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ABSTRACT
Here, we study the dynamical effects of the solar radiation pressure (SRP) on a spacecraft
that will survey the near-Earth rotating asteroid (101955) Bennu when the projected shadow
is accounted for. The spacecraft’s motion near (101955) Bennu is modelled in the rotating
frame fixed at the centre of the asteroid, neglecting the Sun gravity effects. We calculate the
SRP at the perihelion, semimajor axis and aphelion distances of the asteroid from the Sun.
The goals of this work are to analyse the stability for both homogeneous and inhomogeneous
mass distribution and study the effects of the SRP in equatorial orbits close to the asteroid
(101955) Bennu. As results, we find that the mascon model divided into 10 equal layers seems
to be the most suitable for this problem. We can highlight that the centre point E8, which was
linearly stable in the case of the homogeneous mass distribution, becomes unstable in this new
model changing its topological structure. For a Sun initial longitude ψ0 = −180◦, starting
with the spacecraft longitude λ = 0, the orbits suffer fewer impacts and some (between 0.4
and 0.5 km), remaining unwavering even if the maximum solar radiation is considered. When
we change the initial longitude of the Sun to ψ0 = −135◦, the orbits with initial longitude
λ = 90◦ appear to be more stable. Finally, when the passage of the spacecraft in the shadow
is accounted for, the effects of SRP are softened, and we find more stable orbits.

Key words: gravitation – methods: numerical – celestial mechanics – minor planets, asteroids:
individual: (101955) Bennu.

1 IN T RO D U C T I O N

Discovered by the LINEAR1 Project in 1999 September (Williams
1999), asteroid (101955) Bennu (formerly designated 1999 RQ36)
is an Apollo near-Earth object. As noted by Lauretta et al. (2015), in
2135, Bennu will pass inside the orbit of the Moon (0.002 au over the
surface of the Earth). This asteroid is the target of the OSIRIS-REx2

asteroid sample return mission, which NASA launched in 2016 to
collect a sample from the space rock and return it to Earth by 2023.
Bennu is an exciting target for an asteroid sample return mission.
It is different from all other near-Earth asteroids previously visited
by spacecraft. Asteroid (433) Eros, target of the NEAR Shoemaker
mission, and (25143) Itokawa, target of the Hayabusa mission,
are both S-type asteroids with irregular shapes. In contrast, Bennu
is a spectral B-type asteroid, and has a distinct spheroidal shape.
While Eros and Itokawa are similar to ordinary chondrite meteorites,

� E-mail: chiant69@hotmail.com
1 http://neo.jpl.nasa.gov/missions/linear.html
2 http://science.nasa.gov/missions/osiris-rex/

Bennu is likely to be formed by carbonaceous chondrites, which are
meteorites that record the organic compound history of the early
Solar system. An important parameter for the mission design is the
shape model that provides its gravity field. The polyhedron shape of
asteroid (101955) Bennu was created by Nolan et al. (2013), based
on radar images and optical light curves collected in 1999 and
2005. Recent computational tools from the polyhedral shape model
were created to predict and control the dynamical evolution of an
orbiter around irregular small bodies in their complex gravity fields.
Tsoulis (2012) refined the approach of Werner & Scheeres (1997)
by presenting the derivation of certain singularity terms, which
emerge for special locations of the computation point with respect
to the attracting polyhedral source. This method has been applied
to the investigation of the actual dynamical environments around
(433) Eros and (216) Kleopatra (Chanut, Winter & Tshuchida 2014;
Chanut et al. 2015b). Although very accurate, the method requires
a large computational effort for integrating the orbits around these
bodies.

One of the solutions for this problem was to adapt the method
of mascons to polyhedra (Venditti 2013). In Chanut, Aljbaae &
Carruba (2015a), it was shown that this solution is more accurate
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than the classical mascon method (Geissler et al. 1996) and faster
than the Tsoulis method. In all of the above-cited cases, the so-
lar radiation pressure (SRP) effects are not taken into account for
the dynamics. Actually, the effect of this force becomes more pro-
nounced as the spacecraft flies farther away from the asteroid, since
the orbital motion close to the body is generally dominated by its
own gravity field (Scheeres, Williams & Miller 2000). Neverthe-
less, Scheeres et al. (2006) have shown that, for a body smaller than
few kilometres, like asteroid (25143) Itokawa, the SRP parameter
becomes relevant even in close proximity to the body. Moreover,
in the Hill problem, the influence of SRP can lead to both unstable
and stable spacecraft orbits near bodies with a diameter smaller
than few kilometres (Hussmann et al. 2012). However, the SRP
model, as well as the eclipse model around rotating asteroids, was
only recently presented in Xin, Scheeres & Hou (2016). When SRP
perturbations are considered, the equilibrium points usually do not
exist anymore, since the equations of motion are no longer time in-
dependent. However, forced motions called ‘dynamical substitutes’
appear around the geometrical equilibrium points. This issue has
been thoroughly discussed in Xin et al. (2016) and will not be part
of the scope of this work.

In this paper, we analyse the stability of both homogeneous and
inhomogeneous mass distributions and the effects of SRP in equa-
torial orbits in the proximity of the asteroid (101955) Bennu. This
will be attended using the mascon gravitation model and the SRP
force defined by Scheeres & Marzari (2002) and Xin et al. (2016)
for the dynamical model. First, we show the general properties
of (101955) Bennu in Section 2. In Section 3, the methodology
of mascon gravity tensor of the polyhedral model is briefly pre-
sented. Then, we discuss the equations of motion and the con-
served quantity in Section 4, as well as the equilibria when the
SRP is not accounted for. We find the exact location of the eight
equilibrium points and compare their stability when the mass dis-
tribution occurs in different density layers. The dynamical model
of initially equatorial orbits close to (101955) Bennu, when the
SRP is accounted for, and the results of numerical simulations
are presented in Section 5. Finally, we discuss and conclude in
Section 6.

2 C O M P U T E D P H Y S I C A L F E ATU R E S FRO M
T H E SH A P E O F ( 1 0 1 9 5 5 ) B E N N U

The three-dimensional shape of near-Earth asteroid (101955) Bennu
(provisional designation 1999 RQ36) is based on radar images and
optical light curves (Nolan et al. 2013). Bennu was observed both
in 1999, at its discovery apparition, and in 2005, using the 12.6-cm
radar at the Arecibo Observatory and the 3.5-cm radar at the
Goldstone tracking station. From the data set of EAR-A-I0037-
5-BENNUSHAPE-V1.0. of NASA Planetary Data System (2013),
we build a polyhedral model with 1348 vertices and 2692 faces
shown in Fig. 1. Radar astrometry combined with infrared astron-
omy provides an estimate of asteroid mass of 7.8(±0.9) × 1010 kg.
When linked with the shape model, the (101955) Bennu bulk den-
sity is 1.26 ± 0.7 g cm−3 (Chesley et al. 2014). The shape model
provides a total volume of 0.062 km3 with an equivalent diameter of
0.492 km. We fit the body centred at its centre of mass with the ro-
tation pole of the model lying along the z-axis (e.g. Table 1). So, the
overall dimensions of the asteroid shape model in the principal di-
rections are −0.2783 ≤ x ≤ 0.2881 km, −0.2661 ≤ y ≤ 0.2698 km
and −0.2457 ≤ z ≤ 0.2631 km.

We use the algorithm of Mirtich (1996) to obtain the values of
the moments of the principal axes of inertia, respectively, Ixx, Iyy,

Figure 1. Polyhedral shape model in 3D of asteroid (101955) Bennu shown
in six perspective views (±x, ±y, and ±z) with a scale size of 0.9981 relative
to the original shape. The shape was built with 2692 triangular faces.

Table 1. Coordinates shift to the centre of mass and rotation matrix to the
principal axes of inertia using the algorithm of Mirtich (1996).

Center of mass (m) +0.043 555 22 −0.000 899 25 +0.006 243 39
Eigenvectors (in columns) +0.999 999 50 +0.001 000 76 −0.000 040 66

−0.001 000 76 +0.999 999 50 +0.000 005 85
+0.000 040 67 −0.000 005 81 +0.999 999 99

and Izz, which are

Ixx = 1.8130 × 109 kg km2,

Iyy = 1.8836 × 109 kg km2,

Izz = 2.0334 × 109 kg km2. (1)

From the moments of inertia (Dobrovolskis 1996), we find an
equivalent ellipsoid with semimajor axes of 260 × 251 × 231 m,
which is close to the dynamically equivalent equal volume ellipsoid
shown in Lauretta et al. (2015). We can also derive from the mo-
ments of inertia the most important terms of the harmonic expansion
that correspond to the second-degree and -order gravity coefficients,
and these are equal to (Werner 1997)

C20R
2
0 = −2.3734 × 10−3 km2,

C22R
2
0 = 2.2646 × 10−4 km2, (2)

where the normalization radius R0 is arbitrary chosen. Differently
from the gravity field coefficients up to order and degree 4 shown in
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Table 2. Bennu unnormalized gravity field coefficients up to degree and
order 4 for the constant density of 1.26 g cm−3 and the total mass of
7.80 × 1010 kg. They are computed for a reference distance of 0.2459 km.
The frame is centred at the centre of mass and aligned with the principal
moments of inertia.

Order Degree Cnm Snm

0 0 1.000 000 0000 –
1 0 0 –
1 1 0 0
2 0 −3.925 753 4110 × 10−2 –
2 1 0 0
2 2 3.745 897 1411 × 10−3 0
3 0 1.471 169 8072 × 10−2 –
3 1 1.690 095 4267 × 10−3 1.663 304 0165 × 10−3

3 2 3.543 031 5751 × 10−5 3.768 384 8394 × 10−5

3 3 3.669 472 5097 × 10−4 −1.260 581 8113 × 10−4

4 0 3.076 044 5246 × 10−2 –
4 1 3.822 296 4288 × 10−4 1.772 054 3174 × 10−3

4 2 −4.836 971 8690 × 10−4 1.674 000 4235 × 10−4

4 3 −6.423 684 0214 × 10−5 5.405 395 7662 × 10−6

4 4 4.589 958 9934 × 10−5 6.602 667 9964 × 10−5

Nolan et al. (2013), we find more useful to present them unnormal-
ized in Table 2. In fact, the coefficients need to be fully normalized
from order 10 onwards to avoid divergence, because of the order of
their magnitudes according to the formula shown in Kaula (1966).
As we can see, and differently from the Earth, the zonal gravity
terms C20, C30 and C40 have a closer order of magnitude. This re-
veals an irregular gravity field with a shape somewhat more pointed
and cylindrical.

Another parameter (σ ) of the asteroid’s shape from the gravity
field is defined in Hu & Scheeres (2004). If σ = 1, the body has a
prolate inertia matrix, while one with σ = 0 corresponds to an oblate
matrix. For (101955) Bennu, σ = 0.3205. Thus, we can affirm that
asteroid (101955) Bennu is closer to an oblate shape value, which
is compatible with Fig. 1.

3 MA S C O N G R AV I T Y G R A D I E N T O F TH E
P O LY H E D R A L M O D E L

The first attempt to evaluate the potential of three-dimensional bod-
ies by the polyhedron method was developed by Werner (1994).
The polyhedron is divided into a collection of simple tetrahedra
with one of the vertices at the origin and the opposite face repre-
sented by a trinomial with predefined orientation. The polyhedral
approach allows us to calculate the total volume of a constant density
polyhedron and evaluate its gravitational field with good accuracy.
However, the computational cost is high, depending on the number
of tetrahedra that form the polyhedron. In order to reduce this cost,
Chanut et al. (2015a) developed a mathematical approach of the
mascon gravity tensor with respect to a shaped polyhedral source.
Thus, the gravitational potential suffered by an external point P
from the tetrahedron is

UT = μ

r
, (3)

where r = (ξ 2 + η2 + ζ 2)1/2 is the distance between the centre
of mass of the tetrahedron and the external point P, as represented
in Fig. 2. We take μ = GMT, where the gravitational parame-
ter is G = 6.67259 × 10−20 km3 kg−1 s−2 and MT represents the

Figure 2. Representation of a tetrahedron with vertex 0 at the origin and
the vectors u, v and w coming out from this vertex (Chanut et al. 2015a).

tetrahedron’s mass. Therefore, the potential and the first-order
derivatives of the shaped polyhedral source are

U =
n∑

i=1

μi

ri

, (4)

and

Uχ =
n∑

i=1

∂U

∂χi

=
n∑

i=1

(
∂U

∂ri

) (
∂ri

∂χi

)
=

n∑
i=1

−μiχi

r3
i

, (5)

where χ = (ξ , η, ζ ) and the sum represents the total quantity of
tetrahedra that compound the shaped polyhedral source with n the
number of faces and i the index of each face.

4 E QUAT I O N S O F M OT I O N A N D P OT E N T I A L
E N E R G Y

4.1 Equations of motion

As discussed by Scheeres et al. (2000), the solar gravity becomes
relevant when the spacecraft flies away farther from the asteroid,
which allows us to neglect any solar gravitational effect in the
vicinity of (101955) Bennu. The sidereal rotation period of (101955)
Bennu determined from both the light curve and radar data is 4.297 h
(Nolan et al. 2013). The data reveal a spheroidal asteroid undergoing
retrograde rotation. The spin rate of the asteroid is denoted as ω.
We use a rotating reference frame that is centred on the asteroid
(Szebehely 1967). Thus, in the body-fixed reference frame, the
equations of motion are

ẍ − 2ωẏ = ω2x + Ux, (6)

ÿ + 2ωẋ = ω2y + Uy, (7)

z̈ = Uz, (8)

where Ux, Uy and Uz denote the first-order partial derivatives of the
potential. Equations (6)– (8) admit an integral of motion, the Jacobi
function, defined as

J = 1

2
(ẋ2 + ẏ2 + ż2) − 1

2
ω2(x2 + y2) − U (x, y, z), (9)

where

1

2
ω2(x2 + y2) + U (x, y, z) = V (x, y, z) (10)
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Figure 3. Zero-velocity curves and equilibrium points of asteroid (101955) Bennu when the SRP is not accounted for. The colour code gives the intensity of
the Jacobi constant in km2 s−2. The equilibrium points outside the body, indicated by E1, E2, E3, E4, E5, E6, E7 and E8, are displayed using several gravity
models highlighted on the top of each figure.

is the modified potential energy and

1

2
(ẋ2 + ẏ2 + ż2) = TE (11)

represents the kinetic energy of the particle regarding the rotating
asteroid.

4.2 Zero-velocity curves and equilibria

We can provide concrete informations of the possible motion of
a particle analysing the zero-velocity surfaces defining the Jacobi
function as constant C, where J + C = 0. Note that V(x, y, z) ≥ 0
over the entire space, and because TE ≥ 0, let us constrain the study
to the inequality

V (x, y, z) ≥ C, (12)

which divides the x, y, z space into regions where the motion of the
particle is allowed and where it is not, given a specific value for
C. The general situation was discussed in more detail by Scheeres
(1994). Setting TE = 0 on the x, y, z space, the equation

V (x, y, z) = C (13)

represents the zero-velocity surfaces and
Fig. 3 shows their projections on to the z = 0 plane for differ-

ent gravity models. The first model improved by Tsoulis (2012),
called polyhedral model, is the more accurate, but needs a large
computational effort. The other models are divisions in several lay-
ers of tetrahedrons and were developed by Chanut et al. (2015a).
In the present case, we share each tetrahedron up to 10 layers of
equal thickness. When the value of the Jacobi constant C is varied,
the surfaces change. For some C values, the surfaces intersect or
close on themselves at points in the x–y–z space, ordinarily called
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Table 3. CPU time needed to compute the 106 points of the grid on a
Pentium 3.10 GHz computer.

Asteroid Mascon 4 Mascon 6 Mascon 10 Tsulis

(101955) Bennu 11 min 32 s 13 min 25 s 21 min 15 s 121 min 39 s

equilibrium points. Due to its oblate spherical shape, there are
eight equilibrium points in the potential field close to the asteroid
(101955) Bennu. As the surfaces are evaluated close to the critical
values of C, Fig. 3 indicates the location of the eight equilibrium
points projected on to the equatorial plane.

In their analysis of the potential field and equilibrium points of
irregular-shaped minor celestial bodies, Wang, Jiang & Gong (2014)
found the location of the equilibrium points of asteroid Bennu with
different values of the bulk density (0.97 g cm−3) and sidereal rota-
tion period (4.288 h). As we can see, in the above-mentioned figure,
the equilibrium points seem to be farther from the body with the
present density and rotation period. Furthermore, from Fig. 3, the
location of equilibrium points with the Mascon 10 model is closer
if compared to the classic method.

On the other hand, each additional division in the mascon model
somewhat increases the computational cost, as shown in Table 3. We

have, for example, a remarkable difference between the Mascon 4
and Mascon 10 models in Fig. 3, with only an accretion of 10 min in
execution. The computational cost is very important to be taken into
account, because it increases considerably in numerical integrations.
The Mascon 10 seems to be convenient here, as we tested higher
divisions and the computational time greatly increases with a little
difference in accuracy.

The exact location of the equilibrium points can be found solving

∇V (x, y, z) = 0, (14)

and we show the results in Table 4 for the classical polyhedral model
and for the Mascon 10 model with the corresponding energy value
C for each point.

The difference between the two models occurs in the third dec-
imal digit and we consider acceptable a difference of the order of
a metre. So, we can conclude that Mascon 10 has a good accuracy
with respect to the classical polyhedral model for the calculation
of equilibria. Due to (101955) Bennu irregular shape, there is no
symmetry between the saddle points and the centre points. Wang
et al. (2014) showed that all the eight equilibrium points outside the
asteroid Bennu (E1–E8) are unstable with their chosen bulk density
(0.97 g cm−3). The odd indices identify saddle points, while the even
indices are associated with centre points. However, recently Wang,

Table 4. Locations of equilibrium points and their related Jacobi constant C values generated by the Tsoulis and Mascon
gravity tensor methods.

x(km) y(km) z(km) C(km2 s−2)

Tsoulis (uniform density)
E1 0.327 127 80 0.018 817 05 − 0.003 232 54 − 2.518 5392 × 10− 8

E2 0.128 358 25 0.290 493 37 − 0.002 482 51 − 2.478 6276 × 10− 8

E3 − 0.150 870 24 0.285 729 02 − 0.007 996 64 − 2.497 7207 × 10− 8

E4 − 0.224 407 18 0.229 989 57 − 0.007 343 51 − 2.496 0632 × 10− 8

E5 − 0.313 652 15 − 0.091 387 46 − 0.002 307 23 − 2.514 8952 × 10− 8

E6 − 0.023 594 39 − 0.318 567 13 0.000 261 25 − 2.485 7406 × 10− 8

E7 0.162 359 90 − 0.278 838 94 − 0.001 960 89 − 2.494 4932 × 10− 8

E8 0.220 212 04 − 0.233 837 64 − 0.002 859 34 − 2.493 8440 × 10− 8

Mascon 10 (uniform density)
E1 0.327 530 73 0.017 613 48 − 0.003 229 19 − 2.527 486 × 10− 8

E2 0.128 363 37 0.291 107 50 − 0.002 474 24 − 2.488 105 × 10− 8

E3 − 0.152 013 20 0.285 567 98 − 0.007 715 26 − 2.506 817 × 10− 8

E4 − 0.223 665 30 0.231 503 18 − 0.007 137 17 − 2.505 418 × 10− 8

E5 − 0.314 240 51 − 0.090 535 20 − 0.002 277 28 − 2.523 795 × 10− 8

E6 − 0.022 941 23 − 0.319 177 90 0.000 159 56 − 2.495 140 × 10− 8

E7 0.165 953 31 − 0.277 113 88 − 0.002 017 68 − 2.503 559 × 10− 8

E8 0.217 473 42 − 0.237 173 55 − 0.002 789 87 − 2.503 119 × 10− 8

Tsoulis (two-layered structure)
E1 0.328 165 67 0.019 092 58 − 0.003 447 06 − 2.522 7172 × 10− 8

E2 0.129 523 21 0.290 124 70 − 0.002 652 87 − 2.479 1869 × 10− 8

E3 − 0.149 259 87 0.287 429 42 − 0.008 729 64 − 2.500 3119 × 10− 8

E4 − 0.226 534 34 0.228 503 36 − 0.008 037 14 − 2.498 1428 × 10− 8

E5 − 0.314 379 75 − 0.092 364 78 − 0.002 475 85 − 2.518 7497 × 10− 8

E6 − 0.024 441 05 − 0.318 813 61 0.000 398 31 − 2.487 0682 × 10− 8

E7 0.159 382 33 − 0.281 433 37 − 0.002 044 63 − 2.496 8379 × 10− 8

E8 0.224 633 61 − 0.230 079 60 − 0.003 169 65 − 2.495 7693 × 10− 8

Mascon 10 (two-layered structure)
E1 0.327 992 44 0.017 892 87 − 0.003 456 90 − 2.522 122 × 10− 8

E2 0.129 366 62 0.290 142 65 − 0.002 651 15 − 2.479 068 × 10− 8

E3 − 0.149 671 03 0.286 994 29 − 0.008 477 89 − 2.499 839 × 10− 8

E4 − 0.225 731 66 0.229 248 87 − 0.007 852 74 − 2.497 922 × 10− 8

E5 − 0.314 371 38 − 0.091 480 43 − 0.002 457 38 − 2.518 088 × 10− 8

E6 − 0.023 832 61 − 0.318 817 51 0.000 300 15 − 2.486 889 × 10− 8

E7 0.161 632 45 − 0.279 871 05 − 0.002 096 92 − 2.496 327 × 10− 8

E8 0.222 563 75 − 0.232 035 95 − 0.003 119 98 − 2.495 480 × 10− 8
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Table 5. Eigenvalues of Jacobi matrix of the eight external equilibrium points and their stability.

Eigenvalues × 10−4 E1 E2 E3 E4 E5 E6 E7 E8

Tsoulis (uniform density)
λ1 4.6265 i 4.3031 i 4.5318 i 4.4365 i 4.6124 i 4.3623 i 4.5252 i 4.4442 i
λ2 −4.6265 i −4.3031 i −4.5318 i −4.4365 i −4.6124 i − 4.3623 i −4.5252 i −4.4442 i
λ3 4.2744 i −0.4427 + 2.7267 i 3.9935 i −0.4715 + 2.6227 i 4.0714 i −0.3781 + 2.6694 i 3.8816 i 3.0387 i
λ4 −4.2744 i −0.4427 − 2.7267 i −3.9935 i −0.4715 − 2.6227 i −4.0714 i −0.3781 − 2.6694 i −3.8816 i −3.0387 i
λ5 −2.5846 0.4427 + 2.7267 i −1.8683 0.4715 + 2.6227 i −2.2036 0.3781 + 2.6694 i −1.5965 2.0025 i
λ6 2.5846 0.4427 − 2.7267 i 1.8683 0.4715 − 2.6227 i 2.2036 0.3781 − 2.6694 i 1.5965 −2.0025 i

Mascon 10 (uniform density)
λ1 4.5929 i 4.2946 i 4.5063 i 4.4263 i 4.5791 i 4.3548 i 4.4983 i 4.4340 i
λ2 −4.5929 i −4.2946 i −4.5063 i −4.4263 i −4.5791 i −4.3548 i −4.4983 i −4.4340 i
λ3 4.2676 i −0.4021 + 2.7271 i 3.9808 i −0.2122 + 2.5973 i 4.0710 i −0.2472 + 2.6602 i 3.8659 i 3.1951 i
λ4 −4.2676 i −0.4021 − 2.7271 i −3.9808 i −0.2122 − 2.5973 i −4.0710 i −0.2472 − 2.6602 i −3.8659 i −3.1951 i
λ5 −2.5124 0.4021 + 2.7271 i −1.7771 0.2122 + 2.5973 i −2.1322 0.2472 + 2.6602 i −1.4782 1.7680 i
λ6 2.5124 0.4021 − 2.7271 i 1.7771 0.2122 − 2.5973 i 2.1322 0.2472 − 2.6602 i 1.4782 −1.7680 i

Case (stability) 2 (U) 5 (U) 2 (U) 5 (U) 2 (U) 5 (U) 2 (U) 1 (LS)

Tsoulis (two-layered structure)
λ1 4.6789 i 4.3283 i 4.5817 i 4.4743 i 4.6635 i 4.3917 i 4.5767 i 4.4760 i
λ2 −4.6789 i −4.3283 i −4.5817 i −4.4743 i −4.6635 i −4.3917 i −4.5767 i −4.4760 i
λ3 4.2968 i −0.6551 + 2.7495 i 4.0060 i −0.7725 + 2.6616 i 4.0822 i −0.6391 + 2.6949 i 3.9090 i −0.4496 + 2.5850 i
λ4 −4.2968 i −0.6551 − 2.7495 i −4.0060 i −0.7725 − 2.6616 i −4.0822 i −0.6391 − 2.6949 i −3.9090 i −0.4496 − 2.5850 i
λ5 −2.7129 0.6551 + 2.7495 i −2.0112 0.7725 + 2.6616 i −2.3277 0.6391 + 2.6949 i −1.7975 0.4496 + 2.5850 i
λ6 2.7129 0.6551 −2.7495 i 2.0112 0.7725 − 2.6616 i 2.3277 0.6391 − 2.6949 i 1.7975 0.4496 − 2.5850 i

Mascon 10 (two-layered structure)
λ1 4.6481 i 4.3209 i 4.5584 i 4.4658 i 4.6323 i 4.3856 i 4.5522 i 4.4669 i
λ2 −4.6481 i −4.3209 i −4.5584 i −4.4658 i −4.6323 i −4.3856 i −4.5522 i −4.4669 i
λ3 4.2909 i −0.6373 + 2.7511 i 3.9954 i −0.6724 + 2.6416 i 4.0821 i −0.5864 + 2.6878 i 3.8992 i −0.1809 + 2.5600 i
λ4 −4.2909 i −0.6373 − 2.7511 i −3.9954 i −0.6724 − 2.6416 i −4.0821 i −0.5864 − 2.6878 i −3.8992 i −0.1809 − 2.5600 i
λ5 −2.6499 0.6373 + 2.7511 i −1.9358 0.6724 + 2.6416 i −2.2643 0.5864 + 2.6878 i −1.7123 0.1809 + 2.5600 i
λ6 2.6499 0.6373 − 2.7511 i 1.9358 0.6724 − 2.6416 i 2.2643 0.5864 − 2.6878 i 1.7123 0.1809 − 2.5600 i

Case (stability) 2 (U) 5 (U) 2 (U) 5 (U) 2 (U) 5 (U) 2 (U) 5 (U)

Jiang & Gong (2016) have shown that within the limits of density
and rotation defined by Chesley et al. (2014), the centre points can
become linearly stable by changing the topological structure from
case 5 to case 1 (Jiang et al. 2014). In Aljbaae et al. (2017), we pre-
sented the corrected form of the second-order derivatives of Chanut
et al. (2015a). We solved the linearized state equations in the neigh-
bourhood of the equilibrium points (Jiang et al. 2014), and we show
the unnormalized eigenvalues and their stability type in Table 5.
From the physical features chosen, we confirm that the equilib-
rium point E8 becomes linearly stable. According to Scheeres et al.
(2016), there is one stable centre equilibrium point at the nominal
density, and three stable centre equilibrium points at the highest
density. If there are stable equilibria in Bennu, a concentration of
dust distributed on the surface of the asteroid can be expected in the
vicinity of these regions, since an impact may cause the launched
regolith to be captured in those regions and returns to the surface.

The goal is now to investigate the variation in the gravity field due
to the non-homogeneous mass distribution and to check the effects
of the non-homogeneous distribution on the equilibria. In Aljbaae
et al. (2017), we tested two different mass distributions for asteroid
(21) Lutetia and we found that the two models of layered structures
are not determinant for the stability of the equilibria. For (101955)
Bennu, we take the two-layered model described as a surface model
in Scheeres et al. (2016). This distribution is illustrated in Fig. 4
with the two volumes in the body adjusted for the total mass to
remain constant. The model corresponds to a volume-equivalent
diameter of 491.8 m, where the crust has a mean thickness of
49.2 m occupying 48.8 per cent of the total volume with a density

Figure 4. Two-layered structure of asteroid (101955) Bennu with a 50 m
deep surface layer.

of 1.507 g cm−3, which represents 58.72 per cent of the total mass.
The core, based on rubble-pile characteristics, is considered with
a density of 1.010 g cm−3. Fig. 5 shows the projections of the
zero-velocity surfaces on to the z = 0 plane when the two-layered
model of density distribution is considered. The equilibria do not
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Figure 5. Zero-velocity curves and equilibrium points of asteroid (101955)
Bennu. The colour code gives the intensity of the Jacobi constant in km2 s−2.
The equilibrium points outside the body are displayed using the Mascon 10
gravity model shown in Fig. 4.

Table 6. CPU time needed to find the eight equilibrium points on a Pentium
3.10 GHz computer.

Asteroid Mascon 10 Mascon 10(2) Tsoulis Tsoulis(2)

(101955) Bennu 65 min 27 s 62 min 26 s 148 min 57 s 414 min 04 s

fundamentally change unless a little displacement away from the
body is considered. The equilibrium points E3 and E4 and also
the points E7 and E8 seem to move away from each other. So, we
can differentiate the topological structure of the equilibrium points
better in the figure. It does not happen with the nominal constant
density and for higher densities, these points mix and disappear
(Scheeres et al. 2016; Wang et al. 2016). The eigenvalues and their
stability type for the two gravity models are shown at the bottom of
Table 5. What we can highlight is that the centre point E8, which was
linearly stable in the case of the homogeneous mass distribution,
returns to be unstable changing the topological structure from cases
1 to 5. This situation already existed with the low density, and it can
make a previously stable trajectory about the centre point to become
unstable, allowing the spacecraft or any particles to be ejected or
briefly collide with the asteroid. This possibility must be taken into
account by the OSIRIS-REx mission. Other factors, such as the
SRP, can make periodic motions about those equilibrium points to
be unstable (Xin et al. 2016), but this point will not be investigated in
the paper. Another important point is that the running time shown in
Table 6 indicated that the classical polyhedron model of gravitation
is not very well suited for the division into several different density
layers, while the Mascon mathematical model described in Chanut
et al. (2015a) seems more applicable for this purpose. Unlike the
Tsoulis method, in the mascon model case, the calculations are done
only one time for the total potential, independently of each layer
density. However, certain distributions may favour the calculations
in the execution. It is the case here for the two density layers.

Figure 6. Schematic illustration of the SRP model (Xin et al. 2016).

5 DY NA M I C S C L O S E TO ( 1 0 1 9 5 5 ) B E N N U
WI TH SRP

5.1 SRP dynamical model

We consider the case of a spacecraft in the vicinity of an asteroid
and significantly far from any other celestial body. In fact, since
the mean motion of the asteroid around the Sun is generally much
smaller than its spin rate, the radiation pressure from the Sun has a
constant direction and magnitude at a given distance. When studying
the dynamics around it for a short time interval, we can assume that
during this time interval, the position of the Sun is ‘frozen’ in the
inertial space. The formulation of Hill’s problem taking into account
the effect of SRP was presented by Scheeres & Marzari (2002).
However, in the body-fixed frame of the asteroid, as represented in
Fig. 6, the Sun has a circular orbit perpendicular to the asteroid’s
spin axis, with a constant latitude θ and a time-varying longitude
ψ = −ωt + ψ0, where ψ0 is the initial longitude of the Sun.

Therefore, the SRP is acting in the antisunward direction. Con-
sequently, the equations of motion taking SRP into account are

ẍ − 2ωẏ = ω2x + Ux − νg cos θ cos ψ, (15)

ÿ + 2ωẋ = ω2y + Uy − νg cos θ sin ψ, (16)

z̈ = Uz − νg sin θ, (17)

where Ux, Uy and Uz denote the first-order partial derivatives of the
potential and g is the SRP magnitude computed as

g = β

D2
, (18)

where β = (1 + η)G1/B, G1 = 1 × 108 kg km3 s−2 m−2 is a
solar constant, B is the spacecraft mass-to-area ratio in kg m−2,
η is the reflectance of the spacecraft and D is the distance of
the spacecraft from the Sun in km. Here, we consider D =
RS (the heliocentric distance of the asteroid), while R is negli-
gible with respect to RS close to the body. For the spacecraft
OSIRIS-REx mass–area ratio, we took the values of Lantoine,
Broschart & Grebow (2013) that allow B � 96 kg m−2 and a re-
flectance of the material η = 0.2. ν represents the solar eclipse for
the shadow projected by an ellipsoidal asteroid taking the values 1
or 0 as defined in (Xin et al. 2016).

5.2 Numerical simulations and initial conditions

In this section, we numerically test and analyse the evolution of
the dynamics of equatorial, direct orbits, considering the 3D grav-
itational perturbation and the SRP close to the asteroid (101955)
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Bennu. As done in the previous section, we choose the mascon
gravity tensor implemented by Chanut et al. (2015a), with each
tetrahedron divided into 10 equal thickness layers (Mascon 10).
The path of the spacecraft is calculated using the equations of mo-
tion (equations 15–17) in the rotating body-fixed reference frame,
and the equations are integrated by the Bulirsch–Stoer numeri-
cal algorithm. The initial orbits of the spacecraft are launched at
the periapsis radius of the equatorial plane (z = 0) for four val-
ues of its longitude λ ∈ (0, 360◦). The interval between the initial
values of λ is 90◦ and the initial periapsis radii are taken from
0.34 km up to 0.7 km, with an interval of 10 m. Moreover, the
initial eccentricities of the spacecraft’s orbit start from 0 up to 0.4,
with an interval of 0.01. The initial velocities are taken from the
two-body problem in the rotating body-fixed reference frame when
there is no other perturbative force depending on time (equations
6–8) or the initial position of the spacecraft is in the shadow. If
we put the same initial velocities between cases with and with-
out SRP, this means that the initial position of the spacecraft is
always in the shadow, which is only true when the Sun is in the
opposite direction. Let v0x, v0y and v0z be those initial veloci-
ties. However, integrating equations 15– 17 with respect to time
and for t = 0, the term containing the time-varying longitude ap-
pears in the initial velocities where v′0x = v0x + g

ω
cos θ sin ψ0,

v′0y = v0y − g

ω
cos θ cos ψ0 and v′0z = v0z = 0. The pole orienta-

tion in ecliptic coordinates was determined by Nolan et al. (2013)
as (−88◦, 45◦). So, we take θ = 2◦ and two values for the whole
simulations with the Sun initial longitude ψ0 = −180 + 45◦ or
ψ0 = −135◦, and ψ0 = −180◦ when the sun direction lies along
the x-axis. To verify if it exists a certain symmetry in the behaviour
around asteroid (101955) Bennu as pointed out by Xin et al. (2016)
in the case of the ellipsoid, we will test the intermediate longitudes
of the Sun ψ0 = −90◦ and ψ0 = −45◦ at the initial spacecraft
longitude λ = 90◦. Broschart, Lantoine & Grebow (2014) have cor-
rected some values of parameters of various mission configurations.
However, they have computed the reflectance in their B parameters,
while we compute the reflectance only in the β parameter. As values
of B, we take B = 96 kg m−2 for the OSIRIS-REx probe. The re-
flectance η = 20 per cent is taken into account in our calculation of
β. In order to evaluate the maximum, medium and minimum values
of the g parameter of equation (18), we consider the motion of the
spacecraft close to the asteroid Bennu when it is at the perihelion
distance D = 0.8969 au, semimajor axis distance D = 1.1264 au
and aphelion distance D = 1.3559 au from the Sun. When the path
of the spacecraft crosses the boundaries of the ellipsoid approxima-
tion with semimajor axes (0.29 × 0.27 × 0.26 km), we consider that
the spacecraft has impacted with the asteroid and the integration is
stopped. The integration’s time is ≈60 d, adequate to determinate
the final destiny of the orbits. This time allows us to consider ac-
ceptable not to change the distance of the asteroid from the Sun
during the integration.

5.3 Results of the numerical simulations

It is reasonable to consider that the gravitational perturbation due
to Bennu shape should be weaker than the analogous perturbations
for asteroids like (216) Kleopatra or (433) Eros. As we neglected
other effects beyond the gravitational and SRP, the SRP becomes
a relevant perturbation. Orbits that increase less than 0.01 in their
eccentricities will be considered as stable and marked in green in the
figures. Furthermore, the trajectories that collide with the asteroid
will be marked in red. In an attempt to model a close encounter of the
OSIRIS-REx probe with the asteroid (101955) Bennu, we followed

the trajectories in the 3D space to verify their ultimate fate. The
trajectories are launched from four initial longitudes in the equato-
rial plane, where, in principle, the highest and lowest values of the
energy potential occur, as shown in Table 4 . Taking into account the
whole trajectories, we generated Fig. 7 after an integration of 60 d,
or more than 330 (101955) Bennu rotation periods. Here, we choose
eccentricities compatible with an observation mission (e = 0 up to
e = 0.4). The SRP is not accounted for. Orbits with initial λ = 0
appear to be less subject to collision, which may keep low eccentric
orbits near the body for more time. On the contrary, orbits with ini-
tial λ = 90◦ and 270◦ are more likely to collide when the SRP is not
accounted for. When compared with the asteroid (216) Kleopatra or
(433) Eros (Chanut et al. 2014, 2015b), we need to add a factor of π .
That is probably due to the fact that asteroid (101955) Bennu is un-
dergoing retrograde rotation. Moreover, below 0.34 km, the orbits
are unstable, and we checked that the limit radius for direct, initially
equatorial circular orbits that cannot impact with (101955) Bennu
surface is, indeed, 0.42 km. For the initial conditions that we choose,
it clearly appears that most of the orbits are stable beyond 0.5 km.
However, below this distance, orbits with initial λ = 90◦ and 270◦

seem to find more stable conditions. The results are shown in Fig. 7.
We wish to show the effect of SRP on the close approach of the

spacecraft at different distances of (101955) Bennu’s orbit relative
to the Sun. We set the SRP in six configurations: at the points of
maximal, medium and minimal perturbation and for the character-
istics of OSIRIS-REx Spacecraft when the eclipse is accounted for
or not. As seen previously, we choose two initial longitudes for the
Sun. The results for the Sun initial longitude ψ0 = −180◦ are shown
in Fig. 8 and for ψ0 = −135◦ in Fig. 9. In a general way, we can
see in Fig. 8 that the SRP disturbs the orbits and a great number of
collisions occurs where initially stable orbits existed. Furthermore,
stable orbits that started at longitude 0◦ occur in a great number at
periapsis radius closer to (101955) Bennu, between 0.4 and 0.5 km.
We also find somewhat more stability for the orbits launched from
the longitude 270◦. This fact was observed under the conditions
that can be encountered by the OSIRIS-REx probe close at the aphe-
lion distance of the asteroid. However, we can highlight that the
radiation pressure destabilizes the spacecraft’s orbits further, caus-
ing them to collide when the asteroid approaches its perihelion.
The orbits that start at the longitude λ = 0◦ appear to be more
stable even when the SRP reaches its maximum. When the passage
of the spacecraft in the shadow is accounted for, the effects of SRP
are softer and we find a larger portion of stable orbits. We encounter
the same behaviour at the longitude λ = 90◦ when the Sun initial
longitude is ψ0 = −90◦ (Fig. A2). This shows that orbits that began
in the projected shadow seem to be more stable. We encounter some
stability still below 0.5 km and with a relatively low initial eccen-
tricity. It happens for the other initial longitudes when the shadow
effect is accounted for and the SRP is at its lowest value. When
we change the initial longitude of the Sun to ψ0 = −135◦, Fig. 9
shows that the orbits with initial longitude λ = 90◦ appear to be
more stable than those of Fig. 8. It also occurs when the orbit begins
in λ = 90◦ with the initial longitude of the Sun ψ0 = −45◦. So,
we notice a certain symmetry regarding the effects of SRP on the
behaviour of the spacecraft around asteroid (101955) Bennu. It is
certainly due to its shape, with a small ellipticity, as shown in Fig.
1. Furthermore, the orbits that start at the longitude λ = 0◦ are less
stable for ψ0 = −135◦. Thus, we show the results in Appendix A
for all the initial longitudes when the asteroid reaches its minimum
distance from the Sun (perihelion), and in this case, we find almost
none stability for all the initial longitudes when the asteroid reaches
its minimum distance from the Sun (perihelion).
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Figure 7. Stability maps of the equatorial orbits relative to (101955) Bennu with initial longitudes λ = 0, 90◦, 180◦ and 270◦ after 60 d. The initial eccentricity
e goes from 0 up to 0.4 at their periapsis radius and is compared with the maximal eccentricity of the orbit. The initial periapsis radii are from 0.35 to 0.7 km.
The SRP is not accounted for.

From the results of Fig. 8, two examples of 3D equatorial orbits
around (101955) Bennu after 60 d are displayed in Figs 10 and 11.
We take these examples to show that the SRP can disturb the orbit,
making it precess or regress depending on the initial conditions.
The initial eccentricity is 0.1 with initial periapsis radius 0.43 km
and λ = 0◦ for the first and λ = 90◦ for the last one. In both cases,
we show the effects of the passage of the spacecraft through the
projected shadow of the asteroid. The behaviour of the semimajor
axis and the eccentricity with respect to time are also shown. In
the first case, the shadow prevents the probe from leaving its stable
orbit, while in the second case, it increases the time of the orbit and
allows the probe to visit regions far away, with passages closer to
the body. From Figs 10 and 11, we can conclude that the shadow
avoids the SRP to be strong enough to pull the probe towards the
asteroid, which also increases the orbital time before the collision.

6 C O N C L U S I O N S

In this work, we modelled the gravity field of the asteroid (101955)
Bennu using the new approach of mascon gravitation, developed

by Chanut et al. (2015a), where the mascon gravity framework
(Geissler et al. 1996) was applied using the shaped polyhedral
source (Werner 1994). We tested this model analysing the equi-
libria near (101955) Bennu when the SRP is not accounted for. We
found the same results that Wang et al. (2016) have shown within
the limits of density and rotation defined by Chesley et al. (2014).
In this case, the centre point E8 can become linearly stable by
changing the topological structure from cases 5 to 1 (Jiang et al.
2014). However, when we took the two-layered model described as
a surface model in Scheeres et al. (2016), we can highlight that the
centre point E8, which was linearly stable in the case of the homo-
geneous mass distribution, returns to be unstable when changing its
topological structure from cases 1 to 5. This case already existed
when we set the low density and can cause that previously stable
trajectory about the centre point becomes unstable. The spacecraft
or any particle may not remain in the proximity of the centre point
and can briefly collide with the asteroid. This possibility will be ac-
counted for by the OSIRIS-REx mission. The space probe also may
not find debris near the surface, which would greatly facilitate the
approach manoeuvres. Even though not so accurate on the surface
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Figure 8. Stability maps of the equatorial orbits relative to (101955) Bennu with the same initial conditions of Fig. 7. The SRP is accounted for with the Sun
initial longitude ψ0 = −180◦. The (101955) Bennu distance from the Sun R is noted on the top of the related graphics and the eclipse is not taken into account
in (1) and accounted for in (2).
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Figure 9. Stability maps of the equatorial orbits relative to (101955) Bennu where the SRP is accounted for with the Sun initial longitude ψ0 = −135◦. As in
Fig. 8, the (101955) Bennu’s distance from the Sun R is noted on the top of the related graphics and the eclipse is not taken into account in (1) and accounted
for in (2).

when compared to the classical polyhedron method, we found that
the model Mascon 10 is suitable regarding the computational effort.
We have, for example, a remarkable difference between the method
Mascon 4 and Mascon 10 with only an accretion of 10 min in ex-
ecution time. Moreover, we verified that the Mascon 10 model is
adequate when modelling different layers of densities, with respect
to the classical polyhedron method that considerably increases the
execution time, making it unviable. Unlike the Tsoulis method, the
calculations of the mascon model were done only one time for the
total potential, independently of each layer density.

We also modelled the SRP with a dynamics around rotating
asteroids and shadow effect (Xin et al. 2016). Taking into ac-
count the maximum and minimum values of the g parameter of
the SRP, we considered the motion of the spacecraft close to
the asteroid (101955) Bennu when it is at the perihelion distance
D = 0.8969 au, semimajor axis distance D = 1.1264 au and aphe-
lion distance D = 1.3559 au from the Sun. So, we did 3D numerical
simulations of initially equatorial orbits of the probe OSIRIS-REx

near the asteroid with B = 96 kg m−2 for the spacecraft OSIRIS-
REx mass–area ratio and a reflectance of 20 per cent. We found
that, below 0.34 km, the orbits are unstable and the limit radius for
direct, initially equatorial circular orbits that will not impact with
(101955) Bennu surface is 0.42 km when the SRP is not accounted
for. The results for the whole simulations with the Sun initial lon-
gitude ψ0 = −180◦ and −135◦ have shown that the SRP greatly
increases the instability of the equatorial orbits. Moreover, starting
with longitude λ = 0, the orbits suffer fewer impacts and some
(between 0.4 and 0.5 km) remain stable even if we consider the
maximum solar radiation. We found the same behaviour at the lon-
gitude λ = 90◦ when the Sun initial longitude is ψ0 = −90◦. The
farther orbits are more unstable due to the fact that SRP may not bal-
ance the gravitation force. When we change the initial longitude of
the Sun to be ψ0 = −135◦, the orbits with initial longitude λ = 90◦

appear to be more stable than those with the Sun at initial longi-
tude ψ0 = −180◦. However, the orbits that start at the longitude
λ = 0◦ are less stable than in the first case. The asteroid’s shadow
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Figure 10. 3D equatorial orbits around (101955) Bennu after 60 d. These orbits are launched from the longitude λ = 0◦. The initial eccentricity is 0.1 and
its initial periapsis radius is 0.43 km. The SRP is accounted for without the shadow in (1) and with the passage in the shadow in (2). The behaviour of the
semimajor axis is represented in the middle column and the eccentricity in the right-hand column.

diminishes the effects of solar radiation in the vicinity of the body.
This allows the eccentricity of the equatorial orbits closer to the
body to be maintained, with the most pronounced effect when the
orbits are started with relatively low initial eccentricity. We can con-
clude that the OSIRIS-REx spacecraft may encounter regions where
the SRP counterbalances the gravity force to make its approach
manoeuvres. These regions lie in a range between 400 and 500 m
from the asteroid, where the manoeuvres must occur preferably in
the antisunward direction. It follows, that in this case, the spacecraft
is in the shaded region. It is important to also emphasize that the
spacecraft may encounter a great instability near (101955) Bennu
when the asteroid is in the closest position from the Sun. Finally,
we found a certain symmetry on the behaviour of the spacecraft
around the asteroid (101955) Bennu regarding the initial position of

the Sun and it is certainly due to the small ellipticity of the shape,
as shown in Fig. 1.

These are preliminary results and the spacecraft can encounter
other configurations since we do not take into account the retro-
grade equatorial orbits. Although more stable nearby the body when
the solar radiation is accounted for, some tests have shown that
nearly circular orbits can only serve as transition orbits to the polar
orbits when asteroid (101955) Bennu will be in its aphelion position
around the Sun. In its approach to the Sun, the eccentricity of these
orbits should be increased. Furthermore, we do not also investigate
polar orbits in this study, but the shape of (101955) Bennu and the
zero-velocity curves may suggest that polar orbits are more unsta-
ble nearby the body. These orbits should be investigated in a future
research.
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Figure 11. 3D equatorial orbits around (101955) Bennu after 60 d. These orbits are launched from the longitude λ = 90◦. The initial eccentricity is 0.1 and
its initial periapsis radius is 0.43 km. The SRP is accounted for and shown like in Fig. 10.
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Wang X., Jiang Y., Gong S., 2014, Astrophys. Space Sci., 353, 105
Wang X., Jiang Y., Gong S., 2016, MNRAS, 455, 3724
Werner R. A., 1994, Celest. Mech. Dyn. Astron., 59, 253
Werner R. A., 1997, Comput. Geosci., 23, 1071
Werner R. A., Scheeres D. J., 1997, Celest. Mech., 65, 313
Williams G. V., 2015, MPE Circ., MPEC 1999-R44
Xin X., Scheeres D. J., Hou X., 2016, Celest. Mech. Dyn. Astron., 126, 405

APPENDI X A : STA BI LI TY MAPS

Figure A1. Stability maps of the equatorial orbits relative to (101955) Bennu, where the SRP is accounted for with the Sun initial longitude ψ0 = −135◦. The
(101955) Bennu’s distance from the Sun R is noted on the top of the related graphics, and the eclipse is not taken into account in (1) and accounted for in (2).
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Figure A2. Stability maps of the equatorial orbits relative to (101955)
Bennu with initial longitude λ = 90◦. The SRP with the Sun initial longitude
ψ0 =−90◦ and the eclipse are accounted for. The (101955) Bennu’s distance
from the Sun R is noted on the top of the related graphic.

Figure A3. Stability maps of the equatorial orbits relative to (101955)
Bennu with initial longitude λ = 90◦. The SRP with the Sun initial longitude
ψ0 = −45◦ and the eclipse are accounted for. As Fig. A2, the (101955)
Bennu’s distance from the Sun R is noted on the top of the related graphic.
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