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ABSTRACT
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In the present study a simplified multiscale atmosphere-ocean coupled

model for the tropical interactions among synoptic, intraseasonal and inter-

annual scales is developed. Two nonlinear equatorial β -plane shallow wa-

ter equations are considered: one for the ocean and the other for the atmo-

sphere. The nonlinear terms are: the intrinsic advective nonlinearity and the

air-sea coupling fluxes. To mimic the main differences between the fast-

atmosphere and the slow-ocean, suitable anisotropic multi space/time scal-

ings are applied, yielding a balanced Synoptic/Intraseasonal/interannual-El

Niño (SInEN) regime. In this distinguished balanced regime, the synoptic is

the fastest atmospheric time-scale, the intraseasonal is the intermediate air-

sea coupling time-scale (common to both fluid flows) and El Niño refers to

the slowest interannual ocean time-scale. The asymptotic SInEN equations

reveal that the slow wave amplitude evolution depends on both types of non-

linearities. Analytic solutions of the reduced SInEN equations for a single

atmosphere-ocean resonant triad illustrate the potential of the model to un-

derstand slow frequency variability in the tropics. The resonant nonlinear

wind stress allows a mechanism for the synoptic scale atmospheric waves to

force intraseasonal variability in the ocean. The intraseasonal ocean tempera-

ture anomaly coupled with the atmosphere through evaporation forces synop-

tic and intraseasonal atmospheric variability. The wave-convection coupling

provides another source for higher order atmospheric variability. Nonlinear

interactions of intraseasonal ocean perturbations may also force interannual

oceanic variability. The constrains that determine the establishment of the

atmosphere-ocean resonant coupling can be viewed as selection rules for the

excitation of intraseasonal variability (MJO) or even slower interannual vari-

ability (El Niño).
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1. Introduction35

Although incoming solar radiation is the main external energy source for the planet, the terres-36

trial components (atmosphere, hydrosphere, biosphere and lithosphere) manage the energy input37

and define both the fast (weather-scale) and the slow (climate-scale) responses. Moreover, among38

the terrestrial components of the earth’s system, the atmosphere and ocean (a sub-component of the39

hydrosphere) are the leading contributors (Gabites 1950; Fritz 1958). In the weather time-scale,40

there are outstanding variabilities from microscales to the intra-diurnal (< 24 hrs), the mesoscale41

(< 2 days) and at synoptic-scale (3 - 7 days). On the other hand, in the climate time-scale, vigor-42

ous spectral peaks are found in the intraseasonal (30-180 days), the inter-annual to El Niño (1.5 -43

7 yrs) and the multidecadal (> 10 yrs) time-scales.44

Recent studies highlight that the persistent deficiency in modeling the slow climate response can45

be associated with a misrepresentation of the fast weather-scale variability (Innes 2002; Stevens46

and Bony 2013; Bony et al. 2015). There are also both observational (e.g. Johnson et al. 1999)47

and general circulation modeling (e.g. Inness et al. 2001) evidence of the modulation of weather48

scale phenomena by climate variability. In addition, due to the large gap between weather and cli-49

mate time-scales, if the weather affects the climate, this connection ought to be through multiscale50

interaction mechanisms. Thus, a renewed interest in systematic methods to develop simplified51

multiscale atmospheric models for scale interactions can be noted (e.g. Majda and Klein 2003;52

Majda and Biello 2003; Biello and Majda 2005; Raupp and Silva Dias 2005, 2006, 2009, 2010).53

The scale interactions can be responsible for the connection between weather and climate re-54

sponses and involve either upscale/downscale cascade fluxes (Torrence and Webster 1999; Biello55

and Majda 2005) or discrete wave interactions ((Raupp et al. 2008; Raupp and Silva Dias 2009,56

2010)). In this context, the wave-wave interactions have been used to explain the generation of57
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low frequency El Niño variability (e.g. Zebiak 1982; Zebiak and Cane 1987; Suarez and Schopf58

1988; Battisti 1988) and the intraseasonal atmospheric variability (Raupp and Silva Dias 2009). In59

evoking nonlinear wave interaction theory, the rigorous constraints in discrete resonant wave-wave60

interactions have been used to explain how certain interactions are favored over others (Longuet-61

Higgins and Gill 1967; Domaracki and Loesch 1977; Majda et al. 1999; Holm and Lynch 2002;62

Raupp and Silva Dias 2009; Ripa 1982, 1983a,b).63

The present study applies both multiscale methods and nonlinear wave interaction theory to for-64

mulate a model capable of describing scale interactions in a simplified coupled atmosphere-ocean65

system. The multiscale method adopted here is similar to that adopted by Majda and Klein (2003)66

for the atmosphere. Thus, our approach can be regarded as an extension of Majda and Klein’s67

systematic multiscale method by including atmosphere-ocean coupling. Perhaps the most inter-68

esting feature of our approach is to retain the eigenvectors, atmospheric and oceanic wave modes69

as leading-order solutions, which in turn allows these modes to interact through the nonlinearity70

associated with atmosphere-ocean coupling fluxes.71

Two types of nonlinearity are included: the intrinsic advective nonlinearity and the nonlinearity72

related to the physical processes. The latter includes both the coupling between large-scale waves73

and moist convection and the heat and momentum fluxes associated with the atmosphere-ocean74

coupling.75

As the focus of the present paper is on the nonlinear interactions in the tropical region, we use76

the equatorial β -plane approximation. Once the model is scaled by suitable multi-time and multi-77

space scalings, a perturbation theory is adopted to further simplify the equations and to obtain a78

reduced and more tractable system describing the interactions involving synoptic, intraseasonal79

and interannual time-scales in the atmosphere-ocean coupled system.80
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The paper is organized as follows. In Section 2, the basic model equations are introduced and81

the outlines for the atmosphere-ocean coupling are provided. Suitable scalings to represent the82

SInEN regime are reviewed at the end of Section 2. In Section 3, parameterizations for the mass83

and momentum fluxes in the SInEN regime are discussed. In Section 4, the dynamics and physics84

are joined to formulate the SInEN model equations. The SInEN model evolves in three time-85

scales, from the equatorial synoptic up to the interannual through the air-sea coupling intrasea-86

sonal time-scale. The explicit equations for the scale interactions are obtained by asymptotic87

perturbation methods. In Section 5, analytic solutions of the reduced SInEN equations are illus-88

trated for the case of a discrete resonant triad composed of an oceanic Kelvin mode interacting89

with an atmospheric Rossby mode and an atmospheric Kelvin mode through the parameterized90

atmosphere-ocean coupling fluxes. The analytic solutions demonstrate the potential of the physi-91

cal parameterization terms (“physics”) to yield slow frequency variability by making synoptic and92

intraseasonal scale waves to exchange energy in interannual time-scales. In addition, according to93

our theoretical model, other effects such as the wave-convection coupling in the atmosphere can94

also play an important role in the excitation of low frequency variability. In Section 5 we also95

analyze the spatial patterns of the involved waves and the resulting atmosphere-ocean coupling96

fluxes. Then we discuss a possible configuration, based on observed features of both the MJO97

an El Ninõ - Southern Oscillation (ENSO) phenomena, that makes the interaction associated with98

the selected triad plausible. In Section 6 we summarize the mechanisms that allow the multiscale99

atmosphere-ocean interactions in the novel nonlinear multiscale model developed here and discuss100

how this model can be used to explain the slow climate variability.101
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2. A basic coupled atmosphere-ocean model for the equatorial region102

a. Model equations103

A simplified coupled model to study the tropical multiscale air-sea wave interactions can be ob-104

tained by using two nonlinear shallow water models, one representing the ocean and the other the105

atmosphere. Although the advective nonlinearities are not directly responsible for the atmosphere-106

ocean energy exchange, they are preserved in (1). Thus the governing equations are given by:107

∂tva +va ·∇va +βyk×va +g∇Ha = Fva (1a)

∂tHa +va ·∇Ha +Ha∇ ·va = FHa (1b)

∂tvo +vo ·∇vo +βyk×vo +g′∇Ho = Fvo (1c)

∂tHo +vo ·∇Ho +Ho∇ ·vo = FHo (1d)

The subscript o (a) refers the ocean (atmosphere). The vector (vo,Ho) represents the ocean state108

i.e., currents and thickness, while (va,gHa) represents the horizontal wind and geopotential height,109

g′ = (∆ρo/ρo)g is the reduced gravity, and the equatorial Coriolis parameter is represented by the110

β−plane approximation (Gill 1982; Pedlosky 1987). The convention used in the atmosphere for111

its vertical structure is that the shallow water equations represent the lowest atmospheric portion112

of the first baroclinic mode (similar to Liu and Wang 2013). The source/sink terms are denoted by113

Fvo,FHo,Fva,FHa and the atmospheric height and ocean thickness are:114

Hν = H̄ν(1+Fνhν), with ν = {a,o} (2)
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where Hν is the dynamical height/thickness and H̄ν its time independent mean value. Fν is a non-115

dimensional measure of the amplitude perturbation and Fνhν is the height/thickness perturbation116

per unit of vertical length.117

b. Scalings for the synoptic/intraseasonal/El Niño (SInEN) Regime118

1) MULTI-SPACE HORIZONTAL SCALINGS119

Since time and length scales in the atmosphere are different from those in the ocean, we use mul-120

tiscale methods (Pedlosky 1987; Majda and Klein 2003; Biello and Majda 2005). For instance, in121

the tropical region, the zonal extension of the Pacific Ocean (ls = 15× 106m) is a distinctive pa-122

rameter. In the ocean, ls allows for the delayed oscillator mechanism of the El Niño phenomenon123

(Philander 1999a), and, presumably, is the zonal extension of the Pacific Ocean one of the causes124

for El Niño to occur only in this tropical ocean. In the atmosphere, despite teleconnections, sig-125

nificant tropical spatial variability is at and within the ls scale. Consequently, ls is taken as the126

referential zonal planetary scale in our model. On the other hand, the effects of both rotation and127

latitudinal trapping for large-scale waves near the equator are measured through the equatorial128

Rossby deformation radius. Thus, two important spatial scales are introduced: the atmospheric129

(oceanic) Rossby deformation radius λa (λo), where λa =
√

C/β , with C referring to the atmo-130

spheric first baroclinic gravity wave speed, and λo =
√

Co/β , with Co representing the oceanic first131

baroclinic gravity wave speed. The parameters relating zonal and meridional length scales for each132

subsystem are given by the anisotropy parameters δa = λa/ls and δo = λo/ls. Since λo < λa < ls,133

the horizontal spatial scales are anisotropic (Schubert et al. 2009; Ramı́rez et al. 2011a,b) and,134

as λo/λa = λa/ls ≈ O[0.1], the balance relation δa = δ
1/2
o is useful to describe the spatial scale135

separation.136
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2) VERTICAL FLUCTUATION SCALINGS137

Consistent with previous models, the oceanic shallow water equations represent the active layer138

of the ocean, with mean thickness H̄o = 150m (e.g. Battisti 1988). In addition, observational139

records show that the fluctuations of the oceanic thermocline ho are of about 30-50 m (Donguy140

and Meyers 1987), which therefore results in estimates for the oceanic non-dimensional height141

fluctuations Fo = ho/H̄o ≈ O[0.1]. For the atmosphere, the allowed fluctuations in the equivalent142

height associated with the synoptic scale temperature fluctuations ∆θ = 1.5− 3.0 K can be esti-143

mated through the hypsometric equation (c.f. Emanuel 1987; Klein and Majda 2006), resulting in144

a non-dimensional height fluctuation Fa = ha/H̄a ≈O[0.1], which is consistent with the estimates145

adopted in the atmospheric asymptotic multiscale model of Klein and Majda (2006). Therefore,146

Fν ≈O[0.1], ν = {o,a}, is suitable to represent both the height and thickness fluctuations in the at-147

mosphere and ocean, respectively. Thus, hereafter we shall use F = Fa = Fo = O[0.1] to represent148

the vertical fluctuation in both the atmosphere and ocean.149

3) MULTI-TIME SCALINGS150

For multi-time scalings, the time-derivative is split into fast (τ̃), intermediate (t) and slow151

changes (τ). The intermediate scale is the referential time-scale Tre f , and its neighboring scales152

are separated by the scale separation parameter ε:153

∂t → ε
−1

∂τ̃ +∂t + ε∂τ (3)

For the SInEN regime considered here, Tref is related to a measure of the air-sea coupling velocity154

U defined by:155

U =
1
2
(varef +Co)≈ 4.0 m/s, (4)
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Reported values of varef , in the tropical troposphere, lie in the range of 1−9 m/s (e.g. Reed and156

Recker 1971). Holton (2004), in his scale analysis of large scale motions in the tropics, adopted157

10 m/s as the atmospheric horizontal velocity scale. Here, we have selected varef = 5.5 m/s (see158

Table 1). However, the same qualitative results are obtained if we select the large values for U used159

by Holton (2004). The oceanic gravity wave speed of the first baroclinic mode Co lies in the range160

of 2.4 - 2.9 m/s (Ripa 1982; Battisti 1988), and here the reference value of Co = 2.5 m/s is used.161

With these referential length and velocity scales, it follows that the referential time-scale Tref is162

the intraseasonal time-scale Tref = TInt = ls/U = 43.4 days. Therefore, for a time-scale separation163

ε =O[0.1], the neighboring time scales are the equatorial synoptic time scale εTInt = 4.3 days and164

the interannual time scale ε−1TInt = 434 days. Since O[U ] =O[Co] =O[varef], the same qualitative165

results can be obtained if we use either varef or Co instead of U . The model obtained with the above166

scalings spans from the synoptic to the interannual time-scales, with the intraseasonal scale as the167

coupling time-scale. It is noteworthy that, as U < C (C: baroclinic gravity wave speed) in the168

atmosphere, ls/U is related to the slow nonlinear advective time-scale. In contrast, for the ocean169

TInt is the characteristic time-scale for the linear gravity wave propagation. This motivates the170

ansatz in (34) for the evolution of the model, which establishes that the atmosphere evolves using171

the fastest two time scales (synoptic and intraseasonal), and the ocean evolves using the slowest172

two time scales (intraseasonal and interannual).173

c. Scaled Model for the SInEN Regime174

Now, considering the above discussions, the following scalings are utilized:175
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Ocean scalings176

t = (ls/U)t∗; x = lsx∗; y = λoy∗;

h = H̄oFh∗; u =Uou∗; v = (λoUo/ls)v∗;

Co =
√

g′H̄o ≈U ; λo =
√

U/β ; δo = λo/ls

(5a)

Atmospheric scalings177

t = (ls/U)t∗; x = lsx∗; y = λay∗;

h = H̄aFh∗; u =Uu∗; v = (λaU/ls)v∗;

C =
√

gH̄a ≈ ε−1U ; λa =
√

C/β ; δa = λa/ls,

(5b)

The referential intraseasonal time-scale TInt = ls/U and the planetary zonal length scale ls are178

common for both the atmosphere and ocean, while the other selected scalings are different for the179

two subsystems. Application of scalings (5) into (1) results in:180

∂tua +va ·∇ua− ε
−1

δaF
−1
ra

yva +F−2
ra

F∂xha = F̃x
va, (6a)

δa∂tva +δava ·∇va + ε
−1F−1

ra
yua + ε

−1F−2
ra

F∂yha = F̃y
va, (6b)

∂tha +va ·∇ha +F−1
∇ ·va +ha∇ ·va = F̃Ha; (6c)

∂tuo +Frovo ·∇uo− yvo +
F

Fro

∂xho = F̃x
vo , (6d)

δo∂tvo +δoFrovo ·∇vo + ε
−2yuo + ε

−2 F
Fro

∂yho = F̃y
vo, (6e)

∂tho + εvo ·∇ho +
ε

F
∇ ·vo + εho∇ ·vo = F̃Ho; (6f)

where the scaled forcing terms are given by:181

F̃x
va =

ls
U2 Fx

va, F̃y
va =

ls
U2 Fy

va, F̃Ha =
ls

UH̄aF
FHa , (7a)

F̃x
vo =

ls
εU2 Fx

vo, F̃y
vo =

ls
εU2 Fy

vo, F̃Ho =
ls

UH̄oF
FHo. (7b)

In (6)-(7) above, δa is the atmospheric anisotropy parameter, Fra =U/C is the atmospheric Froude182

number and δo, Fro =Uo/Co refer to their oceanic counterparts. Furthermore, with ε = 0.1, ls =183
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15×106m, U = 4 m/s, λo = 4.2×105m, H̄o = 150m, H̄a = 250m, β = 2.29×10−11m−1s−1, λa =184

15× 105m; it follows that δa = O[ε] and δo = O[ε2]. Thus, as the oceanic Rossby deformation185

radius is one order of magnitude smaller than its atmospheric counterpart (δo < δa), the ocean is186

more zonally elongated than the atmosphere, and this is consistent with the observational estimates187

for the tropical latitudinal extension.188

On the other hand, for typical values of the referential currents in the active ocean layer Uo =189

0.3− 0.5 m/s ≈ εU , it follows that Fro = O[ε]. Thus, the scalings considered here yield the190

balance:191

δa = δ
1/2
o = Fra = Fro = Fa = Fo = F = ε = 0.1, (8)

Therefore, following (Majda and Klein 2003; Biello and Majda 2005) ε can be used as192

the small parameter in our formal asymptotic development, that is, the reduced model for193

Synoptic/Intraseasonal/interannual-El Niño interactions in the coupled atmosphere-ocean system194

is obtained for ε → 0, and the conservative choice ε = O[0.1] is physically reasonable. The bal-195

ance relations in (8) are required for the singular terms in (6) to appear in a skew-symmetric form,196

which allows us to obtain energy estimates independent of ε and thus to guarantee the regularity197

of the solution (Majda 2002).198

It is important to note that in the ocean the quasi-geostrophic balance regulates the dynam-199

ics at leading-order in ε , so that the nonlinearity is weak and the oceanic Strouhal number Stro200

(Zdunkowski and Bott 1980) relating the advection to the local derivative is small. In contrast,201

in the atmosphere the nonlinear terms are of the same order as the local time derivatives and,202

therefore, the atmospheric Strouhal number Stra = O[1]. Consequently, if prognostic equations203

are considered, the advective nonlinearity is not negligible. In both the atmosphere and ocean,204
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the meridional acceleration is weaker than its corresponding zonal acceleration, and the system is205

slightly dispersive, with the spectrum of normal modes being modified under such conditions. The206

linear and weakly nonlinear equatorial wave spectra undergoing a continuous transition between a207

fully non-dispersive regime to a dispersive regime, as a function of the anisotropy parameter, have208

been studied by Ramı́rez et al. (2011b).209

In the atmosphere, for the case of a purely Rayleigh friction in the momentum forcing F̃x = rua210

with a particularly strong damping r−1 = 2 days, the Gill-type model is recovered. Thus, to211

leading-order in ε , the atmosphere is rapidly adjusted to the ocean. In such a case, the memory of212

the system is in the ocean, and the dynamical component of (6) is basically the same as that used213

by Battisti (1988); Philander (1999b). The advantage of our approach is that (6) allows for linear214

waves in both the atmosphere and ocean, along with nonlinear effects coupling these modes.215

Moreover, for the atmosphere, the scalings (5) are consistent with those used by Biello and216

Majda (2005) to obtain the IPESD (Intraseasonal planetary equatorial synoptic dynamics) model.217

Likewise, the scalings for the ocean are consistent with those used by (Battisti 1988; Philander218

1999b; Dijkstra 2000).219

In the real atmosphere-ocean coupled system, there are indications that the Madden-Julian Os-220

cillation (MJO) can trigger El Niño (McPhaden 1999). However, not all MJO events trigger an El221

Niño event, and, consequently, there might exist a nontrivial selection rule. As we shall see later,222

a possible selection rule that might lead the MJO to excite interannual El Niño variability refers223

to wave triad resonance associated with the mass and momentum forcings that couple atmosphere224

and ocean.225
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3. Physical parameterizations for the SInEN model226

a. Physics of the coupling227

According to Dijkstra (2000), the sea surface temperature anomalies (SSTA) force changes in228

the low level winds through pressure differences directly induced by the temperature gradients or229

through pressure gradients associated with sensible and latent heat fluxes controlled by the sea sur-230

face temperature (SST). As a result, the wind changes result in modifications of the wind stress,231

which induce changes in the currents and drive further changes in the sea surface temperature232

(SST) (see also Wang and Weisberg 1994; Philander 1999b). Thus, it is necessary to include an233

equation for the SST to close model (1). Other processes and some limitations of the parameteri-234

zations here used are discussed in Section 6.235

b. Momentum flux236

The low level surface winds impinge a stress ~τ onto the surface that transfers momentum to237

the ocean. In principle, this flux is parameterized by the bulk formula (Krishnamurti et al. 1998;238

Rogers 1976). However, as the flux is transferred throughout the active water column, the stress is239

weighted by the factor ρoH̄o (proportional to the depth of the layer). Thus,240

FVo =
~τ

ρoH̄o
=

ρaCd|~va|~va

ρoH̄o
, (9)

where ρa is the air density, Cd the drag coefficient for momentum and ρo the water density. Fur-241

thermore, we consider the case in which ~τ is dominated by the zonal wind stress (Cane and242

Sarachik 1976; Dijkstra 2000). The elimination of the meridional wind stress is also consistent243

with the dominant geostrophic balance in the meridional momentum equation. Thus, Fy
Vo

= 0,244

Fx
Vo
= (ρaCd|ua|ua)/(ρoH̄o) and the dimensionless wind stress F̃x

Vo
= (ls/εU)Fx

Vo
used in the scaled245

model equations is given by:246
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F̃x
Vo

=CMflxu2
a∗, (10)

where the coefficient for momentum exchange is given by:247

CMflx =
ls

εU2
ρaCdU2 sign(ua∗)

ρoH̄o
. (11)

MOMENTUM FLUX STRENGTH248

To access the order in ε at which the momentum forcing must contribute, we first estimate249

the strength of the momentum flux (‖Fx
Vo
‖). Thus, using the values in Table 1, it follows that250

‖Fx
Vo
‖= ρaCdU2

ρoH̄o
≈ 0.12×10−6 m/s2, and the non-dimensional scaled strength (‖F̃x

Vo
‖) is given by251

‖F̃x
Vo
‖= ls

εU2‖F
x

Vo
‖ ≈ 1.21 = O[ε0]. (12)

c. Mass flux252

The mass flux FHa is set as the difference between evaporation E and deep convective precipita-253

tion P, that is,254

FHa = E−P, (13)

With the sign convention adopted in (13), it is assumed that evaporation supplies mass to the255

atmosphere, whereas precipitation removes mass from it. Although this assumption is adequate256

for the basin wide zonal scale considered, it can break down for smaller scales; for example when257

the effects of the water vapor on the density must be considered.258

1) EVAPORATION259

The moisture flux is given by the bulk formula, which reads E = ρaCqLv|va|(qs− qa), where260

ρa is the air density, Cq the drag coefficient for water vapor flux, Lv the latent heat of vaporization,261
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qs and qa are the saturation and anemometer level moisture, respectively. Analogous to the wind262

stress forcing we use |va| ≈ |ua|. Thus,263

E = ρaCqLv|ua|(qs−qa). (14)

As in Neelin and Zeng (2000), the anemometer level moisture qa is split in two parts, namely:264

qa = qr + ∆qr, where qr is a referential time/spatial independent moisture and ∆qr represents265

local departures from qr. Although several processes can be accommodated in ∆qr, such as the266

mesoscale/synoptic scale structure and evolution, we will set ∆qr = 0. This shortcoming will267

somehow be fixed later as the synoptic scale mass flux Qsynoptic will emerge as necessary forcing268

in order to close the model equations and to excite the lowest order perturbations in the atmosphere.269

The saturation moisture qs can be approximated by270

qs ≈
es(T )Rd

pRv
, (15)

where es is the saturation water vapor pressure, p is a referential pressure and Rd/Rv = 0.622.271

The temperature T is split into basic state temperature T̄ and anomalous temperature T ′. Then, by272

using the Clausius-Clapeyron equation des
dT = Lv(T )es

RvT 2 and neglecting the temperature dependency273

of the latent heat of vaporization, we obtain274

qs(T ′) =
γ∗Rd

p0Rv

(
1+

LvT ′

RvT̄ 2

)
(16)

where γ∗ = es0 exp
(Lv

Rv
( 1

T0
− 1

T̄ )
)
, es0 = 6.11 mb, T0 = 273.0 K and p0 = 1000 hPa. Thus, the275

moisture flux as a function of T ′ and ua is given by276

E(T ′,ua) =Cu|ua|+CT |ua|T ′ (17)
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where Cu and CT are non-dimensional coefficients for the linear and nonlinear components of the277

moisture flux278

Cu =
ls

UH̄aF
ρaCqLvU (

γ∗Rd

p0Rv
− [qr]), (18a)

CT =
ls

UH̄aF
ρaCqLvU (

γ∗Rd

p0Rv

Lv[T ′]
RvT̄ 2 ). (18b)

In the equations above, [qr] and [T ′] represent the dimensional strength of moisture and sea surface279

temperature anomalies, respectively. Differently from Liu and Wang (2013), the expression for E280

contains a nonlinear term yielding a coupling between temperature and wind.281

2) THERMODYNAMIC EQUATION282

The approximate thermodynamic equation with dissipation rate r, radiative forcing S and hori-283

zontal and vertical advection is given by284

∂T ′/∂ t =−ε ṽo ·∇T ′−wo∂T ′/∂ z− rT ′+S. (19)

Simplified versions of (19) can be obtained, for the case of weak horizontal advection (ε→ 0) and285

no radiative forcing (i.e. S = 0). Moreover, the vertical advection depends on the vertical gradient286

associated with the difference between surface T ′ and the subsurface Ts temperature anomalies.287

Thus,288

−wo
∂T ′

∂ z
≈−wo

T ′−Ts

H̄o
=−wo

T ′

H̄o
+KT ho (20)

where KT relates the subsurface temperature anomaly to the height perturbation ho (Battisti 1988).289

In addition, in the fast thermodynamic adjustment, ∂T ′/∂ t → 0, the sea surface temperature290

anomaly can also be related to the height perturbation through the following expression:291

r∗T ′ = (r+
wo

H̄o
)T ′ = KT ho (21)

where r∗ is the dissipation rate modified by the vertical advection. With the aid of the thermody-292

namic equation (21), the moisture flux can be written as a function of the ocean height perturbation293
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E(ho,ua) =Cu|ua|+Ch|ua|ho (22)

where294

Ch =
ls

UH̄aF
ρaCqLvC (

γ∗Rd

p0Rv

Lv

RvT̄ 2
KT [ho]

r∗
) (23)

and Ch is related to CT by295

Ch =
KT [ho]

r∗[T ′]
CT . (24)

EVAPORATION STRENGTH296

In order to access the evaporation strength, temperature fluctuations in the tropical atmosphere297

∆θ are used as proxy of the moisture fluctuations ∆qr in the same region. In this way, ∆qr is298

used to estimate the moisture flux. Following Majda and Shefter (2001b), the typical magnitude299

of temperature fluctuations in the tropical troposphere is given by ∆θ = (θ0− θ̄)/θ0 ≈ 0.1 for a300

referential temperature θ0 = 300K. This estimate is roughly valid for specific moisture fluctuations301

∆qr ≈
Cp

Lv
∆θ ≈ 12 g/kg. (25)

Thus, the evaporation strength is given by ‖E‖= 2.29×105 W/m2, or in m/s302

‖E‖= 4.9×103 ua ∆qr = 0.94×10−4 m/s (26)

The dimensionless evaporation strength using E in m/s results in303

‖F̃E
Ha
‖= ls

UH̄aF
‖E‖ ≈ 1.4ε

−1 = O[ε−1] (27)

3) PRECIPITATION304

Precipitation is parameterized by the low level moisture convergence due to anomalous winds305

according to306
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P = λp

∫ hb

0
H (−∇ · (qvva))dz≈ λphbH (−∇ · (qvva)) (28)

where λp is the precipitation efficiency, hb is the boundary layer depth given by hb = εH̄a, qv is the307

moisture field and H (x) = x for x≥ 0 and zero otherwise. If the moisture field qv is approximated308

by the time/spatial independent referential moisture qr, then P is given by:309

P≈CPr H (−∇ ·~va) (29)

where,310

CPr =
ls

UH̄aF
λphbqrU

lc
(30)

PRECIPITATION STRENGTH311

In the tropics, several hierarchies of the organization of clouds and precipitation are found312

(Nakazawa 1988). In general, P is confined to a region whose length scale lc is smaller than313

ls, with lc representing a measure of spatial organization of clouds and precipitation. In the upper314

limit, lc ≈ ls, P represents planetary scale precipitation as in the Intertropical Convergence Zone315

(ITCZ) or the Madden-Julian oscillation (MJO) envelope (Nakazawa 1988). Smaller hierarchies316

of clouds lead to smaller values of lc. Examples of these smaller hierarchies of cloud organization317

are the planetary scale organization by cloud clusters with lc ≈ 100 km, super-clusters of synop-318

tic scale organization (SYSO) with lc = εls ≈ 1500 km and mesoscale organization (MESO) with319

lc = εls/π ≈ 500 km .320

The dimensionless precipitation strength for a precipitation efficiency parameter λp = 0.9 (see321

εp in Majda and Shefter 2001b) and a planetary scale precipitation with lc = ls is then estimated322

as follows:323
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‖F̃P
Ha
‖= ls

UH̄aF
λphbqrU

lc
≈ 1.1ε

−1 = O[ε−1] (31)

Furthermore, for heating regions associated with the MJO F̃P
Ha
≈ 1.7ε−1. In addition, for synoptic324

scale heating we have F̃P
Ha
≈ 11.0ε−1. These numbers agree quite well with other estimates (Majda325

and Shefter 2001b,a; Yano et al. 1995).326

MASS FLUX STRENGTH327

The mass flux (F̃Ha) is given by the balance between E and P and its strength is determined by328

F̃Ha =
ls

UH̄aF
(FE

Ha
−FP

Ha
) (32)

For the hierarchies of clouds and precipitation discussed above, we have:329

F̃Ha =


+3.0ε0 : lc = ls (ITCZ)

−3.0ε0 : lc ≈ ls (MJO)

−9.6ε−1 : lc = εls (SYSO)

(33)

Considering the whole budget in (33) implies that in the tropical region precipitation is larger than330

evaporation (F̃Ha(ITCZ) + F̃Ha(MJO) + F̃Ha(SY SO) < 0). However, in the planetary ITCZ-like331

organization, as F̃Ha is positive, the atmosphere has a net gain of mass (evaporation stronger than332

precipitation). In contrast, for smaller organization systems, such as in the planetary MJO-like333

or in the SYSO-like structures, it follows that precipitation is stronger than evaporation, resulting334

in a negative mass source and a net mass loss. Therefore, it appears that the scale of moisture335

convergence lc can be used as a bifurcation parameter.336

4. Multiscale SInEN model337

Let us assume now that each component of the system has a solution composed of leading order338

(~v(0)ν ,h(0)ν ) and higher order (~v(1)ν ,h(1)ν ) perturbations, with ν = (a,o) indicating the atmosphere339
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and the ocean, respectively. We should remember that in our scaled model the ocean evolves in340

the slowest two time-scales (t,τ), whereas the atmosphere evolves in the fastest two time-scales341

(τ̃, t). Then the following ansatz is assumed:342

~va(τ̃, t,x) =~v(0)a (τ̃, t,x)+ ε~v(1)a (τ̃,x); (34a)

ha(τ̃, t,x) = h(0)a (τ̃, t,x)+ εh(1)a (τ̃,x) (34b)

~vo(t,τ,x) =~v(0)o (t,τ,x)+ ε~v(1)o (t,x); (34c)

ho(t,τ,x) = h(0)o (t,τ,x)+ εh(1)o (t,x). (34d)

with τ̃, t and τ indicating synoptic, intraseasonal and interannual time-scales, respectively. To343

ensure the uniform validity of the expansion (34), the solvability condition imposes that: If there is344

any growth of the highest order terms, the growth must be slower than the linear growth (Kevorkian345

and Cole 1986), that is:346

lim
ε→0

(~v(1)ν (ε−1,x)
|ε−1|+1

)
= 0 (35a)

lim
ε→0

(h(1)ν (ε−1,x)
|ε−1|+1

)
= 0 (35b)

Physically, (35) means that even after a long period O[ε−1] the (~v(1)ν ,h(1)ν ) perturbations cannot347

overcome the leading order (~v(0)ν ,h(0)ν ) ones. In addition, consistently with the strength estimates348

the source terms can be expanded as:349

FHa = ε
−1F(−1)

Ha
+F(0)

Ha
+ εF(1)

Ha
, (36a)

FVo = F(0)
Vo

+ εF(1)
Vo

. (36b)
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with the oceanic momentum flux given by the wind stress parameterization350

(
F̃x(0)

Vo
, F̃y(0)

Vo
, F̃(0)

Ho

)T

=

(
CMflxu(0)

2

a , 0, 0

)T

; (37a)(
F̃x(1)

Vo
, F̃y(1)

Vo
, F̃(1)

Ho

)T

=

(
2CMflxu(0)a u(1)a ,0,0

)T

; (37b)

and the atmospheric heat flux given by:351

(
F̃x(−1)

Va
, F̃y(−2)

Va
, F̃(−1)

Ha

)T

=

(
0,0,Qsynoptic

)T

; (37c)(
F̃x(0)

Va
, F̃y(−1)

Va
, F̃(0)

Ha

)T

=

(
0,0,Cuu(0)a +Chu(0)a h(0)o −CPrH (−∇ ·~v(0)a )

)T

; (37d)(
F̃x(1)

Va
, F̃y(0)

Va
, F̃(1)

Ha

)T

=

(
0,0,Cuu(1)a +Ch(u

(1)
a h(0)o +u(0)a h(1)o )−CPrH (−∇ ·~v(1)a )

)T

.

(37e)

Once the leading order atmospheric mass flux Qsynoptic is specified (recall that it is a free pa-352

rameter of the model), it drives the (~v(0)a ,h(0)a ) perturbations, and, in turn, a combination of the re-353

sulting perturbations constitutes either the atmospheric mass forcing for higher order disturbances354

(~v(1)a ,h(1)a ) or the momentum forcing for leading-order perturbations in the ocean (~v(0)o ,h(0)o ). The355

evaporation contributes with both linear and nonlinear terms, and precipitation was parameterized356

in terms of linear moisture convergence. In the ocean, the in-homogeneous term for (~v(0)o ,h(0)o )357

is due to nonlinear combination of (~v(0)a ,h(0)a ) perturbations, whereas the forcing of (~v(1)o ,h(1)o )358

presents a mixed O[ε0]-O[ε1] term. Mixed terms also appear in the atmosphere, but only as a359

forcing for higher order terms that are not included in the present study. The physics introduces360

nonlinear terms related to the mass and momentum fluxes, and the nonlinear mass flux is related to361

the evaporative heat flux. Finally, inserting the ansatz (34) into the SInEN model equations yields:362
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Three time scale model for the synoptic/intraseasonal/El Niño (SInEN) regime

∂τ̃u(0)a − yv(0)a +∂xh(0)a = F̃x (−1)
Va

; (:ε−1) (38a)

yu(0)a +∂yh(0)a = F̃y (−2)
Va

; (:ε−2) (38b)

∂τ̃h(0)a +∇ ·V(0)
a = F̃(−1)

Ha
; (:ε−1) (38c)

363

∂τ̃u(1)a − yv(1)a +∂xh(1)a = F̃x (0)
Va
− (∂tu

(0)
a +V(0)

a ·∇u(0)a ); (:ε0) (38d)

yu(1)a +∂yh(1)a = F̃y (−1)
Va

; (:ε−1) (38e)

∂τ̃h(1)a +∇ ·V(1)
a = F̃(0)

Ha
− (∂th

(0)
a +V(0)

a ·∇h(0)a +h(0)a ∇ ·V(0)
a ); (:ε0) (38f)

364

∂tu
(0)
o − yv(0)o +∂xh(0)o = F̃x (0)

Vo
; (:ε0) (38g)

yu(0)o +∂yh(0)o = F̃y (0)
Vo

; (:ε−3) (38h)

∂th
(0)
o +∇ ·V(0)

o = F̃(0)
Ho

; (:ε0) (38i)

365

∂tu
(1)
o − yv(1)o +∂xh(1)o = F̃x (1)

Vo
− (∂τu(0)o +V(0)

o ·∇u(0)o ); (:ε1) (38j)

yu(1)o +∂yh(1)o = F̃y (1)
Vo

; (:ε−2) (38k)

∂th
(1)
o +∇ ·V(1)

o = F̃(1)
Ho
− (∂τh(0)o +V(0)

o ·∇h(0)o +h(0)o ∇ ·V(0)
o ); (:ε1) (38l)

The ε powers between brackets in the right of their correspondent equations (38) indicate the366

order in which the equations are balanced.367

The leading order perturbations of each subsystem are governed by the so-called linear equa-368

torial long-wave equations, whose eigenvectors are the anisotropic non-dispersive Kelvin and369

Rossby waves (e.g. Gill 1980; Schubert et al. 2009; Ramı́rez et al. 2011b). Consequently, the370

solvability condition (35) applied in (38) implies that the source terms for the (~v(1)a ,h(1)a ) and371

(~v(1)o ,h(1)o ) perturbations must be non-resonant with the linear operator. Since the linear operator372
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describes the anisotropic Rossby and Kelvin waves, the elimination of resonances is achieved by373

projecting the first order equations onto the Kelvin and Rossby wave eigenvectors, in their re-374

spective traveling reference frames (see, for instance, Boyd 1980; Majda and Biello 2003). This375

projection results in the slow evolution equations of the amplitudes of Kelvin and Rossby wave376

packets of both the atmosphere and ocean. These Rossby and Kelvin wave packets undergo their377

own self mode interactions due to the intrinsic advective nonlinearity of each subsystem (compare378

Gill 1980 and Gill and Phlips 1986). In addition, the parameterized mass and momentum fluxes379

coupling the atmosphere and ocean can yield interactions between atmospheric and oceanic wave380

packets through resonant triads of specific Fourier modes. This latter feature of the multiscale381

SInEN model is illustrated in the next section.382

5. Integration of the multiscale SInEN model: the case of a single resonant triad interaction383

As discussed above, in the multiscale SInEN model (38) wave modes are allowed in both the384

atmosphere and ocean sub-systems and the leading order solution corresponds to the anisotropic385

non-dispersive Kelvin and long Rossby waves. Furthermore, nonlinear mode interactions are due386

to either the advective nonlinearity or the parameterized mass and momentum forcings. The former387

allows for interactions of waves that belong to the same sub-system, whereas the latter allows for388

across sub-system mode interactions. In this section, we deal with the nonlinear wave interaction389

of atmospheric and oceanic waves through wind stress and evaporation and how these interactions390

can connect atmosphere and ocean from synoptic to interannual time-scales through intraseasonal391

time-scale.392
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a. Solvability condition and resonant triad equations393

The source terms for the O[ε] perturbations in both the atmosphere (38d-38f) and ocean (38j-394

38l) have the form of a forced Burger equation, which is a model for the nonlinear interaction395

of non-dispersive wave packets (e.g. Boyd 1980; Menzaque et al. 2001). However, as our focus396

is on interactions involving waves of different media, we neglect the advective terms and restrict397

our analysis to the discrete wave mode interactions produced by the physical parameterizations.398

The motivation for this simplification comes from Fig. 2, where a representative example of399

atmosphere-ocean resonant triad is depicted. The triad is composed of atmospheric Kelvin and400

Rossby waves along with an oceanic Kelvin wave represented by (ω1,k1); (ω2,k2) and (ω3,k3),401

respectively. The resonance condition for this discrete triad interaction is given by:402

ω1 = ω2 +ω3, (39a)

k1 = k2 + k3. (39b)

Therefore, in order to study the dynamics of this resonant triad, we consider the following ansatz403

for the leading-order solution of SInEN model:404


ua

va

ha

= Z1(t)


û1(εy)

v̂1(εy)

ĥ1(εy)

ei(k1x−ω1τ̃)+Z2(t)


û2(εy)

v̂2(εy)

ĥ2(εy)

ei(k2x−ω2τ̃)+C.C. (40a)


uo

vo

ho

= Z3(τ)


û3(y)

v̂3(y)

ĥ3(y)

ei(k3x−ω3t)+C.C.. (40b)

In (40), the meridional structure functions (û j, v̂ j, ĥ j, j = {1,2,3}) are given by405
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û1

v̂1

ĥ1

=
1√
2
√

π


1

0

1

e−ε2y2/2;


û3

v̂3

ĥ3

=
1√
2
√

π


1

0

1

e−y2/2 (41a)


û2

v̂2

ĥ2

=
1
D


i[−(ω2 + k2)ψ2(εy)− (ω2− k2)

√
1
2ψ0(εy)]

(ω2
2 − k2

2)ψ1(εy)

i[(ω2 + k2)ψ2(εy)− (ω2− k2)
√

1
2ψ0(εy)]

 (41b)

where D = [(ω2− k2)
2 + 2(ω2 + k2)

2 + (ω2
2 − k2

2)
2] and ψ j(y) are the Hermite functions. The406

weaker meridional confinement near the equator of the atmospheric waves is represented by Y = εy407

in the argument of the Hermite functions. Therefore, substituting the ansatz (40) in (38) it follows408

that the leading-order O[1] equations are satisfied automatically, since the ansatz is a combination409

of three linearly independent solutions of the O[1] problem. Consequently, by requiring orthogo-410

nality between the in-homogeneous terms in the O[ε] equations and the linear operator to eliminate411

the secular terms yields:412

d
dt

Z1 = L1Z1 +N2,3
1 Z2Z3 (42a)

d
dt

Z2 = L2Z2 +N3,1
2 Z∗3Z1 (42b)

d
dt

Z3 = L3Z3 +N1,2
3 Z1Z∗2 (42c)

where the linear coefficients L1, L2 and L3 are given by413

L1 ≡ [Cu
〈
û1|ĥ1

〉
+iω1CPr〈ĥ1|ĥ1〉] (43a)

L2 ≡ [Cu
〈
û2|ĥ2

〉
+iω2CPr〈ĥ2|ĥ2〉] (43b)

L3 ≡0 (43c)

26



and the nonlinear interaction coefficients N2,3
1 ,N3,1

2 ,N1,2
3 are414

N2,3
1 ≡Ch

〈
û2ĥ3|ĥ1

〉
(44a)

N3,1
2 ≡Ch

〈
û1ĥ3|ĥ2

〉
(44b)

N1,2
3 ≡2εCMflx

〈
û1û2|û3

〉
(44c)

The multiplicative factor ε in the nonlinear interaction coefficient of the oceanic mode reflects the415

slower time-scale associated to the oceanic mode amplitude compared to the atmospheric waves.416

The inner product
〈
|
〉

is defined by417

〈~f |~g〉= lim
T→∞

1
T

∫ T

0
lim
L→∞

1
L

∫ L

0

∫
∞

−∞

(~f
†
·~g)dydxdt (45)

The time and zonal dependency can be evaluated using418

lim
S→∞

1
S

∫ S

0
ei∆sds =


1 for ∆ = 0,

0 for ∆ 6= 0.

(46)

By considering the transformation Z j = Ẑ jeL jt , j = {1,2,3}, and omitting the hats for simplicity,419

the equations (42) can be re-written to focus on the nonlinear terms420

d
dt

Z1 = N2,3
1 Z2Z3 (47a)

d
dt

Z2 = N3,1
2 Z1Z∗3 (47b)

d
dt

Z3 = N1,2
3 Z1Z∗2 (47c)

Furthermore, evaluating the nonlinear coupling coefficients we have:421

〈
û2ĥ3|ĥ1

〉
=
(
+Γ Iε1ε

200 +Λ Iε1ε

000

)
(48a)〈

û1ĥ3|ĥ2
〉
=
(
−Γ Iε1ε

200 +Λ Iε1ε

000

)
(48b)〈

û1û2|û3
〉
=
(
+Γ Iε1ε

200 +Λ Iε1ε

000

)
(48c)
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where422

Γ =
−i(ω2 + k2)

D
(49a)

Λ =
−i(ω2− k2)

D
(49b)

and423

Iε1ε

000 ≡
∫

∞

−∞

ψ0(εy)ψ0(y)ψ0(εy)dy =
∫

∞

−∞

1

π
3
4

e−y2(ε2+ 1
2 )dy =

1

π
1
4

√
1

ε2 + 1
2

(50a)

Iε1ε

200 ≡
∫

∞

−∞

ψ2(εy)ψ0(y)ψ0(εy)dy =
∫

∞

−∞

2ε2y2−1
√

2π
3
4

e−y2(ε2+ 1
2 )dy =

1
√

2π
1
4
(2ε

2

√
1

(ε2 + 1
2)

3
−
√

1
ε2 + 1

2

).

(50b)

Equations (44), (48) and (49) show that the nonlinear interaction coefficients N2,3
1 ,N3,1

2 ,N1,2
3 are424

purely imaginary numbers and are explicit functions of the frequency and wavenumber of the at-425

mospheric Rossby wave (ω2, k2). In addition, as the triad interaction considered is due to the426

parameterized mass and momentum forcings, its dynamics should differ from the resonant triads427

arising from advective nonlinearity. However, in the specific parameter regime where the model428

has stable solutions, the triad displays certain properties similar to those of the conservative reso-429

nant interactions associated with advective nonlinearity.430

The nonlinear interactions through physical parameterizations in (47) allow for the coupling of431

waves that belong to different fluid flows (sub-systems) and have distinctive temporal and spatial432

scales. Precisely, the distinctive nature of the atmospheric and oceanic fluid flows prevents a direct433

resonant atmosphere-ocean coupling through advection. Therefore, (47) represents a simplified434

mechanism by which the resonant interaction illustrated in Fig. 2 might occur.435

b. Parametric Interactions436

To further understand the interactions, we first analyze the limiting case where the interaction437

coefficient of the oceanic Kelvin mode is zero. This is equivalent to considering either a linear438
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parameterization for the wind stress (CMflx = 0) or the limiting case of ε → 0. In this case, the439

oceanic Kelvin mode acts as a catalyst mode, i.e., it allows the nonlinear interaction between the440

two atmospheric waves but its amplitude is unaffected by the two atmospheric wave modes. This441

type of resonant interaction is known as ‘Parametric interaction’, as the magnitude of the energy442

exchange between the other triad members depends on the initial amplitude of the catalyst mode.443

Under the parametric interaction described above, equations (47) now read:444

d
dt

Z1 = N2,3
1 Z2Z3. (51a)

d
dt

Z2 = N1,3
2 Z1Z∗3 . (51b)

d
dt

Z3 = 0. (51c)

An interpretation for (51) is that the slow oceanic wave amplitude evolution is even slower com-445

pared to the atmospheric wave amplitude evolution. In other words, there is a wide scale separation446

between the evolution of the atmosphere and the ocean.447

Furthermore, from (51) one can obtain an equation for each of the atmospheric wave amplitudes.448

Thus, for the atmospheric Kelvin wave, we have:449

d2

dt2 Z1 +Ω
2Z1 = 0, (52)

where450

Ω
2 ≡−N2,3

1 N1,3
2 =C2

h

[
|Λ|2(Iε1ε

000 )
2−|Γ|2(Iε1ε

200 )
2
]
|Z3|2 (53)

As Iε1ε

000 and Iε1ε

200 are polynomials in ε; both of them in combination with Λ and Γ determine451

the character of the slow wave modulation. Fig. 3 displays Ω2 as a function of the oceanic to452

atmospheric meridional decay ratio (ε) for Ch = |Z3| = 1 and (ω2,k2) taken from the equatorial453

n = 1 Rossby wave depicted in Fig. 2. Thus, we note that for typical values of the ratio between454

oceanic and atmospheric equatorial wave trappings ε = λo/λa =
√

U/Ca ∼ 0.2 it follows that455

29



Ω2 > 0 and, consequently, the atmospheric wave amplitudes undergo periodic modulation with456

frequency Ω. In contrast, for smaller values of ε (e.g. ∼ 0.1) it results that Ω2 < 0 and the457

atmospheric wave amplitudes undergo an exponential growth, indicating an unstable character. In458

fact, Fig. 4 illustrates the integration of (51) for the unstable regime. A very fast exponential459

growth of the solutions at intraseasonal time-scales can be noted. Furthermore, as ε = λo/λa,460

it is suggested that the meridional trapping of the interacting equatorial waves is an important461

parameter to define the stability of the atmosphere-ocean resonant interactions.462

In the parametric oscillatory regime of (51) i.e., Ω2 > 0, the total triad energy is bound and the463

oceanic wave amplitude is not modulated at the slow time scale. However, the oceanic wave is464

essential to allow the energy exchange between the atmospheric waves. The long period of energy465

exchange depends on the initial energy with which the triad was established. Thus, whenever466

Z3(t = 0)→ 0 then Ω→ 0, and the modulation period becomes infinite. On the other hand, large467

values of Z3(t = 0) result in large values of Ω, and, consequently, short periods for the energy468

exchange.469

To further test the sensitivity of the system to the initial condition, i.e., the energy level at which470

the triad was established, Figs. 5 and 6 depict the integration of (51) for two different values of471

the initial oceanic wave amplitude, |Z3|2 = 25 and |Z3|2 = 16, respectively. In these numerical472

experiments ε = λo/λa ∼ 0.2, and, therefore, the solution is stable (see Fig. 3). The selected473

initial energy distribution deposits more energy into the oceanic mode and less energy into the474

atmospheric Kelvin mode (|Z1|2 = 0.32). The atmospheric Rossby mode is initiated with an in-475

termediate energy value (|Z2|2 = 7.56). From the time integration it can be seen that most of the476

energy goes to the atmospheric Kelvin mode, whereas the atmospheric n = 1 Rossby wave is mod-477

ulated with the exact opposite phase. Thus, when the Rossby wave is at its maximum energy level,478

the atmospheric Kelvin wave is at its minimum energy level and vice-versa. Furthermore, as |Z3|2479
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decreases, the frequency modulation decreases, and the period of energy exchange increases from480

around 60 days to around 75 days. In both experiments, the energy of the oceanic Kelvin wave481

remains constant for the whole period.482

c. Resonant Triad Interactions483

We now analyze the dynamics of the same resonant triad discussed in the previous subsection,484

but considering a nonlinear wind stress parameterization (CMflx 6= 0) or similarly relaxing the485

limiting case of ε → 0 by considering ε small but finite. Although the coupling coefficient N1,2
3486

of the oceanic Kelvin mode must still be much smaller than those of the atmospheric members of487

the triad, now the amplitude of the oceanic mode is allowed to vary in time. Consequently, all the488

triad members undergo nonlinear amplitude modulation.489

As in the parametric case, the full triad system (47) is integrable and its solutions are described in490

terms of Jacobi Elliptic functions (Abramowitz and Stegun 1972; Arfken and Weber 1995; Lynch491

2003; Craik 1985). In this sense, to somewhat simplify the solution, we set the mode with the492

highest energy modulation (mode 1 - the atmospheric Kelvin mode) to have zero initial amplitude.493

In this case, the solution of system (47) is similar to that used by Domaracki and Loesch (1977);494

Raupp et al. (2008):495

Z1(t) = Z2|t=0

( ∣∣∣ N2,3
1

N1,3
2

∣∣∣ )1/2

sn(Ξ | m̃) (54a)

Z2(t) = Z2|t=0 cn(Ξ | m̃) (54b)

Z3(t) = Z3|t=0 dn(Ξ | m̃) (54c)
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where sn, cn and dn are the Jacobi elliptic functions, with argument Ξ (corresponding to the re-496

scaled time) and parameter m̃ given by497

Ξ = Z3|(t=0)

( ∣∣∣ N2,3
1 N1,3

2

∣∣∣ )1/2
εt, (55a)

m̃ =
N1,2

3 Z2
2 |(t=0)

N1,3
2 Z2

3 |(t=0)
. (55b)

The analytic solution (54) may exhibit different behaviors depending on the initial energy partition498

among the triad members. This is evidenced by the dependence of m̃ on the ratio of the initial499

amplitudes of modes 2 and 3. For example, when
Z2

2 |(t=0)

Z2
3 |(t=0)

<< 1, the triad essentially undergoes the500

parametric regime discussed above, with mode 3 (the oceanic Kelvin mode) acting as a catalyst501

mode for the energy exchanges between the atmospheric waves. Moreover, when m̃ = 0, the502

elliptic functions become trigonometric functions, with sn→ sin, cn→ cos and dn→+1, resulting503

that Z3(t) is a constant. On the other hand, as the parameter m̃ tends to one, the elliptic functions504

describe a parabola, and instability of the highest frequency mode (mode 1) might occur. In505

addition, for intermediate values of the parameter m̃, the triad undergoes considerable energy506

exchanges, with all the wave amplitudes being significantly modulated in time. As the coupling507

coefficient of the oceanic mode is one order of magnitude smaller than those of the atmospheric508

waves, a sufficiently small initial amplitude of the oceanic Kelvin mode, in comparison with the509

atmospheric Rossby mode, is required in this regime.510

A representative example of the solution (54) for the case of the full resonant triad interactions is511

illustrated in Fig. 7. The initial amplitudes for the modes 2 and 3 were chosen to fall into 0< m̃< 1512

regime, and other parameters were set to yield ε = 0.2. As can be noted, all the triad members513

undergo significant interannual energy modulation. The dimensional natural oscillation periods514

associated with the triad members are: T (ω1) = 3.4 days, T (ω2) = 12.0 days and T (ω3) = 57.0515

days. Therefore, the energy modulation of the triad members is much slower than their natural516
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oscillation periods. Thus, the nonlinear triad interaction analyzed here allows for a multi time-scale517

interaction, yielding an interannual energy modulation through nonlinear interactions involving518

waves with synoptic and intraseasonal time-scales.519

The resonant triad in Fig. 7 has a behavior typical of conservative resonant interactions through520

advective nonlinearity, that is, the highest absolute frequency mode of the triad (mode 1 - atmo-521

spheric Kelvin wave) always grows or declines at the expense of the other modes. Furthermore, the522

lowest absolute frequency mode of the triad (mode 3 - oceanic Kelvin mode) exhibits the weakest523

energy modulation. However, a difference between the present triad and a triad associated with524

advective nonlinearities is that the total energy of the present triad is no longer conserved. As a525

consequence, the total energy is also strongly modulated in the slow time scale. In addition, even526

though the atmospheric Kelvin wave is initiated with zero energy, this mode attains a much higher527

energy level than the remaining triad components, and, therefore, is responsible for almost all the528

energy of the system during the periods of its maximum energy level. These aspects are confirmed529

by the numerical integration of system (47), which agrees with the analytic solution (54) in all the530

correspondent parameter regimes.531

In Fig. 8 the low-level patterns of the dynamical fields associated with the atmospheric branch532

of the resonant triad, i.e., the atmospheric Kelvin wave (mode 1) and the n = 1 equatorial Rossby533

wave (mode 2) are displayed. The Kelvin wave is of planetary scale and produces strong westerly534

winds throughout the Pacific Ocean (peaking over the central Pacific) and easterly winds outside535

the basin. In addition, the n = 1 equatorial Rossby (mode 2) produces a symmetric pattern about536

the equator, with strong westerlies both to the west and east of the Pacific basin and strong east-537

erlies over the central Pacific. The spatial scale of the n = 1 Rossby wave is compatible with the538

pattern of twin cyclones around the eastern Indian Ocean, the Maritime continent and the western539

Pacific Ocean, that is associated to the MJO (e.g., Ferreira et al. (1996)).540
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The zonal wind stress produced by the interaction between modes 1 and 2 is displayed in Fig. 9.541

The strong wind stress over the western Pacific Ocean may represent the westerly wind burst that542

preceeds a typical El Niño development (see McPhaden (1999)). Over the eastern Pacific Ocean,543

the westerly wind stress is relatively weak, however, it can contribute to weaken the climatological544

trade winds and to relax the pressure gradient that maintains the warm waters to the west in the545

Pacific Ocean.546

Furthermore, the coupling of the atmospheric Kelvin-Rossby waves and the oceanic Kelvin547

wave yields the modulated evaporation pattern depicted in Fig. 9. The evaporation envelope is548

about 6000 km of zonal extension (over the western Pacific), whereas its internal spatial structure549

is of synoptic or meso-γ spatial scale (≈ 2000 km). The up and down synoptic-scale pattern of550

the evaporation may allow eastward propagation of the synoptic-scale convective anomalies that551

are part of the MJO envelope (see Zhang (2005)). Thus, the spatial patterns of the waves that552

constitute the resonant triad analyzed here are consistent with mechanisms that may lead to the553

interaction between synoptic, intraseasonal and interannual space/time scales.554

Therefore, the results presented here for the special case of a single resonant triad interacting555

through parameterized atmosphere-ocean fluxes demonstrate the potential of the multiscale SInEN556

model to connect the atmosphere and ocean from synoptic to interannual time-scales through the557

intraseasonal time-scale.558

6. Summary and Final Remarks559

In this paper, we have developed a novel nonlinear multiscale model to study560

Synoptic/Intraseasonal/interannual-El Niño (SInEN) interactions in a coupled atmosphere-ocean561

system. For this purpose, we have considered a simple set up, i.e., two coupled equatorial β -plane562

shallow-water equations, one representing the ocean and the other the atmosphere. The reduced563
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multiscale SInEN model is obtained as a distinguished limit of the original coupled shallow-water564

equations. This limit represents a balanced regime in the atmosphere-ocean system where: the565

atmospheric Froude number; the oceanic Froude number; the non-dimensional strength of atmo-566

spheric height and oceanic thickness fluctuations, as well as the ratio between meridional and567

zonal length scales for both atmosphere and ocean, are all small parameters and of the same order568

of magnitude, that is:569

Fra = Fro = F = δa = δ
1/2
o = ε. (56)

This balance assumption is required for the mathematical consistence of the limiting dynamics570

and is physically coherent with the typical strengths for winds, currents and thermal anomalies571

associated with the scales centered around the intraseasonal variability. The selected equations572

(1) are compatible with the commonly adopted framework of applying shallow water equations to573

describe the first baroclinic mode of either the troposphere or the ocean active layer.574

To bring about the SInEN regime, the mass and momentum forcings for the atmosphere and575

ocean are also expanded in terms of the small non-dimensional parameter of the system. The forc-576

ing strengths have been estimated in the context of the commonly held physical parameterizations577

for air-sea mass and momentum fluxes and deep convection in the atmosphere. For instance, the578

momentum forcing is represented through atmospheric wind stress, whereas the mass forcing is579

represented as the difference between evaporation (E) and deep convective precipitation (P). In580

turn, evaporation is formulated according to the wind induced surface heat exchange (WISHE)581

mechanism, while precipitation is formulated according to the wave-CISK hypothesis, where P is582

proportional to lower troposphere moisture convergence.583

Although the flux formulation is recognized to be rather simplistic (Dijkstra 2000; Philander584

1999b; Hirst and Lau 1990; Battisti 1988), some other drawbacks can be discussed. For example,585

in the SInEN model the atmosphere and ocean are not fully thermally coupled, since the impact586
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of heat fluxes does not affect back the ocean thermodynamics and currents. The radiation-SST587

feedback and the evaporation feedback due to changing latent heat flux might also be considered.588

Further, the ocean thermohaline dynamics does not fully affect the ocean dynamics since g′ =589

∆ρo/ρo is constant, but in the real atmosphere-ocean system the exchanges of evaporation and590

precipitation along with the salinity also affect the density structure and play an important role591

in thermocline fluctuations. Furthermore, the ocean dynamics-thermodynamics coupling and the592

geometry of the Pacific Ocean are crucial for the formation of the warm/cold tongue during the El593

Niño/La Niña events, and thus it would be important to include these effects in our model along594

with the seasonal cycle.595

The scalings used to obtain the SInEN model imply a referential intraseasonal time-scale596

connected to the fast equatorial synoptic and slow interannual time-scales through the non-597

dimensional parameter ε . Consequently, to obtain solutions of the SInEN equations, a perturbation598

theory with multiple time-scales has been adopted, with the atmospheric variables being assumed599

to evolve on the fastest two time-scales (synoptic and the referential intraseasonal), and the oceanic600

variables being assumed to evolve on the slowest two time-scales (the referential intraseasonal and601

the interannual). The leading order perturbations of each subsystem in the SInEN model are gov-602

erned by the so-called equatorial β -plane linear long-wave equations, whose eigenvectors are the603

anisotropic non-dispersive Kelvin and Rossby waves.604

These wave packets may undergo their own self-mode interactions through the intrinsic advec-605

tive nonlinearity, and the parameterized mass and momentum fluxes can yield interactions between606

atmospheric and oceanic wave packets through resonant triads of specific Fourier modes. There-607

fore, our model might accommodate several dynamical mechanisms contained in other theoretical608

models, namely: the role of the intrinsic advective nonlinearity in the generation of low frequency609

variability (Ripa 1982, 1983a,b); the role of heating forcings in generating low-frequency variabil-610
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ity by atmospheric only wave interactions (Raupp and Silva Dias 2009, 2010); the role of oceanic611

wave interactions with a diagnostic atmosphere in the excitation of El Niño (Battisti 1988); the612

role of interactions of linear modes through thermodynamics in the generation of low frequency613

variability in simple linear coupled ocean-atmosphere models (Hirst 1986; Hirst and Lau 1990),614

and the excitation of intraseasonal variability through atmospheric equatorial synoptic-scale tur-615

bulence (Biello and Majda 2005).616

To illustrate the potential of the SInEn model to connect synoptic, intraseasonal and interannual617

time-scales in the atmosphere-ocean system, we have considered the special case of a single reso-618

nant triad involving an oceanic Kelvin wave, and an atmospheric Kelvin wave, and an atmospheric619

n = 1 Rossby wave, with the modes interacting resonantly through the parameterized atmosphere-620

ocean heat and momentum fluxes. The analytic solution of the triad equations shows that the621

oceanic wave may act as a catalyst mode for the energy exchanges between the atmospheric waves622

for linearized momentum flux. The oceanic Kelvin wave can also undergo significant energy mod-623

ulations for a small but non-zero interaction coefficient, provided that this mode has a sufficiently624

smaller initial amplitude than the atmospheric waves. The results also show that the atmospheric625

Kelvin mode always supplies/receives energy to/from the remaining two triad components. In626

this situation, the wave amplitude modulations occur at interannual time-scales, while the phase627

propagation periods of the wave fields are of synoptic and intraseasonal time-scales.628

Furthermore, the low-level spatial patterns of the triad members reinforce the potential of the629

resonant wave interaction mechanism through atmosphere-ocean coupling fluxes to connect syn-630

optic, intraseasonal and interannual variabilities. In fact, for the atmospheric branch of the resonant631

triad, the low-level winds over the Pacific Ocean due to Kelvin wave activity are superimposed on632

the pattern produced by the n = 1 Rossby wave activity. The phases displayed for the atmospheric633

waves are in agreement with what is required by the amplitude modulation. Over the Pacific634
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Ocean, strong westerlies are found over both the western and eastern sides of the basin, whereas635

moderate winds are in the central Pacific. Associated to the wind patterns, planetary scale wind636

stress patches are found (∼ 5000 km, see Fig. 9), and their tropical nature, magnitude and spa-637

tial scale suggest that they can be associated to the MJO. In addition, the nonlinear coupling to638

the ocean produces a synoptic scale structure for the evaporation field (∼ 2000 km) that is mod-639

ulated at planetary scales (∼ 6000 km; see Fig. 9). The up and down synoptic scale pattern of640

the evaporation field may stimulate further eastward propagation of the intraseasonal activity and641

trigger oceanic Kelvin waves. Over the eastern Pacific Ocean, a relatively weak wind stress patch642

is found, which is associated to westerlies and thus tends to weaken the climatological trade winds643

and to reduce the east-west pressure gradient that maintains warm water to the west over the Pacific644

Ocean.645

The next step to investigate the potential of the SInEn model in a more realistic scenario should646

be to restore the advective nonlinearities of each subsystem. The advection may couple each of647

the individual Fourier harmonics of the resonant triad analyzed here with all the wavenumbers of648

their corresponding wave packets. In fact, the model is weakly nonlinear in the ocean, but is fully649

nonlinear in the atmosphere.650

Moreover, in the atmosphere, prognostic equations for the moisture field and interaction between651

different vertical modes should be considered in order to properly represent the cloud-radiation-652

SST feedback, as well as the intensification of the MJO through vertical tilting of the heating (a653

crucial aspect in multiscale models for the MJO e.g., Biello and Majda 2005; Thual and Majda654

2016 and references therein). The variability of the solar radiative forcing may act as another655

forcing mechanism to enhance low-frequency atmospheric variability. Recently, by including lin-656

earized versions of some of the physical mechanisms described above, the reproduction of certain657

observed features of the MJO has been achieved (Majda and Stechmann 2009; Liu and Wang658
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2013). In principle, we believe that the theory constructed here can be generalized to include659

some of those more complex parameterizations described above, as far as the linear eigenvectors660

may still constitute the leading-order solutions in the new scenarios.661

Thus, despite the aforementioned limitations, the advantage of the SInEn model is that it can be662

solved analytically, while keeping wave solutions in both the atmosphere and ocean. The SInEn663

model suggests that the resonant atmosphere-ocean coupling can be a possible mechanism for the664

generation of low frequency variability in the climate system. The various mechanisms involved,665

which determine the conditions for the establishment of the atmosphere-ocean resonant coupling,666

can be viewed as selection rules for the excitation of intraseasonal variability like in the MJO or667

even slower variability like the interannual El Niño variability.668
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APPENDIX682

Integrals involving Hermite functions683

The evaluation of the product of modes requires the evaluation of integrals involving three or more684

Hermite functions. For the product of modes of the ocean and atmosphere, the meridional decays685

are different. The ocean is meridionally more confined than the atmosphere. In the ocean the686

Hermite functions are given by ψ(y); whereas in the atmosphere they are given by ψ(εy) where ε687

is a measure of the meridional confinement. The Hermite functions ψm are related to the Hermite688

polynomials Hm by:689

ψm(y) =
e−y2/2

√
2mm!π1/2

Hm(y); (A1)

where Hm(ξ ) = (−1)meξ 2 ∂ me−ξ 2

∂ξ m . The meridional integration of the product of three Her-690

mite functions with m,n and p nodes and different decays can be expressed by: Ia
mnp =691 ∫+∞

−∞
e−y2/aHm(δmy)Hn(δny)Hp(δpy) dy. A practical rule to evaluate three or more Hermite func-692

tions is to reduce the functions in pairs until just one Hermite function remains, and then use the693

parity condition694

Ia
m =

∫ +∞

−∞

e−y2/aHm(y)dy =


a1/22mΓ(m+1

2 )(a−1)m/2 : m pair

0 : m odd
(A2)

a. Reduction in pairs for same meridional decays695

In the simplest case of same meridional decays for the Hermite functions, the reduction in pairs696

is given according to Lord (1948); Busbridge (1948)697
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Hm(y)Hn(y) = m!n!
min(m,n)

∑
t=0

2t

t!(m− t)!(n− t)!
Hm+n−2t(y). (A3)

Recursive application of the Busbridge identity (A3) and the parity condition (A2) allows the698

computation of the turbulent fluxes yielding slow time-scale modulation.699

b. Reduction in pairs for different meridional decays700

The general case of different meridional decays can also be performed by reduction in pairs.701

However, the decaying parameter enters in the product, and the results depend on the decaying702

parameter. Let Hn(x) and Hm(y) represent two Hermite polynomials with different meridional703

decays:704

Hn(x)Hm(y) =
[m/2],[n/2]

∑
s,t=0

(−1)s+t(2x)n−2s(2y)m−2tn!m!
(n−2s)!s!(m−2t)!t!

, (A4)

where [m/2] and [n/2] represents the lowest nearest integer number, also known as the floor of705

the division m/2 and n/2, respectively. The order of the resulting polynomial is n+m, however,706

their coefficients depend on the decaying parameter.707

Thus, for x→ x, y→ εx, n = 2 and m = 3 we have708

H2(x)H3(εx) = 32ε
3x5− (48ε +16ε

3)x3 +24εx (A5)

For x→ εx, y→ x, n = 2 and m = 3709

H2(εx)H3(x) = 32ε
2x5− (24ε

2 +16)x3 +24x (A6)

Both results contrast with the simplest case of x = y, n = 2 and m = 3710

H2(x)H3(x) = 32x5−64x3 +24x (A7)

Thus, the evaluation of the meridional integrals will depend on both the latitudinal structure of the711

involved modes and on their the meridional decays.712
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TABLE 1. Typical values of the model parameters

Symbol Value Parameter

ε 0.1 scale separation factor

Ha 250 m atmosphere equivalent depth

Ho 150 m ocean equivalent depth

hb=εHa 25 m boundary layer depth

ls 15×106 m zonal length scale of the

Pacific Ocean

λa 15×105 m atmospheric deformation radius

λo 4×105 m oceanic deformation radius

F 0.1 height fluctuation allowed

Care f =Ca 50 m s−1 atmospheric gravity wave

speed of the first baroclinic mode

vare f = ua 5.5 m s−1 referential speed for slower wave modes

Core f =Co 2.5 m s−1 oceanic gravity wave speed

of the first baroclinic mode

U = (vare f +Core f )/2 4.9 m s−1 referential speed for the

SInEN regime

ρa 1.1 kg m−3 air density

ρo 1.0×103 kg m−3 water density

N 10−2 s−1 Brunt-Vaisala frequency

qr 12 g kg−1 referential moisture

T̄ 301 K mean temperature

T0 273.0 K referential temperature

λp 0.9 precipitation efficiency

β 2.29×10−11 m−1s−1 Coriolis meridional gradient

Lv 2.50×106 J kg−1 vaporization latent heat

Rv 461.50 J kg−1K−1 moist air gas constant

Rd 287.04 J kg−1K−1 dry air gassy constant

g 9.8 m s−2 vertical acceleration due to gravity

g′ 5.6×10−2 m s−2 reduced gravity

es0 6.11 mb saturation vapor pressure at T0

Cd 1.1×10−3 drag coefficient50
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FIG. 1. Schematic diagram for the Synoptic/Intraseasonal/interannual-El Niño interactions (SInEN Regime).

A(ε0) and O(ε0) represent the slowly variant atmospheric and ocean energies, respectively. Similarly, a(ε0)

and o(ε0) are the leading order atmospheric, and ocean perturbations and a(ε1) and o(ε1) are higher order

atmospheric and ocean perturbations. The term adv is the advective nonlinearity, E−P is the mass flux and

Qsynoptic is the external synoptic forcing. The scale separation in both the speed and time are given by ε = 0.1.
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FIG. 2. Dispersion wavenumber-frequency diagram depicting the possibility of a resonant triad involving

an atmospheric dry Kelvin wave; an atmospheric dry Rossby wave and an oceanic Kelvin wave. The term

“dry” refers to the eigenfrequency of the equatorial wave mode not modified by coupling with deep convection.

The wavenumbers/frequencies are non-dimensional, however, the dimensional phase speeds (m/s) of the cor-

responding waves are also displayed. To determine the resonant triad, the origin of the dispersion curve of the

atmospheric Rossby wave is symmetrically displaced to a point over the oceanic Kelvin wave dispersion curve.

Thus, the intersection between the dispersion curves of the atmospheric Kelvin and Rossby waves determines a

set of three wave modes satisfying the resonance conditions (39).
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FIG. 3. Ω2 as a function of the ocean to atmosphere meridional decay ratio
(
δo/δa

)
= ε for Ch = |ZoK |= 1.
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FIG. 4. Energy modulation of the resonant triad interaction illustrated in Fig 2 for the unstable regime depicted

in Fig. 3. The thick line is the total energy, and the thin line is the energy of the oceanic wave, which remains

bound. The dotted line is the energy of the atmospheric Rossby wave, and the long dashed line is the atmospheric

Kelvin wave energy. The log10 of the energy scale indicates the exponential growth at an intraseasonal time-

scale.
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FIG. 5. Time evolution of the mode energies for the resonant triad interaction illustrated in Fig. 2 but for

λo/λa = 0.28 (stable regime). The triad is composed of: an atmospheric Kelvin wave (mode 1 - long dashed

line), an atmospheric n = 1 Rossby wave (mode 2 - short dashed line) and an oceanic Kelvin wave (mode 3 - thin

continuous line). The total energy of the triad is also displayed (thick continuous line). The initial amplitudes

of the modes are set to |Z1|2 = 0.32, |Z2|2 = 7.56, |Z3|2 = 25. Other parameters are set to qr = 1.49,Cu =CPr =

0,Ch = 11.0,CM f lx = 0,φ1 = π/6,φ2 = 2π/6,φ3 = 0.
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FIG. 6. Same as Fig. 5 but for |Z3|2 = 16.0.
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FIG. 7. Similar to Fig. 5 but for the general case where the wave amplitudes are governed by equation

47. The triad is made of: an atmospheric Kelvin mode (mode 1 - long dashed line), an atmospheric Rossby

mode (mode 2 - short dashed line) and an oceanic Kelvin mode (mode 3 - continuous line). Total energy of the

triad is also displayed (thick continuous line). The initial amplitudes are set as |Z3(0)|2 = 25.0, |Z2(0)|2 = 7.56

and |Z1(0)|2 = 0.0. The model parameter values considered in this integration are: qr = 1.49,Cu = 0.0,CPr =

0.0,Ch = 1.1 and CM f lx = 1.0.
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FIG. 8. Horizontal structure of the low-level horizontal wind and height fields for (a) the atmospheric first

baroclinic equatorial Kelvin wave with the dimensionless zonal wavenumber k∗1 = 0.27 and frequency ω∗1 = 0.27

and, (b) the atmospheric first baroclinic n = 1 equatorial Rossby wave, with dimensionless zonal wavenumber

k∗2 = 0.73 and frequency ω∗2 = 0.21. Both of these waves constitute the resonant triad illustrated in Figs. 5-7.
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FIG. 9. (a) Zonal wind stress produced by the interaction of the atmospheric Kelvin wave and the n = 1

Rossby wave (Fig. 8a-b). Over the Pacific Ocean, the wind stress is associated with westerlies. The intense

westerlies over the western Pacific Ocean may trigger the oceanic Kelvin wave propagation, which is important

for onset of El Niño. Westerly winds over the western Pacific and Indian Oceans are sometimes associated to the

MJO. Over the eastern Pacific, low-level westerlies may lead to the weakening of the trade winds and relax the

pressure gradient that maintains warm waters and deep convection to the west of the Pacific Ocean; (b) spatial

pattern of the evaporation field produced by the coupling between the atmospheric Kelvin-Rossby waves and the

oceanic Kelvin mode. The spatial modulation over the western Pacific is about 60 degrees (≈ 6000 km), and an

internal structure of synoptic or meso-γ scale (≈ 2000 km) is noted. Over the western Pacific and Indian Ocean

the internal structure may lead to the propagation of synoptic scale convection to the east along with the MJO

signal. This configuration also reinforces the atmospheric configuration displayed in Fig. 8 and Fig. 9a.
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