifying the remaining stars. This kernel is 

composed initially of the first three stars in the list of observed stars fed to 

Pyramid. If Pyramid does not succeed in finding a set of three cataloged stars 

matching these observed stars, another set of observed stars is selected as a 

new kernel and the process is repeated. Section 5.3.2 discusses the 

improvements performed in kernel selection. 

5.2.3 Databases used in Pyramid 

To speed up star identification, Pyramid uses two additional databases besides 

the star catalog, as shown in Figure 5.2. These databases are the list of pairs of 

stars and the k-vector, explained in Section 5.2.4. They are used by Pyramid to 

quickly find all pairs of cataloged stars used for identification that are equivalent 

to the observed star pairs that form the kernel within measurement tolerance.  
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Figure 5.2 – Databases used in Pyramid. 

 

Source: Fialho (2007). 

The list of star pairs (or catalog of star pairs) is a table where each entry (a star 

pair) contains two fields. Each field is an index with the position of the 

corresponding star in the star catalog. For example, the star pair (32, 144) is 

composed of stars at position 32 and position 144 in the star catalog. The k-vector 

(explained in the next section) is a helper table which allows the algorithm to 

quickly find all star pairs in the catalog of star pairs with the same angular 

separation of an observed pair of stars, within measurement tolerance. Section 

5.2.5 gives a description of how stars are identified from the list of star pairs. 

The list of pairs contains all pairs of stars used for identification that fit inside the 

FOV. This list is sorted by the length of the star pairs – the angular separation 

between the stars that compose the pair. It should be noted that it is not required 

to store the pair length, nor the coordinates of each star in the list of stars, since 

these pieces of information can easily be obtained by accessing the star catalog, 

using the two star indices stored in the pair. 

The original version of Pyramid does not use the star catalog in the star 

identification phase, since it is possible to identify stars using solely the list of star 
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pairs and the k-vector, as will become clear later. When using the original version 

of Pyramid, the star catalog is needed only for attitude determination. 

5.2.4 The k-vector 

The k-vector is a lookup table that permits to quickly find elements in an ordered 

database, being originally developed by Mortari (1996) for the star-ID problem, 

but later finding applications in many other areas (MORTARI; NETA, 2000). 

Basically, each element of the k-vector indicates how many elements in the 

ordered database are below a value computed using a strictly increasing 

monotonic function of the k-vector element index, this function later being named 

mapping function (FIALHO; MORTARI, 2017a, 2017b) or k-vector support 

function (this work). 

For the linear (affine transformation case) k-vector, the j-th element of the k-vector 

counts how many elements of the ordered database are below z(j) = a*j + b, 

where a and b are coefficients chosen in such a way that for the first element of 

the k-vector, a*j + b is slightly below the lowest value of the ordered database; 

and for the last element of the k-vector, a*j + b is slightly above the largest value 

of the ordered database. So, the first element of the k-vector will always have the 

value zero, and the last element of the k-vector will always have a value equal to 

the size of the ordered database. This choice of a and b coefficients simplifies 

the use of the k-vector by avoiding the need of special logic to search for database 

elements that would otherwise be outside the range addressed by it. 

Pyramid uses a linear k-vector where each element of the k-vector counts the 

number of star pairs whose cosine of the inter-star angle (the dot product between 

the unit vectors representing cataloged stars) is smaller than z(j) = a*j + b. Thus, 

with the k-vector, it is very easy to find all pairs of stars in the catalog of star pairs 

whose cosine of inter-star angle lies between ymin and ymax. 

An extension of the k-vector search method for strongly non-linear databases, 

using a non-linear support function, was proposed by Fialho and Mortari (2017b). 
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5.2.5 Triangle identification 

Let’s name the three observed stars that compose the kernel selected by Pyramid 

as alpha, beta and gamma, with corresponding indices i, j and k in the list of 

observed stars. Pyramid starts with the pair made by alpha and beta, computing 

its length (θαβ). Then, with the help of the k-vector, it quickly finds in the list of 

pairs all the cataloged star pairs with lengths between (θαβ − δθ) and (θαβ + δθ), 

where δθ is the tolerance used by the algorithm for star pair lengths. All the 

catalog stars present in these star pairs are candidates to be both alpha and beta. 

After working with the pair formed by alpha and beta, Pyramid repeats the same 

process with the pair formed by alpha and gamma. If a cataloged star appears 

both in the pairs matching alpha-beta and in the pairs matching alpha-gamma, 

that star is a candidate for alpha. The other stars in the same star pairs where 

alpha was found are candidates for beta and gamma. Then the catalog 

candidates for observed stars beta and gamma are searched in the list of star 

pairs matching the observed pair beta-gamma to confirm the match. This process 

is graphically depicted in Figure 5.3. In this example, star 86 in the star catalog is 

a candidate for alpha, star 64 in the star catalog is a candidate for beta and star 

142 from the star catalog is a candidate for gamma. 

Figure 5.3 – Finding a candidate for alpha and confirming it. 

 

Source: Drawn by the author. 
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The indexes i, j, k indicate the position of alpha, beta and gamma in the list of 

observed stars (these indexes are known from kernel selection). For example, if 

i=0, j=1 and k=2 in the example shown in Figure 5.3, then the observed star at 

position 0 has been matched with cataloged star at position 86, observed star at 

position 1 has been matched with cataloged star at position 64 and observed star 

at position 2 has been matched with cataloged star at position 142. 

5.2.6 Kernel selection 

If a triangle of observed stars was not identified, the cause can be that one of the 

observed stars selected for that kernel was a false star (e.g., a planet, or a debris 

in the field of view, noise in the image sensor, etc.). Hence, ideally a complete 

new set of observed stars should be selected for a new kernel. The original 

Pyramid algorithm had a very simple kernel generator that avoided persisting on 

the same observed star for many consecutive kernels. One of the original 

contributions of the author of this thesis is proposing an improved version of this 

simple kernel generator that generates better sequences of kernels but still retain 

much of the simplicity of the original kernel generator in Pyramid. Algorithms that 

generate better kernel sequences do exist, but many of these are unsuitable for 

an embedded environment due to low speed, large memory requirements or code 

complexity. 

Pseudo-codes of the original kernel generator and the improved kernel generator 

are presented in Section 5.3.2 together with a more detailed explanation. 

5.2.7 Purging mirror solutions 

Considering only angular separations, a triangle of observed stars could also 

match a candidate triangle which is a mirror image of the observed triangle. This 

would obviously result in a misidentification (see Figure 5.4 for an illustration of 

two identical triangles except for their differing handedness). Therefore, Pyramid 
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performs an additional test to purge mirror solutions. This test is done inside the 

two boxes labeled “purge specular solutions” in Figure 5.1. 

Figure 5.4 – Mirror triangles: these two triangles are identical except for their differing 
handedness. 

 

Source: Drawn by the author. 

To purge mirror candidate triangles, Pyramid computes the mixed product 

between the unit vectors representing the stars of the observed triangle and do 

the same for the cataloged stars of the candidate triangle. If the signs of their 

mixed product differs, then these triangles are the mirror image of each other, 

therefore the candidate triangle must be discarded. In mathematical terms, this 

can be expressed as follows: 

Let 𝐛𝑖, 𝐛𝑗 and 𝐛𝑘 be the unit vectors of the stars of the observed triangle i-j-k, and 

𝐫𝐼, 𝐫𝐽 and 𝐫𝐾 be the unit vectors of the stars of the candidate triangle I-J-K that is 

a potential match. The candidate triangle I-J-K is rejected if the following relation 

is not met (MORTARI et al., 2004): 

sign(𝐛𝑖 ⋅ (𝐛𝑗 × 𝐛𝑘)) = sign(𝐫𝐼 ⋅ (𝐫𝐽 × 𝐫𝐾)) (5.1) 

In Pyramid, 𝐛𝑖, 𝐛𝑗 and 𝐛𝑘 are given in the star tracker reference frame (described 

in Section 2.5.3) whereas 𝐫𝐼, 𝐫𝐽 and 𝐫𝐾 are given in the star catalog reference 
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frame (this is the NRRF described in Section 2.5.2 if the star tracker is 

compensating stellar aberration). 

5.3 Description of the improvements 

This section describes the improvements performed by the author to the Pyramid 

star-ID algorithm. 

5.3.1 Use of the memory adaptive k-vector 

5.3.1.1 Introduction 

In the original Pyramid algorithm (MORTARI; JUNKINS; SAMAAN, 2001; 

MORTARI et al., 2004) the k-vector has the same length (number of elements) 

as the list of pairs of stars that fit inside the star tracker’s FOV. However, the size 

of the k-vector does not need to be the same as the list of pairs. As pointed out 

by Mortari (2014), the k-vector may be made smaller for applications constrained 

in memory, or be made larger in order to speed up database queries in systems 

with abundant memory. So, basically, it is possible to perform a trade-off between 

speed and memory requirements by changing the k-vector size. The possibility 

of freely selecting the size of the k-vector during its construction is one of the 

reasons for the name “memory adaptive k-vector” of the paper that introduced 

the idea, as the k-vector size may be freely adjusted to available memory in the 

target system. 

The creation of a memory adjusted k-vector follows the same basic procedure as 

outlined in Section 5.2.4, the only difference being in the angular constant factor 

a, which is steeper for a shorter k-vector. As described in that section, each 

element K(j) of the k-vector just counts the number of elements in the database 

(for Pyramid, the database is the list of star pairs) whose value is smaller than 

z(j) = a*j + b. 
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Figure 5.5 illustrates how a “memory adaptive” k-vector can be built for a 

database S containing 10 elements. The left side of this figure shows the ordered 

database S with 10 elements, while the right side shows the mapping function 

z(x) used to build the k-vector. The k-vector is shown in blue under the horizontal 

axis in the right plot. In this example, the k-vector is K = {0, 2, 4, 6, 7, 9, 10}, 

having 7 elements, hence the size ratio between the k-vector and the database 

is 7 / 10 = 0.7.  The constant ξ shown in the figure is a very small number used 

just to make sure that K(1) = 0 and K(7) = n = 10. This simplifies the k-vector use.  

In this example, it was assumed that the first index in vectors is 1. However, in 

many programming languages, such as the C language and derivatives, the first 

index in a vector is 0, hence some adaptations in the mapping function z(x) and 

in the way the k-vector is built must be performed when porting the code from 

one programming language to the other. These and other issues are discussed 

in a paper written by the author of this thesis about the k-vector (FIALHO; 

MORTARI, 2017b). 

Figure 5.5 – Building a 7 element k-vector for a database S with 10 elements. 

 

Source: Drawn by the author, used in (FIALHO; MORTARI, 2017a, 2017b). 

Figure 5.6 shows how the k-vector can be used to locate elements in the 

database S inside the range given by ( ybot, ytop ] = { y ∈ ℝ | ybot < y ≤ ytop }. Note 

that sometimes a k-vector search can return elements outside the requested 

range, but very close to its limits (outliers). Whether these outliers are acceptable 
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or not depends on the application. A detailed mathematical description on how 

the k-vector is built and used can be found on the references (FIALHO; 

MORTARI, 2017a, 2017b). The k-vector can also be extended to non-linear 

functions (quadratic, transcendental, etc.), as long as the mapping function is 

monotonic (FIALHO; MORTARI, 2017b). 

Figure 5.6 – Using the k-vector to find elements in S between ybot and ytop. 

 

Source: Drawn by the author, used in (FIALHO; MORTARI, 2017a, 2017b). 

5.3.1.2 Results 

Following the suggestion of Dr. Mortari (personal communication, 2016), some 

tests were performed with Pyramid using k-vectors of different sizes. These tests 

were performed in an IBM-PC notebook with 8GB of system RAM and a 

processor at 1.6GHz running Windows 7, by varying the size of the k-vector from 

about 0.004 to 1024 times the size of the list of pairs. For this test, the list of pairs 

had 129,678 pairs, which resulted in the k-vector size ranging from 507 to about 

132.8 million elements. The list of observed stars was generated from a subset 

of the Hipparcos catalog limited at magnitude 7.0, and then corrupted by adding 

a Gaussian noise dependent on stellar magnitude to both stellar positions and 

observed stellar magnitudes, according to the algorithm gen_sia_input_5 

(FIALHO; 2007, Section 6.5.4) with moffset = −0.3.  The k-vector was derived from 

the same catalog, limited to magnitude 5.0. The simulated star tracker field of 
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view was a square 25.457° x 25.457° covering 1.545873% of the celestial sphere. 

Results are shown in Figure 5.7. 

Figure 5.7 – Pyramid mean run time versus size of the k-vector. 

 

Source: Drawn by the author. 

The Pyramid implementation used in this simulation purged all outliers returned 

by a k-vector access. In principle, for Pyramid, outliers could be kept, since they 

are very close to the requested angular separation range, being outside that 

range by a very small amount. For us it was not clear whether keeping or purging 

outliers would be faster. By one hand, not purging outliers saves time in the 

purging process, but increases the time spent on the triangle identification step 

(Section 5.2.5). A side effect of not purging outliers is that the effective tolerance 

for measured angular separation increases. Since we wanted to have this 
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parameter stable to perform other measurements during simulations, we have 

opted to purge outliers in our Pyramid implementation. 

From Figure 5.7, it can be seen that as the size of the k-vector becomes smaller 

than about ¼ of the size of the list of pairs, Pyramid starts to run slower, as would 

be expected. However, for k-vectors larger than about four times the size of the 

list of pairs we can observe an increase in run-time with increasing k-vector size, 

which is counter-intuitive considering that a larger k-vector leads to less outliers 

being selected. This increase in run-time for larger k-vectors can be explained by 

the architecture of the machine used in the tests, where a larger k-vector leads 

to a higher rate of cache misses. For simple processors that do not include cache 

memories, such as the one used in the Brazilian star tracker (FIALHO; PERONDI; 

MORTARI, 2016), it is expected that larger k-vectors will not lead to a degradation 

in performance. More details about this experiment are given in a conference 

paper presented by the author (FIALHO; MORTARI, 2017a). 

5.3.2 An improved kernel generator for Pyramid 

Pyramid, like many other star-ID algorithms, first selects a small number of 

observed stars and attempts identification of this small group before advancing 

to the identification of the remaining stars. This small initial group of stars is 

named a kernel (ARNAS; FIALHO; MORTARI, 2017). If one or more stars in a 

kernel is a spike (a false star), the identification of that kernel fails, and Pyramid 

has to select another kernel from the list of observed stars. Hence the 

performance of Pyramid, especially in scenes with a large number of spikes, 

depends on how well the kernels are replaced. Ideally, the observed stars 

selected for the kernels should change as much as possible between successive 

kernels. A kernel of two stars is a pair, a kernel of three stars is a triad, and a 

kernel of four stars is termed a quad or a pyramid. Unfortunately, for the current 

accuracy achieved by star trackers, the number of pairs that match a given pair 

of observed stars is typically in the order of tens or hundreds. In order to reduce 

the number of spurious matches, at least three (and in some cases even four) 
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stars must be selected, that’s basically the reason why Pyramid works with 

kernels of three stars (triads). 

The original version of Pyramid (MORTARI et al., 2004) employs a simple 

sequence generator for triads which avoids persisting on a single reference star 

for too long. However, in a series of experiments performed by the author of this 

thesis, it was noted that this simple sequence generator could be improved with 

the inclusion of an additional inner loop which in most cases avoid the repetition 

of the same stars in successive triads. The original triad generator algorithm was 

named Pattern Shifting – PS in a journal paper co-authored by the thesis author 

(ARNAS, FIALHO, MORTARI, 2017). The new triad generator was named 

Enhanced Pattern Shifting (EPS). Listings in pseudo-code for both PS and EPS 

are present in the aforementioned paper. For the convenience of the reader, 

these listings are also presented here, in Figure 5.8 and Figure 5.9. 

Improvements using the new algorithm become evident when the number of 

observed stars is equal to or larger than twice the size of kernels. For triads 

(kernels of size 3), when the number of observed stars is 6, we have the following 

sequences: For PS: 1-2-3, 2-3-4, 3-4-5, 4-5-6, 1-2-4, ...  whereas for EPS: 1-2-3, 

4-5-6, 2-3-4, 3-4-5, 1-2-4, ... If star 3 were a false star, the first three kernels 

generated by PS would fail, while in EPS only the first generated kernel would 

contain that false star. This simple example shows that EPS provides better 

variation of selected stars than PS. 

Table 5.1 presents a comparison of the EPS versus PS kernel generators in 

terms of the expected time to discovery metric (MUELLER et al., 2016), being n 

the number of observed stars. The expected time to discovery metric gives the 

average number of kernels that must be tested until a kernel composed only of 

actual (cataloged) stars is found, under the simplifying assumption that the 

∑ (
𝑛
𝑡
)𝑛

𝑡=𝜅  possible scenes of 𝑛 observed stars having at least 𝜅 cataloged stars 

are equally probable. We consider a scene to be a particular combination of 

actual and false stars. 𝜅 is the number of stars in a kernel, being 3 for triads. 
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Figure 5.8 – Listing for the PS triad generator 

for dj from 1 to (n-2) do 

 for dk from 1 to (n-dj-1) do 

  for i from 1 to (n-dj-dk) do 

   j = i + dj; 

   k = j + dk; 

   next combination is (i, j, k); 

  end 

 end 

end 

Source: Mortari et al. (2004) 

Figure 5.9 – Listing for the EPS triad generator 

for dj from 1 to (n-2) do 

 for dk from 1 to (n-dj-1) do 

  for ii from 1 to 3 do 

   for i from ii to (n-dj-dk) in steps of 3 do 

    j = i + dj; 

    k = j + dk; 

    next combination is (i, j, k); 

   end 

  end 

 end 

end 

Source: author 

Table 5.1 – Expected time to discovery for PS and EPS for triads 

n PS EPS n PS EPS n PS EPS 

3 1.00 1.00 9 15.91 15.62 15 22.42 21.67 

4 2.20 2.20 10 18.37 18.03 16 22.04 21.24 

5 4.19 4.19 11 20.26 19.91 17 21.48 20.68 

6 6.86 6.74 12 21.55 21.04 18 20.81 19.80 

7 9.89 9.74 13 22.28 21.72 19 20.10 19.05 

8 13.01 12.85 14 22.54 21.98 20 19.38 18.33 

Source: Arnas, Fialho and Mortari (2017). 
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Table 5.2 compares EPS with PS using the worst-case failure count sum metric 

introduced by the author in Arnas, Fialho and Mortari (2017). 

Table 5.2 – Worst-case failure count sum for PS and EPS for triads 

n PS EPS n PS EPS n PS EPS 

3 0 0 9 198 192 15 1564 1546 

4 3 3 10 321 311 16 1999 1975 

5 12 12 11 464 454 17 2520 2494 

6 34 32 12 670 660 18 3192 3156 

7 66 65 13 878 867 19 3781 3755 

8 128 123 14 1239 1219 20 4695 4642 

Source: Arnas, Fialho and Mortari (2017). 

The worst-case failure count sum is the sum of the worst-case failure count metric 

(introduced by Arnas and Mortari) for the number of false stars varying from 0 to 

𝑛 − 𝜅. For a given sequence generated by a kernel generator and a given number 

of false stars f, the worst-case failure count is the number of kernels that have to 

be tested before the first kernel composed solely of cataloged stars is found for 

the worst possible scene for that sequence having n observed stars and f false 

stars. The lower the value of the worst-case failure count and worst-case failure 

count sum, the better. 

PS and EPS can be easily generalized for kernels of different sizes (𝜅 ≠ 3). 

Future work will compare the differences between PS, EPS and other proposed 

fast kernel generators (ARNAS, FIALHO, MORTARI, 2017) in Pyramid when 

typical configuration parameters that would be found in a real star tracker are 

used. 

5.3.3 Optimized storage of star pairs 

An optimization in the way star pairs are stored was performed. Instead of storing 

the i and j star indexes in different lists, they were stored in a single list, with the 

i star index of a star pair stored at an even position (2*k) and corresponding j star 
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index stored at the consecutive odd position (2*k + 1). This change enabled some 

interesting optimizations in the C/C++ code, especially in the triangle 

identification step described in Section 5.2.5. With it, a sequence of eight different 

cases could be merged into a single test case, significantly reducing the size and 

complexity of the algorithm (in our implementation, from 108 lines to 36 lines of 

code in the part responsible for that task. 

5.3.4 Mirror condition check for all triads 

In the original version of Pyramid, the mirror condition check (described in Section 

5.2.7) is not performed if a unique solution is found for a selected triad of observed 

stars when four or more stars are observed. Also, in that version, all triangles of 

candidate stars that match the observed triad within measurement tolerances, 

including mirror solutions, are saved to a list. The mirror solutions are purged 

from this list in a later step. 

One of the changes introduced by the author of this thesis is to perform the mirror 

condition test inside the routine responsible for finding candidate triangles 

(Section 5.2.5), so mirror solutions are discarded before being stored in the output 

list of this routine. This change had the benefits of reducing the amount of 

memory needed by the star-ID algorithm and improving its robustness. Simulation 

results are shown in Section 5.4.5. 

5.3.5 Limit to the number of kernels to be tested 

If a large number of stars is observed, the number of different triangles (kernels) 

that can be assembled from these is very large. For example, for n = 50 observed 

stars, the total number of triangles that can be formed is (
50
3

) =
50!

47!  3!
= 19,600. 

If the STR is unfortunate enough that all the stars in that scene being identified 

are false stars, Pyramid could spend a large amount of time attempting 

identification on that scene before exhausting all possible combinations, whereas 

the STR could probably return a valid attitude faster if it gave up on that difficult 
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scene and started over, acquiring a new image. Plus, a successful identification 

obtained after many attempts on a difficult scene containing many false stars 

(spikes) has a higher probability of being incorrect. Besides that, the presence of 

spikes on an image is sometimes a transient phenomenon, disappearing in the 

following image frame. Spikes could originate, for example, due to stray light 

entering the star tracker optics while the spacecraft is maneuvering. Another 

cause for spikes is ionizing radiation, as discussed in Section B.2.12 of the 

appendices. Therefore, a mechanism to abort identification on difficult or 

impossible to solve scenes is required and beneficial in terms of identification 

reliability. In an embedded hardware, this could be implemented with a timeout 

mechanism. In our implementations of Pyramid, we have opted to limit execution 

time with a limit to the number of kernels to be tested, as this mechanism is 

simpler to implement. 

5.3.6 Augmenting Pyramid with stellar magnitudes 

Even though the basic version of Pyramid presents an impressive performance 

and a very good robustness, with a misidentification rate less than 10-6 for typical 

star tracker parameters, its robustness can be further enhanced if it is augmented 

with a magnitude check, since any additional information about stars is useful in 

confirming their identity. This is especially true for the cases where there are few 

observed stars (three or four stars). 

A magnitude check was added for all triads found by the triangle identification 

step (Section 5.2.5). Being mobs the observed magnitude of star alpha, beta or 

gamma and tol_mag the magnitude tolerance, a triad of cataloged stars is 

rejected if for any of alpha, beta or gamma the corresponding cataloged star 

magnitude is outside the open interval given by (mobs – tol_mag, mobs + tol_mag). 

Only triads of cataloged stars that pass this magnitude test are saved, hence, this 

magnitude test reduces the amount of memory needed for storing possible 

solutions. 
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The same magnitude check was also added for the confirmation star r and for the 

identification of the remaining stars. Simulation results are shown in Section 

5.4.8. 

5.3.7 Augmenting Pyramid with color indices 

Likewise to what happen with the inclusion of magnitude information, the use of 

color information can further improve star identification robustness. This color 

information is usually expressed as color indices, each color index being the 

difference of star magnitudes in two spectral bands, as explained in Appendix C, 

Section C.2. Optional color index checks have been added for the three stars 

belonging to a candidate triad returned by the triangle identification step. 

Considering that the majority of star trackers are monochrome and would not be 

able to observe the color indexes of stars, these optional checks can be ignored 

during compilation simply by setting a compilation directive. Simulation results 

when using Johnson’s B−V and V−I color indexes as given in the Hipparcos 

catalog are shown in Section 5.4.9 and in Section 5.4.10. 

With the addition of magnitude and color index checks, in theory, it would be 

possible to determine attitude with only two observed stars. However, the 

probability of an ambiguous identification or a misidentification happening with 

only two observations is very high, even with the additional checks of magnitude 

and color indexes. Therefore, the author has decided to keep n = 3 as the bare 

minimum number of observed stars required for identification in the modified 

versions of Pyramid. 

5.4 Monte Carlo simulations 

This section describes results of the improvements in the Pyramid star-ID 

algorithm, described in the previous section, using the simulation environment 

described in Chapter 4.  
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5.4.1 Versions of the algorithm 

To distinguish the C++ implementations used in the Monte Carlo simulations from 

the original description of Pyramid, the prefix “mf” will be added to the name of 

the various versions of the algorithm tested here. This prefix was created from 

the first letters of the first and last name of the author of this thesis. Many versions 

of the algorithm were created during development. From these, the most 

important for this work are: 

a) mfPyramid v01 – This is the version which was chosen as the baseline for 

the Monte Carlo simulations. This version implements the changes 

described in Section 5.3.1, Section 5.3.2 and Section 5.3.3. This version 

will be described in more detail in Section 5.4.4. 

b) mfPyramid v02 – This version includes all modifications introduced by the 

author in mfPyramid v01 plus the following modifications: 

• added a limit to the number of kernels to test (Section 5.3.5); 

• included the magnitude filter (Section 5.3.6); 

This version was not used in the simulation results shown in the following 

sections. 

c) mfPyramid v03 – This version includes all modifications introduced by the 

author in mfPyramid v01 and mfPyramid v02 plus the following: 

• mirror condition test for all candidate triangles of cataloged stars 

(Section 5.3.4); 

• inclusion of B−V and V−I color index filters (Section 5.3.7). 
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5.4.2 Configuration used for Monte Carlo simulations 

This section presents the configuration which was used for the Monte Carlo 

simulations described in the following sections. 

Since one of the goals of the Monte Carlo simulations was to measure the 

misidentification rate, and this misidentification rate is typically very small, to 

make it measurable without having to run the star-ID algorithm hundreds of million 

times, which would take a prohibitively long time, we have considered in our 

simulations a very coarse hypothetical star tracker, with standard deviation in 

centroid position in the order of minutes of arc. To do that, we modified a 

parameter in gen_sia_inputx (described in Chapter 4) that defines the imager 

width and height in pixels, from the default value of 1024 pixels to 128 pixels, 

while still keeping the simulated star tracker field of view at 25.457° × 25.457°. 

This had the effect of increasing the angular width and height of the central pixel 

in the imager from 91 arc-seconds to 728 arc-seconds. Since the standard 

deviation in position in gen_sia_inputx (for x ≥ 6) are scaled by the pixel size, 

increasing the pixel size has the effect of increasing position noise in the 

simulated observed stars. With this noise level, the tolerance δθ used for selecting 

star pair candidates from the catalog of star pairs has to be increased 

proportionally to keep the success rate at acceptable levels. 

Algorithms gen_sia_inputx (with x = 5,...,8 being the version number) have a 

configuration parameter moffset that can be used to simulate the star tracker 

sensitivity to light, as explained in Section 4.4. Positive values of moffset mean 

increased sensitivity to dim stars, whereas negative values of moffset mean 

decreased sensitivity. In an actual star tracker, this change in sensitivity is usually 

accomplished through a change in exposure time, since many other parameters 

that also affect sensitivity such as optics aperture and image sensor quality are 

usually set to their best design values and cannot be easily changed. 

In an actual application, there’s always the desire to work with the shortest 

exposure time (or more precisely, integration time) that will enable detection of 
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the minimum number of stars required for a reliable identification. This is justified 

by the fact that long exposure times lead to blurring in star images if the 

spacecraft is slowly rotating. Another strong reason is related to the time needed 

for attitude acquisition and to the rate of attitude update in attitude tracking mode. 

In modern wide field of view star trackers, the limiting factor for attitude acquisition 

and update rate is no longer the processing power, but the minimum exposure 

time required to detect stars7. However, a too low exposure time will decrease 

the star tracker availability, since in that case there will be many scenes without 

sufficient stars for stellar identification and attitude determination. To select the 

value of moffset to be used in the simulations, it was assumed that the simulated 

star tracker had a requirement of an attitude acquisition probability from its first 

acquired image of at least 99%, in other words, provided that its field of view is 

not obstructed or blinded by bright sources (Sun, Moon or Earth), it should be 

able to acquire an attitude in more than 99% of the cases without having to 

acquire a new image, assuming a random and uniformly distributed initial attitude. 

After many tests, the minimum value of moffset that was found to give an availability 

of at least 99% was moffset = −0.42. This was taken as the baseline configuration 

for our tests.  

With this configuration, the value of the angular separation tolerance δθ in star 

pairs that provided the best star tracker availability (or success rate) was δθ = 170 

arc-seconds. This value was selected for our baseline. 

In the simulations presented here, the effects of stellar aberration (Section 2.5) 

were not included. Considering that the angular separation tolerance of 170 arc-

seconds adopted here is much wider than the maximum, worst-case, apparent 

displacement in star positions of 28 arc-seconds due to stellar aberration for an 

                                            
7 In a wide FOV star tracker employing an old generation processor running at 12 MHz, star 
identification takes, on average, less than 0.6 s using a slow star-ID algorithm and less than 40 
ms using a fast star-ID algorithm (FIALHO, 2007). These are comparable to 400 ms of minimum 
exposure time needed to detect enough stars in all sky configurations in the same STR design. 



93 
 

Earth orbiting spacecraft8, not including this effect in the simulations will have little 

or negligible impact in the results obtained. However, simulations using much 

tighter tolerances should include this effect. 

Following is the configuration used in all tests, except where noted otherwise: 

• Global parameters: 

o Simulated star tracker FOV: square FOV of 25.4570° ⨯ 25.4570° 

o Catalog used by gen_sia_input6 and gen_sia_input8 for 

generating the list of observed stars: limited at visual magnitude 

7.0 with 15,513 stars (files: cat_m7g.cat or cat_m7gc2.cat) 

o Catalog used for star identification: subset of catalog used by 

gen_sia_input6 and gen_sia_input8 containing the brightest 1612 

stars (limited to visual magnitude 5.0) 

• Default parameters used by gen_sia_input6 / gen_sia_input8: 

o moffset = −0.42   ==> 99% probability of star detection at mv = 3.37; 

50% probability of star detection at mv = 4.466 and 1% probability 

of star detection at mv = 5.20. 

o imager resolution (width and height): 128 pixels  ==> pixels near 

the center of the array have an angular size of 728”. 

o maximum number of stars in the output: unlimited. 

• Default parameters for mfPyramid v01 and mfPyramid v03: 

o angular separation tolerance (δθ): 170” 

o min_sep: 0.03 * FOVdiagonal = 1.06295° 

o max_tries: 15 (maximum number of kernels to use before giving 

up, introduced in mfPyramid v02) 

o number of stars used for identification: 1612 ==> catalog of star 

pairs with 129,678 star pairs. 

o kvector_size_ratio = 1.5 => k-vector with 194,517 elements. 

                                            
8 Assuming that the master catalog has its origin at the Solar System’s barycenter. 
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All tests were performed on a machine with the following configuration: 

• processor: Intel® Core™ i7-4500U @ 1.80 GHz / 2.40GHz; 

• memory: 8GB; 

• operating system: Windows10 64-bit. 

5.4.3 Presentation of results 

Simulation results are presented in the following sections, being summarized in 

Table 5.3 to Table 5.9. Each row in these tables represents the results of a Monte 

Carlo simulation where mfPyramid v01 or mfPyramid v03 was run 106 times, 

except for the last row, that gives the averages of the five Monte Carlo simulations 

with a given configuration, for a total of 5,000,000 star-ID runs. 

The first column gives the Monte Carlo simulation test number. This is a number 

that identifies a Monte Carlo simulation in PTASE log files, it starts at 1 when the 

program is loaded and is incremented at every test. The log files from where the 

data presented in the tables was extracted is indicated. These log files have been 

made available on-line9 as supplementary material to this thesis. 

The second and third columns present the rate in which attitudes computed from 

the stars identified by the algorithm had significant errors, greater than 1 degree 

and 30 degrees, respectively.  

The fourth column provides the rate in which the attitude was successfully 

computed with an error less than 1°. 

The current version of PTASE is not able to check if stellar identification was 

correct or incorrect by comparing cataloged star indexes obtained from the star-

ID algorithm with the actual cataloged star indexes used to generate the lists of 

observed stars fed to it, being this a planned modification for the future. The 

                                            
9 Stored in a zip archive available in the following URLs: 
http://urlib.net/8JMKD3MGP3W34P/3PN626S         and 
https://figshare.com/articles/MarcioFialho_PTASE_results_2017_zip/5455480 
Archive uploaded to two different URLs for redundancy. 

http://urlib.net/8JMKD3MGP3W34P/3PN626S
https://figshare.com/articles/MarcioFialho_PTASE_results_2017_zip/5455480
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reason for this limitation is that in PTASE the attitude determination algorithms 

are called as subroutines of the star-ID algorithm and the final result of a star-ID 

algorithm under test is the estimated STR attitude. Since in the current 

implementation the individual star identities are not returned by the star-ID 

algorithm to the routine that controls simulation, it has no means of checking if 

the stars were correctly identified. The rationale for the design decision of 

implementing first the verification of the final estimated attitude and letting for the 

future the codification of the verification of the identities of individual stars when 

writing PTASE is that the true identity of identified stars is of little or no importance 

to the attitude and orbit control subsystem (AOCS) that consumes the data 

generated by a star tracker. For the AOCS what really matters is how close the 

estimated attitude is to the actual attitude. 

The maximum acceptable attitude error given by a star tracker depends on the 

mission requirements, being typically much smaller than 1°. Given that we have 

used a very coarse hypothetical star tracker to make the misidentification rate 

observable (as explained in Section 5.4.2), the threshold between valid attitudes 

and invalid attitudes had to be increased accordingly. In our analysis, we regard 

attitude errors between 1° and 30° as severe, and attitude errors larger than 30° 

as very severe. These limits have been set arbitrarily for this work. The reason 

for a separate class of attitude errors larger than 30° is that, for the coarse star 

tracker used in the simulations, a tail was observed in the main mode of the 

distribution of the attitude errors extending beyond 1°. This main mode (with its 

peak close to 2 arc-minutes) contains the valid star identifications, implying that 

some cases counted in the severe attitude error class might have resulted from 

valid star identifications where “measurements” were unluckily severely affected 

by noise. On the other hand, we can confidently state that all cases where attitude 

errors were larger than 30° (very severe attitude errors) resulted from 

misidentifications, since an attitude error larger than 30° is too large to be 

explained solely by “measurement noise” even when considering the very coarse 

hypothetical star tracker used in the Monte Carlo simulations. Therefore, the 
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count of attitude errors larger than 30° can be used as a proxy for the number of 

misidentifications. A crude histogram of the attitude errors can be seen in the log 

files generated by PTASE. 

The values provided in column 2 are the sum of both severe and very severe 

attitude error cases. These errors in attitude estimation were computed using the 

approximate Equation (4.8) from Section 4.5, instead of the exact Equation (4.7). 

Therefore, the values quoted in the tables, especially for the very severe attitude 

error rate (>30° attitude error), should be regarded as approximate instead of 

exact. 

The fifth column gives the star-ID failure rate: the percentage of cases were the 

star-ID was unable to identify a scene. Some of these are results of scenes 

impossible to be identified – scenes having less than 3 observed stars. Others 

might be a result of the limit used of a maximum 15 kernels to be tested before 

giving up. 

The sixth column gives the averages of the attitude error for each Monte Carlo 

simulation, computed using the first order approximation given by Equation (4.8), 

considering only those cases were the attitude error was less than 1°. 

The seventh and last column gives the duration of each Monte Carlo simulation 

in seconds. 

5.4.4 Tests with a baseline version 

The first sequence of Monte Carlo simulations presented here were performed 

with mfPyramid v01, which was chosen as the baseline for further modifications. 

This version was implemented in C++ by the author, being based on Matlab and 

C codes of Pyramid provided by Mortari and Bruccoleri (2016, personal 

communication). This version differs from the original Pyramid algorithm 

implemented in Matlab in several points. The most important differences are the 

following: 
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a) the inclusion of the memory adaptive k-vector described in Section 5.3.1; 

b) the inclusion of the new kernel generator described in Section 5.3.2; 

c) the inclusion of the optimization in storage of star pairs described in 

Section 5.3.3; 

d) the analytical frequency test that a spurious match could be made between 

the observed star polygon and a polygon built with cataloged stars 

(MORTARI et al., 2004, p. 177) was not included in this implementation; 

e) the cache mechanism used to avoid identical information requests to the 

list of star pairs and k-vector (MORTARI et al., 2004, p. 176) was not 

implemented; 

f) the mirror condition check was not being performed for the most common 

case of n > 3. Later this was found to be caused by an implementation 

error, fixed in mfPyramid v03. 

The justification for these implementation differences are the following: 

• Regarding item d), the spurious match frequency filter was not 

implemented because one of the goals of the Monte Carlo tests was to 

measure the base rate of stellar misidentification in the very unfavorable 

conditions of the test. 

• Regarding item e), it was initially not implemented due to the fact that it 

was not essential for having a working version of Pyramid on PTASE. 

Later, after profiling the code with the gprof tool, it was found that the 

C++ implementation of Pyramid in PTASE (mfPyramid) was spending on 

the development machine less than 5% of its CPU time on accesses to the 

k-vector and to the database of star pairs, meaning that implementation of 

this cache mechanism would probably bring little performance 

improvements in the test machine. Another factor against its 
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implementation is the large memory requirements of the table necessary 

for storing it, whose size is proportional to 𝑛2 ∙ 𝑁2 ∙ 𝜀, being 𝑛 the number 

of observed stars, 𝑁 the number of catalog stars used for identification and 

𝜀 the tolerances used in angular separations. Nevertheless, its 

implementation and testing on an embedded platform could be done in the 

future, with the goal of performing speed-space tradeoff studies. 

These tests were performed using a monochromatic star catalog 

(cat_m7g.cat), with the list of observed stars generated by gen_sia_input6 

sorted by their position in the field of view, mimicking the typical order that would 

be returned by an image processing algorithm in an actual star tracker if a sorting 

subroutine is not implemented. Results are presented in Table 5.3. 

Table 5.3 – Results obtained with mfPyramid v01 for 106 Monte Carlo runs per row, 
with observed stars sorted by position in the FOV 

test 
nbr. 

rate of incorrect attitude 
determination with error: 

 success 
rate with 
att. error 

less than 1° 

failure 
rate 

mean 
attitude 
error(c) 

raw 
measured 
run time(d) > 1° > 30° 

2a 0.4115% 0.3445% 98.718% 0.871% 128.795” 418.90 s 

4a 0.4044% 0.3397% 98.705% 0.891% 128.684” 401.15 s 

8b 0.4044% 0.3392% 98.739% 0.856% 128.759”  400.72 s 

9b 0.4129% 0.3545% 98.696% 0.892% 128.774” 402.70 s 

11b 0.4210% 0.3553% 98.725% 0.854% 128.659” 401.50 s 

mean 0.4108% 0.3466% 98.717% 0.873% 128.734”  401.52 s 

data from files: a = ptase_20170814_v01.log; b = ptase_20170814_v02.log.  
For downloading these files, see footnote on Section 5.4.3.  
(c) considering only attitude determinations with errors less than 1 degree.   
(d) The value in red is suspected to have been affected by background processes running 
on the test machine, being excluded from the computation of the mean run time.  
Source: created by the author.  
 

The measured misidentification rate of around 0.4% is in good agreement with 

the theoretical estimates given by (MORTARI et al., 2004) and Fialho (2007) 

when the mirror condition for triads is not checked. Later, it was found that this 
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baseline algorithm was not checking mirror condition when n ≥ 4. It should be 

noted that these theoretical estimates are not very accurate, since they assume 

that the stars are distributed on the sky following a uniform distribution, which is 

not true, stars tend to accumulate in the galactic plane. 

Interpretation of speed measurements: Values shown in Table 5.3 also include 

the time spent in gen_sia_input6 generating the list of observed stars. Performing 

tests with a dummy star-ID algorithm that returned immediately, just to measure 

the time overhead imposed by gen_sia_input6 and PTASE has shown that this 

time overhead was 38.67 ± 0.07 seconds for 106 runs. Subtracting this overhead 

from the raw measured run time average, we conclude that mfPyramid v01 took 

on average 362.8 µs to perform star identification on the test machine with the 

settings used – tests have shown that with the tolerances used in a typical star 

tracker, mfPyramid can be more than 10 times faster. As a final remark, it should 

be noted that speed measurements performed on the test machine are not very 

reliable (see Section 5.4.11.2). 

5.4.5 Checking for mirror condition in all triads 

Adding a verification for mirror condition for all triangles of candidate stars from 

the catalog reduces the incorrect attitude determination rate by half, as can be 

seen in Table 5.4. This modification also led to improvements in the success rate, 

mean attitude error, in the speed of the algorithm and a decrease in the failure 

rate. 

These tests were performed using mfPyramid v03 with all new features described 

in Section 5.3 “disabled”, except for the mirror condition test, now performed for 

every candidate triangle. 

In the new version of PTASE, running gen_sia_input8 and mfPyramid v03, the 

time overhead of gen_sia_input8 and PTASE, included in the results shown in 

this section and following sections, was measured as 40.81 ± 0.04 s for 106 Monte 

Carlo runs. 
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Table 5.4 – Raw results obtained with mfPyramid v03 for 106 Monte Carlo runs, with 
observed stars sorted by position in the FOV and no limit to the number of kernels 

test 
nbr. 

rate of incorrect attitude 
determination with error: 

 success 
rate with 
att. error 

less than 1° 

failure 
rate 

mean 
attitude 

error 

raw 
measured 
run time* > 1° > 30° 

7 0.1954% 0.1695% 99.013% 0.792% 126.983” 308.31 s 

9 0.1993% 0.1725% 98.998% 0.803% 127.118” 309.78 s 

10 0.1967% 0.1705% 98.985% 0.818% 127.220” 309.81 s 

11 0.1901% 0.1658% 99.012% 0.798% 127.214” 308.19 s 

13 0.1996% 0.1723% 99.017% 0.784% 127.174” 309.49 s 

mean 0.1962% 0.1701% 99.005% 0.799% 127.142” 309.11 s 

data from file: ptase_20170926_v01.log   
*see important remark at the end of this section when interpreting data from this column. 
Source: created by the author. 

A remark about speed measurements: Since speed measurements performed 

on a PC running MS-Windows are not very reliable (see Section 5.4.11.2) and 

considering that the expected computational cost of the additional comparisons 

present in the new filters and limit added in mfPyramid v03 is negligible in 

comparison to other steps in the algorithm, it was considered not worth the effort 

of building, managing and running different versions of PTASE solely for taking 

speed measurements accurately. Therefore, to remove the effects of filters and 

limit added in mfPyramid v03 which were not being used in the tests (in this 

section and following sections), the approach adopted here was to set very large 

tolerances/values for them that will never be reached in practice, effectively 

disabling them. The values used to “disable” these filters and limit were: 

tolerances of 10,000.0 mag. for magnitude, B−V and V−I color indexes filters and 

a limit of 1,000,000,000 kernels to be tested. With this approach, the sole effect 

of these filters and limit should be a very small increase in the execution time of 

the algorithm, an increase which was not quantified in this study. 
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5.4.6 Limiting the number of kernels to be tested 

Table 5.5 presents the results obtained with mfPyramid v03 when the limit of the 

number of kernels to be tested was set to 15. 

Table 5.5 – Raw results obtained with mfPyramid v03 for 106 Monte Carlo runs, with 
observed stars sorted by position in the FOV and a maximum of 15 kernels tested 

test 
nbr. 

rate of incorrect attitude 
determination with error: 

 success 
rate with 
att. error 

less than 1° 

failure 
rate 

mean 
attitude 

error 

raw 
measured 
run time* > 1° > 30° 

1 0.1963% 0.1687% 98.591% 1.213% 126.886” 303.094 s 

2 0.1931% 0.1674% 98.594% 1.213% 127.081” 302.916 s 

3 0.1935% 0.1697% 98.599% 1.208% 126.942” 302.518 s 

4 0.1926% 0.1667% 98.573% 1.234% 127.225” 303.635 s 

5 0.1931% 0.1638% 98.587% 1.220% 126.924” 303.394 s 

mean 0.1937% 0.1673% 98.589% 1.217% 127.012” 303.111 s 

data from file: ptase_20170731_v04.log  
*see important remark at the end of Section 5.4.5 when interpreting data from this 
column.  
Source: created by the author.  

The inclusion of this limit led to an increase in the speed of the algorithm and a 

very slight, almost unnoticeable, improvement in the misidentification rate. 

However, the success rate decreased and the failure rate (proportion of scenes 

where the algorithm was unable to identify stars) increased. It should be noted, 

nonetheless, that the simulations presented in this chapter did not include false 

stars. In a real application, where false stars might be present, the inclusion of a 

limit to the number of kernels to be tested is beneficial due to the reasons 

presented in Section 5.3.5. Also, the value chosen for this limit of maximum 15 

kernels tested was not optimal for the Monte Carlo simulations performed in this 

work. 
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5.4.7 Pre-sorting observed stars by magnitude 

Using exactly the same mfPyramid code, with exactly the same parameters as 

used in the previous section, a series of five Monte Carlo simulations was 

performed, with the only difference being that the list of observed stars was sorted 

in gen_sia_input8 by observed magnitude. Results are shown in Table 5.6. 

Table 5.6 – Raw results obtained with mfPyramid v03 for 106 Monte Carlo runs, with 
observed stars sorted by magnitude. 

test 
nbr. 

rate of incorrect attitude 
determination with error: 

 success 
rate with att. 

error less 
than 1° 

failure 
rate 

mean 
attitude 

error 

raw 
measured 
run time* > 1° > 30° 

2b 471 ppm 451 ppm 99.042% 0.911% 112.744” 453.458 s 

1a 452 ppm 431 ppm 99.057% 0.898% 112.643” 454.397 s 

3b 489 ppm 474 ppm 99.042% 0.909% 112.566” 453.336 s 

4b 455 ppm 440 ppm 99.062% 0.893% 112.671” 453.278 s 

7b 455 ppm 439 ppm 99.056% 0.898% 112.640” 455.367 s 

mean 464 ppm 447 ppm 99.052% 0.902% 112.653” 453.967 s 

data from files: a = ptase_20170727_06.log ; b = ptase_20170801_01.log.  
*see important remark at the end of Section 5.4.5 when interpreting data from this 
column.  
Source: created by the author.  

It is interesting to note that even though nothing had changed, simply by sorting 

observed stars by magnitude a major reduction in the misidentification rate was 

observed. This can be explained by a quirk in the simulation. Since 

gen_sia_input8 does not generate random false stars (all observed stars were 

taken from the larger star catalog limited at magnitude 7), bright observed stars 

will surely be present in the shorter star catalog (limited at magnitude 5) used by 

the star-ID algorithm, whereas for dim observed stars, there is some probability 

that some of them will be generated from cataloged stars with a magnitude 

greater than the magnitude limit of the shorter star catalog used for identification, 

thus behaving in the simulation as if they were false stars (spikes). If a spike is 
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matched with a cataloged star, this matching will surely be a misidentification. 

Hence, the identification of dimmer stars has a higher probability of being 

incorrect. This explains the abrupt reduction in the misidentification rate observed 

in this test. In a real star tracker, the effect of sorting observed stars by magnitude 

in reducing misidentification rate is probably not as large as in this simulation, 

since in a real scenario, bright false stars can occasionally occur. Nevertheless, 

this simulation shows the importance of using first observed stars having the least 

probability of being false stars in the process of star identification. Most likely, 

these are the brightest ones. A more detailed investigation about this effect, 

including the injection of false stars, should be performed in the future. 

A significant increase in the run time was also observed. Multiple simulations 

performed at different times and using different machines confirmed that this 

increase was a real phenomenon, not an effect of background processes running 

in the test machine. A possible explanation for this seemingly strange behavior is 

the following: The image processing algorithm usually process the raw image 

starting from the top lines and progressing to the bottom. As clumps of pixels 

above a certain threshold are found, they are assumed to belong to a potential 

observed star, thus having their centroid computed and stored in an output list 

(list of detected stars in Figure 2.1). The algorithm gen_sia_input8 was used in 

Section 5.4.6 with a setting that mimics this behavior of the image processing / 

centroid extraction algorithm by sorting the generated list of observed stars by 

their position in the FOV. When stars are sorted by position, the mean length 

(angular separation) of the star pairs alpha-beta, alpha-gamma and beta-gamma 

will be smaller than the case when observed stars are sorted by magnitude (as 

in this test). Assuming a uniform distribution of catalog stars on the celestial 

sphere, a smaller angular separation between the observed stars forming a pair 

means less star pairs from the catalog matching that observed star pair, 

according to Equation (7) in Mortari et al. (2004). 
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5.4.8 Using magnitude as a filter 

Simulations performed in the previous sections were done with a magnitude filter 

tolerance of ± 10000.0, effectively disabling it, since stars have much shorter 

magnitude range. For example, considering all stars in the Hipparcos catalog 

(ESA, 1997), the magnitude range in the V band goes from −1.44 (for the 

brightest star) to about +13.6 (for the dimmest). Reducing the tolerance in 

magnitude, there is a slight increase in the success rate until a certain point. 

Tightening the magnitude tolerance even further causes a reduction in the 

success rate with a significant decrease in the rate of attitude misidentifications. 

The turning point seems to be around a magnitude tolerance of ± 1.5. Similar 

behavior was observed with the tolerances used for B−V and V−I color indexes. 

After some experimentation, it was decided to use the same value of 0.9 for these 

tolerances as these filters were “enabled” in this and following sections. This 

value was chosen because it is the tightest value that did not result in a reduction 

in the success rate as new filters were enabled. Table 5.7 shows results after 

setting only the magnitude tolerance to ± 0.9 (color indexes tolerances remaining 

at ± 10,000.0). 

Using magnitude as a filter, a reduction in the incorrect attitude determination rate 

by a factor of roughly 6 was observed. Even though the reduction in the number 

of candidate stars for each observed star is not that large (with a tolerance of 0.9, 

it could typically lead to elimination of 35% to 50% of the candidate stars), their 

combined effect becomes appreciable. In fact, if we assume that this magnitude 

tolerance leads on average to a reduction of 45% in the number of candidate 

stars, the expected frequency of spurious catalog matches would reduce by a 

factor of 1/(0.55)3 ≈ 6 if it is applied to three stars. This happens because the 

frequency of spurious star pattern matching is proportional to the product 

N1·N2·...·Nk, being Ni the number of candidate stars from the catalog for star i in 

a pattern with k stars. 
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Table 5.7 – Raw results obtained with mfPyramid v03 for 106 Monte Carlo runs, with 
observed stars sorted by magnitude, and V magnitude tolerance of ± 0.9 

test 
nbr. 

rate of incorrect attitude 
determination with error: 

 success 
rate with att. 

error less 
than 1° 

failure 
rate 

mean 
attitude 

error 

raw 
measured 
run time* > 1° > 30° 

1a 87 ppm 82 ppm 99.216% 0.775% 108.570” 299.788 s 

6a 66 ppm 58 ppm 99.221% 0.772% 108.602” 301.037 s 

7a 71 ppm 67 ppm 99.227% 0.766% 108.699” 301.773 s 

8b 71 ppm 68 ppm 99.220% 0.773% 108.721” 302.170 s 

9b 87 ppm 85 ppm 99.223% 0.769% 108.793” 300.352 s 

mean 76 ppm 72 ppm 99.221% 0.771% 108.677” 301.024 s 

data from files: a = ptase_20170727_05.log ; b = ptase_20170801_01.log  
*see important remark at the end of Section 5.4.5 when interpreting data from this 
column.  
Source: created by the author.  

With the inclusion of the magnitude filter, a significant reduction of the processing 

time was observed. This can be attributed to a reduction of ambiguous 

identifications in the triangle matching phase, resulting in less kernels being 

rejected in mfPyramid. We also observed a decrease in the failure rate and in the 

mean attitude error (from 112.7” to 108.7”). 

5.4.9 Using the B−V color index as an additional filter 

Enabling the filter based on the Johnson’s B−V color index (ESA, 1997) with a 

tolerance of ± 0.9 on top the magnitude filter enabled in the previous section, 

gave a further reduction in the misidentification rate. 

Considering values of the attitude error > 30°, the misidentification rate reduced 

by a factor of about 3.8, a significant reduction. A slight improvement in star 

identification speed was also observed. This can be attributed to a reduction in 

ambiguous and incorrect identification of triangles. The mean attitude error and 

success rate remained practically the same. 
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Table 5.8 – Raw results obtained with mfPyramid v03 for 106 Monte Carlo runs, with 
observed stars sorted by magnitude, using magnitude filter and B−V color index filter 

test 
nbr. 

rate of incorrect attitude 
determination with error: 

 success 
rate with att. 

error less 
than 1° 

failure 
rate 

mean 
attitude 

error 

raw 
measured 
run time(c) > 1° > 30° 

2a 28 ppm 21 ppm 99.226% 0.771% 108.523” 296.457 s 

5a 20 ppm 15 ppm 99.233% 0.765% 108.617” 296.265 s 

8a 31 ppm 24 ppm 99.232% 0.765% 108.508” 296.437 s 

12b 19 ppm 14 ppm 99.239% 0.759% 108.542” 295.898 s 

15b 29 ppm 22 ppm 99.223% 0.774% 108.602” 294.820 s 

mean 25 ppm 19 ppm 99.231% 0.767% 108.558” 295.975 s 

data from files: a = ptase_20170727_05.log; b = ptase_20170801_01.log  
(c)see important remark at the end of Section 5.4.5 when interpreting data from this 
column.  
Source: created by the author.  
 

5.4.10 Using the V−I color index as an additional filter 

Enabling the filter based on the Johnson’s V−I color index (ESA, 1997) with a 

tolerance of ± 0.9 on top the magnitude filter and B−V filters enabled in the 

previous sections lead to the results shown on Table 5.9. 

The inclusion of the V−I color index filter in the selection of stars resulted in a 

reduction of the misidentification rate by a factor of roughly 2, however this come 

at a cost of a slight increase in the failure rate. No changes in the mean attitude 

error nor in the execution time of statistical significance were observed. 
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Table 5.9 – Raw results obtained with mfPyramid v03 for 106 Monte Carlo runs, with 
observed stars sorted by magnitude, using magnitude filter plus  B−V and V−I color 

index filters 

test 
nbr. 

rate of incorrect attitude 
determination with error: 

 success 
rate with att. 

error less 
than 1° 

failure 
rate 

mean 
attitude 

error 

raw 
measured 
run time(c) > 1° > 30° 

3a 10 ppm 5 ppm 99.228% 0.771% 108.537” 296.248 s 

4a 22 ppm 14 ppm 99.211% 0.787% 108.637” 295.288 s 

9a 17 ppm 9 ppm 99.195% 0.803% 108.489” 295.279 s 

14b 13 ppm 7 ppm 99.209% 0.790% 108.631” 295.885 s 

17b 20 ppm 10 ppm 99.200% 0.798% 108.738” 294.587 s 

mean 16 ppm 9 ppm 99.209% 0.790% 108.606” 295.457 s 

data from files: a = ptase_20170727_05.log ; b = ptase_20170801_01.log.  
(c)see important remark at the end of Section 5.4.5 when interpreting data from this 
column.  
Source: created by the author.  
 

5.4.11 Discussion 

Given the specifications of the coarse star tracker used in the simulations, we can 

confidently state that all cases of very severe attitude errors (errors larger than 

30°) result from misidentifications, whereas in the severe class (errors between 

1° and 30°), some of these could be the result of a partial misidentification (where 

some stars are correctly identified and others are incorrectly identified) or a 

correct identification where each star had an extremely large measurement error 

in their position, since many cases of attitude errors between 1° a 5° seem to be 

at the tail of attitude error distribution. Further analysis will be needed to 

understand exactly what is happening in these cases. 

Figure 5.10 summarizes the reduction in the frequency of severely incorrect 

attitude determinations versus the modifications tested in this section. This 

frequency of incorrect attitude determinations serves as a proxy for the 

misidentification rate of the algorithm. 
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Figure 5.10 – Reduction of the rate of incorrect attitude determination versus each new 
added feature. 

 

Source: Drawn by the author. 

It can be seen that, proportionally, the most significant reduction of the mis-ID 

rate was obtained with the inclusion of the magnitude filter (reduction by a factor 

of 6.2 in the rate of incorrect attitudes), followed by the inclusion of the first color 

index filter (reduction by a factor of 3.8 in the rate of mis-ID) and pre-sorting the 

list of observed stars by magnitude (reduction by a factor of 3.7 in the rate of 

misidentifications). Removing all mirror triangles in the triangle identification step 

(Section 5.3.4) reduced the misidentification rate by 2. Addition of a secondary 

color index reduced the misidentification rate by 2, at a cost of a slight decrease 

in the success rate. The effect of adding a limit of maximum 15 kernels to be 

tested was very small in the misidentification rate. The original version of Pyramid 

was not tested, since to test it in PTASE would demand many modifications in 

the original code to make it compatible with the program. But judging from its 

code and from the fact that it checks mirror condition for most triangles, but not 

in every case, it is expected that its misidentification rate would be intermediate 

between the “baseline version” and the test configuration labeled “discarding all 

mirror triangles” (numbers 1 and 2 in Figure 5.10). 
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Taken in isolation, each of these new features don’t seem to provide a significant 

increase in the star identification reliability, but when all these modifications are 

taken into account, they lead to a reduction of more than 2 orders of magnitude 

in the misidentification rate. 

5.4.11.1 Use of additional bands 

As shown by the simulations, the verification of additional spectral bands can give 

further gains for stellar identification, but with diminishing returns for each new 

spectral band included, since each new spectral band introduced becomes more 

and more correlated with the previous ones. This becomes clear in the color-color 

diagram shown in Figure 5.11. From this diagram, it is evident that there is a 

significant correlation between the V−I and B−V color indexes. Therefore, when 

designing a color star tracker, a balance on the number of spectral bands added 

must be made considering the benefits of additional color information and the 

drawbacks of increased system complexity and cost. These considerations would 

probably favor monochrome star trackers. However, when we consider that color 

information enables to diagnose optics degradation caused by ionizing radiation 

(usually manifested as a reddening in the lenses), and enables a better correction 

of chromatic aberration, the possibility of measuring color becomes more 

interesting. Another consideration in support for using a hardware capable of 

color discrimination is that with the need to reduce mass, volume and power 

consumption, instruments aboard future spacecraft will tend to accumulate more 

functions. Thus, the same hardware used for star tracking might also be used for 

target recognition, optical navigation, and other uses in other phases of the 

mission. Some of these uses may require color information. 
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Figure 5.11 – B−V and V−I plot for the 5000 brightest stars in the Hipparcos catalog. 

 

Source: Drawn by the author. 

5.4.11.2 Timing measurements 

Timing measurements were the most difficult ones, also being the least reliable 

type of measurement presented in this work. In modern computers, running 

modern operating systems, many times it is not possible to disable all background 

processes, such as antivirus, system processes, etc. Hence, it is not possible to 

predict when a background process will request CPU resources, robbing CPU 

time from the algorithm under test. To work around this limitation, we have 

adopted a number of tactics, besides performing multiple Monte Carlo 

simulations using the same configuration. 

As the tests were performed in a Windows machine, the first measure taken was 

to close all network connections to avoid unwanted downloads and update 

processes running concurrently with our tests. This was done by allowing all 

updates to complete and disconnecting the test machine from the Internet before 

performing the tests. 
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Another tactic that was used was to interleave test configurations, as can be 

inferred from the first column shown in Table 5.7, Table 5.8 and Table 5.9. For 

example, in one of PTASE runs (log file ptase_20170727_05.log), the results 

from the first Monte Carlo simulation were used in Table 5.7, the results from the 

second simulation were used in Table 5.8, the results from the third in Table 5.9, 

and so on. By interleaving test configurations, we can reduce the probability that 

a background process, running for a relatively large amount of time, would go 

unnoticed, affecting all measurements with a given configuration and biasing 

conclusions.  

Unfortunately, all the measures adopted here are not failproof. The best solution 

to this problem would be to run the Monte Carlo simulations in an environment 

where the user has complete control over all the processes (including interrupt 

service routines) running on the test machine, such as a dedicated hardware or 

an emulator simulating a target processor. In cases this is not possible, an 

alternative would be to perform Monte Carlo simulations using an operating 

system where the user has better control of background tasks, such as Linux. 

A final remark to this section is that the fastest algorithm or implementation in a 

given machine (e.g., the test computer used to evaluate them) might not be the 

fastest on a different machine (e.g., in the STR hardware). Hence when selecting 

algorithms based on speed, decisions should be made preferably on tests 

conducted in the target hardware. 

5.4.11.3 Conclusion 

Simulations have shown that magnitude and color indexes can be successfully 

used to reduce the misidentification rate, improve success rate and in many 

cases to speed up star identification. Even with the relatively large errors in 

magnitude and color index measurement considered in this simulation, we have 

obtained a significant reduction in misidentification rate by including magnitude 

and color indexes as additional filters in the star identification process. Had we 
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used the values obtained by the preliminary experimental work described in 

Section 3.6 in our simulations, results would be even better. 

Monte Carlo simulations have shown that even for monochrome star trackers, the 

use of magnitude information as an additional check for star identification leads 

to a significant reduction in misidentification rate, therefore improving attitude 

determination reliability without the need of additional hardware. If color 

information is available, it should be used to further reduce the probability of a 

misidentification occurring. 

An important evaluation which was not performed in this work is to verify how the 

tested star-ID algorithms behave in the presence of false stars (spikes). This 

verification is very important in real applications. Future work should evaluate 

how star-ID algorithms behave with the presence of false stars, using a model 

that attempts to mimic in a realistic way the distribution of false stars with 

magnitude and color indices. 
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6 A TECHNIQUE TO IMPROVE STAR DETECTION 

6.1 Introduction 

Before launching optical equipment into space, these instruments are calibrated 

in the laboratory. Unfortunately, some calibration parameters, such as FPN 

coefficients, can change with time due to a variety of reasons, including radiation 

damage and equipment aging. Ideally, to keep a camera calibrated, one would 

characterize the three components of the FPN presented in Equation (B.12) at 

regular intervals (e.g., once a year). The standard procedure to characterize FPN 

coefficients is to take a series of dark fields, flat fields and bias fields as outlined 

in Section B.2.7 in the appendices, average these images and from their average 

extract the FPN calibration coefficients. 

Unfortunately, this procedure is not as simple when the camera to be calibrated 

is in space. Many times, the communication channels between the spacecraft 

and the ground do not have enough bandwidth to allow to download a series of 

images to be used for calibration; the instrument to be calibrated does not have 

enough memory and processing power to compute the FPN calibration 

coefficients; or the instrument does not have a physical shutter to enable 

acquisition of dark frames. 

A space qualified star tracker could suffer from all these limitations. Hence to 

guarantee that it will provide accurate attitude measurements even after many 

years in space, and after its image sensor FPN coefficients have changed due to 

aging and radiation damage, innovative methods must be developed that permit 

to obtain crude estimates for some of the FPN coefficients from single images. 

With this in mind, a simple technique that permits to estimate the bias coefficients 

for columns in an image sensor from a single image has been devised. This 

technique was specially designed for a star tracker prototype based on a CMOS 

APS image sensor not having enough memory to store all calibration coefficients 
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for correcting the FPN noise. The following section gives a brief description of the 

method. 

6.2 Estimating column bias by sampling pixels in a column 

For each column j in a raw image of Nr ⨯ Nc rows and columns, this algorithm 

samples Nsample pixels at regular intervals along the column. From this sample, 

the Nreject (Nreject < Nsample) brightest pixels are rejected, and the average value of 

the Nsample – Nreject pixels is computed and used as a rough estimate of the column 

j bias. This bias estimate is then subtracted from the column. The Nreject brightest 

pixels are rejected because during the sample process, some samples might be 

hot pixels or pixels illuminated by stars. By rejecting the brightest Nreject pixels the 

likelihood that a illuminated or a hot pixel would affect the results is reduced, 

providing a better estimate of the column background level. This estimate of the 

column bias is then subtracted from every pixel in that column. This process is 

repeated for every column in the image. The end result is an image with corrected 

column FPN, presenting less non-uniformity due to column amplifier bias. 

6.3 Test example 

This correction method was tested with night sky images taken with an 1024 by 

1024 pixel CMOS APS image sensor, using Nsample = 136 and Nreject = 8. Results 

are shown in Figure 6.1. To the left, is shown a section of 25 by 25 pixels of the 

original image. To the right is shown the same 25 by 25 pixel region after the 

column bias computed with the method presented here was removed. In the 

original image, some lighter and darker vertical stripes are visible, this is due to 

column amplifier bias non-uniformity in the CMOS APS imager. These vertical 

stripes disappear after this proposed correction is applied. To make visualization 

easier, the contrast in the images has been enhanced. The same contrast 

enhancement factor has been used in both images, to allow for a fair comparison. 
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Figure 6.1 – A sample region of 25⨯25 pixels from an image of 1024⨯1024 pixels 
a) before and b) after FPN correction 

  

a) before FPN correction   b) after FPN correction 

Source: Created by the author. 

The standard deviation of the original 25⨯25 pixels region shown in in Figure 6.1 

was 2.234050 ADU, when considering only the 600 darkest pixels out of 625 in 

total. After applying this noise reduction method, the standard deviation of that 

same region (computed using the 600 darkest pixels out of the 625 pixels in the 

region) reduced to 1.738915 ADU. The ratio between these two values is 0.778. 

If the ADC response is assumed to be linear and the star detection threshold is 

also assumed to be proportional to the noise floor level, this means that by using 

this method an improvement in sensitivity of 1/0.778 = 1.285 was achieved for 

this small region, this gain equates to a gain in magnitude sensitivity of 0.272 

magnitude. (0.272 = 2.5 * log10 (1.285)). When computing the standard deviation 

of this 25⨯25 pixels region, the 25 brightest pixels were excluded because among 

them there might exist some hot pixels (pixels with abnormally high dark current) 

and these are normally removed by image processing before centroid 

computation. 
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6.4 Discussion 

Even though the method described here is not as accurate as traditional methods 

proposed in the literature, it has the advantage of having a much lower 

computational cost than more accurate methods. Another advantage of this 

method is that it can provide a fairly good column FPN correction even when 

knowledge of column bias coefficients does not exist. These features make it a 

good candidate to be used in an embedded hardware with low computational 

power. This method is being tested with a star camera prototype being developed 

at INPE (FIALHO; PERONDI and MORTARI, 2016). 

It should be noted that this method does not work if the image is derived from a 

scene with large illuminated areas, working only if very few pixels are illuminated. 

The method works fine for star field images, where usually much less than 1% of 

the pixels in the image are illuminated by stars. 

For the future, an evaluation on how the column non-uniformity bias affect 

centroiding accuracy should be performed. Another interesting research topic is 

how the proposed method impacts centroiding accuracy using many different 

algorithms, from the simple center of mass centroiding to the more sophisticated 

point spread function (PSF) curve fitting techniques. 
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7 LOWER BOUND ON STAR TRACKER ACCURACY IN THE SOLAR 

SYSTEM NEIGHBORHOOD 

This chapter presents an estimate of the theoretical lower bound on star tracker 

accuracy, for star trackers located in the Solar System’s neighborhood. 

7.1 Introduction 

Many progresses in a variety of fields in science and technology could be 

accomplished thanks to the miniaturization obtained in microelectronics in the 

recent decades. One of the most remarkable examples is the prediction by 

Gordon Moore that the computational power would increase exponentially, an 

empirical observation that became known as Moore's law (MOORE, 1965; BALL, 

2005; CHARLES JR., 2005; BEIGEL, 2013). Yet, this rate of improvement is not 

expected to last forever. Eventually a fundamental limit will be reached when the 

size of transistors reaches atomic dimensions. Likewise, in other fields of science 

and technology, fundamental limits to miniaturization and performance 

improvements are often found. For instance, in the field of telecommunications, 

there's a theoretical minimum amount of energy that must be spent to transmit a 

bit in a digital message from one point to another within a given time interval, 

being this quantity closely related to Planck's constant (BEKENSTEIN, 1981). 

Hence, it is natural to ponder whether there is a fundamental limit to the accuracy 

attainable by star trackers, given constraints such as the volume in space it 

occupies, the length of time available for observations and the distribution and 

brightness of stars around it. 

The main goal of this chapter is to present initial estimates for the ultimate limits 

of traditional, camera type, single head star trackers (single head STRs), imposed 

by fundamental laws of Physics, i.e., limits that cannot be overcome by 

technology improvements. The limits derived here do not depend on STR 

technology used, being applicate to both refractive and reflective optics STRs. 

These estimates are useful as a basis for assessing real STRs as to their 
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potential for improvements through technology advancements. This chapter does 

not discuss practical limitations (such as readout noise, non-ideal point spread 

function (PSF) in centroiding and distortions introduced by the optics) faced by 

existing, real world star trackers, since this subject has already been well covered 

by existing literature (ENRIGHT; SINCLAIR; DZAMBA, 2010; SUN; XING; YOU, 

2013; ZAKHAROV et al., 2013). 

This chapter is organized as follows: Section 7.2 describes the methodology 

used, Section 7.3 presents and discusses the results, Section 7.4 describes how 

the model used here could be improved and Section 7.5 concludes this chapter. 

7.2 Methodology and model description 

The model used in this work is that of an equivalent ideal spherical star tracker, 

capable of measuring the direction and energy of every photon incident on its 

surface. This ideal STR would be able to observe stars in the whole celestial 

sphere simultaneously, that is, it would have a field of view of 4π sr. The 

knowledge on the incoming direction of photons in this model is limited only by 

diffraction at the star tracker aperture, assumed to be circular with the same 

radius of the STR itself. In other words, it is assumed that the STR aperture is 

given by the projection of the STR body on a plane perpendicular to the direction 

of incoming photons. In this ideal model, the Universe is assumed to be 

composed only of stars, each star being a polychromatic point source of light, 

with the same brightness and position in the celestial sphere of stars given in star 

catalogs. Figure 7.1 provides a pictorial description of the STR model used in this 

work. In this model, the accuracy of the centroids of each star is limited only by 

diffraction and shot noise. These effects depend only on the STR aperture, stellar 

spectra and integration time. 
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Figure 7.1 –  Ideal star tracker (STR) model. 
Ideal star tracker (STR) model (gray sphere at the center) with stars on 
the background. An ideal STR would be completely black, as it would 
absorb every photon impinging on it. However, a realistic illustration would 
make it harder to visualize the concept. 

 

Source: Drawn by the author. 

For simplicity, the spectra of stars will be approximated by the spectra of 

equivalent black-bodies. Ideally, the actual spectra of stars should be used, at 

least for the brightest stars. However, this would make this study much more 

complex. Therefore, this improvement will be left for the future. Section 7.3.2 

discusses the adequacy of this approximation. 

Also for simplicity, our computations disregard the use of the Sun and other Solar 

System objects as references for attitude determination. An attitude sensor in a 

distant future that is able to use and model very accurately the Sun and a 

neighboring planetary body as additional attitude references, could, perhaps, 

overcome the estimates on the lower bound of attitude accuracy computed in this 

work. 

7.2.1 Basic assumptions 

The following basic assumptions are made in this model: 
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a) the star tracker has a spherical shape with a diameter D, being able to 

detect and use for attitude determination every photon of stellar origin 

impinging on its surface10; 

b) it is capable of registering the incoming direction and energy of every 

detected photon with an accuracy limited only by Heisenberg's Uncertainty 

Principle; 

c) only photons detected during a period of length t – the exposure or 

integration time – are considered for attitude determination; 

d) this ideal star sensor is at absolute zero temperature, hence, there is no 

noise of thermal origin within this star tracker; 

e) the coordinates of the stars in a non-rotating reference frame with origin in 

the star tracker are known with absolute precision; 

f) an unbiased optimal estimator is used to determine the star sensor 

attitude, and computations are performed with infinite precision; 

g) measurements obtained with this ideal star tracker are not merged with 

external measurements; 

Item a) implies that this star sensor has a field of view of 4π sr, i.e., it is capable 

of observing the whole celestial sphere simultaneously, a fact that, coupled with 

its spherical shape, leads to the advantage that the accuracy of this ideal STR 

does not depend on its attitude, in contrast to real STRs, where the attitude 

accuracy depends on the particular set of stars that are within its limited field of 

view. The spherical shape was also chosen for this model due to its symmetry, 

which simplifies greatly the mathematical treatment. Only star trackers capable 

of simultaneously observing the whole celestial sphere (4π sr) are able to use all 

the information on star position that is provided by natural means in a given time 

                                            
10 except for stars at a very close range, such as the Sun when the STR is in the Solar System. 
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interval to the volume it occupies in space, information that is used to determine 

its attitude. With artificial means, it would be possible to overcome this limitation, 

e.g., by determining the star tracker attitude externally (with a much more 

accurate attitude sensor) and relaying this information to the star tracker, however 

this would be a violation of assumption g) of our model. 

Item b) and the fact that every photon is detected, means that the optics, if any, 

is ideal: 100% transmission, with no defocusing and blurring, except for the 

blurring dictated by diffraction; 

Items c) and g) limit the number of photons that will be observed by the ideal 

STR. If exposure time were not constrained, it would be possible to get attitude 

measurement uncertainty as low as desired, by increasing the exposure time. 

Item c) also means that this model does not consider the possibility of combining 

current observations with previous observations to improve accuracy. Item g) 

implies that only photons impinging on the STR surface will be used for attitude 

determination. Item c) also excludes from consideration the possibility of using 

other particles emitted from stars for attitude determination. This means that, for 

example, a star tracker in a very distant future that is able to observe neutrinos11 

in addition to photons (assuming that one could ever be built) or use other means 

of observing stars (e.g., by detecting another type of particle still unknown to 

science) could potentially overcome the limits established in this work. 

Item e) means that the star catalog used for star identification is perfect and that 

all corrections needed to bring the coordinates, brightness and colors from the 

star catalog reference frame origin to the STR location (corrections for stellar 

aberration, parallax and redshift/blueshift) are performed with no errors. 

Item g) expresses the goal of obtaining a lower bound on attitude error for a single 

star tracker used in isolation. If measurements from multiple sensors were 

                                            
11 Neutrinos interact so weakly with ordinary matter that the vast majority of neutrinos arriving at 
Earth pass through our planet unimpeded (JAYAWARDHANA, 2015). Therefore, detection of 
neutrinos emitted by stars in star trackers with current technology is virtually impossible. 
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permitted to be merged, a significant improvement in attitude measurement 

accuracy could be achieved. For example, by interferometrically combining 

measurements from a small number of STRs mounted in a rigid structure and 

separated by a distance much greater than their diameters, it would be possible 

to improve attitude determination by many orders of magnitude in comparison to 

the theoretical estimate presented in this work, with attitude uncertainty being 

roughly inversely proportional to the distance between them (BALDWIN; HANIFF, 

2002; MOLINDER, 1978). 

7.2.2 Simplifying assumptions 

In order to make this study feasible, the following simplifying assumptions were 

made: 

a) stellar spectra are approximated by the spectra of black bodies that best 

match the catalogued star intensity and color given by the star catalogs 

adopted in this work; 

b) stars are considered as point sources of light; 

c) Solar System objects, including the Sun, are disregarded in this model; 

d) stellar proper motion is disregarded; 

e) the star tracker is not rotating; 

f) it is assumed that each detected photon can be univocally associated with 

the star from where it originated. 

7.2.3 Model description 

Figure 7.2 presents a flowchart for the model used in this work. Basically, for each 

star in the adopted star catalogs, an estimate for the lower bound on centroiding 

accuracy is computed, and these estimates are used together with the unit 
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vectors that represent the stars in the star catalog reference frame to determine 

the lower bound on attitude error (box at the lower right corner). 

Unfortunately, no star catalog is complete. Therefore, any estimate obtained from 

an existing star catalog will be incomplete, since the missing stars in that star 

catalog still can contribute to attitude knowledge if they are observed by the star 

tracker, no matter how far or dim they are. To work around this limitation, we plot 

the relation of attitude knowledge upper bound with star catalog size for a number 

of publicly available star catalogs and extrapolate that to the estimated number 

of stars in our galaxy, plus some margin, to account for stars in other galaxies, 

as described in Section 7.3.3. 

Figure 7.2 - Model for estimating the theoretical lower bound on attitude errors for star 
trackers. 

 

Source: Drawn by the author. 

In the following sections, a more detailed description of the model used is given. 
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7.2.4 Black body model for stars 

In the simplified model adopted in this work, the spectrum of each star is 

considered to be the spectrum of a black body at a temperature T diluted by a 

geometric factor C. This geometric factor arises from the fact that the idealized 

STR is at a (very long) distance from that star, instead of being placed on the 

surface of a spherical black body that represents that star. Hence, the radiant 

energy flux (irradiance) received by a surface perpendicular to the rays coming 

from that star, at the location of this idealized STR, will be much smaller than the 

radiant energy flux (radiant exitance) emitted by the surface of the equivalent 

black body that represents that star. As the radiant exitance of a black body is 

uniquely determined by its temperature, only two parameters are needed to 

uniquely determine the spectral distribution and intensity received by the STR 

from that star in this model, the temperature T and the dilution factor C. 

Mathematically: 

𝐸𝑒,𝜆,𝑖(𝜆) = 𝐶𝑖 ⋅ 𝑀𝑒,𝜆(𝑇𝑖, 𝜆) (7.1) 

where: 

• 𝐸𝑒,𝜆,𝑖(𝜆) is the spectral irradiance in unit of power per unit of area and per 

unit of wavelength (e.g: W/m2/nm) received from star i by a surface, 

located at the same place of the star tracker, that is perpendicular to 

incoming rays, at a wavelength λ; 

• 𝐶𝑖 = geometric dilution factor for star i; 

• 𝑇𝑖 = temperature of the black body that represents star i; 

• 𝑀𝑒,𝜆(𝑇𝑖, 𝜆) is the spectral exitance in unit of power per unit of area per unit 

of wavelength (e.g.: W/m2/nm) of the surface of the black body that 

represents star i, evaluated at wavelength λ. 
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In order to uniquely determine these two parameters (T and C) for each star, at 

least two samples of their flux taken at different wavelengths or at different 

spectral bands are needed. The following sections describe how T and C are 

derived for each star from Hipparcos catalog data, using the cataloged mV 

magnitude and B−V color index. A similar procedure is performed with data from 

Hipparcos using the V−I color index and data from other star catalogs. 

7.2.5 Black body temperatures from B−V color indexes 

Taking as an example data from the Hipparcos catalog using the B−V color index 

information, the spectra of stars is taken as the spectra of black bodies with 

intensities adjusted so that the integrated spectra over the Johnson's B band and 

V band (BESSELL, 2005; BESSEL; MURPHY, 2012) match simultaneously the 

flux at these bands derived from magnitudes and color indexes given by the 

Hipparcos Catalog. 

In order to determine equivalent black bodies temperatures for stars in the 

Hipparcos catalog, an empirical relation had to be established linking the B−V 

color indexes given in the Hipparcos catalog with black body temperatures. This 

section describes how this empirical relation was derived. 

The spectral exitance at wavelength 𝜆 of a black body at a temperature T can be 

computed as follows (BUDDING; DEMIRCAN, 2007): 

𝑀𝑒,𝜆(𝑇, 𝜆) =
2𝜋ℎ𝑐2

𝜆5

1

exp (
ℎ𝑐
𝜆𝑘𝑇) − 1

 (7.2) 

where ℎ is the Planck constant ≈ 6.62607∙10-34 J∙s, 𝑐 is the speed of light in 

vacuum (𝑐 = 299,792,458 m/s exactly, by the definition of the meter (MOHR; 

NEWELL; TAYLOR, 2016)) and 𝑘 is the Boltzmann constant ≈ 1.38065∙10-23 J/K. 

The spectral exitance will have units of power per unit area per unit wavelength 

([W ∙ m−2 ∙ m−1] in SI units). 
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By integrating the product of the spectral exitance of a black body with the 

Johnson's B and V passbands energy responses it is possible to obtain the black-

body fluxes in the B and V bands at its surface. This procedure is described in 

detail by Bessell (2005) in Section 1.6 – Synthetic Photometry (Section C.3 in the 

appendices of this thesis also gives an introduction to this subject): 

𝜑𝐵𝐵,𝐵(𝑇) = ∫ 𝑀𝑒,𝜆(𝑇, 𝜆)𝑅𝐵(𝜆)d𝜆
∞

𝜆=0

 (7.3) 

𝜑𝐵𝐵,𝑉(𝑇) = ∫ 𝑀𝑒,𝜆(𝑇, 𝜆)𝑅𝑉(𝜆)d𝜆
∞

𝜆=0

 (7.4) 

where: 

• 𝜑𝐵𝐵,𝐵(𝑇) = flux at the surface of a black-body at temperature T in the 

Johnson’s B photometric passband; and 

• 𝑅𝐵(𝜆) = spectral energy response function of the Johnson’s B photometric 

passband. 

Analogously, 𝜑𝐵𝐵,𝑉(𝑇) and 𝑅𝑉(𝜆) are quantities related to the Johnson’s V 

photometric passband. 

The 𝑅𝐵(𝜆) and 𝑅𝑉(𝜆) response functions were obtained by converting the 

tabulated values recommended by Bessell and Murphy (2012, Table 1 on page 

146) from normalized photonic responses to normalized energy responses and 

interpolating the resulting values. The energy response functions adopted in this 

work are shown in Figure 7.3. 

The conversion from normalized photonic response to normalized energy 

response was done by multiplying the photonic response by the wavelength and 

renormalizing the results (Equation A9 in Bessell and Murphy (2012)). The 

explanation for this procedure is given in Section A2 in the appendix of Bessell 

and Murphy (2012), on page 153. The method of interpolation used was a “shape-

preserving piecewise cubic interpolation,” provided by the MATLAB function 
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interp1 with method “pchip”. Computations were performed with MATLAB 

R2015b. 

Figure 7.3 – Spectral energy response of the B (blue) and V (visual) passbands. The B 
band is the blue dashed curve to the left. 

 

Source: Drawn by the author. 

From the fluxes in the B and V bands, the magnitudes in these bands can be 

computed: 

𝑚𝐵𝐵,𝐵(𝑇) = −2.5 log10(𝜑𝐵𝐵,𝐵(𝑇)/𝜑𝑅𝐸𝐹,𝐵) (7.5) 

𝑚𝐵𝐵,𝑉(𝑇) = −2.5 log10(𝜑𝐵𝐵,𝑉(𝑇)/𝜑𝑅𝐸𝐹,𝑉) (7.6) 

These equations give the apparent magnitudes in the B and V spectral bands of 

a spherical black body for an observer situated just above its surface looking 

down towards its center. 𝜑𝑅𝐸𝐹,𝐵 and 𝜑𝑅𝐸𝐹,𝑉  are the reference fluxes that define 

the zero point of the magnitude scales in these bands, having being obtained by 

numerically integrating the spectrum of Vega (α-Lyr) multiplied by the passband 

responses, and adjusting their values such that the computed B and V 
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magnitudes of Vega matches those in the star catalog (𝑚𝑉𝑒𝑔𝑎,𝐵 = 0.029 and 

𝑚𝑉𝑒𝑔𝑎,𝑉 = 0.030 in Hipparcos). Mathematically: 

𝜑𝑅𝐸𝐹,𝐵 = 100.4𝑚𝑉𝑒𝑔𝑎,𝐵 ∫ 𝐸𝑉𝑒𝑔𝑎(𝜆)𝑅𝐵(𝜆)d𝜆
∞

𝜆=0

 (7.7) 

𝜑𝑅𝐸𝐹,𝑉 = 100.4𝑚𝑉𝑒𝑔𝑎,𝑉 ∫ 𝐸𝑉𝑒𝑔𝑎(𝜆)𝑅𝑉(𝜆)d𝜆
∞

𝜆=0

 (7.8) 

where 𝐸𝑉𝑒𝑔𝑎(𝜆) is the spectral irradiance from Vega measured at the top of 

Earth's atmosphere. The spectrum of Vega used in equations (7.7) and (7.8) was 

obtained from file alpha_lyr_stis_008.fits (STSCI, 2017). 

Figure 7.4 shows the apparent magnitudes of black bodies versus temperature 

in the Johnson's B and V bands for an observer located at the surface of said 

black bodies. In this plot, brighter sources (more negative magnitudes) are at the 

top. Note that the magnitude scale used in astronomy is reversed, with smaller 

magnitudes meaning brighter sources. The magnitudes are said to be apparent 

because they depend on the observer location, contrasting to stellar absolute 

magnitudes that are the magnitudes of a star seen from a standard distance of 

10 parsecs (ZEILIK; GREGORY, 1998). 

The B magnitude minus the V magnitude of a celestial body is its B−V color index. 

Figure 7.5 presents the relation between the B−V color index and temperature for 

black-bodies. The plot to the right relates the B−V color index with the 

multiplicative inverse of the black body temperature. Note that this curve is much 

more linear than the direct relation between temperature and B−V color index. 

Therefore, to get equivalent black-body temperatures for stars in the catalog, we 

interpolate using the 1/T versus B−V curve. To avoid temperature estimates with 

large errors from appearing, the B−V color indexes in the Hipparcos catalog are 

clamped into the interval [−0.2357, +2.7028] before conversion. These limits 

correspond to black-body temperatures of 30,000 K and 2000 K, respectively. 

Most stars have effective temperatures in that range. 
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Figure 7.4 – Apparent magnitudes of a black body for an observer lying on its surface 
and looking down towards its center versus black body temperature, in the 
Johnson-Morgan B and V passbands. 

 

Source: Drawn by the author. 

 

Figure 7.5 – Relation between temperature (or its reciprocal) and B−V color index for 
black bodies. 

    

Source: Drawn by the author. 
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It should be noted that for many stars, the temperature T used in our model will 

not be equal to the effective temperature of the star – the temperature that a black 

body with the same physical size of that star should have to irradiate the same 

amount of electromagnetic radiation as the star – but will usually be smaller. The 

reason for that is the reddening caused by selective absorption by dust in the 

intervening light path from that star to the observer. Likewise, the constant C will 

have a different value than the one it would have in the absence of interstellar 

dust and clouds. In the absence of interstellar absorption, the constant C would 

be equal to (𝑟𝑠𝑡𝑎𝑟/𝑑𝑠𝑡𝑎𝑟)
2 if the stars were also assumed to be spherical black 

bodies, being 𝑟𝑠𝑡𝑎𝑟 the stellar radius and 𝑑𝑠𝑡𝑎𝑟  the distance from the center of the 

star to the star tracker. 

7.2.6 Determination of the geometric dilution factor C from Hipparcos 

data 

From the temperature T, the apparent visual magnitude of that black body at its 

surface (𝑚𝐵𝐵,𝑉,𝑠𝑢𝑟𝑓𝑎𝑐𝑒) was determined by interpolating the solid black curve in 

Figure 7.4. The dilution factor C can be computed by comparing this magnitude 

with the cataloged visual magnitude (𝑚𝑉) in the Hipparcos catalog, and 

considering the definition of magnitude scale: 

𝐶𝑖 = 100.4∙(𝑚𝐵𝐵,𝑉,𝑠𝑢𝑟𝑓𝑎𝑐𝑒−𝑚𝑉,𝑖) (7.9) 

The geometric dilution factor C will be typically between 10−20 and 10−14 for stars 

in the Hipparcos catalog. In this equation, the subscript 𝑖 indicates that the values 

refer to star 𝑖. 

7.2.7 Number of photons detected per unit wavelength 

This section derives equations for the number of photons that will be detected, 

per wavelength, by the idealized star tracker used in this model, for a given 

exposure time t and a given STR diameter D, also assumed to be equal to its 

aperture diameter. 
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The energy of each photon is related to its frequency 𝜈 by the following equation: 

𝐸𝑝ℎ = ℎ𝜈 =
ℎ𝑐

𝜆
  (7.10) 

Dividing the spectral irradiance at the location of the star tracker due to the black-

body equivalent of star 𝑖 (equations (7.1) and (7.2)) by the energy of a photon of 

wavelength 𝜆, the following expression for the spectral photon flux density 

received by the STR from the equivalent of star 𝑖 is obtained: 

𝜑𝑝ℎ,𝜆,𝑖 = 𝐶
2𝜋𝑐

𝜆4

1

exp (
ℎ𝑐

𝜆𝑘𝑇𝑖
) − 1

 
(7.11) 

This flux density has units of photons per unit of time per unit of area per unit of 

wavelength. Multiplying this by the star tracker’s cross section area 𝐴 = 𝜋𝐷2/4 

and by the integration time 𝑡 we obtain: 

𝑛𝑝ℎ,𝜆,𝑖 = 𝐶𝑖 ∙ 𝑡 ∙
𝜋2𝐷2𝑐

2 ∙ 𝜆4

1

exp (
ℎ𝑐

𝜆𝑘𝑇𝑖
) − 1

 (7.12) 

which is the number of photons from star 𝑖 equivalent being collected by the STR, 

per unit wavelength. 

7.2.8 Diffraction and shot noise 

Diffraction and optics blurring set the format of the point spread function (PSF) of 

stellar image. In an ideal star tracker, there's no optical blurring, except for that 

set by diffraction. Therefore, for the STR model adopted in this work, the PSF 

function will be the diffraction pattern given by a circular aperture of diameter D 

contained in a plane perpendicular to the incoming direction of photons. This 

diffraction pattern consists of a disk (Airy disk) with a series of concentric rings, 

being first derived by Airy in 1835. 

If the description of Nature given by Classical Mechanics were correct, it would 

be possible, at least in theory, to measure the intensity of the electromagnetic 
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field at the detector plane with no error, from where the true, error free, direction 

of the incoming light rays would be obtained. However, the fact that light is 

discretized in photons leads to the situation where the number of detected 

photons will be finite, even with an ideal detector. Therefore, instead of defining 

precisely the intensity of the electromagnetic fields at each point in the detector 

(as thought by 19th century physicists), the PSF will define the probability density 

function that a photon coming from a point source at infinity will be detected on a 

particular location at the detector. Since the number of photons detected will be 

finite, even for the case of an ideal star tracker, and these photons are detected 

at random positions, with probabilities given by the PSF, the centroid estimate for 

each observed star will have a noise. The lower bound for this noise was 

determined by Lindegren (2013), being discussed in the next subsection. 

7.2.9 Lower bound on centroiding error for single stars 

According to Lindegren (2013), Heisenberg's uncertainty principle sets a 

fundamental limit for centroiding, and this limit assumes the following form for 

monochromatic light of wavelength 𝜆: 

𝜎𝑥𝑐 ≥
𝜆

4𝜋Δ𝑥√𝑁
 (7.13) 

where: 

• 𝜎𝑥𝑐 = angular centroid uncertainty along an axis x perpendicular to the 

direction of incoming photons, in radians; 

• Δ𝑥 = √∫ 𝑥2d𝑆/∫ d𝑆 = root mean square extension of the star tracker 

aperture (entrance pupil) in the x direction; 

• 𝑁 = number of photons detected. 

For circular apertures of diameter D, Δ𝑥 = D/4. Substituting this into Equation 

(7.13) the following expression for the reciprocal of the lower bound of variance 
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of centroiding error (the Fisher information 𝐹) over a circular aperture of diameter 

D, for monochromatic sources of light is obtained: 

1

𝜎𝑥𝑐
2

≤
1

𝜎𝑚𝑖𝑛
2 = 𝐹𝑁,𝑚𝑜𝑛𝑜 =

𝜋2𝐷2𝑁

𝜆2
 (7.14) 

Since stars are incoherent sources of light, the detection of a given photon is not 

correlated with the detection of another photon from the same star. This means 

that the number of detected photons from a given star will follow a Poisson 

distribution with parameter 𝜄, being 𝜄 the expected number of detected photons. 

(We are using the Greek letter 𝜄 instead of the more common λ for the Poisson 

distribution parameter to avoid confusion with λ for wavelength.) This parameter 

can be obtained by integrating Equation (7.12). For large values of 𝜄, the Poisson 

distribution narrows down in comparison to the value of 𝜄. This means that when 

the expected number of detected photons is significantly large, the true value of 

the lower bound of centroiding accuracy will be very close to the value predicted 

by Equation (7.14) if we substitute 𝑁 by 𝜄. Numerical tests have shown, assuming 

that the centroiding error for exactly 𝑁 detected photons follows a Gaussian 

distribution with a standard deviation given by Equation (7.12), that the error 

between the actual centroiding error and the value estimated by Equation (7.14) 

using 𝜄 in place of 𝑁 will be smaller than 23% for 𝑁 ≥ 1, 6.4% for 𝑁 ≥ 10 and 

0.51% for 𝑁 ≥ 100. It is true that the actual probability density function for 

centroiding error along one axis will not be exactly Gaussian, especially for a low 

number of detected photons, but a Gaussian distribution provides a good 

approximation, even when only one photon is detected. 

Another consequence of the fact that the detection of a given photon is not 

correlated with the detection of another photon from the same star is that the 

centroiding error of a centroid computed using photons in the wavelength interval 

[λ1, λ2] is independent on the centroiding error using photons in the wavelength 

interval [λ3, λ4] when these intervals do not overlap (λ2 < λ3 or λ4 < λ1). Therefore, 
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we can consider each wavelength interval individually and then merge the 

centroid estimates from each wavelength. 

For the discrete case of having 𝑛 independent unbiased estimates of the same 

physical variable (e.g., the x coordinate of a star centroid), each having an actual 

variance 𝜎𝑖
2, the best estimate for that variable is obtained by summing these 

estimates using the reciprocal of their variances as weights (a procedure 

sometimes known as inverse variance weighting) (HARTUNG; KNAPP; SINHA, 

2008; YEN, 2002). In that case, the variance of this optimal estimate will be given 

by: 

𝜎𝑇
2 = (∑

1

𝜎𝑖
2

𝑛

𝑖=1

)

−1

 (7.15) 

where: 

• 𝜎𝑇
2 = total variance in the estimate of a scalar physical variable obtained 

by merging 𝑛 independent measurements; 

• 𝜎𝑖
2= variance of each individual measurement 𝑖. 

Since the spectra of black bodies is continuous, the following adaptation of 

Equation (7.15) is used to compute centroid estimates for black bodies: 

1

𝜎𝑥𝑐
2

= ∫
d(

1
𝜎2)

d𝜆
d𝜆

∞

𝜆=0

 (7.16) 

The contribution from each wavelength to the centroid Fisher information can be 

obtained from Equation (7.14) by replacing 𝑁 with 𝑛𝑝ℎ,𝜆,𝑖, where 𝑛𝑝ℎ,𝜆,𝑖 =

d𝑁𝑝ℎ,𝑖/d𝜆 is the derivative with wavelength of the number of photons from star 𝑖 

entering the star tracker aperture within an integration time of 𝑡, as given by 

Equation (7.12) from Section 7.2.7. Hence, for each star 𝑖, the derivative of the 

centroiding Fisher information (the integrand of Equation (7.16)) is given by: 
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d𝐹

d𝜆
=

d (
1

𝜎𝑚𝑖𝑛
2 )

d𝜆
=

𝜋2𝐷2

𝜆2
𝑛𝑝ℎ,𝜆,𝑖 

(7.17) 

Here we have dropped the subscript 𝑖 to simplify notation. Plugging Equation 

(7.12) into Equation (7.17) yields: 

d𝐹

d𝜆
= 𝐶 ∙ 𝑡 ∙

𝜋4𝐷4𝑐

2 ∙ 𝜆6

1

exp (
ℎ𝑐
𝜆𝑘𝑇) − 1

 (7.18) 

Integrating this equation for 𝜆 = 0 to ∞ gives the Fisher information for stellar 

centroid 𝑖 (𝐹𝑖) and its reciprocal, the minimum variance for the centroid position 

error in x direction, being x an axis perpendicular to the incoming light rays: 

1

𝜎𝑚𝑖𝑛
2 = 𝐹𝑖 = ∫

d𝐹𝑖

d𝜆
d𝜆

∞

𝜆=0

= 12𝜁(5)𝜋4 ∙
𝑘5

ℎ5𝑐4
∙ 𝐷4𝑡 ∙ 𝐶𝑖𝑇𝑖

5 (7.19) 

where 𝜁(5) = 1.0369277551... is the Riemann zeta function evaluated at 5. 

Since the aperture is symmetrical, Equation (7.19) gives the minimum centroiding 

variance for star 𝑖 (𝜎𝑚𝑖𝑛,𝑖
2 ) along any axis perpendicular to the direction of 

incoming light rays. From this equation, it can be noted that the lower bound of 

the standard deviation on centroiding error along any axis perpendicular to the 

true direction of the star is proportional to 𝐷−2 and 𝑡−1/2 , when the number of 

detected photons is sufficiently large. This means that the star tracker diameter 

has a much larger effect in the ultimate centroid accuracy and precision than the 

exposure time. 

7.2.10 Estimating the lower bound of attitude error from many stars 

This section follows the formulation given by Markley and Crassidis (2014, 

Section 5.5). This formulation is valid when measurement errors are small, 

uncorrelated and axially symmetric around the true direction of stars, conditions 

fulfilled by our model, except for ideal star trackers with very small diameters, 

much less than 1 mm. 
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According to equations 5.113 and 5.114 in Markley and Crassidis (2014), the 

covariance matrix (𝐏𝜗𝜗) of the rotation vector error (𝜹𝝑) for an optimal attitude 

estimator is the inverse of the Fisher information matrix 𝐅: 

𝐏𝜗𝜗 = 𝐅−𝟏 (7.20) 

with: 

𝐅 = ∑
1

𝜎𝑖
2
[𝐈3 − 𝐫𝑖

true(𝐫𝑖
true)𝑇]

N

i=1

 (7.21) 

where 𝜎𝑖
2 is the measurement variance associated with star i, as defined by 

Markley and Crassidis, 𝐈3 is a 3x3 identity matrix and 𝐫𝑖
true is the true direction of 

star i, represented by a unit vector expressed as a 3x1 column matrix. 𝐫𝑖
true is 

given in some reference frame R and N is the number of identified stars used in 

attitude computation. 

In the ideal STR model adopted in this work, the measurement variance 𝜎𝑖
2 is 

identical to the lower bound of centroiding error variance 𝜎𝑚𝑖𝑛,𝑖
2  given by Equation 

(7.19). A proof of this statement is given in Appendix E. 

7.2.11 A compact metric for the attitude error 

Even though the covariance matrix 𝐏𝜗𝜗 provides detailed information about the 

attitude uncertainty, as it has six independent parameters, it has the disadvantage 

of being hard to visualize. Therefore, to perform comparisons, we use a more 

compact metric derived from the covariance matrix: 

(�̅�𝑟𝑚𝑠)
2 = 𝐸{𝜗2} = tr(𝐏𝜗𝜗) (7.22) 

The trace of the covariance matrix 𝐏𝜗𝜗  gives the variance of the overall attitude 

error, that is, the sum of the variances of the attitude error around the three 

defining axes of the reference frame. It is also equal to the square of the limiting 

value of the root mean square (rms) of the angle theta (𝜗) of the Euler axis/angle 
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parameterization of the attitude error when the number of attitude determinations 

tends to infinity. 

When the STR diameter and exposure time are large enough so that most stars 

contributing to the Fisher information matrix 𝐅 have many detected photons, the 

lower bound of the expected rms value of theta (�̅�𝑟𝑚𝑠,𝑚𝑖𝑛) can be computed by 

the equations (7.19) - (7.22). These equations can also be rearranged in the 

following manner, which makes more explicit the dependence of �̅�𝑟𝑚𝑠,𝑚𝑖𝑛 with D 

and t: 

�̅�𝑟𝑚𝑠,𝑚𝑖𝑛 = 𝐺 ∙ 𝐷−2 ∙ 𝑡−1/2 (7.23) 

with  

𝐺 = √
ℎ5𝑐4

12𝜁(5)𝜋4𝑘5
⋅ tr ((∑𝐶𝑖𝑇𝑖

5 [𝐈3 − 𝐫𝑖
true(𝐫𝑖

true)𝑇]

N

i=1

)

−1

) (7.24) 

G is a constant which depends only on stellar distribution around the star tracker, 

stellar brightness and on attenuation of stellar light by the intervening medium. 

7.3 Discussion and results 

7.3.1 Star catalogs used 

The Hipparcos star catalog (ESA, 1997) was initially selected because it was until 

very recently one of the most accurate star catalogs available for precise attitude 

work. Therefore, we had already all the tools needed to process it. Unfortunately, 

the Hipparcos star catalog having less than 120,000 stars is too short to give an 

adequate basis for extrapolation. Therefore, it was decided to include data from 

two larger catalogs, the Tycho-2 (HOG et al., 2000; TURON, 2009) with around 

2.5 million stars and 2MASS (SKRUTSKIE et al., 2006) with about 470 million 

objects. 
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The Hipparcos and Tycho-2 star catalogs give magnitudes in the optical regime 

(near-UV, visible and near-infrared), whereas the 2MASS star catalog gives 

magnitudes in the near-IR / shortwave infrared bands J (1.25 µm), H (1.65 µm) 

and Ks (2.16 µm). 

7.3.2 Adequacy of the black-body approximation 

In order to check the adequacy of the black-body approximation used in section 

7.2.4, we have performed a numerical integration in wavelength of Equation 

(7.17) for some selected stars, using their actual spectra. It was observed that, 

given the color index used, the black-body approximation provides a good fit for 

some stars, but the fitting is not so good for some other stars. Figure 7.6 

compares the actual spectra of two stars with the spectra of their black-body 

equivalents, derived using the methods described in sections 7.2.5 and 7.2.6 and 

their B−V color index given in Table 7.1. 

Figure 7.6 – Comparison between the actual spectra for the Sun and Vega (α-Lyr) with 
the spectra of their black-body equivalents derived from their B−V color 
index and V magnitudes with the methodology explained in sections 7.2.5 
and 7.2.6. Actual spectra represented by continuous line. Dashed lines 
represent the spectra of equivalent black-bodies. 

     

Source: Drawn by the author. 
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Table 7.1 presents a comparison between the lower bound of centroiding error 

obtained by numerical integration 𝜎𝑚𝑖𝑛,𝑛𝑢𝑚 (last row) and the lower bound of 

centroiding error 𝜎𝑚𝑖𝑛,𝐵𝐵 obtained from the black-body approximation. To show 

how 𝜎𝑚𝑖𝑛,𝐵𝐵 can vary depending on the spectral bands used for estimating the 

equivalent black-bodies, results are presented for two photometric systems: 

Johnson's UBV and 2MASS JHKs, with the derived black-body parameters (T and 

C) also shown. As can be seen, the error in 𝜎𝑚𝑖𝑛,𝐵𝐵 is typically less than a factor 

of 2, but sometimes it can be much larger (see for example star VB8). 

The magnitudes and color indexes listed in Table 7.1 were computed from 

spectra downloaded from the CALSPEC library (STSCI, 2017) assuming some 

fixed values for the magnitudes of Vega, obtained from the Hipparcos and 

2MASS star catalogs. 

Table 7.1 – Comparison for some selected stars when D = 1 m and t = 1 s 

parameter star 

name/symbol unit Vega 1757132 Sun KF06T2 VB8 

spectral type - A0V A3V G2V K1.5III M7V 

𝑚𝑉 1 0.030 11.81 -26.75 13.97 16.8 

𝐵 − 𝑉 1 -0.001 0.26 0.65 1.18 2.0 

𝑇 K 13,231 8580 5711 3951 2613 

𝐶 1 2.97e-17 1.87e-21 2.42e-5 9.59e-21 2.0e-20 

𝜎𝑚𝑖𝑛,𝐵𝐵  rad 3.76e-13 1.40e-10 3.40e-18 4.29e-10 8.3e-10 

𝑚𝐻 1 -0.029 11.20 -28.15 11.23 9.1 

𝐻 − 𝐾𝑠 1 -0.158 -0.14 -0.12 -0.05 0.2 

𝑇 K 10,417 8961 8058 6050 3282 

𝐶 1 4.80e-17 1.94e-21 1.41e-5 3.72e-21 1.0e-19 

𝜎𝑚𝑖𝑛,𝐵𝐵  rad 5.37e-13 1.23e-10 1.88e-18 2.37e-10 2.0e-10 

𝜎𝑚𝑖𝑛,𝑛𝑢𝑚  rad 5.50e-13 1.75e-10 3.61e-18 4.67e-10 2.9e-10 

Source: created by the author. 
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7.3.2.1 Color index limiting values 

As explained in Section 7.2.5, the color indexes were limited to the interval that 

corresponds to a temperature range of 2000 K to 30,000 K. It was observed when 

the upper temperature limit was raised to more than 100,000 K, the Fisher 

information matrix 𝐅 would be dominated by a few very blue, hot stars where the 

interpolation from the color index curve versus temperature would give a very 

high temperature, much higher than their actual temperatures, leading to a 

significant underestimate of �̅�𝑟𝑚𝑠,𝑚𝑖𝑛 . In fact, even the 30,000 kelvins upper limit 

adopted in this work might be too high, resulting that the �̅�𝑟𝑚𝑠,𝑚𝑖𝑛  estimated here 

is probably lower than the actual lower bound of attitude error attainable by star 

trackers. 

The lower limiting temperature of 2000 K could perhaps be set to a lower value 

(e.g.: 500 K) to better accommodate interstellar absorption and the existence of 

brown dwarfs. However, it was noted that this lower temperature limit has very 

little effect in the estimated value of �̅�𝑟𝑚𝑠,𝑚𝑖𝑛 . 

The optimal selection of temperature limits to be adopted for the black-body 

model will be a subject of a future work, if this model is not abandoned in favor of 

a more accurate stellar spectra model. 

7.3.3 Results from catalogs and extrapolation 

Some scripts were written to numerically evaluate the lower bound on star tracker 

attitude error, using the equations described in the previous section. We have 

used stars from the following star catalogs: Hipparcos, Tycho-2 and 2MASS, as 

described in Section 7.3.1. Figure 7.7 shows the results obtained using these 

catalogs versus the number of brightest stars (horizontal axis), for D = 1 m and 

t = 1 s. The letter codes J-H, J-K, H-K, B-V, V-I and BT-VT indicate the spectral 

bands used in each curve. In total, the procedure outlined in the previous section 

was performed for six different combinations of star catalogs and spectral bands. 
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Figure 7.7 – Inverse of the trace of the attitude error covariance matrix error for 
D = 1 m and t = 1 s, computed from the following star catalogs and their 
subsets: Hipparcos, Tycho-2 and 2MASS. 

 

Source: Drawn by the author. 

Many sources give a number between 1011 and 4∙1011 stars in our galaxy, with 

Guo, Zhang and Chen (2009) considering that our galaxy has about 3∙1011 stars 

(300 billion in the short scale12). Performing a rough extrapolation, we obtain for 

N = 300 billion stars, 1/tr(𝐏𝜗𝜗),𝑚𝑖𝑛 ≈ 4 ∙ 1027 rad−2 for the upper curve and 3.2 ∙

1026 rad−2 for the lower curve. However, there were many approximations made 

in the model, mainly the assumption of black-body spectra for stars, hence the 

1/tr(𝐏𝜗𝜗),𝑚𝑖𝑛 estimate for D = 1 m and t = 1 s might still be wrong by a factor of 

                                            
12 unfortunately, the word billion is ambiguous, meaning 109 in the short scale and 1012 in the 
long scale. See for example, https://en.wikipedia.org/wiki/Billion and 
https://en.oxforddictionaries.com/explore/how-many-is-a-billion 



142 
 

2 or 3. Therefore, 1/tr(𝐏𝜗𝜗),𝑚𝑖𝑛 is probably between 1026 rad−2 and 1028 rad−2. 

From this we obtain that the G constant of Equation (7.23) is bounded by 10−14 

rad∙m2∙s1/2 < G < 10−13 rad∙m2∙s1/2, with the upper bound of 10−13 rad∙m2∙s1/2 not 

being surpassed when D > 0.1 m and t > 0.01 s, as explained in the following 

paragraph. 

For D = 0.1 m and t = 0.01 s (which gives a value of 0.001 m2∙s1/2 for the 

combined D2t1/2 metric used in Figure 7.8), it was found that the expected number 

of detected photons, using values derived from J−H color index in the 2MASS 

catalog, is larger than 1 for the 8∙108 brightest stars. Since the accurate 

determination of the contribution to the Fisher information of stars for which the 

expected number of detected photons 𝜄 is less than 1 is difficult to determine, in 

this work, for simplicity, we have ignored all stars for which 𝜄 is less than 1. That 

is the reason why our extrapolation curve for the lower curve in Figure 7.7 

becomes flat at 8∙108 stars, making the estimated �̅�𝑟𝑚𝑠,𝑚𝑖𝑛 obtained from that 

curve being slightly overestimated. Note that we do not apply this approximation 

to the upper curve, as we want the �̅�𝑟𝑚𝑠,𝑚𝑖𝑛 estimate obtained from it to be 

somewhat underestimated, so that the true value of �̅�𝑟𝑚𝑠,𝑚𝑖𝑛  will lie in between. 

7.3.3.1 Contributions from extragalactic sources 

The contribution of all existing extragalactic sources in the known Universe for 

the attitude accuracy is probably very small (probably less than 10% of the overall 

Fisher information). The reason for that is the vast distances between galaxies in 

comparison to their dimensions. For example, the nearest galaxy about the same 

size or larger than our galaxy is the Andromeda Galaxy. Its center lies about at a 

distance of 780 kpc from us (RIBAS et al., 2005), which is about 10-20 times the 

diameter of their disks. 

Our galaxy, the Milky Way Galaxy, is orbited by many dwarf galaxies, such as the 

Small and Large Magellanic Clouds, but the total number of stars in these dwarf 
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galaxies is less than 10% of the number of stars in our galaxy, therefore their 

contribution is also negligible. 

Considering that the light intensity (and number of detected photons per unit time) 

falls off with the square of the distance from the source and that the Fisher 

information contributed by a star is proportional to the number of detected 

photons from that source, it is easy to see that the contribution from extragalactic 

sources will be small. 

7.3.3.2 Need to consider some stars as extended sources 

The lower bound on attitude uncertainty is so low that future star trackers would 

probably need to consider some stars as extended bodies and correct the effects 

of stellar spots (akin to sun spots, but in other stars) in their atmospheres to be 

able to come close to this theoretical lower bound, something that is unthinkable 

for current generation star trackers. For example, the star R Doradus, the star 

with largest apparent diameter after the Sun has an apparent diameter of 57 ± 5 

milli-arc-seconds (ESO, 1997), with one milli-arc-second being 1/1000 of an 

arc-second. 

7.3.4 Comparison with commercial star trackers 

To give a feeling on how much room for improvement there is for future 

technology developments, Figure 7.8 compares the reported accuracy of some 

commercially available star trackers (JENA-OPTRONIK, 2015; TERMA A/S 

SPACE, 2012; SODERN, 2013; LEONARDO, 2017; VECTRONIC 

AEROSPACE, 2017a, 2017b; SINCLAIR INTERPLANETARY, 2016; BALL 

AEROSPACE, [1998 or 2005]; SPACE MICRO, 2015) with the theoretical lower 

bounds of an equivalent spherical star tracker having approximately the same 
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volume of a sphere that circumscribes the optical head of the star tracker13, 

excluding its baffle14.  

Figure 7.8 – Comparison by reported attitude errors of some star trackers with the 
lower bound on attitude accuracy estimated in this work. 

 

Source: Drawn by the author. 

The comparison is performed in terms of the combined metric D2 t1/2, according 

to Equation (7.23), which makes it possible to compare many different star 

                                            
13 the optical head is the box that houses the optics and image sensor. In some models, it 
includes the whole star tracker with the exception of its baffle. In other models, the processing 
electronics is in a separate box. 
14 A baffle is a protective light shade used in star trackers to prevent blinding by the Sun or other 
bright sources. 
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trackers in a single plot. The solid line at the bottom left of this plot denotes the 

lower estimate of the lower bound of the attitude error �̅�𝑟𝑚𝑠,𝑚𝑖𝑛 , derived from the 

upper curve in Figure 7.7. The dashed line immediately above this solid line is 

the upper estimate of the lower bound of the attitude error �̅�𝑟𝑚𝑠,𝑚𝑖𝑛 , derived from 

the lower curve in Figure 7.7.  For D > 0.1 m and t > 0.01 s the true lower bound 

of attitude error (�̅�𝑟𝑚𝑠,𝑚𝑖𝑛,𝑡𝑟𝑢𝑒) that can be obtained using electromagnetic 

radiation emitted from bodies (mostly stars) outside the Solar System should lie 

between these two curves. No star tracker that satisfies the constraints c) and g) 

stated in Section 7.2.1 should be able to surpass �̅�𝑟𝑚𝑠,𝑚𝑖𝑛,𝑡𝑟𝑢𝑒  without making use 

of additional attitude reference sources, such as the Sun and other Solar System 

objects (excluded from analysis by the simplifying hypothesis c) in Section 7.2.2) 

or artificial attitude references. 

We have opted to exclude the baffle in the estimate of D, because the sole reason 

for including them in star trackers is to protect star trackers from being temporarily 

blinded by stray light coming from the Sun and other bright sources (Earth, Moon 

and other spacecraft parts), something that would not happen in the absence of 

Solar System objects. Also, including the baffle would greatly inflate the diameter 

D of the circumscribing sphere. Unfortunately, star tracker product briefs and 

other publicly available information only provide their total dimension, including 

their baffle. Therefore, we had to estimate what would be their sizes without the 

baffle, by measuring lengths in photos included in the product briefs, from which 

D could be estimated with an uncertainty probably around 25%. It would be 

interesting as well to compute the D2 t1/2 metric considering only the optical head 

aperture, typically much smaller than its dimensions. Unfortunately, this 

information is almost never provided in product briefs. The accuracy used in this 

plot was derived from the reported (1-σ) noise equivalent angle or attitude 

accuracy, using the equation 𝜗𝑟𝑚𝑠
2 = 𝜎𝑥

2 + 𝜎𝑦
2 + 𝜎𝑧

2, being 𝜎𝑥 = 𝜎𝑦 the 

uncertainties in the rotation angles around the cross-boresight axes (pitch and 

yaw angles) and 𝜎𝑧 the uncertainty in the rotation angle around the boresight axis 
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(roll angle). For single head star trackers, the uncertainty in the roll angle is 

usually much larger than those in the yaw and pitch angles. 

It should be noted that the positions of the commercial star trackers listed in this 

plot have large errors, being probably wrong by a factor of 2 or 3 in the combined 

D2 t1/2 metric (horizontal axis) and also by a factor of 2 or 3 in the overall attitude 

error (vertical axis). The reason for that is the scarcity of information that is 

available in product briefs and websites. In many cases to obtain accurate 

information about star tracker dimensions, exposure time and accuracy it would 

be necessary to perform lengthy negotiations with star tracker manufacturers. 

As can be seen, there's still a lot of room for improvement in star sensors. The 

theoretical lower bound is around 6 or 7 orders of magnitude lower than what is 

currently attained by most star trackers. 

7.4 Future work 

Here are some ideas for future works that could improve the accuracy of the lower 

bound of attitude error estimated in this work: 

a) Use more complete star catalogs : 

A more accurate estimate on the Cramér-Rao bound on attitude accuracy 

obtainable from stars could be computed using a more complete star 

catalog, such as the USNO-B star catalog15 with over one billion objects 

(MONET et al., 2003), or the forthcoming complete star catalog from the 

Gaia astrometric mission (PRUSTI et al., 2016)16. 

b) Use a better model for stellar spectra:  

Using a more accurate model for the stellar spectra, that takes into account 

the peculiarities of stellar spectral types and interstellar absorption is 

                                            
15 http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/usno-b1.0. 
16 http://sci.esa.int/gaia/ 
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something that could be done in the future to improve the accuracy of the 

results obtained in this work. 

c) Use magnitudes and color index uncertainties provided in star catalogs: 

Due to operational limitations we have ignored the uncertainties in 

magnitude and color indexes provided in star catalogs. An overhaul of the 

software used to determine the estimate of the lower bound of attitude 

error is planned for the future. With it we will include the propagation of 

uncertainties provided in star catalogs. 

d) Use a more rigorous statistical treatment:  

We plan in the future to reevaluate this estimate, using a more rigorous 

statistical treatment, taking into consideration of what happens when the 

expected number of detected photons is small, less than one. In this 

scenario, there exist a high probability that no photon from that star will be 

detected. 

e) Include the Sun and other Solar System bodies in the lower bound 

estimate:  

It would be interesting to know how much the lower bound attitude 

estimate could be improved if the Sun and other bodies in the Solar 

System could be used to improve attitude determination accuracy. 

f) Compute estimates for other parts of the galaxy:  

The estimates derived in this work are valid only in the Solar System 

neighborhood, since they are based on star coordinates, color indexes and 

magnitudes as seen from the Solar System. It would be interesting in the 

future to expand this work for other regions of our galaxy. For example, in 

star dense regions, the ultimate accuracy attainable by star trackers 

should be better than the ultimate accuracy attainable in our part of the 

galaxy. 
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7.5 Summary 

To our best knowledge, this is the first work that attempts to obtain an estimate 

of the lower bound of attitude accuracy attainable by star trackers in the Solar 

System’s stellar neighborhood. Being the first work to attempt to derive this 

estimate we did not aim to obtain an accurate estimate. The estimate obtained in 

our work might be wrong by a factor of 3 or 4, but it suffices for the purpose of 

obtaining an order of magnitude evaluation on how much room for improvement 

there exists for current state-of-the-art star trackers. Our work shows that the 

accuracy of current star trackers can still improve by about 6 or 7 orders of 

magnitude before reaching the ultimate limits imposed by laws of Physics and 

stellar distribution in our stellar neighborhood. 
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8 CONCLUSION 

This work demonstrated that the use of magnitude and color information can 

improve star identification reliability and speed, even in algorithms that were 

initially developed to use star position information only, such as Pyramid, if it is 

assumed that the noise associated with star direction information remains at the 

same level. For Pyramid, the addition of magnitude filtering, color index filtering 

and pre-sorting the list of observed stars by magnitude resulted in a reduction of 

over two orders of magnitude in the rate of stellar misidentification. Even though 

the rate of stellar misidentification is typically very low for Pyramid in modern star 

trackers (less than 10-6), in the presence of many spikes (false stars) this rate can 

become significant. Other modifications to the algorithm were performed, such as 

the realization of the mirror condition test for all kernels tested and the inclusion 

of a limit to the number of kernels to be tested. These modifications helped to 

reduce the misidentification rate even further. 

Even though this was not the first work to propose the use of color information for 

star identification, as far as the author of this thesis is aware, it is the first work 

that uses color indices for star identification. Star identification using color 

information was previously proposed by McVittie in his PhD dissertation (2013). 

However, he used as a parameter for color information the color ratio, which is 

defined as the ratio between the fluxes of the same object measured in two 

different spectral bands. The main disadvantage of using color ratios directly is 

that their standard deviation is proportional to the value of the color ratio, being 

small for color ratios close to zero and large for color ratios much larger than a 

unit. By using color indexes (or color indices), which are basically the logarithm 

of the color ratios, this dependence of the standard deviation with the value of the 

variable representing color does not exist. Another advantage of using color 

indexes is that this is a more usual parameterization of star color in Astronomy, 

being easily found in star catalogs. There exists a vast literature in the field of 

stellar photometry that can be consulted providing methods to convert cataloged 
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magnitudes and color indexes from a standard photometric system to a custom 

photometric system devised for the color star tracker at hand.  

In systems having more than two spectral bands, many different color indices can 

be defined. To aid in the selection of which color indexes to use, the author 

presented a method which can be used to estimate the sensitivity of the color 

indices to differences in temperature (and interstellar reddening) of stars. This 

method is described in Section 3.6.6. 

The author of this thesis also investigated the use of color image sensors with 

stacked pixels for star tracking. Preliminary results obtained with this type of 

sensor were encouraging. This type of image sensors should provide many 

benefits for star identification and optical navigation compared to current 

alternatives, once this technology matures. More tests are needed with current 

generation of stacked pixel sensors and competing technologies to determine 

their relative performances for centroiding and star identification. 

Considering that current generation color image sensors tend to be noisier than 

their monochrome counterparts for the purpose of star tracking, more detailed 

studies are needed to determine if color star trackers can compete with 

monochrome star trackers in terms of attitude accuracy and identification 

reliability. However, even if it is proved that color star trackers cannot compete 

with monochrome star trackers, it is worth investigating star-ID algorithms that 

make use of color information, as these could be used in color cameras aboard 

the spacecraft when these cameras are reconfigured as backup star trackers 

when the primary star trackers have failed. 

Another interesting contribution of the author is the development of a better kernel 

generator for star-identification algorithms than the one originally proposed with 

Pyramid (Section 5.2.6). This contribution resulted in a journal paper co-authored 

with D. Arnas and D. Mortari (2016). 
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On the field of image processing, an algorithm to remove column fixed pattern 

noise has been proposed. This algorithm does not depend on calibration 

parameters and has a very low computational cost, making it a good candidate 

for compensating the column component of FPN in star trackers with low 

computational power based on CMOS APS image sensors, even if the FPN 

changes over time due to degradation caused by aging and exposure to ionizing 

radiation. 

Concluding this thesis, an estimate of the Cramér-Rao lower bound for attitude 

determination error by star trackers operating in the vicinity of the Solar System 

was derived. This lower bound sets a fundamental limit which cannot be ex-

ceeded by star trackers operating in isolation, being this limit determined solely 

by the star tracker diameter, exposure time and stellar distribution around it. Our 

work shows that the accuracy of star trackers operating in the vicinity of the Solar 

System can still improve by 6 or 7 orders of magnitude before reaching this lower 

bound. This limit is also valid for star trackers operating inside the Solar System 

if they do not use the Sun and other Solar System bodies as additional references 

for attitude determination, as is the case of virtually every star tracker currently in 

use. The importance of estimating or computing fundamental limits cannot be 

overstated, since it is physically impossible to overcome these limits. Therefore, 

knowledge of fundamental limits enables us to rule out impossible designs during 

feasibility studies. Also, these limits are useful as benchmarks for comparing 

different designs. To the best knowledge of the author of this thesis, this 

contribution is novel, representing an original contribution to the field. 

8.1 Future work 

To properly set magnitude and color index tolerances in a color star tracker, it 

would be important to perform a census on stellar variability for the brightest stars 

used in star tracker catalogs. This is especially important for future star trackers 

using very tight magnitude tolerances (less than ± 0.05 magnitudes). The same 

can be said for color indices. 
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A natural evolution of this thesis would be to build a star tracker prototype based 

on the same image sensor used on the Foveon camera, and compare its 

performance with traditional star trackers based on monochrome image sensors. 

An interesting topic for research would be to investigate how Pyramid behaves if 

the geometric pattern of observed stars is significantly distorted by stellar 

aberration (this happens when the spacecraft has very large heliocentric speed) 

and the catalog of star pairs is not updated to compensate this distortion. 

Another interesting experiment would be to evaluate the behavior of Pyramid if a 

star catalog excluding all stars flagged as binary or multiple in the Hipparcos 

catalog were used. A previous test performed with a different star-ID algorithm 

gave disappointing results when all stars flagged as binary/multiple were 

removed from the star catalog (FIALHO; 2007). 

Future work should also investigate how the use of magnitude and color indexes 

improve the reliability of star identification in the presence of false stars (spikes). 
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APPENDIX A REFERENCE FRAMES AND COORDINATE SYSTEMS 

In this appendix, reference frames and coordinate systems usually adopted in 

star tracker work will be presented. Many of these concepts were presented in 

previous works by the author (FIALHO, 2003; FIALHO, 2007), but will be 

presented here with improvements due to its importance for the field. This 

appendix is a revised version of Appendix B of the master thesis presented by 

the author (FIALHO, 2007). 

A.1 Basic concepts 

A.1.1 Celestial sphere 

Ancient people, when observing the night sky, had the impression that there 

existed a giant sphere concentric with the Earth, with fixed stars on it. This 

sphere, known by the name celestial sphere performed an east to west 

movement, carrying with it all celestial bodies. Nowadays, we know that such a 

sphere does not exist. The westward movement of this sphere is simply a 

consequence of the true rotational motion of our planet. 

Despite it having no physical existence, the celestial sphere is a very useful 

concept when one wishes to express only the apparent position of celestial 

bodies, without worrying about the true distances of these objects to the observer. 

Therefore, the celestial sphere can be defined as a sphere with an infinite or 

indeterminate radius centered in the observer, where the celestial bodies would 

be projected, as depicted in Figure A.1 (WOOLARD, 1966). 

Using this concept, points in the celestial sphere actually represent directions in 

the three-dimensional space, and distances between these points correspond to 

the angular separations between the directions represented by these points. 
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Figure A.1 – Celestial bodies projected on a celestial sphere centered in the observer. 

 

Source: Adapted from Fialho (2007). 

In the same manner that a celestial sphere centered on Earth can be defined, so 

can be defined a celestial sphere centered on Mars, on Venus, etc. Therefore, 

we will adopt for this work a celestial sphere centered on the star tracker. 

A.1.2 Celestial equator, ecliptic, equinoxes, solstices and poles of the 

celestial sphere 

Since the most important reference frames and coordinate systems adopted in 

Astronomy were originally defined based on concepts derived from the projection 

of rotational and translational motions of the Earth on the celestial sphere it is 

important to know the definition of these concepts. 

From the point of view of a hypothetical observer located at the center of the Earth 

we can define the following: 

a) celestial equator => it is the projection of Earth's equator onto the celestial 

sphere; 
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b) north and south poles of the celestial sphere (in the equatorial coordinate 

system, described in Section A.2.1) => they are the projection of the 

Earth's North Pole and South Pole onto the celestial sphere. In other 

words, these are the intersection of Earth's spin axis with the celestial 

sphere; 

c) ecliptic => is the projection of Earth's orbital plane onto the celestial 

sphere. It corresponds to the Sun's apparent mean annual path in the 

celestial sphere for an observer located at the center of the Earth; 

d) equinoxes => the intersection between the celestial equator and the 

ecliptic. There are two equinoxes: the March equinox and the September 

equinox. The March equinox happens when the Sun, considering its mean 

apparent motion in the celestial sphere crosses the ecliptic from the 

Southern Hemisphere to the Northern Hemisphere, happening around 

March 21st every year. The March equinox, also known as vernal equinox 

or first point of Aries (♈) defines the origin of the angular coordinates used 

in the equatorial coordinate system. 

e) solstices => they correspond to the maximum displacement from the 

celestial equator to the north or to the south of the Sun in its mean apparent 

motion in the sky. Following the ecliptic, they are at 90 and 270 degrees 

from the vernal equinox; 

f) north and south poles of the ecliptic => They are at 90 degrees from the 

plane of the ecliptic (Earth's orbital plane). 

Figure A.2 depicts some of these concepts.  
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Figure A.2 – Definition of the vernal equinox (♈) from Earth’s rotational and orbital 

motions. 

 

Source: Adapted from Fialho (2007). 

A.1.3 Adopted definitions 

It is common to find in the literature the expressions "reference frame" and 

"coordinate systems" with different meanings, leading many times to confusion. 

Therefore, to make matters clear, we will adopt the following definitions for these 

terms in this work: 

Reference frame 

A reference frame (or frame of reference) provides a basis in which the position 

of an object can be specified. In the three-dimensional space, it is defined by an 

origin point and by three orthogonal axes that meet at the origin. It is not possible 



169 
 

to tell the position of a point in space without referring that position to a reference 

frame. 

Coordinate system 

A coordinate system provides a method to associate a set of numbers to a point 

in space, enabling to locate the position of that point in relation to a reference 

frame in a unique way. These numbers are known as the coordinates of that point 

in relation to the adopted frame of reference in a given coordinate system. In a 

three-dimensional space, three scalars are needed to completely specify the 

position of a point, unless a discontinuous, fractal-like coordinate system is used. 

According to this definition, more than one coordinate system can be used with a 

reference frame. For instance, in a given frame of reference, the position of a 

point can be specified using a cartesian coordinate system, or a spherical 

coordinate system or a cylindrical coordinate system or any other coordinate 

system. The following section gives a description of the most commonly used 

coordinate systems in spacecraft work. 

A.1.4 Cartesian coordinate system 

In this coordinate system, the position of a point in a given reference frame is 

specified by a set of three real numbers. These numbers specify how much 

someone, starting from the origin, should walk along the directions given by the 

three orthogonal axes that define the reference frame to reach that point. These 

three orthogonal axes are usually denoted by x, y and z. Figure A.3 illustrates 

this coordinate system for a point P with coordinates (px, py, pz) in the cartesian 

coordinate system. This point can also be represented by a vector �⃗⃗� , that 

connects the origin to it, as depicted in Figure A.4. The components of this vector 

are px𝐱, py𝐲 and pz𝐳, being 𝐱, 𝐲, 𝐳 unit vectors parallel to the axes x, y and z, 

respectively. 
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Figure A.3 – Cartesian coordinate system 

 

Source: Fialho (2007). 

Figure A.4 – Cartesian coordinate system (vector representation) 

 

Source: Fialho (2007). 

A.1.5 Spherical coordinate system 

In the spherical coordinate system, the position of a point is specified by two 

angular coordinates and one linear coordinate. The angular coordinates (φ and 

λ) specify the direction of this point from the origin, as depicted in Figure A.5. The 

linear coordinate r specifies the distance from the point to the origin. 
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Figure A.5 – Spherical coordinate system 

 

Source: Fialho (2007). 

The first angular coordinate φ, usually known as azimuth or longitude, specifies 

the angle between the x axis and the projection of vector �⃗⃗�  (connecting the origin 

to the point P) in the xy plane, being considered positive for rotations from x axis 

to y axis. 

The second angular coordinate λ, usually known as elevation or latitude, is the 

angle between the vector �⃗⃗�  and the xy plane. The reader should be aware that 

there exist alternate definitions of the spherical coordinate system, one common 

definition replaces λ by its complement, i.e., the angle between the positive z-axis 

and the vector �⃗⃗� . 

A.1.6 Transformations between the spherical and cartesian coordinate 

systems 

The spherical coordinate system defined here is related to the cartesian 

coordinate system by the following equations: 
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px = r · cos φ cos λ (A.1) 

py = r · sin φ cos λ (A.2) 

pz = r · sin λ (A.3) 

The inverse transformation can be performed with the following algorithm 

adapted from Fialho (2007): 

Figure A.6 – Pseudo-code for the transformation from cartesian to spherical coordinate 
system 

 

r = [x2 + y2 + z2]1/2 

if x > 0 : 

 φ = atan (y / x) 

 s = [x2 + y2]1/2 

 λ = atan (z / s) 

else if x < 0 : 

 φ = atan (y / x) + π 

 s = [x2 + y2]1/2 

 λ = atan (z / s) 

else if x = 0 : 

 if y > 0 : 

  φ = π/2 

  λ = atan (z / y) 

 else if y < 0 : 

  φ = -π/2 

  λ = atan (z / (-y)) 

 else if y = 0 : 

            φ = 0 ;(or any other value) 

  if z > 0 : 

   λ = π/2 

  else if z < 0 : 

   λ = -π/2 

  else: ;( z = 0 or z ≠ ±r) 

   error "Invalid coordinate " 

 else: 

  error "Invalid y" 

else: 

  error "Invalid x" 

Source: adapted from Fialho (2007). 

A.2 Reference frames and coordinate systems used in attitude work 

In attitude work, there's no need to know the distances from the spacecraft to the 

celestial bodies that serve as references for attitude determination. All that is 

needed is the knowledge of the apparent position of these objects in the sky. In 
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other words, all one need to know is the position of these objects in a celestial 

sphere centered on the spacecraft. These can be expressed using two angles 

(components φ and λ of the spherical coordinate system). Since distances are 

not important, points on the celestial sphere can be conveniently represented by 

unit vectors. The representation of coordinates in the celestial sphere as unit 

vectors has many advantages for numerical computation, since it avoids the 

expensive computation of trigonometric functions. 

The remainder of this section describes the reference frames normally used in 

star tracker work. 

A.2.1 Equatorial coordinate system and ECI – Earth Centered Inertial 

reference frame 

The “equatorial coordinate system” used in Astronomy can be understood as a 

reference frame based on rotational and orbital parameters of the Earth 

associated with a spherical coordinate system. It is the historical basis for defining 

the modern ICRS (International Celestial Reference System) used in most 

modern star catalogs. In the equatorial coordinate system, star coordinates are 

represented in terms of right ascension (RA or α) and declination (dec. or δ), 

being right ascension analogous to longitudes on the Earth’s surface and 

declination analogous to latitudes. In the equatorial coordinate system, the 

declination of a celestial body is the angle between the celestial equator and the 

line joining the center of the Earth to that celestial body. The origin of the right 

ascension coordinates is given by the vernal equinox (♈). Figure A.7 depicts the 

equatorial reference frame plus some commonly defined terms. 
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Figure A.7 – Equatorial coordinate system 

 

Source: Fialho (2007). 

In spacecraft work, the equatorial coordinate system is also known as Earth 

Centered Inertial (ECI) reference frame, since it has its origin at Earth’s center 

and its fundamental axis are defined by Earth’s rotation and orbital motion. The 

fundamental axes defining the ECI reference frame are given by the vernal 

equinox (axis x), the Earth’s spin axis (axis z, pointing to the north pole) and the 

y = z⨯x axis. 

Unfortunately, the equatorial coordinate system (or ECI reference frame) as 

defined above is not truly inertial, slowly rotating due to the precession of Earth’s 

rotation axis (precession of equinoxes), small changes in Earth’s orbital plane 

and other minor Earth movements. This makes its use cumbersome for precise 

astrometric work. Hence, astronomers usually fix a particular date (epoch) for 

Earth’s equinox and spin axis (e.g. J2000.0 = approx. 1 January 2000) when 

using that reference system for stating star coordinates, even when observations 

are performed at a different date. For instance, one could say that the coordinates 
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of a star observed in 1980 are being given in the equatorial coordinate system 

using equinoxes and poles of J2000.0. 

A.2.2 The International Celestial Reference System (ICRS) 

The ICRS can be thought of as being an improvement to the old equatorial 

celestial coordinate system with equinox and poles of J2000 used in Astronomy 

in the past, but using more accurate astrometric references no longer tied to the 

complex motions performed by the Earth. The replacement of the old equatorial 

coordinate system with the ICRS is akin to the replacement of the original 

definition of the meter based on the physical dimensions of the Earth with more 

accurate definitions no longer tied to the Earth. The main advantage of using the 

ICRS reference system is that it is much more stable than the equatorial 

coordinate system used in the past. The main difference is that its origin is 

precisely defined as being located at the center of mass of the Solar System, 

contrary to the equatorial coordinate system, that many times was defined as 

having its origin at the center of the Earth. The ICRS provides a much better 

approximation to a truly inertial reference frame than the equatorial coordinate 

system. 

Being the current celestial reference system adopted by the International 

Astronomical Union (IAU), the ICRS is technically defined by a series of 

conventions, prescriptions and models necessary to define a triad of orthogonal 

axes that best approximate an inertial (or quasi-inertial, to be more accurate) 

reference frame with the origin at the Solar System's barycenter (IERS, 2013) 

while keeping backwards compatibility with older reference systems adopted in 

Astronomy, including the equatorial coordinate system described in the previous 

section when using the equinox and poles of the J2000 epoch (approx. 1 January 

2000). 
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Its most recent and accurate realization is given by the ICRF2 – The second 

realization of the International Celestial Reference Frame17, derived from Very-

long-baseline interferometry (VLBI) observations of distant extragalactic sources 

(mostly quasars) in microwave. The ICRF2 uncertainty in the definition of its 

fundamental axes is on the order of few microseconds of arc (picoradians). 

In the optical regime, for a long time, the best realization of the ICRS was given 

by the Hipparcos star catalog. This realization (known as HRF - Hipparcos 

Reference Frame) matches the older equatorial coordinate system for the mean 

equinox and poles of J2000.0 within a tolerance better than 80 milliseconds of 

arc (ESA, 1997). However, this should change soon with data releases from the 

Gaia astrometric mission. An overview of the Gaia mission is provided by Prusti 

et al. (2016). 

Being defined by sources outside the Solar System, the practical realizations of 

the ICRS are completely independent of orbital and rotational motions of the 

Earth, but their fundamental axes are aligned with those of the equatorial 

coordinate system for the mean equinox and poles of J2000.0 within a tolerance 

much better than that typically found on star trackers. Hence, for most attitude 

work they can be considered to be the same if the fact that their origins are 

defined at different places can be neglected. 

 

                                            
17 https://www.iers.org/IERS/EN/DataProducts/ICRF/ICRF/icrf.html. 
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APPENDIX B SOURCES OF ERRORS THAT AFFECT ATTITUDE 

ACCURACY IN STAR TRACKERS 

This appendix describes sources of errors and the many types of noise that 

ultimately affect the accuracy of the estimated attitude by a star tracker. 

B.1 Sources of errors outside the STR 

Unfortunately, there are many sources of errors and types of noise that prevent 

determination of attitude with an infinite accuracy. In Section B.2 a detailed 

description of sources of noise and errors that affect image generation are 

described. This section focuses more on other sources of errors, many of them 

outside the star tracker and related to spacetime geometry or stellar motion. 

Detailed descriptions about the sources of errors briefly presented in this section 

can be found in the master thesis of Fialho (2007) and in the report written by 

Albuquerque and Fialho (2005). 

B.1.1 Stellar aberration 

Stellar aberration is an apparent displacement of light sources in the celestial 

sphere caused by the movement of the observer and by the fact that the speed 

of light is finite. The direction of this apparent displacement caused by stellar 

aberration is the same as the movement of the observer. This effect is illustrated 

in Figure B.1. 

This effect can be understood by making an analogy to a car standing in a rainy 

day without wind. In this analogy, the observer would be the car, the light source 

would be the cloud and the photons would be the rain droplets. When the car is 

still, the rain droplets are seen falling vertically. When the car is moving, the rain 

droplets are seen falling at a slanted angle in relation to the car. If the location of 

the source of the droplets could be determined only from the direction the droplets 

are travelling relative to the observer (as is the case if we replace water droplets 

with real photons), when the car is still the source of the droplets (the star in our 
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analogy) would seem to be directly overhead the car. When the car is moving, 

the source of the droplets would seem to be ahead of the car. 

Figure B.1 – Stellar aberration 

 

Source: Adapted from FIALHO (2007). 

An approximate equation for the stellar aberration can be derived using the 

methods of Classical Mechanics (ALBUQUERQUE; FIALHO, 2005; WOOLARD, 

1966): 

𝑹′ =
𝑹 + 𝒗/𝑐

‖𝑹 + 𝒗/𝑐‖
 (B.1) 

where: 

𝒗 = observer (star tracker) velocity vector relative to the light source; 

𝑐 = speed of light in vacuum = 299,792,458 m/s (exact, by definition of 

the meter, see for example, Mohr et al. (2016)); 

𝑹 = unit vector representing star direction in the star catalog; 

𝑹′ = unit vector giving the aparent position for the moving observer. 

An exact formulation for the displacement caused by stellar aberration is given 

by Rindler (1977): 

tan (
𝜃′

2
) = √

𝑐 − 𝑣

𝑐 + 𝑣
∙ tan (

𝜃

2
) (B.2) 

where: 
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𝜃′ = angle between the observer velocity vector and light source 

apparent position; 

𝜃 = angle between the observer velocity vector and light source actual 

position; 

𝑣 = observer velocity. 

For star trackers, the component of the stellar aberration due to the movement of 

the origin of the inertial reference frame used in the star catalog with respect to 

cataloged stars does not need to be considered, since this effect is already 

included in the cataloged coordinates. However, the component of the stellar 

aberration due to the movement of the spacecraft with respect to the star catalog 

origin must be considered and corrected. 

Typically, the origin of the reference frames used in most star catalogs is located 

at the Solar System’s center of mass (barycenter). For all Earth orbiting 

spacecraft, where the speed with respect to the Solar System’s barycenter is 

limited to about 41 km/s (30 km/s from Earth velocity vector plus 11 km/s at the 

perigee for a spacecraft in a very eccentric orbit with perigee just above Earth’s 

surface), the displacement in the apparent position of the stars in relation to their 

cataloged positions can reach up to 28 arc-seconds (ALBUQUERQUE; FIALHO, 

2005), which is larger than the typical accuracy of most star sensors. Hence this 

effect must be corrected, either by the AOCS or by the star tracker, so that the 

full accuracy provided by the star sensor can be used. If this effect is to be 

corrected by the star tracker, then the AOCS must provide the spacecraft velocity 

vector to the star tracker at regular intervals or the star tracker must have means 

of computing the spacecraft velocity vector (e.g.: from ephemerides stored on 

board). 

A very accurate way of taking stellar aberration into account is to distort the star 

coordinates in the star catalog using either the approximate Equation (B.1) or the 

exact formulation (Equation (B.2), and use this catalog with distorted star 

coordinates as the star catalog used for stellar identification. This star catalog 
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with distorted star coordinates is basically a star catalog for a non-rotating 

reference frame that has its origin at the spacecraft and its defining axes parallel 

to those of the inertial reference frame used in the star catalog. 

A simpler approach to correct for stellar aberration, that works reasonably well 

for star trackers with only one optical head, is to initially ignore stellar aberration 

effects (assuming initially that the spacecraft is at rest with respect to the origin 

of the reference frame used in the star catalog) and perform star identification 

and attitude determination as usual, and then correct the determined attitude for 

stellar aberration. This procedure is not as accurate as the previous method 

because the attitude error due to the stellar aberration effect will also depend on 

the position of stars used for attitude determination in the field of view (if the stars 

are more to the left, or to the right, to the top or to the bottom of the field of view). 

Also, this procedure does not work if the distortions introduced by stellar 

aberration are large enough to make the star patterns unrecognizable by the star 

identification algorithm. 

A third approach is to remove the effects of stellar aberration from the 

measurements and then perform stellar identification. However, this approach is 

not suitable for the lost-in-space condition, since, for this operation to be 

performed, an attitude estimate must be available. 

In any case, for the star tracker to be able to perform this correction, it must have 

knowledge of the spacecraft velocity vector 𝐯 with respect to the origin of the 

reference frame used in the star catalog. This information could be provided 

externally (e.g: from the AOCS main computer) or in more sophisticated designs, 

it could be computed by the star tracker from spacecraft ephemeris (including 

Earth ephemeris for an Earth orbiting spacecraft) and current time. 

The work of Albuquerque and Fialho (2005) provides an interesting table with 

maximum residual aberration angles after applying varying levels of correction 

for stellar aberration in an low Earth orbit spacecraft, considering the most 

accurate method of correcting (distorting) star coordinates in the star catalog. 
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This table is reproduced here as Table B.1 due to its usefulness for spacecraft 

design. 

Table B.1 – Residual aberration angle for a spacecraft in low Earth orbit, for each 
correction used* 

Correction performed or ignored 

maximum 
error in 
the 
velocity 
vector 
(km/s) 

maximum 
residual 
stellar 
aberration 
(in arcsec.) 

Interval 
between 
catalog 
corrections 

No correction performed 38.06 26.18 - 

Correct only the stellar aberration given by 
Earth’s orbital motion, using Earth’s 
velocity vector averaged in a period of 1 
month. 

15.7 10.80 1 month 

Correct only the stellar aberration given by 
Earth’s orbital motion, using Earth’s 
velocity vector averaged in a period of 1 
day. 

7.78 5.35 1 day 

Correct for Earth’s orbital motion** and 
spacecraft motion once every 15 minutes. 

4.03 2.77 15 minutes 

Correct for Earth’s orbital motion** and 
spacecraft motion once every minute. 

0.27 0.19 1 minute 

Error committed by neglecting that the Sun 
is not coincident with the Solar System 
center of mass due to the existence of 
Jupiter and Saturn. 

0.016 0.011 - 

Additional error if the displacement 
between Earth’s center and Earth-Moon 
system barycenter is not considered. 

0.013 0.0086 - 

Maximum error when using the 
approximate equation derived from 

Classical Mechanics (Equation (B.1)) 
versus the exact formulation (Equation 

(B.2)). 

- 0.00083 - 

*  Considering that in all corrections shown in this table the spacecraft velocity vector is computed 
for a point in time at the center of the interval. For instance, if the star catalog is corrected for 
stellar aberration once per minute, the velocity vector used for the correction is the one the 
spacecraft will have 30 seconds in the future. 

**  considering Earth’s orbit eccentricity. 

Source: Albuquerque and Fialho (2005). 
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As can be seen in this table, the error of using the approximate equation 

(Equation (B.1)) versus the exact equation (Equation (B.2)) for correcting stellar 

aberration is negligible for most spacecraft work, except for missions working in 

the miliarcsecond/microarcsecond range or in spacecraft with very high 

heliocentric speeds. The advantage of the approximate equation over the exact 

equation is that it is easier to implement. 

A good tutorial containing a comprehensive discussion of methods to correct the 

stellar aberration effect and stellar parallax effect (to be discussed in the next 

section) is given by Shuster (2003). 

B.1.2 Stellar parallax 

Parallax is a displacement in the apparent position of an object due to a change 

in the location (viewpoint) of the observer, as illustrated in Figure B.2. In this 

example, note how the foreground tree moves in relation to the background as 

the photographer changes his viewpoint (from “left view” to “right view”). 

Figure B.2 – Parallax 

 

Source: Photographs taken by the author. 
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For Proxima Centauri, which is the closest star to our sun, the parallax angle 

between an observer on Earth and another observer on the Sun is just 0.77 arc-

seconds (ESA, 1997; ZEILIK; GREGORY, 1998). Since all other stars are farther 

away from the Sun, their parallax angles are even smaller. Hence stellar parallax 

might be of concern only for missions with attitude knowledge requirements more 

stringent than 1 arc-second, or for missions to the Outer Solar System (e.g., 

missions to the gas giants and ice giant planets). 

B.1.3 Proper motion 

Proper motion is the projection of three-dimensional motion of other stars with 

respect to the Solar System’s barycenter in the celestial sphere (ZEILIK; 

GREGORY, 1998). 

Even though stars are moving at relative speeds of tens or even hundreds of 

kilometers per second, as they are very far apart from each other, their apparent 

motion on the sky is very small. The fastest moving star on the celestial sphere, 

Barnard’s star, has a proper motion of only 10.3 arcseconds per year. More than 

99% of stars with visual magnitudes smaller than five (stars brighter than mv = 

5.0) have proper motion smaller than 1”/yr (ALBUQUERQUE; FIALHO, 2005). 

Hence, stellar proper motion should not be an issue if the star catalog to be used 

in a mission is derived from an accurate star catalog released close to the mission 

launch date, such as the star catalog to be generated by the ongoing Gaia 

astrometric mission (http://sci.esa.int/gaia/). On the other hand, if the star tracker 

star catalog is derived from an older star catalog, such as the Hipparcos star 

catalog, whose reference epoch is J1991.25 (stellar coordinates in the Hipparcos 

catalog are the coordinates the star had in J1991.25 = approx. April of 1991), 

roughly three decades ago, then the coordinates of the stars should be 

propagated to the mission mean epoch (time when the star tracker will be used) 

during catalog preparation. To do that, a knowledge of the proper motion of each 

star and the time difference between the source catalog epoch and the mission 
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epoch must be known. Uncertainties in these values will lead to uncertainties in 

the mission catalog – star catalog to be used in a star tracker. 

B.1.4 Binary/multiple star systems 

The existence of binary/multiple star systems (ESA, 1997; ZEILIK; GREGORY, 

1998) introduces some inaccuracy in attitude determination in star trackers. 

In many cases, the angular separation between the components of a multiple star 

system is smaller than the resolving power of a star sensor. The resolving power 

of a large field of view star tracker is typically in the order of few arc-minutes, 

whereas there exist many binary stars whose components are separated by 

angles in the range of few arc-seconds. These systems are observed by the star 

tracker as a single star. However, in many cases, the individual components of 

these systems are listed in the source star catalog (from where the mission star 

catalog is derived) as separate stars. 

When the star catalog to be used in the mission is being prepared, these 

binary/multiple systems where the components are closer to each other than the 

resolving power of star tracker must be merged into a single equivalent star 

having the combined brightness of all components and located at the photometric 

center of the system. Not performing this merging can result in difficulties and in 

loss of accuracy in the process of star identification or in the process of 

determining the attitude from identified stars. 

This procedure must also be performed for optical double/multiple stars (stars 

that are physically unrelated, being many times very far apart, but which are seen 

to be very close to each other due to a perspective/viewpoint effect) when the 

angular separation between them from the star tracker vantage point in the 

Universe is smaller than the resolving power of that star tracker. 

For a set of n stars, their photometric center can be computed using the following 

equations: 
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�̂�𝒕 =
𝑹𝒔𝒖𝒎

‖𝑹𝒔𝒖𝒎‖
 (B.3) 

with 

𝑹𝒔𝒖𝒎 = ∑𝑏𝑖�̂�𝒊

𝑛

𝑖=1

 (B.4) 

where: 

�̂�𝒕 = unit vector giving the coordinates in the celestial sphere of the 

photometric center of a set of n stars; 

𝑏𝑖 = brightness of star 𝑖, in the spectral band of the star tracker; 

�̂�𝒊 = unit vector giving the coordinates of star 𝑖. 

Unfortunately, for binary and multiple star systems, the photometric center of the 

system usually does not follow the same path as the system barycenter, since 

the brightness of each component star is rarely proportional to their individual 

masses. The effect of this is that the apparent position of the system (given by its 

photometric center) will wobble around the path followed by its center of mass, 

instead of following a straight path. Figure B.3 illustrates this effect. 

Figure B.3 – Oscillation of the photometric center of a system composed of two stars 
gravitationally bound (binary star) around its center of mass. T is the orbital period of 

the system. 

 

Source: Adapted from Albuquerque and Fialho (2005). 

Fortunately, for all binary stars where the angular separation between the 

components is greater than 10″, the orbital period is of many decades or even 
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larger. Hence this effect should not be of great concern for wide field of view star 

trackers, whose accuracy is in the order of few arcseconds. 

B.1.5 Gravitational deflection 

This effect is described here only for completeness, since its effects are negligible 

for most space missions, except for those working in the milli- and micro-

arcsecond ranges. 

When a light ray coming from infinity passes near a massive body, it is deflected 

by an angle proportional to the square of the escape velocity from that body at 

the closest point to that body found in the path of that light ray (ALBUQUERQUE; 

FIALHO, 2005), as shown in Figure B.4. 

Figure B.4 – Light deflection due to a massive body 

 

Source: Adapted from Albuquerque and Fialho (2005). 

For bodies with spherical symmetry, this angle of deflection can be computed as 

(RINDLER, 1977; ROSSER, 1967; ALBUQUERQUE; FIALHO, 2005): 

𝛿 =
4𝐺𝑀

𝑐2𝑑
=  2 · (

𝑣𝑒𝑠𝑐

𝑐
)
2

·
𝑅

𝑑
 (B.5) 

where: 

𝐺 = graviational constant ≈ 6.6742×10-11 N·m2·kg-2; 

𝑀 = mass of the massive body; 

𝑣𝑒𝑠𝑐  = escape velocity at the surface of the massive body; 

𝑐 = speed of light in vacuum; 

𝑅 = radius of the massive body; 

𝑑 = shortest distance from the light ray to the center of the massive body. 

  

Body with mass M   

   
light ray approaching 
body with mass M 

  deflected light ray   

d   



187 
 

Since gravitational deflection effects caused by objects outside the Solar System 

are already included in the star coordinates given in the star catalog, just the 

additional gravitational effects due to bodies in the Solar System need to be 

considered. Fortunately, for current star sensor accuracies (in the order of few 

microradians = arcseconds or tenths of arcseconds), these effects are completely 

negligible, as shown in Table B.2. 

Table B.2 – Gravitational deflection angle for a grazing ray at selected bodies in the 
Solar System 

body escape velocity (km/s) deflection angle for 
grazing ray (arcsec) 

Sun 617.54 1.75 

Jupiter 59.55 0.0163 

Saturn 35.49 0.0058 

Neptune 23.49 0.0025 

Uranus 21.30 0.0021 

Earth 11.18 5.7·10-4 

Venus 10.36 4.9·10-4 

Mars 5.02 1.2·10-4 

Mercury 4.25 8.3·10-5 

... ... ... 

Moon 2.376 2.6·10-5 

Source: Albuquerque and Fialho (2005). 

Only for the Sun, the gravitational deflection angle is considerable. However, a 

star tracker will never attempt to observe a background star so close to the Sun. 

It is reasonable to assume that only stars that are farther than an exclusion angle 

(say, of 22.5 degrees) from the Sun would be observed. For a star tracker at 1 AU 

from the Sun and observing a star at 22.5 degrees from the Sun, the gravitational 

deflection angle is just 0.02 arc-seconds (ALBUQUERQUE; FIALHO, 2005). 

Hence, for current wide field of view star trackers, gravitational deflection of light 

in the Solar System can be safely neglected. 
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B.2 Sources of error in image acquisition 

This section briefly describes the principal sources of noise and errors that affect 

the quality of images generated by star trackers. 

The detection of stars in images acquired by a star sensor is made difficult by the 

existence of noise in the image and by the non-uniform response of the 

photosensitive elements (pixels) used to capture that image. In an ideal world, 

where images acquired by star trackers would be free from noise, stellar detection 

would be much easier. All one needed to do would be to locate in the acquired 

images pixels with non-zero values, since the background would be zero in an 

ideal world. In practice, images generated by star trackers will always be 

corrupted by noise, from many sources. These sources of noise lead to the 

challenge of developing algorithms that are capable of accurately determining the 

angular position of observed stars with a computational cost low enough to be 

used in the star tracker hardware, much more limited than that of a personal 

computer or even a cell phone. In order to overcome the problems caused by the 

existence of noise and detector non-uniformity and be able to obtain the best 

possible attitude measurement from a star tracker / star sensor hardware, many 

techniques capable of mitigating the effects of noise and detector non-uniformity 

(noise reduction techniques) must be employed. The quality of a star tracker is 

directly related to the effectiveness and robustness of these noise reduction 

techniques. 

In general, the main sources of noise and error that affect the generation of 

images by fixed head star trackers are the following: 

• thermal noise; 

• shot noise; 

• dark current; 

• amplifier noise and 1/f noise; 

• fixed pattern noise; 

• digitization errors; 
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• pixel non-uniformity; 

• detector non-linearity; 

• image lag; 

• ionizing radiation. 

These types of noise and error sources can be divided in two large classes, 

following the same classification proposed by Tuchin et al. (2013): systematic 

errors (or bias), and random noise. Systematic errors can be removed by proper 

calibration if their sources are very well known. On the other hand, random noise 

presents a stochastic behavior, only being possible to determine its statistical 

properties, such as mean, standard deviation, probability distribution function, 

etc. Random noise can be mitigated and sometimes removed by reducing the 

temperature or by the use of techniques such as CDS (correlated double 

sampling), if allowed by the image sensor architecture. 

B.2.1 Thermal noise and kTC noise 

Thermal noise, also known as Johnson or Nyquist noise, has its origin in the 

thermal motion of charge carriers in a conductor (PALMER, 2010).  Thermal noise 

can be modeled as a Gaussian white noise up to about 1012 Hz for circuits at 

room temperature. For an RC circuit near room temperature, with time constant 

much larger than 10-12 seconds, the root mean square voltage (𝑉𝑟𝑚𝑠) at the 

capacitor will be (PALMER, 2010): 

𝑉𝑟𝑚𝑠 = √
𝑘𝑇

𝐶
 (B.6) 

Where: 

k = 1.38065∙10-23 J/K  = Boltzmann’s constant 

T = absolute temperature of the RC circuit 

C = capacitance of the capacitor 
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Thermal noise in RC circuits is also known as kTC noise, an acronym derived 

from the terms used in Equation (B.6). The kTC noise is one of the dominant 

noise sources in low light conditions for image sensors that are not capable of 

performing a true CDS (correlated double sampling) to remove pixel reset noise, 

like CMOS APS image sensors with a 3T (three-transistor) pixel architecture 

(HOLST; LOMHEIM, 2011). The pixel reset noise is associated with the 

capacitance C of the pixel sense node. 

A detailed study about the contribution of thermal noise in the quality of images 

generated by CMOS APS sensors has been tackled by Hiu Tian (2000).  

Temperature reduction leads to a modest gain, due to thermal noise originated 

voltage (or current) dependency with the square root of the absolute temperature.  

More effective ways to reduce thermal noise requires more elaborate techniques 

such as CDS (INNOCENT, 2009; MARTIN, 2012, Section 1.1.1.5.2.2, page 20).  

B.2.2 Shot noise 

Shot noise has its origin in the discrete nature of light and matter. Regarding 

photovoltaic image sensors, like CCD sensors and CMOS sensors, shot noise 

can be divided into photon shot noise and dark current shot noise, described in 

the following subsections. 

B.2.3 Photon shot noise 

Photon shot noise is an intrinsic phenomenon of nature, which does not depend 

on the type of detector used, being a result of the fact that light itself is discretized 

in photons and that the photons hit the detector in a stochastic manner. The 

number of photons that hit a particular pixel in the detector follows a Poisson 

distribution (HANH; SHAPIRO, 1976): 

𝑃𝑛 =
𝜄𝑛

𝑛!
∙ 𝑒−𝜄 (B.7) 

Where: 
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𝑃𝑛 = probability that exactly n photons hit a particular pixel, for a given 

illumination condition and exposure time. 

𝜄 = mean number of photons that should hit that pixel for the same 

illumination condition and exposure time18. 

In lit scenes, or for long exposure times, the average number of photons (𝜄) that 

should hit the detector is high. In this condition, the Poisson distribution can be 

approximated by a normal distribution with standard deviation (σ) equal to the 

square root of the expected number of photons (PALMER, 2010): 

𝜎 = √𝜄 (B.8) 

Even though the absolute value of the photon shot noise increases with the 

expected number of collected photons (𝜄), its importance decreases in brighter 

scenes, since the signal (proportional to the number of photons collected) 

increases even faster. In fact, the signal to noise ratio improves with the square 

root of the expected number of collected photons: 

𝑆𝑁𝑅𝑝ℎ𝑜𝑡𝑜𝑛_𝑛𝑜𝑖𝑠𝑒 =
𝑠𝑖𝑔𝑛𝑎𝑙

𝑛𝑜𝑖𝑠𝑒
=

𝜄

√𝜄
= √𝜄 (B.9) 

Being an intrinsic phenomenon of Nature, shot noise can be regarded as a noise 

present in the luminous signal itself, before hitting the detector. As has been 

shown in this section, the only way to decrease its influence is to increase the 

number of collected photons, which can be done by increasing the exposure time 

or increasing collecting area, optics transmittance and detector’s quantum 

efficiency. 

                                            
18 Here we are using the Greek letter 𝜄 (iota) instead of the more common 𝜆 for the Poisson 
distribution parameter to avoid confusion with wavelength, which is also represented by 𝜆. 
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B.2.3.1 Effects of quantum efficiency in shot noise 

In practice, not every incident photon will be absorbed by the pixel, and not every 

absorbed photon will generate charge carriers that are later collected by the 

device, so the generated photoelectrical signal will be smaller. The ratio between 

the number of collected charge carriers (electrons or holes, depending on the 

device) and incident photons is known as quantum efficiency (𝜂) (McCLUNEY, 

1994; PALMER, 2010 (Section 5.3)). The fact of quantum efficiency being smaller 

than 100% results in a smaller signal, and hence in a worse signal to noise ratio. 

In fact, if we consider a quantum efficiency different than one, the expected 

number of photons (𝜄) in equations (B.7), (B.8) and (B.9) should be replaced by 

the product between the expected number of incident photons and the quantum 

efficiency (𝜄η), before computing the probability 𝑃𝑛 that exactly 𝑛 pairs of charge 

carriers will be generated in the pixel (modified Equation (B.7)), the standard 

deviation of the number of charge carrier pairs (modified Equation (B.8)) and the 

signal to noise ratio (modified Equation (B.9)), this when considering only this 

noise source. 

B.2.4 Dark current and its contribution to shot noise 

Many detectors present some kind of output even when there’s no external 

stimulus (in the case of optical detectors, that would be luminous flux incident on 

the detector). This response is known as dark output (McCLUNEY, 1994).  In the 

case of quantum detectors, such as CCDs and CMOS sensors, dark output is 

usually known as dark current, for reasons that will become clear later. 

To understand how dark current arises in quantum detectors (CCDs and CMOS 

sensors are included in this category), first we need to understand how these 

devices convert light into an electrical signal. 
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B.2.4.1 A brief on semiconductor physics 

Quantum mechanics rules dictate that not all energy levels are allowed for 

electrons belonging to any system occupying a limited volume in space. In the 

case of solids, the allowed energy levels for electrons tend to group into energy 

bands. In the case of semiconductor materials, the two most important energy 

bands for electrical conductivity in the material are known as the valence band 

and the conduction band, as shown in Figure B.5. Electrons in the inner bands 

are tightly bound to their host atoms and do not contribute significantly to 

electrical conduction in the material. 

Figure B.5 – Energy bands in an intrinsic semiconductor. 

 
Source: Drawn by the author. 

In semiconductors, electrons belonging to the valence band are not free to move, 

except when a neighboring atom has a vacancy on its valence shell, to where 

that valence electron can jump. On the other hand, the higher energy conduction 

band is practically empty, so electrons that are promoted to the conduction band 

are free to move in the semiconductor crystal lattice. When an electron from the 

valence band is promoted to the conduction band, it leaves behind a vacant 

space in the valence shell of the atom it used to belong. This vacant space can 
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be filled by valence electrons from adjacent atoms. Thus, vacant spaces can 

effectively hop from one atom to the other. In essence, these vacant spaces in 

the valence band behave as if they were positively charged particles, being 

known in solid state physics as holes. A vacancy in the valence band (a hole) can 

also be filled by an electron in the conduction band. When this occur, the electron 

excess energy is given off as a photon or as an increase in lattice vibration (heat), 

this process is known as electron-hole recombination. 

In quantum detectors, when a photon with sufficient energy, larger than the 

bandgap of the semiconductor material that the detector is made, hits the 

detector, it can promote an electron from the valence band to the conduction 

band, being absorbed in the process. The result is the creation of two charge 

carriers of opposite polarities free to move in the crystal lattice, one electron in 

the conduction band and a hole in the valence band. If this process happens in a 

part of the device responsible for light capture, such as a photodiode, the device 

will collect the charge carriers created (usually of only one type, being the other 

type discarded to the VDD or VSS power supply lines). The output of the detector 

will be proportional to the number of charge carriers collected during the exposure 

time (or integration time). 

B.2.4.2 Dark current mechanism 

Unfortunately, a photon striking on the semiconductor material is not the only way 

an electron-hole pair can be created. Thermal motion can also create electron-

hole pairs, and these are indistinguishable from the electron-hole pairs generated 

when a photon strikes the semiconductor material. This is especially important 

when it happens in photosensitive areas, responsible for converting light into an 

electric signal. The presence of impurities in the semiconductor material or 

surface defects can create intermediate energy levels that aid in the creation of 

thermally generated electron-hole pairs. The number of electron-hole pairs 

generated by unit time can be interpreted as a current, known as dark current: 
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𝐼𝑑𝑎𝑟𝑘 =
𝑛

𝑡
∙ 𝑞𝑒 (B.10) 

Where: 

𝑛 = number of thermally generated electron-hole pairs; 

𝑡 = time interval where 𝑛 electron-hole pairs have been generated; 

𝑞𝑒 ≈ 1.6022∙10-19 C = elementary charge = charge of a proton or charge 

of an electron with sign reversed. 

B.2.4.3 Dark current shot noise 

In the same way that photon detection is a stochastic process, so is the thermal 

generation of electron-hole pairs, which also follows a Poisson distribution. Since 

the noise generated by dark current is independent from the shot noise that 

originates from photon detection, these two sources can be combined in the 

following manner: 

𝜎 = √𝜂 ∙ �̅� + 𝐼𝑑𝑎𝑟𝑘 ∙ 𝑡/𝑞𝑒 (B.11) 

Where: 

𝜎 = standard deviation for total shot noise in number of collected 

charge carriers (electrons or holes); 

𝜂 = pixel quantum efficiency; 

�̅� = mean or expected number of photons striking the pixel; 

𝐼𝑑𝑎𝑟𝑘 = dark current; 

𝑡 = pixel integration time = time interval between last pixel reset and 

pixel readout; 

𝑞𝑒 ≈ 1.6022∙10-19 C = elementary charge. 

Dark current can be modeled by the Arrhenius equation or similar equations (for 

example, the model presented by Wildenhorn et al. (2002) for CCD sensors), 

presenting an approximately exponential behavior with temperature, in such a 

manner that a small reduction in the detector’s absolute temperature is able to 
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significantly reduce the dark current. This behavior makes it possible to reduce 

significantly the dark current and the shot noise related to it with a modest 

temperature reduction. For instance, using the activation energies given by 

Wildenhorn et al. (2002) for CCDs, it is not hard to see that a temperature 

reduction of just 30°C from room temperature (27°C = 300 K), which represents 

a reduction of only 10% in the absolute temperature, is capable of reducing the 

dark current by a factor typically larger than 10 and the shot noise by a factor 

typically larger than 3.16 (square root of 10) for silicon detectors. 

B.2.5 1/f noise 

This term may be used to refer to many kind of noise sources that present a 

spectral power density (when expressed as power per unit of frequency, e.g., 

V2/Hz) that increase with the multiplicative inverse of the frequency, or with 

frequency raised to an exponent α, with −3 < α < −0.8 (PALMER, 2010). This kind 

of noise is mostly visible at low frequencies. 

In CMOS detectors, 1/f noise has many origins, being one of the leading causes 

charge trapping at impurities or in defects in the semiconductor crystal lattice. As 

these defects tend to accumulate at semiconductor interfaces (e.g., silicon to 

silicon dioxide interfaces), one approach that semiconductor manufacturers use 

is to try to avoid placing device active areas at interfaces. According to Tian 

(2000), 1/f noise typically is not important for CMOS APS sensors, except in low 

light conditions and high integration times (typically above 1 second). 

B.2.6 Amplifier noise 

In addition to the noise sources at pixel level studied so far, amplifiers and 

sampling circuits that exist along the signal path also contribute to the total noise. 

According to Tian (2000), in modern CMOS APS image sensors, the total 

contribution to noise due to amplifiers present inside the image sensor is small 

when compared to noise generated at pixel level. 
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B.2.7 Fixed pattern noise and response non-uniformity 

In linear or two-dimensional image sensors, there are always some small 

variations in the response and in the background level from one pixel to the other. 

These variations are inherent to the manufacturing process or can be a result of 

damages that occur during use or storage or transportation. This response non-

uniformity results in a fixed pattern noise (FPN), that appears practically unaltered 

in a succession of images captured by the same image sensor (GAMAL et al., 

1998).  Assuming a linear response with the luminous signal and integrated dark 

current, the FPN can be decomposed into three main components, that vary from 

pixel to pixel: a bias in the dark level, a gain, and a variation in the dark current. 

For two-dimensional image sensors, this can be expressed mathematically as: 

Rij = aij*fij + bij + cij(T) * t (B.12) 

Where: 

Rij = response of pixel located at row i and column j; 

aij = signal gain for pixel located at (i, j); 

fij = number of photons incident on pixel (i, j); 

bij = bias for pixel (i, j); 

cij(T) = dark current for pixel (i, j), function of temperature; 

t = integration time (assumed to be the same for every pixel); 

T = image sensor’s absolute temperature. 

The gain variation between pixels in a detector (coefficient aij in Equation (B.12)), 

also known as PRNU (photo response non-uniformity), can have many causes, 

from which the following may be cited: 

a) small variations in pixel geometry, leading to small variations in the 

photosensitive area; 

b) variations in the pixel quantum efficiency; 
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c) for two-dimensional CMOS sensors (excluding DPS sensors), variations 

among column amplifiers; 

d) for CCD sensors: limitations in the charge transfer efficiency between 

pixels during image readout. 

The pixel’s dark level (coefficient bij in Equation (B.12)) can be adjusted for the 

entire image by modifying the input range of the A/D converter(s) used for image 

digitization or by changing the bias voltages applied to the detector. Even after 

making these adjustments, there still remains a variation among pixels, that can 

be caused by: 

a) small differences in the analog path for signals generated by different 

pixels; 

b) for CMOS image sensors: variations in the geometry and threshold 

voltages for each pixel MOSFET transistors; 

c) for two-dimensional CMOS sensors (except DPS sensors): variation 

between column amplifiers. 

Dark current usually varies significantly between pixels in the same detector, 

usually by many orders of magnitude. It is common that CMOS detectors have 

some pixels with dark current hundreds or even thousand times greater than 

average. These pixels are known as hot pixels. For CMOS APS sensors, the 

statistical distribution for the dark current among pixels can be modeled as a log-

normal distribution (BAER, 2006; PORTER, 2008). 

In CMOS detectors, usually there are a number of amplifiers for each pixel 

column. This becomes evident after checking the STAR-1000 datasheet (ON 

SEMICONDUCTOR, 2014) and datasheets from other CMOS image sensors. 

For these sensors, parametric variation among column amplifiers is one of the 

chief contributors to the image sensor FPN. Gamal et al. proposed in 1998 a 

simple mathematical model for the pixel FPN and column FPN in a CMOS 
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detector. Nevertheless, from Figure 4 presented in their paper and from the 

mathematical model description it is possible to conclude that this model is not 

able to represent in a realistic manner the existence of hot pixels in CMOS APS 

image sensors, in special, this model does not take into account the fact that the 

pixel dark current coefficient (parameter cij(T) in Equation (B.12)) follows a log-

normal distribution. 

There is some variation in the nomenclature. Some authors, for instance, do not 

include the gain variation (PRNU) into the definition of the term FPN (fixed pattern 

noise) (HORNSEY, 2003), whereas others do (ALBERT, 2012). 

As the FPN is fixed in the detector, not changing from image to image, fortunately 

it is possible to eliminate the FPN with proper calibration. A common method to 

remove the FPN is to acquire three kinds of images: “bias fields”, “dark fields” 

and “flat fields”.  A “bias field” is a very short exposure (ideally with integration 

time of zero) taken with the image sensor in the dark. “Bias fields” are used to 

determine the bias coefficients bij in Equation (B.12). “Dark fields” are taken with 

the image sensor completely covered (in the dark) with the same exposure time 

used in normal imaging. The coefficients cij in Equation (B.12) can be determined 

from the difference between dark fields and bias fields. “Flat fields” are taken with 

the image sensor subject to uniform illumination and normal exposure time. “Flat 

fields”, after being corrected for bias and dark current, are useful to estimate the 

aij gain coefficient, thus correcting for photo response non-uniformity. 

Alternatively, “flat fields” can be taken with a complete camera subject to a 

uniform illumination (e.g., facing a uniformly illuminated blank sheet of paper), in 

this case, flat field images will also correct losses introduced by the optics. When 

performing calibration, “bias field”, “dark field” and “flat field” images should be 

taken multiple times with the same settings and averaged to remove the effects 

of temporal noise. 

For scenarios where the pixels can be assumed to have exactly the same 

geometry (exactly the same size and shape), this method provides good 



200 
 

correction in the images for centroiding. However, for very accurate work, where 

pixels cannot be assumed to have exactly the same size, more elaborate 

calibration schemes must be used, as the ones cited in Section B.2.9. 

B.2.8 Digitization errors 

When an analog signal (for instance, a voltage) that can assume an infinite gamut 

of values is converted to the digital domain, where the number of exactly 

representable values is finite, it is not possible to exactly represent the original 

analog signal to be digitized. In the digitization process the analog signal is 

represented, when an ideal converter is used, by the digital value that is nearest 

to the analog value. The difference between the real value and the closest value 

that exists in the digital domain is known as truncation error, digitization error or 

quantization error. Figure B.6 illustrates this error. 

Figure B.6 – An ideal 3 bit A/D converter. 
Actual A/D response is shown in black. The cyan curve would be the A/D converter 

response if there were no quantization error. 

 

Source: Drawn by the author. 
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The conversion of a signal from the analog to the digital domain is performed by 

a device known as an A/D converter (A/D = analog to digital) or simply ADC. One 

way to reduce the quantization error is to add more discretization steps in the 

output of the A/D converter. For most A/D converters, which output their results 

as a binary (base-2) number, this can be accomplished by using more bits (binary 

digits) to represent the digitized signal. Every bit added doubles the number of 

representable values in the digital domain. However, the addition of more bits to 

the output of an A/D converter is not always advantageous due to the following 

reasons: 

a) the A/D converter itself introduces analog noise to the signal to be 

digitized. To digitize a signal in a way that every or almost every bit is valid 

requires the use of quieter, and hence, more expensive, A/D converter; 

b) increasing the number of bits usually leads to a higher computational cost 

to handle the data, especially if the least significant bits of the digitized 

value are dominated by noise present in the system. This happens 

because noise, by being unpredictable, has a very large information 

entropy. It is not possible to compress a bit stream using a lossless 

algorithm to a bit stream shorter than its information entropy (MACKAY, 

2005; SHANNON, 1948). 

When the analog signal to be digitized is not correlated to the digitization error, 

and assuming that the A/D converter response is linear, this error presents a 

rectangular probability distribution, whose standard deviation is σ = h / √12 ≈ 

0.289 h, where h is the A/D converter step. This hypothesis is true if the signal to 

be digitized is uniformly or almost uniformly distributed over a range of values 

much wider than the ADC conversion step h, as shown in Figure B.7. 
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Figure B.7 – Probability density function for the quantization error of an ideal ADC, 
when the signal is not correlated to the quantization error introduced by the ADC. h is 

the digitization step. 

 

Source: Drawn by the author. 

In order to avoid the quantization error becoming the dominant contributor to the 

overall system error, but at the same time avoiding wasting resources with an 

expensive A/D converter, we could say that a good rule of thumb would be to 

select the ADC in such a manner that the quantization error represents between 

1/5 and 1/2 of the overall system noise. 

Besides the quantization error, there also exists the clamping error, that happens 

when the signal to be digitized is outside the input range of the ADC. This error 

can be much larger than the quantization error. To avoid clamping error, the 

designer of a system must ensure that the signal to be digitized is within the ADC 

input range whenever possible or feasible. Hence, image sensors and ADCs are 

usually biased in such a way that even in the absence of a luminous signal, the 

analog signal obtained by the sensor will be digitized to a value slightly above the 

lowest possible ADC output value (usually zero), ensuring that the noise present 

in the system will not throw this analog signal outside the ADC’s input range. This 

added bias in the value that represents the image sensor output when it is not 

illuminated can be easily removed by software during image processing. 
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B.2.9 Pixel non-uniformity 

The model described in Section B.2.7 works well when the pixels are regularly 

spaced in the detector array and when all pixels have the same physical 

dimensions. In practice, there’s always some variation in the area and center of 

pixels in relation to their theoretical position. These variations aren’t only due to 

manufacturing process variations, but can be a result of damages that the sensor 

suffers during its life, especially in hostile environments, with high ionizing 

radiation dose rate. These variations are almost always neglected, but they lead 

to errors in star centroid computation.  According to Smith and Rahmer (2008), a 

CCD image sensor studied by them had a random width variation of 0.34%. The 

fluctuation of the center position of these pixels in relation to their theoretical 

position was not presented by these authors, but should have about the same 

values. They also show that the usual consideration that PRNU is a result only of 

quantum efficiency variation, as is usually considered, can lead to centroiding 

errors when pixel values are normalized in an attempt to eliminate PRNU. 

Zakharov et al. (2013, Section 8.4), report that irregularities in the position and 

geometry of pixels can in some cases exceed 1% of the size of a pixel, limiting 

the accuracy of centroid computation to some hundredths of a pixel size, even if 

all other noise and error sources are compensated. 

Zhai et al. (2011) present a calibration procedure for two-dimensional detectors 

taking into account pixel response variation, pixel center variation and other 

parameters. With this calibration, it becomes possible to compute centroids with 

errors in the range of thousandths of a pixel size. Unfortunately, this procedure 

requires interferometric measurements performed with complex laboratory 

equipment, something that would not be available for star trackers in orbit. 

The correction method to be used also depends on the sensor’s architecture.  For 

instance, in CCD or CMOS architectures with four or more transistors, a reduction 

in the pixel’s area leads to a reduction in sensitivity due to a reduction in the 

photosensitive area. In contrast to this, in CMOS sensors with three transistor 
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pixel architecture (3T pixel), the reduction in sensitivity might be masked by an 

increase in the conversion factor from collected photoelectrons to voltage at the 

pixel’s output (which can be interpreted as an analog gain), due to the reduction 

in the photodiode’s capacitance when its area is reduced. 

B.2.10 Detector non-linearity 

Equation (B.12) presented in Section B.2.7 is strictly applicable only when the 

image sensor presents a linear response with the luminous signal and integrated 

dark current. In practice, the image sensor may present some non-linearities due 

to the following reasons: 

a) pixel response non-linearity: when a pixel nears saturation its effective 

quantum efficiency decreases; 

b) A/D converter non-linearities (ON SEMICONDUCTOR, 2014; 

MICROCHIP TECHNOLOGY Inc., 2000). 

Fortunately, for most stars used for attitude determination, the pixels illuminated 

by them will be very far from saturation, meaning that the image sensor will be 

working in its linear range for most stars. For example, the STAR-1000 image 

sensor has a linearity better than 1% up to 70% of its full well capacity (ON 

SEMICONDUCTOR, 2014). Also, a good star tracker project will select an ADC 

with a good linearity. For example, the STAR-1000 internal ADC has a non-

linearity better than 1% (ON SEMICONDUCTOR, 2014). Therefore, unless a very 

high accurate star tracker is being designed, these non-linearities can usually be 

ignored. 

B.2.11 Image lag 

A problem that afflicts some types of image sensors, in special CMOS APS 

sensors is incomplete reset, which leads to image lag. This phenomenon occurs 
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when the reset cycle at the start of a new image acquisition is not enough to clear 

completely the previous image (ON SEMICONDUCTOR, 2012). 

This problem can be mitigated by software, or by hardware, by changing the 

sensor biasing voltages in such a way that the reset becomes complete 

(operation in hard reset mode).  However, each of these alternatives has its 

disadvantages.  Operation in hard reset mode solves the image lag problem, at 

a cost of an increased temporal noise in CMOS APS sensors, when employment 

of the CDS (correlated double sampling) technique is not feasible (TIAN, 2000). 

Compensation by software leads to an increase in the software complexity and 

to a higher computational cost. 

B.2.12 Ionizing radiation 

Outside the protection offered by Earth’s atmosphere, spacecraft are exposed to 

an ionizing radiation dose rate hundreds to millions of times greater than that 

found on Earth’s surface.  Ionizing radiation causes cumulative damage (many 

related to the total ionizing dose or TID, for short) and also immediate effects, 

collectively known as SEE - single event effects. A good review and introduction 

to the subject is presented in the Aerospace Corporation 2003 Summer edition 

of the Crosslink magazine (CROSSLINK, 2003). This section attempts to 

summarize the key points of ionizing radiation related to image sensors used in 

star trackers. 

Ionizing radiation found in low Earth orbit environments is composed of many 

kinds of particles, such as photons, electrons, atomic nuclei at relativistic 

velocities and hadrons (protons, neutrons, unstable baryons and mesons). These 

particles have many origins, including extragalactic sources, galactic sources, 

particles emitted by the Sun, particles trapped at Earth’s magnetic field and even 

particles that originate from interaction of those particles with the spacecraft 

(secondary radiation). 
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B.2.12.1 Ionization effects in the detector 

Electrically charged particles with energies above few keV are able to penetrate 

matter, leaving a trail of ionized particles along its track. If this process happens 

in a semiconductor material, the result will be trail of mobile charge carriers 

(electrons and holes). These charge carriers in this ionization trail can produce 

an spurious electrical signal as them are swept away by the electric fields within 

the device. This spurious electrical signal can produce unwanted effects, 

collectively known as SEEs (single event effects). In image sensors, one of these 

effects is the generation of temporary images very similar to images generated 

by true stars, leading to observed false stars. Another more serious effect lead 

by high energy ionizing particles occurs when they cross insulating materials in 

an integrated circuit (usually field and gate oxides). In these materials, the charge 

carriers created by the ionization process can become trapped, changing 

permanently the parameters of affected transistors and sometimes leading to the 

creation of new parasitic circuit elements. Depending on the accumulated 

damage, the device may work in an abnormal way or simply stop functioning. 

B.2.12.2 Non ionizing effects 

Besides the effects caused by ionization in the device, high energy particles can 

also cause other kinds of damage, not directly related to the ionization process. 

Among these effects, the most prominent is displacement damage. Displacement 

damage occurs when a high energy particle with considerable mass (e.g.: a 

proton, neutron, alpha particle or heavier nuclei) hits the nucleus of an atom of 

the irradiated material, with enough energy to knock-out that atom. The result is 

the appearance of defects in the crystalline structure of the material, one in the 

place where the atom used to be, now empty, and another in the place where 

that atom became lodged (interstitial defect). The colliding particle itself, if an 

atomic nucleus, can become lodged in the material, creating an additional 

interstitial defect. For CMOS APS image sensors, the main effect of displacement 

damage is an increase in the FPN and the appearance of new hot pixels. 
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B.2.12.3 Concluding remarks 

Ionizing radiation, be it by the process of ionization or by non-ionizing effects 

cause degradation in image sensors. In the case of silicon based image sensors, 

one of the chief cumulative effects caused by ionizing radiation is the appearance 

of new hot pixels.  Many times, these hot pixels are the result of damages in the 

detector’s crystal lattice due to high energy particles, capable of dislodging atoms 

from their initial positions. These damages create intermediary energy levels, 

facilitating the thermal generation of charge carriers in the semiconductor 

material. Fortunately, it is possible to revert some degradation by annealing the 

semiconductor device. This process happens naturally, but it can be accelerated 

by increasing the temperature. 

B.3 Other sources of errors 

B.3.1 Catalog errors 

Star catalogs are never perfect. There are always measurement errors 

associated with stellar coordinates in a star catalog. Some phenomena described 

in the previous sections, such as proper motion and existence of binary/multiple 

star systems, can pose difficulties in the preparation of accurate star catalogs for 

star trackers. 

The Hipparcos star catalog gives stellar coordinates with uncertainties in the 

order of few milliarcseconds for the catalog epoch of J1991.25 (ESA, 1997) in the 

ICRS reference frame (equivalent to the equatorial coordinate system using poles 

and equinoxes of J2000.0). 

B.3.2 Numerical errors during computation 

It is not possible to exactly represent in a digital computer all real numbers in an 

exact way. Hence most measured values, intermediate values and final results 



208 
 

will be represented with some representation error. This representation error is 

smaller the higher the number of binary digits (bits) used to represent a number. 

Real and rational numbers are typically represented in a computer using a binary 

floating point representation of 32-bits or 64-bit defined by the IEEE-754 standard 

(2008), as these formats are supported on most machines. 

Using a 32-bit binary floating point format (IEEE binary-32 format, with 24 bits of 

mantissa (one bit implied), 1 sign bit and 8 bits of exponent), it is possible to 

represent angles in the range [−4, 4] rad (which includes the range [−𝜋, 𝜋]) with 

an accuracy better than 0.049 arc-seconds. Depending on the application, this 

may be enough, however a detailed analysis of the code would be required to 

assure that truncation and rounding errors would not accumulate and lead to 

inaccurate results. 

When using double precision (IEEE 64-bit binary floating point format with 53 bits 

of mantissa (one bit implied), 11 of exponent and one sign bit), it is possible to 

represent angles in the range [−𝜋, 𝜋] with an accuracy better than 9.16·10-11 arc-

seconds. With this format, truncation and rounding errors will be mostly negligible, 

unless a numerically poor algorithm is used. An example of a numerically poor 

algorithm is the computation of very small angles from the arccos function. This 

happens because there is a singularity in the derivative of the arc-cosine function 

when its input argument is close to one (corresponding to small angles), which 

means that small errors in the input argument of the arc-cosine function lead to 

large errors in the computed angle in this case. This situation can arise when 

attempting to compute the angle between two unit vectors by computing the arc-

cosine of their dot product, when this angle is very small. 

B.3.3 Other sources 

Besides the sources of error described in this appendix, there are many other 

sources of error that may affect the accuracy centroids, for example: 
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a) distortions introduced by the optics: a large part of these distortions 

and techniques to compensate them have been discussed by 

Albuquerque in his master’s thesis (2005); 

b) thermal expansion of the structure that holds the detector and optics; 

c) thermal expansion in the optical elements (lenses or mirrors); 

d) thermal expansion in the detector (image sensor); 

e) existence of thermal gradients in the optics and in the detector; 

f) electromagnetic interference, adversely affecting the video signal 

integrity before digitization; 

g) rounding and truncation errors in centroid computation. 

Even if all those errors had been compensated for, and centroid determination 

were free of errors, the attitude generated by a star tracker could be adversely 

affected by sources of errors briefly discussed in Section B.1. 

Even after taking into consideration all the sources of error cited in this appendix, 

we don’t arrive at an exhaustive list of all sources of error and noise that may 

affect the accuracy in the determined attitude by a star tracker. The higher is the 

desired accuracy, the higher is the number of factors that must be taken into 

account, in such a way that it seems that there does not exist an upper limit to 

the number of noise and error sources that must be considered when one wants 

to attain an infinite accuracy, which would make impractical the development of 

a star tracker. Hence, what should be done is to prioritize the most relevant 

sources of error, compensating first the sources with higher impact in the 

accuracy of the determined attitude before compensating the remaining sources 

of error. 
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APPENDIX C MAGNITUDES AND COLOR INDICES 

This appendix gives a brief description of stellar magnitudes and color indices. 

C.1 Magnitudes 

In Astronomy, stellar brightness is usually measured with magnitudes. The great 

Greek astronomer Hipparchus is usually credited as having invented the 

magnitude scale (it is not clear whether he actually invented it or if he got to know 

about magnitudes from older sources). In this scale, Hipparchus assigned an 

integer number for each star, being 1 for the brightest stars, 2 for the not so bright 

stars and so on, until stars of magnitude 6, the dimmest that could be observed 

by naked eye in a moonless dark night. 

With the invention of the telescope, more stars become observable, so the 

magnitude scale was extended by including additional magnitude classes (7th 

magnitude, 8th magnitudes and so on). By the eighteen and nineteen centuries 

it became clear to the astronomers that traditional magnitudes followed roughly 

a logarithmic scale. Also, without a clear definition of magnitude, quantitative 

studies about stellar properties was difficult. Hence in 1857 Pogson devised a 

logarithmic magnitude scale that remained compatible with magnitudes used in 

old star catalogs, being largely adopted by astronomers and becoming the 

modern definition of the magnitude scale. According to this definition, the 

magnitude of a star can be computed as follows: 

𝑚 =  −2.5 · log10 (
𝐵

𝐵𝑟𝑒𝑓
) (C.1) 

where  𝑚 is the star magnitude, B is the luminous flux or stellar brightness, and 

Bref is a reference luminous flux that sets the zero point of the magnitude scale. 

Note that the magnitude scale is an inverted scale. The higher the magnitude of 

a star, the fainter the star is. Also notice that with current definition of magnitude, 
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magnitudes can be zero or even negative. Table C.1 presents magnitudes for 

some selected celestial bodies. 

Table C.1 – Approximate magnitudes for some celestial bodies 

Celestial body 
visual 
magnitude 
(mv) 

brightness in 
comparison to 
Vega 

the Sun, as seen from Earth −26.86 5.7·1010 

full Moon −12.7 1.2·105 
Venus, maximum elongation −4.4 60 
Sirius, the brightest star in the night sky −1.45 3.8 
Vega, old reference for magnitude scale +0.03a 1 
Dimmest stars visible to naked eye 6 0.004 
dwarf planet Pluto 15 10-6 

Dimmest objects visible to a telescope 
with an aperture of 8 meters 

27 1.6·10-11 

a Originally, Vega was used as a reference for the magnitude scale, which made its magnitude 
being zero, according to Equation (C.1). However, with the recognition that the brightness of Vega 
was not very stable, the zero point of magnitude scale was later redefined by a set of stars. 

Source: Fialho (2007). 

Initially, magnitudes were only defined in the visual spectral band defined by the 

human eye. However, with the advent of photographic plates, and more recently 

electronic detectors, magnitudes could also be defined for other spectral bands, 

not restricted to the visible. Its usual to refer to the magnitude measured in the 

spectral band defined by an instrument as instrumental magnitude. 

C.2 Color indices and photometric systems 

In astronomy, color indices (or color indexes) are defined as the difference 

between star magnitudes in two different spectral bands. For example, if the B−V 

color index of a star is 0.65, it means that its magnitude in the B (blue) band minus 

its magnitude in the V (visual) band is 0.65. As this star has a higher magnitude 

in the B band than in the V band, with higher magnitudes meaning dimmer or 

weaker, it means that it is weaker in the B band than in the V band when 

compared to a reference star that has the same magnitude in both B and V bands. 

Incidentally, we have used the Sun for this example. Since the reference star for 
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defining the B and V bands used to be the star Vega (which originally had B and 

V magnitudes of 0 in the original scale devised by Johnson and Morgan (1953), 

this means that the Sun (with a B−V color index of 0.65) emits comparatively less 

in the B band and more in the V band than the reference star Vega. In fact, Vega 

has a bluish white color, whereas the Sun appears to the human eye to be white 

or white with a yellowish tinge. 

A photometric system is a set of different magnitude scales (one magnitude scale 

for each spectral band) and their associated color indexes. Some photometric 

system became of standard use in Astronomy, such as the Johnson’s UBV 

photometric system, derived with a standard set of filters and detectors. However, 

whenever a new equipment is constructed, it is hard to make its spectral bands 

exactly match the spectral bands of a standard photometric system. Hence, each 

equipment will have its own natural photometric system. For the Foveon camera 

with stacked pixels, described in Chapter 3, it has its own natural photometric 

system, defined by the spectral response of its blue, green and red channels and 

also on how we define the zero point of the three magnitude scales associated 

with each one of its three spectral bands (see Section 3.6.6 for an example). A 

common procedure to fix the zero points of the magnitude scales is to assign for 

a bright star or a set of stars a conventional magnitude value in each one of these 

spectral bands. 

C.3 Synthetic photometry 

If the spectrum of a star and the spectral response functions of each spectral 

band of a photometric system are known, it is possible to compute the 

magnitudes and color indexes of that star in that photometric system by 

integrating, in wavelength or in frequency, the product of the stellar spectrum with 

the spectral response functions. This procedure is known as Synthetic 

Photometry, being explained in more detail by Straižys (1996), Bessell (2005) 

and Bessel and Murphy (2012). This section provides the formulation that has 

been used in this work. 
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Let 𝑅𝑋(𝜆) be the energy response function that defines the spectral band X and 

let 𝑓(𝜆) be the spectral energy distribution a star, then the flux of that star in the 

spectral band X (or passband X, in astronomical parlance) can be computed by 

the following integral: 

𝜑𝑋 = 𝑐𝑜𝑛𝑠𝑡 ⋅ ∫ 𝑓(𝜆)𝑅𝑋(𝜆)d𝜆
∞

𝜆=0

 (C.2) 

where 𝑐𝑜𝑛𝑠𝑡 is an arbitrary constant that may be present to effect a change of 

units or for other reasons. Its exact value is unimportant, provided it is non-zero, 

as will become clear later. 

Let 𝜑𝑋,𝑅𝐸𝐹 be the reference flux that defines the zero point of the magnitude scale 

in band X, then, according to Equation (C.1), the synthetic magnitude of the star 

in band X is given by: 

𝑚𝑋 = −2.5 log10(𝜑𝑋/𝜑𝑋,𝑅𝐸𝐹) (C.3) 

The constant 𝑐𝑜𝑛𝑠𝑡 of Equation (C.2) also multiplies the value of 𝜑𝑋,𝑅𝐸𝐹. If this 

constant is changed, it will affect 𝜑𝑋 and 𝜑𝑋,𝑅𝐸𝐹 equally, so that the value of 𝑚𝑋 

will remain unchanged. This explains why 𝑐𝑜𝑛𝑠𝑡 can be chosen as any non-zero 

value. 

For the natural photometric system of a camera, the energy response function 

𝑅𝑋(𝜆) is the product of the transmittance of all optical components in the camera 

(including any spectral filters used to better define the spectral bands) with the 

detector response. For systems using photomultiplier tubes, it was usually 

expressed in amperes per watt [A/W]. 

The spectral energy distribution 𝑓(𝜆) is expressed in units of power per unit of 

area per unit of wavelength (e.g., W∙m-2∙m-1 in SI units). 

The reference flux 𝜑𝑋,𝑅𝐸𝐹  that defines the zero point of the magnitude scale in 

band X can be defined in many different ways, depending on how the magnitude 
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scale is defined. In this work, we have used the star Vega (α-Lyr) as a reference 

for defining the zero point. Using Vega as a reference, 𝜑𝑋,𝑅𝐸𝐹  is given by: 

𝜑𝑋,𝑅𝐸𝐹 = 100.4𝑚𝑉𝑒𝑔𝑎,𝑋 ∫ 𝑓𝑉𝑒𝑔𝑎(𝜆)𝑅𝑋(𝜆)d𝜆
∞

𝜆=0

 (C.4) 

where 𝑚𝑉𝑒𝑔𝑎,𝑋 is the adopted (by definition) magnitude for Vega in band X, usually 

chosen to be equal or very close to 0.03 in order to make comparisons with 

standard photometric systems based on Vega easier. 𝑓𝑉𝑒𝑔𝑎(𝜆) is the spectral 

irradiance from Vega measured at the top of Earth's atmosphere. The spectrum 

of Vega adopted in this work has been obtained from the CALSPEC Calibration 

Database, file alpha_lyr_stis_008.fits (STSCI, 2017). 
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APPENDIX D STAR CATALOG FORMATS 

This appendix presents the star catalog formats used in PTASE. These were 

initially developed for the Brazilian star tracker (FIALHO; PERONDI; MORTARI, 

2016) and then expanded to accommodate color indexes. Since that star tracker 

had limited availability of non-volatile memory, it was decided to create two 

formats of star catalogs, a compact format used solely for storage and a larger 

format (working catalog) used for stellar identification and attitude determination. 

Upon initialization, the storage catalog is converted to the working catalog format. 

D.1 Storage catalog 

The storage catalog is the star catalog in a format more suitable for storage in 

limited non-volatile memory (PROM, EPROM, EEPROM or FLASH memories). 

In this format, star coordinates are represented in a spherical coordinate system 

(right ascension and declination). This format has the advantage of being very 

compact, since only two scalar values (two angles) are required to completely 

specify the coordinates of a star. However, this format is unsuitable for stellar 

identification, since operations with spherical coordinates involves computation 

of trigonometric functions (sine, cosine) which are computationally expensive. 

Also, this form of representation has singularities at the poles. Hence before the 

star-ID process starts, the storage catalog is converted to a working catalog 

format which employs a format more suitable for star identification and attitude 

determination. 

D.2 Working catalog 

In the working star catalog, star coordinates are represented by unit vectors in a 

three-dimensional space. Even though this representation requires the use of 

three scalar components (with one being redundant), it has the advantage of 

being much faster than the representation used in the storage catalog. Working 

with unit vectors, the angular separation between stars, when represented by its 
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cosine, can be easily computed by the dot product between the unit vectors that 

represent the stars. Computing the dot product between two three-dimensional 

vectors is usually much faster than computing the angle using trigonometric and 

inverse trigonometric functions. 

D.3 Storage catalog format for monochrome star catalogs 

The following fields are stored per each star (entry in the catalog): right ascension 

(R.A), declination (dec.), instrumental magnitude, catalog identifier, a flag field 

and a checksum field, as shown in Table D.1. 

The right ascension and declination give the angular coordinates of the star in 

the ICRS reference frame. For the purposes of autonomous attitude 

determination, in the stellar identification process, only right ascension, 

declination, and (depending on the star-ID algorithm) magnitude are needed. The 

catalog identifier and flags field are useful for debugging, but they are not strictly 

required, since to determine attitude from stars, all that is needed is to discover 

the coordinates in an inertial reference frame (the one used in the star catalog) 

of the observed stars (whose coordinates in the star tracker frame are already 

known from the image processing and centroiding). 

Even though the format used in READCAT, PROC_CAT and PTASE introduces 

some rounding errors, these errors are negligible for most star sensors. Right 

ascension is stored with a resolution of  360°/ 7800000016 ≈ 3.12 nrad (1.79·10-7 

degrees = 0.64 mas) and declination is stored with a resolution of 180°/ 

7800000016 ≈ 1.56 nrad (8.94·10-8 degrees = 0.32 mas), where nrad is a 

nanoradian (10-9 radians), and mas is a milli-arc-second (1/1000 of an arc-

second). The subscript 16 is used to denote numbers in hexadecimal base. 

Instrumental magnitudes are stored with a resolution of 0.001 magnitude (one 

millimagnitude), corresponding to a flux ratio of 100.4 · 0.001 ≈ 1.00092 between two 

consecutive values. 
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Table D.1 – Fields stored for each star in the monochrome storage catalog in PTASE 

field type* 
size 

(bytes) 
range** description 

flags uint8 1 0 - 255 Indicates whether the entry represents a 
single entry in the Hipparcos Catalog, or 
the result of merging multiple entries in 
the Hipparcos Catalog by PROC_CAT. 

chksum uint8 1 0 - 255 Stores a check code for each star, in 
order to detect possible errors in the 
catalog (still not used as of October 
2017) 

mI int16 2 −30000 

to 

+30000 

Instrumental milli-magnitude. −30000 
means a magnitude of −30.0, +30000 
means a magnitude of +30.0. Values 
under −30000 or greater than +30000 
are reserved. 

ID uint32 4 0 

to 

232 -1 

Star and catalog identifier. Indicates the 
source catalog and the star identifier 
within the source catalog. Used for 
debugging only. 

RA uint32 4 0 

to 

78000000h 

Right ascension in the range of 0° to 
360°, with 0 meaning 0° and 78000000h 
meaning 360°. Values greater or equal 
to 78000000h (2,013,265,920 in 
decimal) are reserved for future 
extensions. 

dec uint32 4 0 

to 

78000000h 

Co-declination, in the range 0 (0°) to 
78000000h (180°). Value 0 means a 
declination of +90°, and a value of 
78000000h means a declination of −90°. 
Values greater than 78000000h 
(2,013,265,920 in decimal) are 
reserved. 

* uint8, uint16 and uint32 means 8-bit, 16-bit and 32-bit unsigned integers, respectively. 
int16 means signed 16-bit integer. 

** hexadecimal numbers are suffixed with the letter ‘h’. 
Source: created by the author. 

This catalog is stored in a file with extension .cat. This file format consists of a 

small header of 48 bytes followed by n-entries, each entry corresponding to a star 

and taking 16 bytes. These values are multiple of 4 bytes, making it possible to 

load the storage catalog in memory in such a way that the header and the entries 
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are kept aligned at 4 byte boundaries. This has the advantage of simplifying and 

speeding up conversion from this format to the working catalog format in 

embedded 32-bit systems, like the Brazilian star tracker. 

D.4 Storage catalog format for color star catalogs 

The star catalog containing color index information is very similar to the format 

used in the monochrome star catalog, the largest difference being the addition of 

two fields containing the B−V and V−I color indexes derived from the Hipparcos 

catalog. Detailed specification of the fields used is shown in Table D.2. 

Table D.2 – Fields stored for each star in the color storage catalog in PTASE 

field type* 
size 

(bytes) 
range** description 

flags uint8 1 0 - 255 Indicates whether the entry represents 
a single entry in the Hipparcos Catalog, 
or the result of merging multiple entries 
in the Hipparcos Catalog by 
PROC_CAT. 

chksum uint8 1 0 - 255 Stores a check code for each star, in 
order to detect possible errors in the 
catalog (still not used as of October 
2017) 

mv int16 2 −30000 

to 

+30000 

Visual milli-magnitude. −30000 means 
a magnitude of −30.0, +30000 means a 
magnitude of +30.0. Values under 
−30000 or greater than +30000 are 
reserved. 

ID uint32 4 0 

to 

232 -1 

Star and catalog identifier. Indicates the 
source catalog and the star identifier 
within the source catalog. Used for 
debugging only. 

RA uint32 4 0 

to 

78000000h 

Right ascension in the range of 0° to 
360°, with 0 meaning 0° and 
78000000h meaning 360°. Values 
greater or equal to 78000000h 
(2,013,265,920 in decimal) are reserved 
for future extensions. 

(continues on the next page) 
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Table D.2 – Fields stored for each star in the color storage catalog in PTASE 
(continued from previous page) 

field type* 
size 

(bytes) 
range** description 

dec uint32 4 0 

to 

78000000h 

Co-declination, in the range 0 (0°) to 
78000000h (180°). Value 0 means a 
declination of +90°, and a value of 
78000000h means a declination of 
−90°. Values greater than 78000000h 
(2,013,265,920 in decimal) are 
reserved. 

B_V int16 2 −30000 - 
+30000 

Johnson’s B−V color index in 
millimagnitudes. 

V_I int16 2 −30000 - 
+30000 

Johnson’s V−I color index in 
millimagnitudes. 

* uint8, uint16 and uint32 means 8-bit, 16-bit and 32-bit unsigned integers, respectively. 
int16 means signed 16-bit integer. 

** hexadecimal numbers are suffixed with the letter ‘h’. 
Source: created by the author. 

In the monochrome star catalog, each star entry occupies 16-bytes. In the color 

star catalog, each entry occupies 20-bytes. Since both types of storage catalog 

use the same filename extension (.cat), identification of which format is being 

loaded in PTASE is done through a field in the file header. 
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APPENDIX E PROOF THAT  𝝈𝒊
𝟐 = 𝝈𝒎𝒊𝒏,𝒊

𝟐  

This proof is related to Chapter 7, Section 7.2.10 of this thesis.  

Being 𝜎𝑚𝑖𝑛,𝑖
2  the lower bound of centroiding error variance for star 𝑖 along any axis 

perpendicular to the true direction of that star, given by Equation (7.19), and being 

𝜎𝑖
2 the overall measurement variance associated with that star, used in Equation 

(5.114) of Markley and Crassidis (2014), the goal of this appendix is to prove that 

they are the same. 

Proof. Let 𝐛𝑖
true be a unit vector representing the true position of star 𝑖 in the star 

tracker reference frame (body frame) B and 𝐬𝑖
true = [0 0 1]𝑇 the same unit vector 

in a reference frame S𝑖 where the line joining the star tracker to star 𝑖 is the z-axis 

of that reference frame. Then there exists an attitude matrix 𝐀𝑖 such that: 

𝐬𝑖
true = 𝐀𝑖𝐛𝑖

true (E.1) 

Due to measurement errors, the measured direction of star 𝑖 (𝐬𝑖) will differ from 

its true position 𝐬𝑖
true = [0 0 1]𝑇 by Δ𝐬𝑖 ≡ 𝐬𝑖 − 𝐬𝑖

true ≡ [Δ𝑠𝑖,𝑥   Δ𝑠𝑖,𝑦   Δ𝑠𝑖,𝑧]
𝑇
. Under 

the assumptions of Section 7.2 and considering that 𝜎𝑚𝑖𝑛,𝑖
2  gives the lower bound 

on centroid error per axis, the expected values of the variances of the x and y 

components (components in the S𝑖 reference frame) of Δ𝐬𝑖 will be equal to 𝜎𝑚𝑖𝑛,𝑖
2 . 

In mathematical terms: 

𝐸 {(Δ𝑠𝑖,𝑥)
2
} = 𝐸 {(Δ𝑠𝑖,𝑦)

2
} = 𝜎𝑚𝑖𝑛,𝑖

2  (E.2) 

with 𝐸{𝑥} denoting the expected value of a random variable 𝑥. Since 𝐬𝑖 is a unit 

vector very close to 𝐬𝑖
true and 𝐬𝑖

true = [0 0 1]𝑇, the z component of Δ𝐬𝑖, Δ𝑠𝑖,𝑧, will 

be given by: 

Δ𝑠𝑖,𝑧 = √1 − (Δ𝑠𝑖,𝑥)
2
− (Δ𝑠𝑖,𝑦)

2
≈ −

1

2
((Δ𝑠𝑖,𝑥)

2
+ (Δ𝑠𝑖,𝑦)

2
) (E.3) 
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As we are retaining only first order terms, like Markley and Crassidis did (2014), 

Δ𝑠𝑖,𝑧 ≈ 0 ⇒  𝐸{Δ𝑠𝑖,𝑥  Δ𝑠𝑖,𝑧} = 𝐸{Δ𝑠𝑖,𝑦  Δ𝑠𝑖,𝑧} = 𝐸 {(Δ𝑠𝑖,𝑧)
2
} = 0 in a first order 

approximation. Given that the star tracker aperture is circular and contained in a 

plane perpendicular to the direction of incoming rays from star 𝑖, from symmetry 

considerations we also have 𝐸{Δ𝑠𝑖,𝑥Δ𝑠𝑖,𝑦} = 0, that is, the errors are axially 

symmetric about the true vectors 𝐬𝑖
true. Hence, the measurement covariance 

matrix for star 𝑖  

𝐒𝑖 ≡ 𝐸{Δ𝐬𝑖  Δ𝐬𝑖
𝑇} (E.4) 

will be in a first order approximation: 

𝐒𝑖 ≈ [

𝜎𝑚𝑖𝑛,𝑖
2 0 0

0 𝜎𝑚𝑖𝑛,𝑖
2 0

0 0 0

] (E.5) 

Its trace will be: 

tr(𝐒𝑖) ≈ 2𝜎𝑚𝑖𝑛,𝑖
2  (E.6) 

 

 

 

Markley and Crassidis define the following measurement covariance matrix for 

the errors in the measured star direction vectors 𝐛𝑖 (Equation (5.104a) in their 

work): 

𝐑𝑏𝑖
≡ 𝐸{Δ𝐛𝑖 Δ𝐛𝑖

𝑇} (E.7) 

Given the assumption that the vector errors are axially symmetric about the true 

vectors (in our model, this arises from the consideration that the star tracker has 

a spherical shape) and ignoring the components along the true star directions 

(components along vectors 𝐛𝑖
true = components Δ𝑠𝑖,𝑧), since these are of higher 
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order than the terms that we retain, this measurement covariance matrix can be 

expressed as (Equation (5.107b) in (MARKLEY; CRASSIDIS, 2014)): 

𝐑𝑏𝑖
= 𝜎𝑏𝑖

2 [𝐈3 − 𝐛𝑖
true(𝐛𝑖

true)𝑇] (E.8) 

being 𝜎𝑏𝑖

2  the variance in the measured vector position for star 𝑖. 

Considering that the inverse of an attitude matrix is its transpose, from 

Equation (E.1) we have 𝐛𝑖
true = 𝐀𝑖

𝑇𝐬𝑖
true, hence: 

𝐑𝑏𝑖
= 𝜎𝑏𝑖

2 [𝐈3 − 𝐀𝑖
𝑇𝐬𝑖

true|(𝐬𝑖
true)𝑇𝐀𝑖] (E.9) 

Considering that the trace of a matrix is a linear operator: 

tr(𝐑𝑏𝑖
) = 𝜎𝑏𝑖

2 [tr(𝐈3) − tr(𝐀𝑖
𝑇𝐬𝑖

true|(𝐬𝑖
true)𝑇𝐀𝑖)] (E.10) 

Using the matrix trace identity tr(𝐁𝐂) = tr(𝐂𝐁) with 𝐁 = 𝐀𝑖
𝑇𝐬𝑖

true and 𝐂 =

(𝐬𝑖
true)𝑇𝐀𝑖 and considering that the trace of a 3x3 identity matrix is 3: 

tr(𝐑𝑏𝑖
) = 𝜎𝑏𝑖

2 [3 − tr (( (𝐬𝑖
true)𝑇|𝐀𝑖)(𝐀𝑖

𝑇𝐬𝑖
true|))] 

         =  𝜎𝑏𝑖

2 [3 − tr((𝐬𝑖
true)𝑇|(𝐀𝑖𝐀𝑖

𝑇)𝐬𝑖
true|)

∗
] 

(E.11) 

Since 𝐀𝑖𝐀𝑖
𝑇 = 𝐈3 and 𝐬𝑖

true = [0 0 1]𝑇, the trace of 𝐑𝑏𝑖
 reduces to: 

tr(𝐑𝑏𝑖
)  = 𝜎𝑏𝑖

2 [3 − tr((𝐬𝑖
true)𝑇|𝐬𝑖

true|)]  

 =  𝜎𝑏𝑖

2 [3 − tr ([0 0 1] [
0
0
1
])] 

 =  𝜎𝑏𝑖

2 ⋅ (3 − 1) 

 = 2 𝜎𝑏𝑖

2  

(E.12) 

Considering that both the expectation 𝐸{} and matrix trace are linear operators 

and using the identity tr(𝐁𝐂) = tr(𝐂𝐁), the following result is obtained from 

Equation (E.7): 
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tr(𝐑𝑏𝑖
) = tr(𝐸{Δ𝐛𝑖 Δ𝐛𝑖

𝑇}) = 𝐸{tr(Δ𝐛𝑖 Δ𝐛𝑖
𝑇)} 

= 𝐸{tr(Δ𝐛𝑖
𝑇Δ𝐛𝑖 )}                    

(E.13) 

In the same manner that 𝐛𝑖
true = 𝐀𝑖

𝑇𝐬𝑖
true, we have Δ𝐛𝑖

true = 𝐀𝑖
𝑇Δ𝐬𝑖

true. Substituting 

this into the last equation: 

tr(𝐑𝑏𝑖
) = 𝐸{tr(Δ𝐬𝑖

𝑇𝐀𝑖𝐀𝑖
𝑇Δ𝐬𝑖 )} = 𝐸{tr(Δ𝐬𝑖

𝑇𝐈3Δ𝐬𝑖 )} = 

  = 𝐸{tr(Δ𝐬𝑖
𝑇Δ𝐬𝑖 )} = 𝐸{tr(Δ𝐬𝑖 Δ𝐬𝑖

𝑇)} = 

= tr(𝐸{Δ𝐬𝑖 Δ𝐬𝑖
𝑇})                                      

(E.14) 

But, from Equation (E.4), 𝐸{Δ𝐬𝑖 Δ𝐬𝑖
𝑇} is the measurement covariance matrix 𝐒𝑖 for 

star 𝑖, whose first order approximation is given by Equation (E.5) and trace by 

Equation (E.6). Therefore: 

tr(𝐑𝑏𝑖
) = tr(𝐒𝑖) = 2𝜎𝑚𝑖𝑛,𝑖

2  (E.15) 

From Equations (E.12) and (E.15) the following is obtained: 

𝜎𝑚𝑖𝑛,𝑖
2 = 𝜎𝑏𝑖

2  (E.16) 

Equation (5.109) in Markley and Crassidis (2014) gives 𝜎𝑖
2 as: 

𝜎𝑖
2 = 𝜎𝑏𝑖

2 + 𝜎𝑟𝑖
2  (E.17) 

where 𝜎𝑟𝑖
2  is the variance in the reference vector for star 𝑖. In other words, 𝜎𝑟𝑖

2  

gives the uncertainty in the cataloged position of that star. Since it is being 

assumed that these cataloged positions are known with no errors (Item (e) in 

Section 7.2.1), 𝜎𝑟𝑖
2 = 0, implying that 𝜎𝑖

2 = 𝜎𝑏𝑖

2 . Substituting this into Equation 

(E.16) the following result is obtained: 

𝜎𝑖
2 = 𝜎𝑚𝑖𝑛,𝑖

2  (E.18) 

completing the proof. ∎ 
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