

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

sid.inpe.br/mtc-m21b/2017/10.09.14.50-TDI

EVOLUÇÃO DE GALÁXIAS ELÍPTICAS EM AMBIENTES DE ALTA DENSIDADE

Tatiana Coelho de Moura Bastos

Tese de Doutorado do Curso de Pós-Graduação em Astrofísica, orientada pelo Dr. Reinaldo Ramos de Carvalho, aprovada em 29 de agosto de 2017.

URL do documento original: <http://urlib.net/8JMKD3MGP3W34P/3PPP7QP>

> INPE São José dos Campos 2017

PUBLICADO POR:

Instituto Nacional de Pesquisas Espaciais - INPE Gabinete do Diretor (GB) Serviço de Informação e Documentação (SID) Caixa Postal 515 - CEP 12.245-970 São José dos Campos - SP - Brasil Tel.:(012) 3208-6923/6921 E-mail: pubtc@inpe.br

COMISSÃO DO CONSELHO DE EDITORAÇÃO E PRESERVAÇÃO DA PRODUÇÃO INTELECTUAL DO INPE (DE/DIR-544):

Presidente:

Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação (CPG)

Membros:

Dr. Plínio Carlos Alvalá - Centro de Ciência do Sistema Terrestre (CST)

Dr. André de Castro Milone - Coordenação de Ciências Espaciais e Atmosféricas (CEA)

Dra. Carina de Barros Melo - Coordenação de Laboratórios Associados (CTE)

Dr. Evandro Marconi Rocco - Coordenação de Engenharia e Tecnologia Espacial (ETE)

Dr. Hermann Johann Heinrich Kux - Coordenação de Observação da Terra (OBT)

Dr. Marley Cavalcante de Lima Moscati - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

Silvia Castro Marcelino - Serviço de Informação e Documentação (SID) **BIBLIOTECA DIGITAL:**

Dr. Gerald Jean Francis Banon

Clayton Martins Pereira - Serviço de Informação e Documentação (SID)

REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA:

Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação (SID)

Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID) EDITORAÇÃO ELETRÔNICA:

Marcelo de Castro Pazos - Serviço de Informação e Documentação (SID)

André Luis Dias Fernandes - Serviço de Informação e Documentação (SID)

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

sid.inpe.br/mtc-m21b/2017/10.09.14.50-TDI

EVOLUÇÃO DE GALÁXIAS ELÍPTICAS EM AMBIENTES DE ALTA DENSIDADE

Tatiana Coelho de Moura Bastos

Tese de Doutorado do Curso de Pós-Graduação em Astrofísica, orientada pelo Dr. Reinaldo Ramos de Carvalho, aprovada em 29 de agosto de 2017.

URL do documento original: <http://urlib.net/8JMKD3MGP3W34P/3PPP7QP>

> INPE São José dos Campos 2017

Dados Internacionais de Catalogação na Publicação (CIP)

Bastos, Tatiana Coelho de Moura.

B297e Evolução de galáxias elípticas em ambientes de alta densidade / Tatiana Coelho de Moura Bastos. – São José dos Campos : INPE, 2017.

xxviii + 129 p. ; (sid.inpe.br/mtc-m21b/2017/10.09.14.50-TDI)

Tese (Doutorado em Astrofísisca) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2017. Orientador : Dr. Reinaldo Ramos de Carvalho.

Evolução Galáctica. 2. Ambientes de Altas Densidades.
Grupos de Galáxias. 4. Interações. 5. Atividade Nuclear.
I.Título.

CDU 524.728:52-466

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

Título: "EVOLUÇÃO DE GALÁXIAS ELÍPTICAS EM AMBIENTES DE ALTA DENSIDADE"

Aprovado (a) pela Banca Examinadora em cumprimento ao requisito exigido para obtenção do Título de **Doutor(a)** em

Astrofísica

Dr. Carlos Alexandre Wuensche de Souza

Presidente / INPE / SJCampos - SP

Dr. Reinaldo Ramos de Carvalho

Orientador(a) / INPE / SJCampos - SP

Dr. Oswaldo Duarte Miranda

Membro da Banca / INPE / SJCampos - SP

Dra. Beatriz Leonor Silveira Barbuy

Beatica Bassy

Convidado(a) / IAG/USP / São Paulo - SP

Dr. Irapuan Rodrigues de Oliveira Filho

Convidádo(a) / UNIVAP / São José dos Campos - SP

Dr. Hugo Vicente Capelato

Convidado(a) / CETEC / São Paulo - SP

Este trabalho foi aprovado por:

() maioria simples unanimidade

São José dos Campos, 29 de agosto de 2017

"Not all those who wander are lost".

J.R.R. TOLKIEN em "All That is Gold Does Not Glitter", 1954

A meus pais Marilza Moura e Antonio Moura e irmão, Caesar Moura

AGRADECIMENTOS

Aos meus pais e irmão pelo apoio incondicional ao longo de toda a jornada que culmina nesse trabalho;

Ao meu orientador, Reinaldo Ramos de Carvalho, por toda as discussões filosóficas (e outras nem tanto assim), pelas terças de "DR", pelas quintas de descontração com direito a batatinha e principalmente, por me abrir os olhos quanto ao poder do "objid";

À Família Trevisan Armelin por ter me acolhido;

À minhas amigas de longa data: Fabíola Pinho, Amanda Lopes e Erika Rosseto sempre presentes ainda que por vezes distantes;

À amiga Valéria Fernandes, pela parceria e apoio imprescindÃvel em todos os momentos;

Ao amigo Alisson Costa, pela torcida e pelas conversas madrugada adentro;

Aos amigos Igor Mainenti, Alessandra Bastos e André Boaventura pela tolerância e paciência, principalmente diante de minhas ausências;

Aos queridos colegas Dinelsa Machaieie, Isabel Lima, Laurent Chemin, Johnny Hebert Esteves de Queiroz e Carlos Eduardo Lopes;

Aos companheiros de trabalho, Paulo Henrique Barchi e Diego Stalder por toda a ajuda;

Aos colaboradores Sandro Rembold e André Ribeiro;

Aos pesquisadores Nicolás Cardiel Lópes e Michelle Cappellari que foram extremamente solícitos;

À CAPES pelo apoio financeiro.

RESUMO

Apresentamos os resultados obtidos no estudo da população estelar em galáxias Elípticas e Lenticulares (ETGs-Early-Type Galaxies) pertencentes a 151 Grupos Compactos (GCs). Para a estimativa dos parâmetros de população estelar usamos duas técnicas amplamente conhecidas: ajuste espectral e índices espectrais. Para comparar os efeitos de diferentes ambientes na evolução de galáxias, selecionamos uma amostra composta por 11363 galáxias pertencentes ao ambiente de baixa densidade dado pelo campo. Pelos nossos resultados, os parâmetros idade, metalicidade e $\left[\alpha/\text{Fe}\right]$ apresentam o mesmo comportamento independente do ambiente (campo ou GCs). Não encontramos indicação do truncamento na formaão estelar de galáxias de baixa massa como sugerido por Rosa et al. (2007). Comparado com os parâmetros estimados para a amostra de galáxias centrais e satélites definidas por Barbera et al. (2014), nossos resultados mostram que galáxias em GCs se comportam de forma semelhante à galáxias centrais em halos de matéria escura de baixa massa. Dinamicamente, nossa amostra de GCs pode ser separada em duas famílias dada a dispersão de velocidade do grupo (σ_G): grupos de baixo σ_G com $\sigma_G \lesssim 181$ km/s e grupos de alto σ_G . Os grupos de alto σ_G são ligeiramente mais ricos em galáxias ETGs (~ 76%) e apresentam valores menores de *crossing time* se comparados com os grupos de baixo σ_G que foram formados recentemente. Quanto a atividade nuclear, baseado no diagrama de diagnóstico WHAN, ambas as amostras selecionadas em nosso estudo são compostas por galáxias tidas como "Aposentadas", isto é, galáxias cujas linhas de emissão são dadas pela fotoionização provocada pela presença de estrelas evoluídas quentes e de baixa massa (HOLMES - Hot Low Mass Evolved Stars). Os resultados de nosso estudo indicam que galáxias em GCs passam por interações pobres em gás, o que poderia explicar a similaridade entre os parâmetros de população estelar nos diferentes ambientes.

Palavras-chave: Evolução Galáctica. Ambientes de Altas Densidades. Grupos de Galáxias. Interações. Atividade Nuclear.

EVOLUTION OF ELLIPTICAL GALAXIES IN HIGH DENSITY ENVIRONMENT

ABSTRACT

We present the results of the study of the stellar population in ETGs belonging to 151 Compact Groups (CGs). To estimate the stellar population parameters we used two well known techniques: the spectral fitting and spectral indices. We also selected a field sample composed by 11363 ETGs to compare the effects of different environments in the evolution and formation of galaxies. In our results, the stellar populations parameters age, metallicity and $\left[\alpha/\text{Fe}\right]$ show the same trends for ETGs in CGs and in the field. There is no indication of the truncation of the star formation for low mass galaxies as suggest by Rosa et al. (2007). Compared to parameters estimated for central and satellites galaxies defined in Barbera et al. (2014) our results show that galaxies in GCs behave similarly to central ones especially those embedded in a low mass dark matter halo. From the dynamic point of view, we can divide our sample of 151 CGs into two regimes of velocity dispersion: low σ groups with $\sigma_G \lesssim 181$ km/s and high σ groups. The high σ groups have slightly more ETGs (~ 76%) and smaller crossing times than the low σ groups which are recently formed. For the activity, our results is in agreement with the literature for the analysis performed with BPT diagram. Using the stack spectra of the CGs and field samples shows that the AGN is the most common type in form of LINERs. A more interesting result is found when we use the WHAN diagram, defined specially for the case of weak emission line galaxies. Based in the WHAN diagram all the stacks in both samples are "Retired" galaxies, i.e., galaxies whose emission line is from the photoionization caused by the hot low mass evolved stars (HOLMES). All our results indicate that ETGs in CGs pass through "dry" mergers which explain the fact that the stellar populations behaves similar as in galaxies in the field.

Keywords: Galaxy Evolution. High Density Environments. Group of Galaxies. Stellar Content. Nuclear Activity.

LISTA DE FIGURAS

1.1	Representação do modelo Hierárquico de formação de estruturas. O tempo	
	cresce de cima para baixo. Os halos de matéria escura formados até $t=t_f$	
	se fundem até formar um único halo de matéria escura em tempos atuais	
	$(t = t_0)$	2
1.2	Instantâneos da simulação numérica conduzida por Andrey Kravtsov e	
	Anatoly Klypin para formação de estruturas seguindo o modelo de $\Lambda {\rm CDM}.$	
	A figura mostra a evolução de estruturas em 43 milhões de Parsecs (140	
	milhões de anos-luz). Cada instantâneo mostra a evolução em um dado	
	$\mathit{redshift},$ des de z = 30 aos dias atuais. Pelo resultado dessa simulação	
	vemos que os filamentos se tornam proeminentes ao passar do tempo.	
	Entretanto, em $z = 0.5$ a $z = 0$ temos pouca variação porque nesse estágio	
	da expansão acelerada do Universo, a energia escura torna-se dominante	
	(em $z \sim 1$)	3
1.3	Classificação de galáxias proposta por Edwin Hubble (conhecido como	
	"Diagrama de Hubble"). As elípticas são subdividas de E0 a E7, depen-	
	dendo de sua elipticidade. As galáxias S0 são as chamadas lenticulares e	
	apresentam características de ambas as clasificações. As espirais ("S") são	
	subdividas quanto a forma de seu bojo em "normal" (sequência superior)	
	e "barradas" (sequência inferior)	4
1.4	Histórico de formação estelar para galáxias elípticas e espirais. \ldots .	6
1.5	Taxa de formação estelar global em função do $redshift$ ("Diagrama de	
	Madau"). Os símbolos correspondem as medidas de SFR em diferentes	
	comprimentos de onda	7
1.6	A fração de massa estelar agregada para diversos valores de massas	
	galácticas. Vemos que as galáxias massivas formam suas estrelas em	
	épocas mais remotas.	8
1.7	Exemplos de "pseudo-bojo" formados pela reorganização do gás dada a	
	presença de estrutura espiral e barra. Esse processo é chamado "Evolução	
	secular"e ocorre em galáxias disco.	10

1.8	Processos de pressão de arraste (a) e estrangulamento em galáxias (b). Em (a) a remoção do gás ocorre de forma rápida em $t = t_q$ o que resulta em uma evolução passiva onde as estrelas formadas previamente completam seu ciclo e a galáxia permanece com a mesma massa estelar e metalicidade. Em (b) a galáxia perde seu reservatório de gás ao ser adicionada em um	
	ambiente de alta densidade em $t =_q$. A formação estelar não é interrompida e permanece até que todo o conteúdo de gás presente na galáxia seja	
1.9	exaurido	13
1.10	iguais	15
1.11	Acima a galáxia Antenae e abaixo a galáxia NGC2623	16
	de cada tipo espectral em função da densidade espacial	19
2.1	O quinteto de Stephan observado pelo telescópio espacial Hubble em 2009. Podemos ver que a galáxia na parte inferior da imagem possui um rastro de gás onde estão presentes inúmeros aglomerados de estrelas. Esse é um	
2.2	indício de que a galáxia interagiu com as demais	24
	Terra.	25
2.3	Distribuição de velocidade radial em função da velocidade média do grupo para as 457 galáxias de HGCs estudadas em Hickson et al. (1992)	26
2.4	Exemplos de contaminação do catálogo definido por MC09: (i) objetos classificados como galáxias mas que são estrelas;(ii) objetos com magnitude equivocada no catálogo; (iii) rastros de satélites podem ser classificados como galáxias; (iv) objetos saturados e (v) objetos extensos são fragmentos	
2.5	pelo algoritmo do SDSS e cada fragmento é classificado como uma galáxia. Distribuição em <i>redshift</i> e magnitude absoluta M_r após aplicação da	27
	correção K.	29

2.6	Distribuição em redshift e magnitude absoluta (M_r) para a amostra de	
	campo formada pelas 11236 galáxias com espectros disponíveis no DR12.	
	A M_r é dada após correção K realizada pelo código KCORRECT v42	
	(BLANTON; ROWEIS, 2007)	30
2.7	Esquema da árvore de decisão empregada na classificação morfológica de	
	galáxias usada pelo Zoo 2. O destaque marrom na imagem indica que a	
	pergunta é comum a todas as galáxias independente de uma dada resposta.	
	As marcadas em verde, azul e lilás são aquelas a um passo, dois ou três	
	passos abaixo de uma ramificação da árvore de decisão, respectivamente.	32
2.8	Resumo da classificação visual realizada para todas as galáxias da amostra	
	em GCs (total de 629). As classes são dadas seguindo a árvore de decisão	
	(Figura 2.3) e as opções mais votadas.	34
2.9	Distribuição em $redshift$ e M_r para a sub-amostra de ETGs (Amostra	
	E) em GCs e amostra de ETGs do campo. A amostra E é formada por	
	198 galáxias que encontram-se no regime de redshift (0.05 $\leq z \leq 0.95)$ e	
	magnitude absoluta ($M_r \leq 20.5$) igual ao do campo	36
2.10	Exemplo de ajuste espectral realizado pelo código STARLIGHT. A linha	
	vermelha é o espectro observado e a linha verde o melhor ajuste dado pelo	
	programa. As áreas sombreadas são regiões excluídas do ajuste devido a	
	possível contaminação por linhas de emissão. No painel inferior é mostrado	
	o resíduo entre o espectro observado e o modelado.	39
2.11	Parâmetros de população estelar ponderados pela luminosidade dado	
	pelo ajuste espectral realizado pelo programa STARLIGHT. Da amostra	
	de ETGs em GCs, quatro objetos foram excluídos da análise pois seus	
	espectros apresentavam erro de calibração e dois objetos não possuíam es-	
	timativa de dispersão de velocidade também foram excluídos. Da amostra	
	de ETGs no campo, 20 espectros foram excluídos pelas mesmas razões. O	
	resultado apresentado conta com 455 galáxias da amostra em GCs (195	
	da amostra E) e 4832 galáxias da amostra de campo. Os parâmetros de	
	população estelar comportam-se de maneira semelhante em ambos os	
	ambientes	41

2.12 Comparação dos resultados obtidos para dois conjuntos distintos de SSPs. A base extraída da biblioteca MILES estendida (MIUSCAT) é composta por 108 SSPs com 27 idades entre 0.5 - 17.78 Giga-Ano e metalicidade $[M/H] = \{-0.71, -0.40, 0, 0.22\}$. A base proveniente da biblioteca MILES é formada por 56 SSPs com 14 idades entre 0.5 - 14.12 Giga-Ano e mesma metalicidade da base anterior. O comportamento dos parâmetros de população estelar de nossa amostra permanece os mesmo independente 422.13 A largura equivalente (W) como definida pela Equação 2.5. A quantidade de energia absorvida pelo perfil Gaussiano na esquerda é equivalente ao absorvido por um retângulo de largura W e altura F_c 432.14 Exemplo de ajuste polinomial realizado para estimativa das metalicidades $[Z/H]_{Mgb}$, $[Z/H]_{Fe}$ e $[Z/H]_{MgFe'}$ utilizada no cálculo do proxy para $[\alpha/\mathrm{Fe}]([Z/H]_{Mqb}, [Z/H]_{Fe}) \in [Z/\mathrm{H}]([Z/H]_{MqFe'}).$ 452.15 Resultado da aplicação do método híbrido nas amostra de ETGs em GCs e no campo. A idade é obtida do ajuste espectral e os demais parâmetros são calculados utilizando proxy. O proxy de [Z/H] é dado pelo ajuste polinomial utilizando as medidas do índice MgFe' e as metalicidades da base MILES. Já o $[\alpha/\text{Fe}]$ é obtido da relação $[\alpha/Fe] = 0.55 \cdot [Z_{Mqb}/Z_{Fe}]$ onde $[Z_{Mgb}/Z_{Fe}]$ é o proxy definido como $[Z_{Mgb}/Z_{Fe}] \equiv [Z/H]_{Mgb} - [Z/H]_{Fe}$. As metalicidades $[Z/H]_{Mgb}$ e $[Z/H]_{Fe}$ são obtidas de forma independente pelo ajuste polinomial do índices $Mg_b \in \langle Fe_3 \rangle$, respectivamente. 472.16 Resultado da utilização do modelo de misturas finitas executado pelo pacote MCLUST em 1000 amostragens. O melhor ajuste é obtido por duas distribuições: uma normal (vermelho) e uma log-normal (azul). Dessa forma, nossa amostra de 151 GCs é dividida em duas famílias dinâmicas dadas pela dispersão de velocidade do grupo (σ_G): grupos com baixo σ_G são aqueles cujo $\sigma_G \leq 180$ km/s enquanto que os grupos de alto σ_G apresentam $\sigma_G > 181$ km/s. No gráfico também temos o Critério de Informação Bayseiano (BIC - do inglês *Bayesian Information Criterion*) que indica que a distribuição de dispersão de velocidades dos GCs de 482.17 Distribuição da dispersão de velocidade (σ_G) dos 151 GCs de nossa amostra. A linha em vermelho é a separação entre as duas famílias dinâmicas nas quais nossos grupos podem ser divididos. 492.18 Distribuição de M_r para grupos de baixo e alto σ_G de nossa amostra. . . 502.19 Distribuição da fração de espirais para grupos de baixo e alto σ_G da nossa 51

2.20	Fração de espirais em função da dispersão de velocidades para GCs de	
	nossa amostra. A linha tracejada vermelha separa os dois regimes de σ_G .	
	Comparamos nossos resultados com o encontrado no estudo conduzido	
	por Ribeiro et al. (1998) usando uma amostra de 17 HCGs	52
2.21	Distribuição do crossing time para grupos de baixo e alto σ_G	53
2.22	Fração de espirais em função do <i>crossing time</i> para os 151 GCs que	
	compõem a nossa amostra. Como esperado pelo modelo de interações	
	entre galáxias, a fração de espirais cresce com o <i>crossing time</i> .	54
2.23	Parâmetros de população estelar de ETGs em GCs pertencentes a grupos	-
	de baixo e alto σ_{G} . As linhas traceiadas são as médias dos parâmetros.	
	Apesar do Teste de permutação indicar que as distribuições dos parâmetros	
	são distintas os valores médios são bem próximos	55
2.24	Espectros empilhados utilizando a amostra completa (Amostra F) de	00
2.21	ETCs em GCs. No total foram produzidos 7 espectros ao estabelecermos	
	um número mínimo de 30 galáxias por hin de dispersão de velocidade	
	O tamanho do bin do disporsão do volocidado varia entre $10 \le \delta \le 40$	
	O tamanno do bin de dispersao de velocidade varia entre $10 \le b_{\sigma} \le 40$	
	km/s. Fara memor visualização, os espectros emplihados foram deslocados	56
0.05	Espectros empilhados produzidos para a amostra da ETCs no compo	90
2.20	Negas esse por ter mais galávias que a amostra de ETGS no campo.	
	Nesse caso, por ter mais galaxias que a amostra em GOS, deminios o	
	minimo de 100 galaxias por bin de dispersão de velocidade. Ao todo são	
0.00	15 espectros empilhados.	57
2.20	Exemplo de ajuste gaussiano realizado para a medida das linnas de	
	emissao. Para tanto usamos o espectro residual proveniente da subtração	F 0
0.07	do espectro empilhado original e o modelado pelo programa STARLIGHT.	58
2.27	Diagrama BP1 para os espectros emplinados da amostra de E1Gs em	
	GCs (esquerda) e no campo (direita). A cor dos pontos e baseada na	
	dispersao de velocidade do espectro empilhado indo do azul para vermelho	
	para maiores valores de dispersão de velocidade	59
2.28	Diagrama WHAN para os espectros empilhados das amostra de ETGs	
	em GCs (esquerda) e no campo (direita). As cores dos pontos é uma	
	referência a dispersão de velocidades, como pode ser visto no gradiente	
	de cor no gráfico.	59
2.29	Comparação com os resultados obtidos pelo Rosa et al. (2007) para 22	
	galáxias ETGs em HCGs. Nosso estudo conta com mais galáxias no regime	
	de baixa dispersão de velocidades e não confirmamos o truncamento da	
	formação estelar evidente em Rosa et al. (2007)	61

2.30	Comparação dos parâmetros de população estelar obtidos por Barbera et	
	al. (2014) para amostras de galáxias centrais e obtidos nesse estudo para	
	as amostras de ETGs em GCs e no campo	63
2.31	Comparação dos parâmetros de população estelar obtidos por Barbera et	
	al. (2014) para amostras de galáxias centrais e obtidos nesse estudo para	
	as amostras de ETGs em GCs e no campo	64
2.32	Relação entre a magnitude absoluta e dispersão de velocidade do grupo.	
	Realizamos um ajuste usando um tamanho fixo de bin ($\Delta = 100 \text{ km/s}$) e	
	número fixo de objetos/bin (N/bin = 15). Em ambos os casos a relação	
	entre as grandezas é linear como o esperado para sistemas ligados	66
21	Parêmetros de população estelar (idade e $[7/H]$) massa estelar e averme	
0.1	l'arametros de população esterar (idade e $[2/11]$), massa esterar e averine-	
	mamento em função da distancia ao centro do agromerado normanizado por $P_{\rm expansive}$ 210 grupos do certíficas do Veng et el (2007). Os grupos	
	por N_{200} para 519 grupos do catalogo de Tang et al. (2007). Os grupos	
	ostado dinêmico, sondo os grupos Caussianos aquelos em equilíbrio.	
	estado dinamico, sendo os grupos Gaussianos aqueles em equinorio. A	
	amostra e divida em dois regimes de magnitude, galaxías mais orimantes (bricht) año aquelos com $M_{\rm exc} = 20.55$ o galáxías do brilho proja fraco	
	(<i>bright</i>) sao aqueias com $M_r \leq -20.55$ e galaxías de brinio mais fraco	71
29	$(Jauni)$ entre $-20.55 \le M_r \le -18.40$	(1
0.4	ralóvias	73
33	Distribuição dos parâmetros morfométricos: Assimetria (A_2) Concentra-	10
0.0	cão(CN) Suavidade (S_2) Entropia (H) e GPA para as galáxias classifi-	
	cadas como elípticas e espirais pela aplicação do método de Árvore de	
	decisão. Dentre os parâmetros, vemos que o que melhor distingue as duas	
	classes é o GPA.	74
3.4	Comparação entre o viés estimado entre os valores reais e medidos pelos	-
	programas GALPHAT (curva azul) e GALFIT (vermelho) para os parâme-	
	tros magnitude (mag), raio efetivo (r_e) e índice Sérsic (n). O GALPHAT	
	retorna valores mais próximos do reais, especialmente para valores mais	
	altos de n (n =10). \ldots	76
3.5	Diagrama WHAN para a amostra de 102 ETGs e em diferentes regimes do	
	Fator de Bayes (BF). Vemos uma correlaão no sentido de que galáxias com	
	maiores valores de BF (sem PS) encontram-se mais dispersas na região	
	de LINERs a Passivas. Para BF mais baixos, as galáxias se concentram	
	na região limítrofe entre LINER e Aposentadas	77

LISTA DE TABELAS

2.1	Tabela com dados da amostra final de GCs usada nesse projeto. Na tabela	
	temos o número de grupos (N_{grupos}) com N_z membros com estimativa	
	de redshift disponível dos $N_{membros}$ pertencentes ao grupo. No total, a	
	amostra final de GCs é composta por 151 grupos do catálogo A de MC09.	29
2.2	Uma breve descrição das siglas adotadas para a classe morfólogica no	
	catálogo final do "Galaxy Zoo 2". A classe é dada por uma sequência	
	de caracteres que indicam a classe geral (E = elíptica e S = espiral) e a	
	forma do bojo. No caso de espirais barradas, o S é seguido de um "B".	
	Também está presente na sigla o número de braços e sua disposição. As	
	galáxias espirais vistas de perfil iniciam sua sigla com "Se". Desta forma,	
	uma galáxia com a classe "Er" é uma elíptica com bojo de forma esférica;	
	a sigla "SBc2m" é uma espiral barrada com bojo apenas notável e dois	
	braços espirais que se não se encontram tão atados ao bojo. Uma "Ser" é	
	uma galáxia espiral vista de perfil e com bojo de forma retangular. \ldots	33
2.3	Tabela com a descrição de cada amostra usada nesse projeto	36
2.4	Configuração da base de SSPs selecionada para o ajuste espectral realizado	
	pelo programa STARLIGHT. Utilizamos a biblioteca definida por Vazdekis	
	et al. $(2010)(Vaz10)$	39
2.5	Tabela com os bins de dispersão de velocidade, número de galáxias por	
	bin de dispersão de velocidade (N_{bin}) e S/N estimado para o espectro	
	empilhado produzido da amostra de ETGs em GCs e no campo	58
A.1	Classificação morfológica das 629 galáxias pertencentes a amostra de	
	151 GCs. No total cinco colaboradores responderam aos questionários	
	semelhantes aos usados no projeto <i>The Galaxy Zoo 2</i> . As classes são	
	atribuídas seguindo a árvore de decisão do The Galaxy Zoo \mathcal{Z} e seguem	
	a nomenclatura dada pelo projeto: S para galáxias espirais e E para as	
	galáxias elípticas sendo seguido de: (m) = fusão, (l) = lentes e arcos, (r)	
	= anéis, d = distúrbios, i = irregular, (o) = outros e (d) = traços de	
	poeira. Para 14 galáxias espirais não houve consenso quanto a forma do	
	bojo e à essas galáxias foi atribuída a classe "S". A coluna "ID Grupo" é a	
	identificação do grupo no catálogo de McConnachie et al. (2009) e "ID	
	Gal" a identificação da galáxia no grupo, a partir da mais brilhante. $\ . \ .$	97

- amostra de 573 ETGs. As 89 galáxias cuja imagem apresenta algum problema (galáxia na borda ou galáxias muito próximas) não estão listados.120

LISTA DE ABREVIATURAS E SIGLAS

GCs	—	Grupos Compactos de Galáxias
ETGs	_	Early-Type Galaxies (Galáxias Elípticas e Lenticulares)
MC09	—	Catálogo de Grupos Compactos definido por McConnachie et al. (2009)
BPT	_	Diagrama de Diagnóstico definido por Baldwin et al. (1981)
HOLMES	_	Hot Low-Mass Evolved Stars
Zoo1	_	Catálogo produzido por Lintott et al. (2008)
Zoo2	—	Catálogo produzido por Willett et al. (2013)

IMF – Função de Massa Inicial (sigla do abreviação do inglês *Initial Mass Function*)

SUMÁRIO

Pág.

1 INTRODUÇÃO	1
1.1 O universo hierárquico	1
1.2 A Formação e Evolução de Galáxias	2
1.2.1 Propriedades Morfológicas	3
1.2.2 Formação Estelar	5
1.2.3 História de formação estelar cósmica	6
1.2.4 Como se estabelece a massa de uma galáxia?	7
1.3 Processos internos e externos de transformação de uma galáxia	8
1.3.1 Processos internos	8
1.3.2 $Feedback \ldots \ldots$	9
1.3.3 Evolução Secular	9
1.3.4 Processos externos $\ldots \ldots 1$	10
1.3.5 Pressão de arraste $\ldots \ldots 1$	11
1.3.6 Estrangulamento \ldots 1	12
1.3.7 Fusão galáctica	13
1.3.8 Assédio Galáctico	4
1.4 Qual a influência do ambiente na evolução de galáxias? (<i>Nature vs Nurture</i>) 1	17
1.5 Esta tese $\ldots \ldots 2$	20
2 EVOLUÇÃO DE CALÁVIAS ELÍDTICAS EM CRUROS COM	
PACTO	23
2.1 Introducão	23
2.2 Definição da amostra de GCs	26
2.2.1 Amostra de Galáxias de Campo	28
2.3 Classificação Morfológica	31
2.4 Populações Estelares em Galáxias Elípticas em GCs	37
2.4.1 Ajuste Espectral $\ldots \ldots 3$	37
2.4.2 Medida de índice $\ldots \ldots 4$	41
2.4.3 Método Híbrido	14
2.5 Análise Dinâmica dos GCs	46
2.6 Análise de Atividade Nuclear em GCs	51
	57

2.7.1 Parâmetros de População Estelar	57
2.7.2 Dinâmica	52
2.7.3 Atividade Nuclear	55
2.8 Sumário	57
3 UM ESTUDO MORFOLÓGICO E FOTOMÉTRICO DE UMA	
AMOSTRA COMPLETA DE GRUPOS COMPACTOS 6	9
3.1 Introdução	59
3.2 Morfometria	71
3.3 Fotometria	'5
3.4 Conclusão	'8
4 PERSPECTIVAS	51
REFERÊNCIAS BIBLIOGRÁFICAS	5
APÊNDICE A	7
A.1 Tabelas)7
A.1.1 Classificação Morfológica)7
A.1.2 Propriedades Dinâmicas)4
A.1.3 Morfometria - Cymorph)8
A.1.4 Fotometria - GALPHAT	20

1 INTRODUÇÃO

1.1 O universo hierárquico

A cosmologia e a astrofísica extragaláctica são as áreas da astronomia mais beneficiadas com os avanços observacionais e tecnológicos de forma geral. Na era dos telescópios espaciais e com maiores e melhores observatórios terrestres, temos acesso à um Universo jovem que nos permite refutar ou testar novos modelos para formação das diversas estruturas que vemos hoje. Do estágio de conhecimento em que acreditávamos ocupar o centro do Universo até a famosa imagem *Ultra Deep Field* obtida pelo telescópio espacial Hubble se foram ~ 500 anos. Nos últimos cem anos foram feitas descobertas históricas como a observação de outras galáxias, a expansão do Universo, a radiação cósmica de fundo e a construção de modelos para formação do próprio Universo.

Muitas perguntas permanecem e outras tantas foram formuladas quanto à formação do Universo como um todo e a formação e evolução de estruturas como galáxias. Atualmente, o modelo cosmológico tido como padrão é o modelo de ACDM (CDM do inglês *Cold Dark Matter*), um Universo em expansão seguindo a Teoria da Relatividade Geral de Einstein e regido pela densidade do vácuo. Nesse modelo os principais ingredientes que formam o Universo são distribuídos da seguinte forma: 4.9% de matéria bariônica, isto é, matéria composta por prótons, elétrons e nêutrons (bárions) que forma o que chamamos de "Universo visível"; 26.8% de matéria escura fria, matéria que interage apenas gravitacionalmente e 68.3% de energia escura, componente atribuída a expansão acelerada do Universo. A matéria escura é a base para a formação das estruturas que observamos. No modelo de ΛCDM , as grandes estruturas têm origem nas pertubações primordiais que estão impressas na Radiação Cósmica de Fundo em Microondas (CMB do inglês Cosmic Microwave Background). Por interagir fracamente com a radiação, a matéria escura se desacopla do plasma relativístico de matéria e radiação antes da época de recombinação. A formação de estruturas é causada pela instabilidade gravitacional, a partir de flutuações quânticas primordiais amplificadas na época de Inflação. Na época de recombinação os bárions se destacam do campo de radiação e passam a se acumular nos halos de matéria escura. Esses halos acumulam cada vez mais material até que se tornam tão densos que se destacam da expansão geral do Universo (fluxo de Hubble) e colapsam formando sistemas ligados. A formação de grandes estruturas ocorre da acresção desses pequenos halos de matéria escura, o cenário conhecido como Hierárquico. Uma representação desse modelo é apresentado na Figura 1.1. Simulações considerando

apenas matéria escura confirmaram o modelo Hierárquico de formação de estruturas. Essas simulações também mostram que as galáxias residem preferencialmente em filamentos que simulam o mesmo padrão observado na CMB. Os aglomerados são considerados a intersecção desses filamentos. O resultado de uma dessas simulações é mostrada na Figura 1.2.

Figura 1.1 - Representação do modelo Hierárquico de formação de estruturas. O tempo cresce de cima para baixo. Os halos de matéria escura formados até $t = t_f$ se fundem até formar um único halo de matéria escura em tempos atuais $(t = t_0)$.

Fonte: Lacey e Cole (1993)

A formação de galáxias e estrelas a partir da matéria bariônica é um processo por si só complexo. Os diferentes tipos morfológicos são formados por processos distintos como indicam as atuais propriedades desses sistemas. A seguir uma breve descrição de como são formadas as galáxias, em específico, as espirais e elípticas.

1.2 A Formação e Evolução de Galáxias

A constante acresção e fusão de galáxias, previstos pelo modelo Hierárquico possui forte influência na evolução de galáxias. A seguir descrevemos em maiores detalhes as propriedades observacionais que nos fornece elementos necessários para a melhor compreensão da evolução e formação de galáxias. Figura 1.2 - Instantâneos da simulação numérica conduzida por Andrey Kravtsov e Anatoly Klypin para formação de estruturas seguindo o modelo de Λ CDM. A figura mostra a evolução de estruturas em 43 milhões de Parsecs (140 milhões de anos-luz). Cada instantâneo mostra a evolução em um dado *redshift*, desde z = 30 aos dias atuais. Pelo resultado dessa simulação vemos que os filamentos se tornam proeminentes ao passar do tempo. Entretanto, em z = 0.5 a z = 0temos pouca variação porque nesse estágio da expansão acelerada do Universo, a energia escura torna-se dominante (em $z \sim 1$).

Fonte: http://cosmicweb.uchicago.edu/filaments.html (2006)

1.2.1 Propriedades Morfológicas

Galáxias são sistemas complexos caracterizados por diversos parâmetros. Entretanto, uma miríade de galáxias quando classificadas visualmente são divididas em dois tipos básicos: galáxias elípticas e espirais. O astrônomo Edwin Hubble foi o primeiro a propor um cenário de classificação de galáxias (HUBBLE, 1926), o conhecido "Diagrama de Hubble" (Figura 1.3). Nesse diagrama podemos determinar além das espirais e elípticas mais dois tipos: as lenticulares (S0) e as Irregulares (Irr). As lenticulares apresentam um disco fino, como os encontrados em galáxias espirais porém com bojo dominante típico de galáxias elípticas. No diagrama apresentado por Hubble (1926), não está presente a classe "Irregular" pois na época foi tratada como pertencente a um dos demais tipos. Essa classe é caracterizada pela forte presença de regiões de HII e são desprovidas de estrutura espiral ou simetria. As galáxias espirais também são chamadas de galáxias disco ou por razões históricas, de galáxias de tipo tardio (mais conhecida pela expressão em inglês *Late-type*) enquanto que as galáxias elípticas são conhecidas como galáxias bojo. As galáxias elípticas e lenticulares são usualmente conhecidas como *early-type*.

Figura 1.3 - Classificação de galáxias proposta por Edwin Hubble (conhecido como "Diagrama de Hubble"). As elípticas são subdividas de E0 a E7, dependendo de sua elipticidade. As galáxias S0 são as chamadas lenticulares e apresentam características de ambas as clasificações. As espirais ("S") são subdividas quanto a forma de seu bojo em "normal" (sequência superior) e "barradas"(sequência inferior).

Fonte: ASTRONOMY: A Beginner's Guide to the Universe- Eric Chaisson e Steve McMillan (2004)

Como o nome da classe sugere, as galáxias espirais apresentam padrão espiral e estrutura de disco mantida pela rotação da galáxia. Também podem exibir um bojo que é dominante em espirais do tipo Sa e ausentes no tipo Sd. Muitas apresentam o bojo na forma de uma barra e são chamadas "espirais barradas" (sequência inferior no diagrama de Hubble). O disco é composto principalmente de estrelas jovens, regiões de HII, nuvens moleculares e poeira. Dados esses elementos, são galáxias com formação estelar ativa. Por possuir uma população estelar jovem, as galáxias espirais apresentam cor azul.

As galáxias elípticas são sistemas elipsoidais cujas estrelas descrevem órbitas orienta-

das de forma aleatórias em torno do centro. São formadas por estrelas da população II e por isso são fotometricamente caracterizadas pela cor vermelha. São pobres em gás e poeira mas apresentam um meio interestelar rico em gás quente observado no comprimento de onda do raio X.

E possível a transformação entre tipos morfológicos sendo a mais comum, a transformação de uma *late-type* em uma *early-type*. Veremos na Seção 1.3 os principais processos responsáveis por tal alteraç ao. Os tipos morfológicos se relacionam com o ambiente nos quais as galáxias se encontram como será descrito na Seção 1.4. Iremos tratar a partir de agora das diferencas entre as galáxias elípticas e espirais a começar pela sua formação.

1.2.2 Formação Estelar

Podemos relacionar a cor de uma galáxia à população estelar presente. No geral, galáxias vermelhas são dominadas por estrelas da população II enquanto que as galáxias azuis apresentam estrelas mais jovens, de população I. Como foi descrito na seção anterior, as galáxias vermelhas são, na maioria dos casos, galáxias elípticas enquanto que as azuis são galáxias espirais. Apesar de serem ricas em estrelas jovens, as galáxias espirais apresentam uma população mais velha em seu centro (espirais com bojo dominante como as Sa- Figura 1.3).

A diferença na população estelar em cada um dos principais tipos morfólogicos aponta para cenários distintos de formação estelar. A população mais velha presente em elípticas sugere que essas galáxias tiveram intenso episódio de formação estelar em altos redshifts (z > 2). Sem uma subsequente formação de estrelas, a galáxia apresenta uma evolução passiva, isto é, as estrelas formadas anteriormente evoluem e conforme se aproximam do fim de seu ciclo tornam-se vermelhas. Esse modelo de evolução de elípticas é conhecido como "Modelo de colapso monolítico". Um outro modelo possível é o "Modelo Hierárquico de formação de estruturas" no qual, como foi visto na Seção 1.1, as galáxias são inicialmente estruturas menores que se formam pela acresção de objetos vizinhos. Como exemplo desse modelo, temos que segundo simulações numéricas a fusão de galáxias espirais resultam em uma galáxia elíptica. O domínio de população estelar jovem em galáxias espirais, sugere que a formação estelar nessas galáxias ocorre de forma constante. Um resumo desses cenários de formação estelar é mostrado na Figura 1.4.

Figura 1.4 - Histórico de formação estelar para galáxias elípticas e espirais.

Fonte: Produzido pela autora.

1.2.3 História de formação estelar cósmica

A taxa de formação estelar de galáxias em diferentes *redshifts* pode ser usada para uma estimativa da taxa de formação estelar no Universo. O histórico de formação estelar do Universo é caracterizado pela massa total de gás que transforma-se em estrelas por unidade de tempo e volume em um dado *redshift* ($\dot{\rho}_{\star}(z)$). Da estimativa da densidade numérica de galáxias em função da luminosidade, o $\dot{\rho}_{\star}(z)$ é dado pela expressão:

$$\dot{\rho_{\star}}(z) = \int d\dot{M}_{\star} \dot{M}_{\star} \int P(\dot{M}_{\star}|L,z)\phi(L,z)dL = \int \langle \dot{M}_{\star} \rangle(L,z)dL$$
(1.1)

onde $P(\dot{M}_{\star}|L, z)$ é a probabilidade de uma galáxia em *redshift z* e luminosidade L (em um dada banda) apresentar taxa de formação estelar no intervalo $(\dot{M}_{\star}, \dot{M}_{\star} + d\dot{M}_{\star}$; $\langle \dot{M}_{\star} \rangle (L, z)$ é a taxa de formação estelar média para uma galáxia de luminosidade L em z e $\phi(L, z)$ é a função de luminosidade geralmente obtida observacionalmente em "surveys" para alto *redshift*. A densidade $\dot{\rho}_{\star}(z)$ é dada em $M_{\odot}ano^{-1}Mpc^{-3}$. Do
gráfico de $\rho_{\star}(z)$ versus z (conhecido como "Diagrama de Madau" - Figura 1.5), temos $\dot{\rho}_{\star}(z)$ que aumenta entre z = 0 e $z \sim 1-2$ onde alcança seu valor máximo e decresce para maiores valores de z. Temos dessa forma, que grande parte da formação estelar aconteceu em épocas mais remotas e foi fundamental para o enriquecimento químico no Universo.

Figura 1.5 - Taxa de formação estelar global em função do redshift ("Diagrama de Madau"). Os símbolos correspondem as medidas de SFR em diferentes comprimentos de onda.

Fonte: Galaxy Formation - Houjin Mo (2001)

1.2.4 Como se estabelece a massa de uma galáxia?

Vimos pelo Diagrama de Madau que a formação estelar no universo teve seu pico máximo entre $z \sim 2-4$. Se considerarmos a densidade de massa estelar em função do *redshift* encontramos resultado semelhante como é apresentado na Figura 1.2.4, isto é, para $z \sim 1$ grande parte das estrelas já estavam formadas.

A Figura 1.2.4 também evidencia que as galáxias massivas observadas atualmente $(z \sim 0)$, formaram a maior parte de suas estrelas antes das galáxias menos massivas. A princípio esse resultado mostra-se contrário ao esperado no modelo hierárquico de formação de estruturas. No entanto, modelos hierárquicos semi analíticos são aptos a prever essa população ainda que utilizando função de massa inicial (IMF do

Figura 1.6 - A fração de massa estelar agregada para diversos valores de massas galácticas. Vemos que as galáxias massivas formam suas estrelas em épocas mais remotas.

Fonte: Observational Cosmology - Stephen Serjeant (2010)

inglês *Initial Mass Function* diferente da padrão. Esse cenário de formação estelar é conhecido como "*Downsizing*".

1.3 Processos internos e externos de transformação de uma galáxia

Para entender como uma galáxia evolui ao longo do tempo, é preciso antes de mais nada identificar os processos físicos que determinam a variedade de tipos morfológicos observados. Estes processos em geral são classificados em dois tipos: 1) internos, que são devidos somente a mecanismos que têm sua origem a partir da própria galáxia; e 2) externos, que se relacionam com o ambiente local ou propriedades do halo de matéria escura no qual a galáxia, tal qual observamos, está imersa.

1.3.1 Processos internos

Processos internos são aqueles originados, como diz o nome, no interior do sistema galáctico, como o retorno de elementos pesados numa explosão de supernovas. Evidentemente, este processo altera a história de formação estelar do sistema uma vez que as novas gerações de estrelas serão formadas a partir de material enriquecido. Os processos internos podem se relacionar com o ambiente vizinho mas acredita-se que estes processos estão fortemente relacionados com a massa estelar da galáxia.

1.3.2 Feedback

Uma questão ainda em aberto na teoria moderna de formação de galáxias é o problema de "resfriamento excessivo": o gás atraído gravitacionalmente pelo halo de matéria escura resfria-se com grande eficiência e produz galáxias mais massivas do que as observadas (WHITE; REES, 1978; BALOGH et al., 2001). Uma solução para o problema é o aquecimento do gás através de explosões supernovas ou *feedback* por Núcleo Ativo de Galáxia (WHITE; FRENK, 1991; BOWER et al., 2006). Estudos recentes tem mostrado que a energia liberada por explosões de supernovas não é suficiente para resolver o problema do resfriamento do gás, o que torna o processo de *feedback* de AGN importante. Quanto ao método de transferência de energia, os mais estudados são: (i) radiativo - o AGN aquece radiativamente o gás frio em torno e (ii) mecânico - jatos de partículas de alta energia removem efetivamente o gás frio da galáxia.

Embora o mecanismo de explosões de supernovas não seja eficiente em galáxias de alta massa, ele pode suprimir a formação estelar em galáxias de baixa massa (BOWER et al., 2006). A explosão supernova aquece o gás frio da galáxia que então torna-se parte integrante do halo de gás quente do sistema. Se o gás quente não consegue retornar a fase de gás frio (tempo de resfriamento radiativo longo ou velocidade das partículas maior do que a velocidade de escape do sistema) então o sistema experimenta um decréscimo significativo na formação estelar.

1.3.3 Evolução Secular

A evolução secular é um processo que ocorre em galáxias disco. É causada pela redistribuição de energia e momento angular promovida principalmente pela estrutura espiral e presença de barra. Esse processo é um dos responsáveis pela transformação de galáxias *late-type* em galáxias esferoidais, que são semelhantes a elípticas mas apresentam estrutura diferenciada.

Outro resultado da evolução secular são os chamados "pseudo-bojo", formados pelo rearranjo da estrutura de disco. São compostos pelo gás do disco que devido a redistribuição do momento angular migra para regiões mais centrais da galáxia. Distinguem-se dos bojos ditos "clássicos"por preservarem características do disco como forma achatada, baixa dispersão de velocidade se comparada com a esperada usando a relação de Faber-Jackson, perfil de brilho próximos do exponencial e formação de estrelas. Exemplos de "pseudo-bojo"são mostrados na Figura 1.7 para distintos tipos de galáxias espirais.

Figura 1.7 - Exemplos de "pseudo-bojo"
formados pela reorganização do gás dada a presença de estrutura espiral e barra. Esse processo é chamado "Evolução secular"
e ocorre em galáxias disco.

Fonte: Kormendy e Kennicutt Jr. (2004)

1.3.4 Processos externos

Os processos externos estão relacionados ao ambiente ao qual a galáxia pertence. Os processos que serão tratados nessa seção ocorrem em ambientes de alta densidade, como aglomerados de galáxias e grupos compactos, onde são possíveis a interação

entre galáxias e interação com o meio intra-aglomerados (ou intragrupo).

1.3.5 Pressão de arraste

Aglomerados de galáxias são permeados por gás quente ionizado, muito brilhante no comprimento de onda do Raio X e que segue a distribuição de galáxias. Esse gás presente no meio intra-aglomerado (ICM,do inglês *Intracluster Medium*) agindo como um fluído, exerce uma pressão na galáxia quando a mesma se aproxima. A pressão sofrida que se assemelha a uma força de arrasto, é o processo conhecido como **Pressão de arraste**¹. Se a pressão de arraste for suficientemente forte pode ser o responsável pela remoção do gás presente no meio interestelar (ISM do inglês *Interstellar Medium*).

A pressão exercida pelo ICM depende de sua densidade (ρ_{ICM}) e a velocidade relativa da galáxia ao ICM (v_{rel}) da seguinte forma:

$$P_{ram} = \rho_{ICM} v_{rel}^2 \tag{1.2}$$

Se a pressão excede a for§a gravitacional por unidade de área que mantém o gás do ISM, o mesmo será removido. A força gravitacional por área (F_G/A) necessária para manter o gás no ISM é uma função da densidade superficial do gás interestelar (Σ_{ISM}) e da densidade superficial de estrelas (Σ_{\star}):

$$\frac{F_G}{A} = 2\pi G \Sigma_{ISM} \Sigma_\star \tag{1.3}$$

Desta forma, ocorre a remoção do gás se a seguinte condição for satisfeita:

$$\rho_{ICM} > \frac{2\pi G \Sigma_{ISM} \Sigma_{\star}}{v_{re}^2} \tag{1.4}$$

Pela combinação das Equações 1.2 e 1.3, substituindo $v_{rel}^2 = 3\sigma_r^2$ e considerando um disco de raio r_{disco} , massa M_{disco} e densidade superficial uniforme, Sarazin (1986) reescreveu a condição dada na Equação 1.4 da forma:

¹Tradução livre do termo em inglês, Ram Pressure

$$\left(\frac{n_{ISM}}{10^{-3}cm^{-3}}\right) \left(\frac{\sigma_r}{10^3 km s^{-1}}\right)^2 \gtrsim 3 \left(\frac{M_{disco}}{10^{11} M_{\odot}}\right)^2 \left(\frac{r_{disco}}{10 Kpc}\right)^{-4} \left(\frac{M_{ISM}}{0.1 M_{disco}}\right) \tag{1.5}$$

onde n_{ISM} é a densidade numérica de átomos no ISM e M_{ISM} é a massa do ISM. Da equação acima, deduzimos que galáxias de menor massa ou maior raio terá o gás do ISM mais facilmente removido em um aglomerado massivo (maior σ_r). Entretanto, Abadi et al. (1999) conclui que em grupos de galáxias ou aglomerados de menor massa, a perda de gás por pressão de arraste é bem menor. Esse resultado sugere que a pressão de arraste é mais eficiente para galáxias em aglomerados massivos.

Quando uma galáxia perde grande parte do gás interestelar, ela também perde o ingrediente fundamental para formação de novas estrelas. Desse modo, a formação estelar é extinta. O processo de pressão de arraste em si não é capaz de alterar a morfologia da galáxia porém, como sua principal consequência é reduzir o gás disponível, uma galáxia de disco pode se transformar em uma lenticular S0 dada a formação estelar que cessa. Ainda é discutido na literatura se esse processo seria o principal responsável pela extinção da formação estelar em galáxias disco pertencentes a aglomerados. Simulações numéricas e hidrodinâmicas mostram que em muitos casos apenas o gás em raios galactocêntricos maiores são removidos. O gás remanescente pode aumentar a formação estelar no disco ou permanecer ligado à galáxia e induzir episódios de formação estelar (*Starbust*). Apesar das dúvidas em relação a eficiência da pressão de arraste, muitos indícios desse processo foram observados em galáxias na periferia de aglomerados próximos (como Coma e Virgo).

1.3.6 Estrangulamento

Acredita-se que as galáxias apresentam além do halo de matéria escura, um envoltório de gás quente que atua como um reservatório fornecendo gás para a formação de novas estrelas. Uma galáxia que está sendo adicionada a um meio de alta densidade pode perder esse reservatório de gás, processo chamado de **Estrangulamento**². Ao contrário da pressão de arraste, que interrompe de forma abrupta a formação estelar, ao perder o reservatório, a galáxia continua a formar estrelas até exaurir o gás contido na mesma. As principais diferenças entre pressão de arraste e estrangulamento é apresentado na Figura 1.8.

Muitos estudos apontam a estrangulamento como principal mecanismo para extinção

²Tradução livre do termo em inglês *Strangulation*

Figura 1.8 - Processos de pressão de arraste (a) e estrangulamento em galáxias (b). Em (a) a remoção do gás ocorre de forma rápida em $t = t_q$ o que resulta em uma evolução passiva onde as estrelas formadas previamente completam seu ciclo e a galáxia permanece com a mesma massa estelar e metalicidade. Em (b) a galáxia perde seu reservatório de gás ao ser adicionada em um ambiente de alta densidade em $t =_q$. A formação estelar não é interrompida e permanece até que todo o conteúdo de gás presente na galáxia seja exaurido.

Fonte: Peng et al. (2015)

de formação estelar. Combinado com processos de fusão entre galáxias, o estrangulamento é capaz de reproduzir os comportamentos observados entre morfologia e atividade de formação estelar em função da massa estelar e ambiente. As evidências a favor do estrangulamento incluem o fato de ser eficiente em grupos de baixa massa onde começamos a observar a influência do ambiente e a escala de tempo maior na qual esse processo atua.

1.3.7 Fusão galáctica

A pressão de arraste e o estrangulamento são interações relacionadas ao ICM e ISM. Algumas interações são de natureza puramente gravitacional como a fusão e

assédio galáctico. A **fusão de galáxias** ocorre quando a energia orbital dos sistemas é suficientemente baixa para permitir que as galáxias se encontrem e comecem o processo de torna-se um só sistema como é mostrado na Figura 1.9. Quando duas galáxias se fundem, a energia orbital é convertida em energia interna da galáxia resultante. Esse processo é efetivo em sistemas cuja dispersão de velocidade é menor ou igual a velocidade interna das galáxias, como os grupos de galáxias. Os aglomerados apresentam dispersão de velocidade maiores e não oferecem condições favoráveis a fusão. Galáxias resultantes de fusão apresentam filamentos ou "caudas" de gás, como pode ser visto nas galáxias da Figura 1.10.

Na literatura encontramos diversas sub-classificações de fusões galácticas. A fusão de duas galáxias de massas semelhantes é denominado "Fusão principal"³. Nas simulações realizadas por Toomre (1977), a fusão principal entre galáxias disco produz uma galáxia elíptica. Entretanto, novas simulações (como as realizadas por Banes (2002) e Hopkins et al. (2009)) mostram que o remanescente de uma fusão principal pode ser uma galáxia *late-type*. Dada a presença de gás a fusão pode ser dita "dry"ou "wet". Na fusão de galáxias ricas em gás (fusão "wet") o disco permanece na remanescente enquanto que na fusão de galáxias pobres em gás (fusão "dry"), é produzida uma galáxia early-type. A fusão "wet" também pode iniciar novos episódios de formação estelar. O gás presente nas galáxias perde energia e momento nas ondas de choque geradas na fusão. O gás é canalizado na direção do centro da galáxia onde se resfria provocando um surto de formação estelar. Desta forma, a fusão "wet" pode ser a responsável pela alta taxa de formação estelar observada em galáxias *Starbust* e observação desse tipo de galáxias, reforça essa relação. O tipo mais comum de fusão é a "fusão secundária", que envolve uma galáxia até quatro vezes mais massiva do que a outra. Lotz et al. (2011), estima que a taxa de fusão secundária é três vezes maior do que a taxa de fusão principal até redshifts, $z \sim 0.7$.

As interações entre galáxias conectam o processo de formação estelar com a evolução de galáxias. Na formação hierárquica de estruturas, essas interações possuem papel importante na formação e evolução de galáxias.

1.3.8 Assédio Galáctico

Em aglomerados de galáxias a velocidade típica de um membro do sistema é da ordem da dispersão de velocidade do próprio aglomerado. Esta dispersão de velocidades é por sua vez muito maior do que a dispersão de velocidade interna das galáxias. Desta

³O termo é mais conhecido em inglês: Major merger

Fonte: Volker Springel - Max-Planck-Institut für Astrophysik (2000)

forma, as interações em aglomerados são do tipo de alta velocidade. No encontro de alta velocidade não há coalescência no entanto a galáxia perturbada torna-se mais propícia a perturbações em seu potencial. O efeito acumulativo de vários encontros à alta velocidade é denominado "Assédio Galáctico".

As primeiras simulações para avaliação dos efeitos de assédio galáctico em galáxias

Figura 1.10 - Galáxias com os filamentos de gás característicos de um processo de fusão. Acima a galáxia Antenae e abaixo a galáxia NGC2623.

Fonte: APOD NASA (2012/2009).

disco foram realizadas por Farouki e Shapiro (1981). O resultado dessas simulações, que posteriormente foram reforçados por Moore et al. (1996) e Moore et al. (1998), mostram que galáxias disco que sofrem diversos encontros com membros massivos, podem perder grande parte de sua massa pois o aquecimento provocado pelo aumento da energia interna leva as estrelas a órbitas "livres". As estrelas que permanecem no disco também são aquecidas e causam a transformação do disco em uma componente esferoidal semelhante a galáxias elípticas anãs (MOORE et al., 1996). Galáxias elípticas anãs são ubíquas em aglomerados fato que pode ser visto como um indicativo de que assédio galáctico é frequente nesses ambientes. Moore et al. (1996) também atribui ao efeito de assédio galáctico a população de galáxias "Butcher-Oemler". Essas são galáxias do tipo Starforming que são perturbadas e apresentam evidências de múltiplos episódios de formação estelar. São observadas em aglomerados em $z \sim 0.4$ mas estão ausente em aglomerados em $z \sim 0$. Uma ressalva nesse cenário que pode torna-lo pouco plausível, é o fato de que nas simulações numéricas as elípticas anãs mantém parte de sua rotação enquanto que poucas foram observadas com essa propriedade.

O processo de assédio galáctico é eficiente independente do raio do aglomerado. Durante a aproximação dos sistemas, a energia transferida a uma das galáxias é da ordem do quadrado da massa da galáxia oposta (M_{oposta}^2) . A eficiência do assédio galáctico ($\epsilon_{galáctico}$) depende da densidade ρ de galáxias que é proporcional ao inverso do quadrado do raio do aglomerado ($r_{aalomerado}^{-2}$). Temos então que:

$$\epsilon_{gal\acute{a}ctico} \propto M_{oposta}^2 \times \rho \propto r_{aglomerado}^2 \times r_{aglomerado}^{-2} \tag{1.6}$$

onde assumimos que a massa M_{oposta} é linearmente proporcional ao raio do aglomerado $(r_{aqlomerado})$ como sugerido por King (1962).

1.4 Qual a influência do ambiente na evolução de galáxias? (Nature vs Nurture)

Vimos na seção anterior alguns dos principais processos externos que são responsáveis pela transformação na morfologia de galáxias. Cada processo necessita de condições ideais dadas pelo meio onde as galáxias se encontram. Galáxias em aglomerados, que encontram-se próximas e com alta dispersão de velocidade, são propícias a sofrer os processos como "Assédio Galáctico". Por sua vez, galáxias pertencentes a grupos, onde essas estão mais afastadas umas das outras, sofrem mais processos de fusão. Temos então que o ambiente no qual a galáxia se encontra influencia em como se dará a sua evolução mas ainda nos falta compreender o quanto se estende essa influência. Seriam as interações favorecidas em um dado ambiente o processo dominante na evolução de galáxias? Ou seriam as propriedades intrínsecas iniciais que determinam sua evolução? Tais questões são amplamente discutidas na literatura e são conhecidas como o debate "*Nature vs Nurture*".

O efeito do ambiente na evolução de galáxias é constatado observacionalmente como bem exemplifica a relação Morfologia-Densidade descrita por Dressler (1980).

Segundo essa relação, a fração de ETGs aumenta com a densidade espacial. Dessa forma, ETGs estão mais presentes em aglomerados do que no campo. Na Figura 1.11 temos o resultado tal como apresentado por Dressler (1980) no estudo de 55 aglomerados. Podemos ver claramente o aumento da fração de elípticas em meios de maior densidade. Quanto a fração de galáxias lenticulares (S0), estas também são mais presentes em aglomerados porém, não há correlação tão inequívoca como a apresentada para fração de elípticas. De forma geral, as galáxias em ambientes mais densos são mais massivas, concentradas, pobres em gás, vermelhas e com baixa taxa de formação estelar específica ⁴ (KAUFFMANN et al., 2004; BALDRY et al., 2006; WEINMANN et al., 2006). Os processos possivelmente responsáveis pela relação Morfologia-Densidade são aqueles que provocam a interrupção da formação estelar o que pode causar a transformação de uma *"late-type"* para uma *"early-type"*. Os principais candidatos são os processos de "Pressão de Arraste", "Assédio Galáctico"e interação de maré.

Outro efeito relacionado com o ambiente de alta densidade é o efeito Butcher-Oemler (BUTCHER; OEMLER JR., 1978). Esse efeito trata da fração de galáxias azuis no centro de aglomerados em $z \sim 0.4$ que aumenta consideravelmente quando comparado com o observado em aglomerados no Universo Local. Galáxias azuis são relacionadas a formação estelar recente pois as estrelas mais jovens são quentes e azuis. Essa relação tem sido confirmada em inúmeros estudos. Da análise de dados obtidos pelo Hubble Space Telescope (HST) foi observado que a fração de espirais cresce para maiores redshifts(COUCH et al., 1994; DRESSLER et al., 1994). Os estudos utilizando a base de dados das campanhas observacionais 2dF Galaxy Redshift Survey (LEWIS et al., 2002) e SDSS (GÓMEZ et al., 2003) mostram que a taxa de formação estelar decresce para galáxias em ambientes de alta densidade e que tal fenômeno ocorre em todos os regimes de densidade e redshift. Em específico para aglomerados, as galáxias parecem evoluir rapidamente com o redshift possivelmente devido a processos que operam em ambientes mais densos como "Pressão de Arraste", "Estrangulamento"e interações entre galáxias.

Até o momento, usamos a densidade espacial para caracterizar os ambientes mas esse não é necessariamente o único parâmetro utilizado. Também podemos defini-lo usando a massa do halo de matéria escura no qual a galáxia está inserida, como foi utilizado por Barbera et al. (2014) ou pelo estágio dinâmico do sistema. O ambiente

⁴Taxa de formação estelar específica (SSFR do inglêss, Specific Star Formation Rate) é a taxa de formação estelar (SFR-Star Formation Rate) normalizada por uma dada massa estelar: $SSFR \equiv SFR/M_{estelar}$

Figura 1.11 - Relação Morfologia-Densidade apresentada por Dressler (1980) para galáxias pertencentes a 55 aglomerados. No painel superior temos o número de objetos em cada bin enquanto que o painel inferior fornece a distribuição de cada tipo espectral em função da densidade espacial.

de grupos e aglomerados podem ser definidos pelo seu estado dinâmico através da distribuição de velocidade das galáxias (CARVALHO et al., 2017). A funão pela qual a distribuição de velocidades de um dado grupo é descrita, pode ser considerada um parâmetro quanto ao estado de equilíbrio do mesmo. Um sistema em equilíbrio dinâmico tem sua distribuição de velocidades representada pela distribuição de Maxwell-Boltzmann e por consequência a distribuição de velocidades das galáxias (medidas pelo *redshift*, que é uma medida projetada) deve ser uma Gaussiana. Dessa forma, a gaussianidade (ou não) da distribuição de velocidades pode ser tratada como um indicativo de que o sistema encontra-se em equilíbrio. Uma forma eficiente de medirmos a gaussianidade é apresentada em Ribeiro et al. (2013). Nesse trabalho, a gaussinidade é definida em função da distância entre as distribuições teóricas e empíricas, parâmetro chamado de "Distância Hellinger"(HD). Comparado a outros testes estatísticos (e.g. Anderson-Darling (AD)) o HD se mostrou mais eficiente pois não gerou erros estatísticos tipo I (ocorrem quando a hipótese nula é verdadeira porém rejeitada) e poucos do tipo II (hipótese nula é falsa porém é considerada verdadeira). Carvalho et al. (2017) comparou o método HD com os resultados obtidos com o uso do pacote MCLUST, capaz de identificar múltiplas Gaussianas. Os resultados são similares quando os métodos são aplicados a uma amostra de grupos extraída do catálogo de Yang et al. (2007) mas o HD supera o MCLUST no caso de detectar Gaussianas muito próximas.

1.5 Esta tese

O trabalho apresentado nessa tese é o início de um estudo no âmbito mais geral da formação e evolução de galáxias em ambientes de alta densidade. O projeto descrito no Capítulo 2 trata do ambiente dado pelos Grupos Compactos (GC), um meio de características híbridas por apresentar propriedades típicas do campo (baixa dispersão de velocidade) e de aglomerados (alta densidade espacial). Para uma amostra de 151 GCs extraída do catálogo definido por McConnachie et al. (2009) analisamos a evolução de galáxias ETGs através dos parâmetros de população estelar, o tipo de atividade nuclear e o estado dinâmico dos grupos. Os resultados dessa análise, tanto lançam luz na problemática de evolução galáctica em ambientes densos como também promove novas questões.

O catálogo de McConnachie et al. (2009) nos permite explorar ainda mais o ambiente de GCs pois trata-se de um dos maiores catálogos dessas estruturas. O próximo passo é a busca pela completeza do mesmo ao classificarmos todas as 9713 galáxias distribuídas nos 2297 GCs que compõem o catálogo. Isso nos permite a análise estatística quanto ao tipo morfológico em GCs e pela comparação com o ambiente de campo, teremos mais uma peça no quebra-cabeças que é a evolução de galáxias em diferentes ambientes. Para cumprir com tal objetivo, lançamos mão da nova ferramenta desenvolvida para classificação morfológica, o programa Cymorph (BARCHI et al., 2017). A classificação dada pelo programa é baseada no treinamento de uma árvore de decisão a partir de um conjunto de parâmetros morfológicos. A separação morfológica dada pelo Cymorph tende a ser mais precisa do que a dada pela classificação visual pois a essa contribui a degradação da imagem. Mais detalhes a respeito do programa e a classificação preliminar para a amostra completa de McConnachie et al. (2009) são discutidos no Capítulo 3.

Além do Cymorph também foi desenvolvido, dentro de nosso grupo de pesquisa, um *pipeline* para execução do pacote GALPHAT (*GALaxy PHotometric ATtributes* - (STALDER et al., 2017)). O GALPHAT é um programa para fotometria superficial bidimensional cujo diferencial é a aplicação do método Bayesiano para estimativa dos parâmetros fotométricos. Apesar do tempo computacional exigido, a abordagem

Bayesiana mostrou-se mais eficiente ao recuperar com maior precisão os parâmetros magnitude, índice de Sérsic (n) e Raio efetivo (R_e) . A utilização dessa ferramenta no contexto dos GCs será dada pelo cálculo da razão Bojo/Disco, possível de ser estimada ao ajustarmos os modelos de Sérsic (Bojo) e Sérsic (Bojo) + Exponencial (Disco). Outro atrativo do GALPHAT, é o Fator de Bayes (BF - *Bayes Factor*), usado na escolha do melhor modelo. O BF também pode ser utilizado na detecção de atividade nuclear como é discutido em Stalder et al. (2017). O programa também é apresentado no Capítulo 3.

Extrapolando o ambiente dado pelos GCs também começamos a explorar os aglomerados, a começar com uma nova definição de ambiente. Diferente dos GCs, que são compostos por poucas galáxias, os aglomerados podem ser caracterizados pela sua distribuição de velocidades como vimos na seção anterior. A aplicação do conceito de Gaussianidade como definida por Ribeiro et al. (2013), separa os grupos em função do estado dinâmico dado a forma da distribuição de velocidades. Dessa forma, os grupos em equilíbrio dinâmico são identificados por apresentar a distribuição na forma de uma função Gaussiana e por isso são denominados "Gaussianos". No estudo elaborado por Carvalho et al. (2017), os grupos Gaussianos e não-Gaussianos apresentam, além do estado dinâmico, diferenças quanto à população estelar presente nas galáxias. Essas diferenças são interpretadas como um indício de que galáxias nas regiões externas (1 < R < 2 Mpc) de grupos não-Gaussianos sofreram pré-processamento nos filamentos antes de serem agregadas ao grupo. Buscando a compreensão da evolução de galáxias no plano mais geral, vamos unir o estudo realizado em aglomerados com de GCs afim de avaliarmos a ação de distintos ambientes em galáxias. Note que apesar de ambos serem considerados ambientes de alta densidade, a dinâmica em cada estrutura ocorre de forma diferente, como foi discutido na Seção 1.3.

O trabalho desenvolvido ao longo de 36 meses e apresentado nessa tese, é o começo de um estudo ainda mais complexo abordando o debate, ainda em aberto, quanto ao processo dominante na evolução das galáxias. O trabalho a seguir é uma contribuição ao tema e certamente não exaustivo.

Os trabalhos publicados e submetidos resultantes dessa tese são:

- Investigating the Relation Between Galaxy Properties and the Gaussianity of the Velocity Distribution of Groups and Clusters
 - Reinaldo R. de Carvalho, André L.B. Ribeiro, Diego H. Stalder, Reinaldo R. Rosa, Alisson P. Costa e Tatiana C. de Moura

- Astronomical Journal In press
- Improving Galaxy Morphology with Machine Learning
 - Paulo H. Barchi, Rubens Sauter, Fausto G. da Costa, Tatiana C. de Moura, Diego H. Stalder, Reinaldo R. Rosa e Reinaldo R. de Carvalho
 - Journal of Computational Interdisciplinary Sciences (JCIS), v. 7, p. 114
- Stellar Population Properties of ETGs in Compact Groups of Galaxies
 - Tatiana C. de Moura, Reinaldo R. de Carvalho, André L.B. Ribeiro, Sandro B. Rembold, Francesco La Barbera, Diego H. Stalder e Marina Trevisan
 - Submetido à Astronomical Journal
- PyPiGALPHAT: Towards a Fast Bayesian Surface Photometry Analysis of Early-Types Galaxies
 - Diego H. Stalder, Reinaldo R. de Carvalho, Martin D. Weinberg, Sandro B. Rembold, **Tatiana C. de Moura** e Reinaldo R. Rosa
 - Submetido à Astrophysical Journal Supplements
- Gradient Pattern Analysis for Galaxy Morphology
 - Reinaldo R. Rosa, Rubens Sautter, Paulo H. Barchi, Reinaldo R. de Carvalho, Diego H. Stalder, **Tatiana C. de Moura** e Nuno C. Ferreira
 - Monthly Notices of the Royal Astronomical Society: Letters (MNRAS Letters)

2 EVOLUÇÃO DE GALÁXIAS ELÍPTICAS EM GRUPOS COMPACTOS¹

2.1 Introdução

Como vimos no capítulo anterior, a evolução de uma galáxia é influenciada pelo ambiente ao qual ela pertence. O ambiente por sua vez pode ser caracterizado de várias formas, como por exemplo, seu estado dinâmico ou massa do halo de matéria escura no qual está inserida (Seção 1.4 do Capítulo 1), sendo o mais comum o uso da densidade espacial. Por tratar-se de grupos com poucos membros (menos de uma dezena), os Grupos Compactos (**GCs**) são comumente caracterizados pela sua densidade espacial semelhante a observada em centro de aglomerados. Também apresentam dispersão de velocidades moderadas compatíveis com a dispersão de velocidade de galáxias no campo. Essa combinação de densidade espacial e dispersão de velocidade favorece processos de interação entre as galáxias, tais como efeitos de maré e fusão galáctica.

O primeiro GC observado é o chamado Quinteto de Stephan em 1877. Quando tornouse possível a medida de *redshift*, constatou-se que uma das galáxias do quinteto encontra-se sete vezes mais próxima de nós comparada ao restante do grupo. Esse GC também apresenta três galáxias nitidamente em interação como pode ser visto nas imagens obtidas pelos telescópios espaciais Hubble e Chandra (Figuras 2.1 e 2.1).

Muitos catálogos de GCs foram produzidos, sendo o primeiro deles compilado por Shakhbazyan (1973). O mais utilizado na literatura é o catálogo produzido por Hickson (1982) ao analisar as placas fotográficas do POSS (Palomar Observatory Sky Survey). Hickson identificou 100 GCs, conhecidos como Grupos Compactos de Hickson (HCG do inglês), ao aplicar os seguintes critérios (denominado na literatura por critérios de Hickson):

- a) População: GCs com 4 ou mais membros $(N_{membros} \ge 4);$
- b) Compactação: GCs possuem brilho superficial $\mu_G < 26 mag/arcsec^2$;
- c) Isolamento: Ausência de galáxias com magnitude no intervalo de $[m_b, m_b+3]$ onde m_b é a magnitude da galáxia mais brilhante pertencente ao grupo em um raio de θ_G e $3\theta_G$ onde θ_G é o tamanho angular do menor círculo que engloba os centros das galáxias.

¹Submetido ao Astronomical Journal

Figura 2.1 - O quinteto de Stephan observado pelo telescópio espacial Hubble em 2009. Podemos ver que a galáxia na parte inferior da imagem possui um rastro de gás onde estão presentes inúmeros aglomerados de estrelas. Esse é um indício de que a galáxia interagiu com as demais.

Fonte: Hubble Space Telescope ${}^{3}(2009)$.

Por se tratar de critérios baseados na projeção da posição das galáxias, muito se especulou se uma grande parte dos HCGs seria na verdade efeito de projeção na linha de visada. Após obter o espectro de 457 galáxias pertencentes aos HGCs e medir suas velocidades, Hickson et al. (1992) estimam que 69% dos grupos de sua amostra possuem quatro ou mais galáxias com velocidade radial concordante e distribuídas em torno de 1000 km/s da média do grupo, como é apresentado na Figura 2.1. Esse critério para *redshift* concordante ($\Delta v < 1000 km/s$, onde Δ é a diferença entre a velocidade da galáxia e a velocidade média do grupo) é frequentemente aplicado junto com os demais critérios de Hickson para a definição de amostras de GCs.

Com uma variedade de campanhas observacionais e emprego de buscas automatizadas foram produzidos catálogos mais abrangentes baseados em dados de fotometria como por exemplo: Prandoni et al. (1994) e Iovino (2002) com dados do COSMOS/UKST Southern Galaxy Catalogue; Iovino et al. (2003) e Carvalho et al. (2005) com dados de DPOSS (*Digitalized Palomar Observatory Sky Survey*); Lee et al. (2004) Figura 2.2 - Na imagem obtida em raio-X pelo telescópio espacial Chandra destaca-se o rastro gasoso em azul. A galáxia NGC 7318b está passando pelo centro das galáxias causando a emissão de raio X pela interação com as demais. A NGC7320, de fato não faz parte do grupo e está a 40 milhões de anos Terra.

Fonte: Chandra X-Ray Telescope (2009)

e McConnachie et al. (2009) com dados do SDSS-DR6, respectivamente, e Díaz-Giménez et al. (2012) com dados do 2MASS (*2 Micron All Sky Survey*). Também foram encontrados GCs com dados de espectroscopia como nos catálogos de: Barton et al. (1996) (CfA2 Catalogue), Allam e Tucker (2000) (Las Campanãs Redshift Survey), Focardi e Kelm (2002) (*UZC Catologue*) e Deng et al. (2008)(DR6).

Muitos aspectos ainda são intrigantes quando se trata de GCs, como por exemplo, a taxa de formação estelar (SFR- do inglês "Star formation rate"). Apesar de muitos estudos apontarem os indícios de interação (OLIVEIRA; HICKSON, 1994; VERDES-MONTENEGRO et al., 2001; MARTINEZ-BADENES et al., 2012), o aumento da taxa de formação estelar, esperada como resultado de interações dinâmicas, não é observada em GCs. De fato, pela análise realizada em Rosa et al. (2007) com galáxias elípticas em GCs e no campo, as galáxias de baixa massa ($\approx 2.6 \times 10^{10} M_{\odot}$) em GCs apresentam um truncamento na formação estelar. Comparadas com as elípticas de campo, as pertencentes a GCs exibem um aumento da abundância de [Mg/Fe] e valores menores de metalicidade [Z/H]. Frequentes processos de fusão, que provocam uma rápida formação estelar e empobrecimento de gás na galáxia podem ser a explicação para tal fato.

Figura 2.3 - Distribuição de velocidade radial em função da velocidade média do grupo para as 457 galáxias de HGCs estudadas em Hickson et al. (1992).

Fonte: Hickson et al. (1992)

Nesse projeto, conduzimos um estudo da evolução de galáxias ETGs em GCs através dos parâmetros de população estelar (idade, [Z/H] e [α /Fe]). Para uma amostra de GCs, descrita na próxima seção, analisamos além da população estelar, o estado dinâmico e o tipo de atividade presente no núcleo galáctico. As seções a seguir descrevem as técnicas empregadas e os resultados obtidos.

2.2 Definição da amostra de GCs

Para a definição da amostra de GCs, selecionamos o catálogo definido por McConnachie et al. (2009) (doravante chamado de **MC09**) com base nos objetos pertencentes ao banco de dados da sexta versão do *Sloan Digital Sky Survey*(SDSS). A amostra inicial contendo todos os objetos classificados como galáxias foi dividida em dois catálogos: catálogo A formado por galáxias mais brilhantes, isto é, com magnitudes entre $14.5 \leq m_r \leq 18$ e o catálogo B, mais abrangente, formado por galáxias com magnitudes entre $14.5 \leq m_r \leq 21$. Nesse estágio o catálogo A e B totalizavam 1.107.622 e 29.065.010 galáxias, respectivamente.

A partir do catálogo inicial, os GCs são definidos pela aplicação dos critérios de Hickson. Foram identificados 3108 CGs no catálogo A e 74 791 no catálogo B. Uma vez definido os GCs é necessário avaliar a contaminação por falhas na classificação de objetos causadas pelo algoritmo do SDSS. As contaminações mais comuns são: objetos classificados como galáxias mas de fato são estrelas, objetos saturados ou ainda objetos extensos que são fragmentados pelo algoritmo e este classifica cada fragmento como uma galáxia. Exemplos desses tipos de erros são mostrados na Figura 2.2. Para eliminar a contaminação por erro de classificação, cada uma das 13 233 galáxias distribuídas nos 3108 GCs do catálogo A foram visualmente inspecionadas. Estimou-se que $\sim 26\%$ dos GCs possuem galáxias erroneamente classificadas, de modo que a versão final do catálogo A totaliza 2297 GCs (9743 galáxias).

Figura 2.4 - Exemplos de contaminação do catálogo definido por MC09: (i) objetos classificados como galáxias mas que são estrelas;(ii) objetos com magnitude equivocada no catálogo; (iii) rastros de satélites podem ser classificados como galáxias; (iv) objetos saturados e (v) objetos extensos são fragmentos pelo algoritmo do SDSS e cada fragmento é classificado como uma galáxia.

Fonte: McConnachie et al. (2009)

Para o catálogo B, cujo número de objetos não permite uma classificação visual como a realizada para objetos do catálogo A, foram selecionados aleatoriamente 1500 GCs dentre os 74 791 que formam o catálogo. Da inspeção visual dos 1500 grupos estimou-se que $\sim 14\%$ desses GCs possuem algum tipo de contaminação.

Todas as galáxias dos catálogos de MC09, possuem dados de fotometria no banco de dados do SDSS-DR7 porém apenas uma fração também possui espectro disponível.

Do catálogo A, ~ 43% das galáxias possuem dados de espectroscopia enquanto que apenas ~ 5% das galáxias presentes no catálogo B tiveram seus espectros obtidos. Nossa abordagem para a análise de galáxias pertencentes a GCs baseia-se na informação contida no espectro da galáxia e dado o baixo percentual de objetos com espectroscopia determinada no catálogo B, nossa amostra será definida utilizando apenas o catálogo A.

Versões posteriores do banco de dados do SDSS contam com mais objetos com dados de espectroscopia além das medidas fotométricas. A décima segunda versão do banco de dados (DR12) conta com mais de quatro milhões de espectros disponíveis (ALAM et al., 2015). Buscamos nesse banco de dados pelas 9743 galáxias do catálogo A com o objetivo de aumentarmos a fração de objetos com espectroscopia determinada. A busca foi realizada utilizando a seguinte *query* em SQL:

SELECT m.CG,m.Gal,m.ra_deg AS ra1, m.dec_deg AS dec1, n.objid, n.distance, o.z,o.ra AS ra2, o.dec AS dec2 into mydb.MyTable_46 from mydb.McConnachie_Coord AS m CROSS APPLY dbo.fGetNearestObjEq(m.RAdeg, m.DECdeg, 0.25) AS n JOIN SpecObj AS o ON n.objid=0.bestobjid

Onde ra1 e dec1 são as coordenadas fornecidas em MC09 e ra2,dec2 são as coordenadas do objeto encontrado no banco de dados do DR12. A diferença entre as coordenadas do objeto dado por MC09 e o encontrado no banco de dados do DR12 é designada por "distance". Dos objetos retornados na query selecionamos apenas aqueles cuja distância entre as coordenadas é menor do que 0.25 segundos de arco. Como resultado da busca, aumentamos para 5353 galáxias com dados de espectroscopia disponível, ~ 53% do catálogo A. Nossa amostra final de GCs é formada por grupos com pelo menos quatro membros com medidas de espectroscopia e que satisfazem o critério do redshifit concordante. A amostra de GCs usada nesse estudo proveniente do catálogo A de MC09 conta com 151 GCs (629 galáxias). Na Tabela 2.1 são apresentadas as informações quanto ao número de membros ($N_{membros}$) e membros com estimativa de redshift (N_z) dos GCs da amostra final. Na Figura 2.5 temos a distribuição redshift e magnitude absoluta na banda r, M_r , das 629 galáxias da amostra final. A magnitude absoluta é dada após aplicação da correção K através do programa KCORRECT v42 (BLANTON; ROWEIS, 2007).

2.2.1 Amostra de Galáxias de Campo

Para avaliarmos os efeitos do ambiente na evolução de galáxias, selecionamos também uma amostra de galáxias no ambiente de baixa densidade (campo). À essa amostra será aplicada a mesma metodologia usada na amostra de GCs tornando possível,

Tabela 2.1 - Tabela com dados da amostra final de GCs usada nesse projeto. Na tabela temos o número de grupos (N_{grupos}) com N_z membros com estimativa de *redshift* disponível dos $N_{membros}$ pertencentes ao grupo. No total, a amostra final de GCs é composta por 151 grupos do catálogo A de MC09.

N_z	$N_{membros}$	N_{grupos}
4	4	81
	5	30
	6	10
	7	5
	8	3
5	5	13
	6	5
	9	2
6	6	1
7	8	1

Figura 2.5 - Distribuição em redshift e magnitude absoluta M_r após aplicação da correção K.

Fonte: Produzido pela autora.

através da comparação dos resultados para ambas, avaliarmos a influência do ambiente na evolução de galáxias.

Selecionamos a amostra de campo amplamente usada no projeto SPIDER⁴ (BARBERA et al., 2014). Ao contrário da amostra de GCs que conta com variados tipos morfoló-

 $^{^4\}mathrm{Spheroids}$ Panchromatic Investigation in Different Environmental Regions

gicos, a amostra de campo foi definida de modo a conter apenas ETGs. A seleção dessa amostra baseia-se na definição de galáxias elípticas dada por Bernardi et al. (2003) de que essas são sistemas dominados pelo bojo e com espectro representativos de sistemas sem novos episódios de formação estelar. Essa definição traduz-se em termos de parâmetros disponíveis no SDSS DR6 da seguinte forma: $fracDev_r > 0.8$ onde $fracDev_r$ é o parâmetro que mede a fração de luz emitida por uma galáxia que melhor se ajusta a um perfil de de Vaucouleurs e eClass < 0 sendo este o atributo que indica o tipo espectral da galáxia baseado na Análise de Componentes Principais (PCA, do inglês *Principal Component Analysis*). Para assegurar a qualidade do espectro, foram selecionadas apenas galáxias com o parâmetro zwarning= 0 que indica a qualidade da estimativa de redshift e galáxias com dispersão de velocidade no intervalo $70 \le \sigma \le 420$ km/s. A busca por objetos que satisfazem tais critérios no banco de dados do DR6 produz uma amostra inicial formada por 11467 galáxias distribuídas no intervalo de $redshift 0.05 \le z \le 0.95$ e com magnitude absoluta $M_r \le -20.5$.

Para o estudo realizado nesse projeto, optamos por usar os espectros reprocessados na décima segunda versão do SDSS. Das 11467 galáxias da amostra definida no DR6, 11236 também possuem espectros disponíveis no DR12 (~ 97% da amostra original) compondo a amostra de campo usada nesse projeto. A distribuição em *redshift* e M_r para essa amostra é dada na Figura 2.6.

Figura 2.6 - Distribuição em *redshift* e magnitude absoluta (M_r) para a amostra de campo formada pelas 11236 galáxias com espectros disponíveis no DR12. A M_r é dada após correção K realizada pelo código KCORRECT v42 (BLANTON; ROWEIS, 2007).

Fonte: Produzido pela autora.

2.3 Classificação Morfológica

Anterior à era de grandes campanhas observacionais, os catálogos com classificação morfológica foram produzidos pela inspeção visual realizada por um grupo de astrônomos. Atualmente, os levantamentos fotométricos coletam informações sobre um grande número de galáxias. O SDSS-DR12, por exemplo, possui em seu catálogo de imagens 208 478 448 objetos classificados como galáxias. Dessa forma, é inviável a inspeção visual de todas as imagens no banco de dados. Entretanto, catálogos menores são extraídos desses banco de dados de forma a tornar possível uma classificação visual.

Uma solução para a questão da grande quantidade de dados obtidos pelos "surveys", é convidar o público geral a tomar parte da classificação morfólogica de galáxias. Essa é a proposta do projeto "Galaxy Zoo"⁵, que iniciou-se em julho de 2007 e já conta com quatro catálogos produzidos. Na primeira versão do projeto ("Galaxy Zoo I" identificado como Zoo 1 ao longo do texto) foram selecionados todos os objetos classificados como galáxias no catálogo fotométrico do DR6 com $m_r < 17$, o que resultou em ~ 900 mil galáxias (LINTOTT et al., 2008). Para a segunda edição do projeto (Zoo 2), foram selecionadas as galáxias do DR7 com magnitudes $m_r < 17$, tamanho angular $R_{petro,90} > 3''$ onde $R_{petro,90}$ é o raio petrosiano que compreende 90% do fluxo da galáxia na banda r e com redshift entre 0.0005 < z < 0.25. A aplicação dos critérios resulta num catálogo com 245 609 galáxias (WILLETT et al., 2013).

No projeto Galaxy Zoo, as galáxias são classificadas através de formulários que devem ser respondidos pelo usuário. No Zoo 1, as galáxias foram divididas em um total de seis classes: espiral com rotação no sentido horário, espiral com rotação no sentido anti-horário, espiral vista de perfil, espiral com rotação indeterminada, elíptica, "merger" e estrela/desconhecido, sendo esta última aplicada à objetos classificados erroneamente como galáxias. Na segunda versão do projeto, a classificação é obtida através da aplicação de uma árvore de decisão, apresentada na Figura 2.3. No total a árvore de decisão é formada por 11 questões e 37 respostas possíveis. Ao contrário do Zoo 1, a segunda versão também qualifica a forma do bojo da galáxia, a estrutura de braços espirais, a forma da galáxia elíptica e a presença de lentes gravitacionais ou outros efeitos. A classificação final é dada em função da presença ou não desses elementos. Na Tabela 2.2 temos uma breve descrição das classes usadas pelo Zoo 2. Em ambas versões do projeto, a classe apresentada no catálogo final é aquela que possui o maior número de votos.

⁵Galaxy Zoo Website:http://www.galaxyzoo.org/

Figura 2.7 - Esquema da árvore de decisão empregada na classificação morfológica de galáxias usada pelo Zoo 2. O destaque marrom na imagem indica que a pergunta é comum a todas as galáxias independente de uma dada resposta. As marcadas em verde, azul e lilás são aquelas a um passo, dois ou três passos abaixo de uma ramificação da árvore de decisão, respectivamente.

Fonte: Willett et al. (2013).

Nosso estudo é focado na evolução de galáxias ETGs pertencentes à GCs, o que torna necessário uma classificação morfológica das 629 galáxias que fazem parte de nossa amostra. Sendo o banco de dados do projeto *Galaxy Zoo* um dos mais vastos em termos de classificação morfológica, procuramos por galáxias de nossa amostra em ambas as versões do projeto. Das 629 galáxias em GCs, 441 possuem classe morfológica disponível no catálogo do Zoo 1 (~ 71% da amostra) porém dessas, a ~ 70% (312) foi atribuída classe "Indefinida". Do catálogo Zoo 2, 331 galáxias de nossa amostra foram classificadas sendo ~ 54% elípticas (180 galáxias).

Na ausência de uma classificação para todas as galáxias de nossa amostra, im-

Tabela 2.2 - Uma breve descrição das siglas adotadas para a classe morfólogica no catálogo final do "Galaxy Zoo 2". A classe é dada por uma sequência de caracteres que indicam a classe geral (E = elíptica e S = espiral) e a forma do bojo. No caso de espirais barradas, o S é seguido de um "B". Também está presente na sigla o número de braços e sua disposição. As galáxias espirais vistas de perfil iniciam sua sigla com "Se". Desta forma, uma galáxia com a classe "Er" é uma elíptica com bojo de forma esférica; a sigla "SBc2m" é uma espiral barrada com bojo apenas notável e dois braços espirais que se não se encontram tão atados ao bojo. Uma "Ser" é uma galáxia espiral vista de perfil e com bojo de forma retangular.

Classe	Sigla GZII	Descrição
Elítpica	Er	Forma totalmente redonda
	Ei	De forma entre a redonda e a forma de um cilindro
	Ec	Forma de cilindro ("cigar-shaped")
Espiral	Sa	Bojo dominante
	Sb	Bojo evidente
	Sc	Bojo apenas notável
	Sd	Sem bojo
Espiral barrada	SBa	Bojo dominante
	SBb	Bojo evidente
	SBc	Bojo apenas notável
Espiral vista	Sen	Bojo redondo
de perfil (<i>"edge-on"</i>)	Ser	Bojo retangular
	Seb	Bojo ausente
Espiral: quanto a	$1,\!2,\!3,\!4,\!5,\!6$	Número de braços
presença de braços	+	Mais de seis braços identificados
	?	Sem precisão quanto ao número de braços
Todas as classes	m	índicio de <i>merger</i>
	r	Presença de anel
	1	Presença de lentes
		gravitacionais e arcos
	d	Perturbado
	i	Irregular
	u	Camada de poeira
	0	Outros
Outros	А	Estrelas e artefatos

plementamos o método empregado pelo Zoo 2 para classificação das 629 galáxias. Produzimos formulários semelhantes ao do projeto e utilizamos a mesma árvore de Figura 2.8 - Resumo da classificação visual realizada para todas as galáxias da amostra em GCs (total de 629). As classes são dadas seguindo a árvore de decisão (Figura 2.3) e as opções mais votadas.

Fonte: Produzido pela autora.

decisão para atribuição da classe morfológica. Ao todo cinco pesquisadores⁶ responderam os formulários. Em nossa classificação (identificada como **Zoo 0**), 461 galáxias foram classificadas como elípticas. Das 167 classificadas como espirais para 25 não houve consenso entre os votantes quanto a presença e forma do bojo e à essas foram atribuídas a classe "S". Um resumo de nossa classificação é mostrada na Figura 2.8 e na Tabela A.1 (Apêndice A.1) temos a classe de todas as galáxias da amostra em GCs.

Uma forma de avaliarmos a confiabilidade de nossa classificação é comparar a classe dos objetos também presentes no catálogo do Zoo 2. é importante salientar que nossa classificação baseia-se em cinco votos enquanto que a do Zoo 2 conta com milhares de votos. Logo, é de se esperar uma variação na comparação em termos dos tipos específicos das classes. Da amostra completa de galáxias em GCs, 331 também

⁶Amanda Lopes, André Ribeiro, Marina Trevisan, Sandro Remold e Tatiana Moura.

possui classificação no Zoo 2. Como estamos interessados em galáxias elípticas, definimos a completeza de nossa classificação como o número de galáxias elípticas assim classificadas tanto em Zoo 2 como em Zoo 0. Das 331 presentes em ambas as classificações, 180 são elípticas no Zoo 2. No Zoo 0, 168 dessas 180 galáxias também são tidas como elípticas de forma que a completeza de nossa classificação é da ordem de $\sim 93\%$. Para a medida da contaminação de nossa classificação, definimos que a mesma é dada pelo número de galáxias classificadas como espirais no catálogo de Zoo 2 e consideradas elípticas em Zoo 0. Das 151 classificadas como espirais em Zoo 2, 71 foram classificadas como elípticas em Zoo 0. A contaminação é estimada em 47%. Nossa amostra final de ETGs em GCs é composta pelas 461 galáxias assim classificadas em Zoo 0.

Para uma melhor comparação dos resultados, também buscamos nos catálogos de Zoo 1 e Zoo 2 as 11236 galáxias da amostra de campo. Essa amostra, a princípio composta por ETGs, foi definida utilizando parâmetros de fotometria e espectroscopia enquanto que a amostra em GCs foi classificada visualmente. Todas as galáxias da amostra de campo estão presentes no catálogo de Zoo 1 porém, também nesse caso, grande parte é considerada de classe "Indefinida" ($\sim 70\%$). No catálogo de Zoo 2, 8217 galáxias da amostra de campo foram classificadas sendo 4852 elípticas, 3357 espirais e 8 tidas como "Estrelas/Artefatos". Como todas as 11236 galáxias da amosta de campo são primeiramente tidas como ETGs, a contaminação é dada pelo número de galáxias que são classificadas como espirais no Zoo 2 dentre as 8217 que possuem classe definida no catálogo. A contaminação é estimada em $\sim 41\%$ e pode ser justificada pela relação Morfologia-Densidade, onde galáxias espirais são comumente encontradas em ambientes de baixa densidade, como o campo. Dado o tamanho da fibra óptica usada pelo SDSS, temos uma probabilidade alta de observarmos as regiões centrais das galáxias espirais o que pode levar a uma medida do parâmetro eClass próxima a esperada para galáxias elípticas. Desta forma, a amostra de ETGs no campo usada nesse estudo é composta pelas 4852 galáxias classificadas pelo Zoo 2.

Como a distribuição de M_r para as galáxias de campo encontra-se em um intervalo diferente da amostra extraída no Zoo 2, ao usarmos a amostra proveniente desse catálogo podemos introduzir um viés para galáxias mais brilhantes. Aplicamos o Teste de permutação usando a amostra de campo inicial e a extraída do catálogo do Zoo 2 para avaliarmos as distribuições de M_r . O valor p de 0.002 indica que as distribuições são provenientes de populações distintas. Entretanto, o resultado final da análise de população estelar não se altera para as duas amostras de modo que adotamos a extraída do Zoo 2. Com a amostra de campo dada pelo catálogo do Zoo 2, garantimos que ambas as amostras de ETGs foram sujeitas aos mesmos critérios de seleção. No entanto, é necessário ainda assegurarmos que ambas as amostras estão no mesmo regime de redshift e magnitude absoluta para não introduzirmos uma viés na discussão de nossos resultados. Dessa forma, selecionamos uma sub-amostra de ETGs em GCs que encontra-se no mesmo intervalo de redshift ($0.05 \le z \le 0.95$) e magnitude $(M_r \le 20.5)$ da amostra de campo. Essa sub-amostra, denominada **Amostra E**, composta por 198 galáxias será usada na comparação com os resultados obtidos para amostra de campo. Na Figura 2.9 é dada a distribuição em redshift e M_r da sub-amostra de ETGs em GCs e amostra de ETGs no campo. Para referência, na Tabela 2.3 temos a denominação e a descrição das amostras usadas nesse estudo.

Figura 2.9 - Distribuição em redshift e M_r para a sub-amostra de ETGs (Amostra E) em GCs e amostra de ETGs do campo. A amostra E é formada por 198 galáxias que encontram-se no regime de redshift ($0.05 \le z \le 0.95$) e magnitude absoluta ($M_r \le 20.5$) igual ao do campo.

Fonte: Produzido pela autora.

Tabela 2.3 - Tabela com a descrição de cada amostra usada nesse projeto.

Amostra	Descrição
Amostra completa de ETGs em GCs (Amostra F)	461 galáxias
Sub-amostra de ETGs em GCs (Amostra E)	198 galáxias em $0.05 < z < 0.095$ e $M_r < -20.5$
Amostra ETGs no campo	4852 galáxias classificadas como elípticas em Zo o 2

2.4 Populações Estelares em Galáxias Elípticas em GCs

Podemos caracterizar a população estelar de uma galáxia pela estimativa dos parâmetros idade, metalicidade ([Z/H]) e enriquecimento químico ([α /Fe]). Duas técnicas são amplamente utilizadas na estimativa desses parâmetros: ajuste espectral e medida de índices espectrais. O primeiro método analisa o espectro como um todo utilizando não só as principais linhas de absorção como também a forma do contínuo. O segundo, explora o fato de que determinadas linhas de absorção são mais ou menos dependentes da idade e/ou da metalicidade da população estelar subjacente. Essas técnicas foram empregadas em nosso estudo e usamos a combinação de ambas para a obtenção dos parâmetros de população estelar para as amostras de ETGs em GCs e no campo. Nessa seção descrevemos ambas as técnicas e como utilizamos o Método Híbrido para estudarmos as populações estelares de nossa amostra.

2.4.1 Ajuste Espectral

O estudo de populações estelares de galáxias ganhou uma poderosa ferramenta nos últimos anos, a técnica de ajuste espectral. Essa técnica baseia-se no conceito de que o espectro de uma galáxia pode ser considerado a soma das populações estelares que a constitui. O espectro de uma galáxia pode ser representado da seguinte forma:

$$S_{\lambda}(t,Z) = \int_{m_i}^{m_s} S_{\lambda}(m,t,Z) N(m) F(m,t,Z) dm$$
(2.1)

onde $S_{\lambda}(m, t, Z)$ é a distribuição espectral de energia (SED do inglês "Spectral Energy Distribution") da estrela de massa m, idade t e metalicidade Z normalizado para um dado comprimento de onda e F(m, t, Z) é o fluxo da estrela de massa m, idade t e metalicidade Z em uma dada banda.

A tarefa de separar as contribuições de diversas populações de modo a representar o espectro observado de uma galáxia é complexa. é necessário construir modelos baseados na teoria de evolução estelar e modelos astrofísicos para atmosferas estelares dentre outros conceitos. Um importante conceito utilizado no ajuste espectral é o de SSP (*"Single Stellar Population"*), que é uma representação de uma população estelar formada em uma dada época e com uma dada composição. As SSPs podem ser construídas de forma teórica ou com dados observacionais.

Para a realização do ajuste espectral selecionamos o programa STARLIGHT (FER-NANDES et al., 2005). O programa procura descrever o espectro observado como uma combinação linear de N_{\star} SSPs. Os coeficientes de ajuste definem o vetor de população de dimensão N_{\star} . Esses coeficientes representam a fração de luz em um comprimento de onda de referência. Os resultados do programa são: vetor de população (\overrightarrow{x}) , o espectro ajustado M_{λ} , dispersão de velocidade (σ_{\star}) , extinção estelar (A_V) e o vetor de massa $(\overrightarrow{\mu})$, o qual contém a fração de massa de cada SSP. Desta forma, os parâmetros que caracterizam a população de um sistema (idade e metalicidade) podem ser ponderados por luminosidade ou massa.

O espectro ajustado é representado da seguinte forma:

$$M_{\lambda} = M_{\lambda}(\boldsymbol{x}, A_{V}, A_{V}^{Y}, v_{\star}, \sigma_{\star}) = \sum_{j=1}^{N_{\star}} x_{j} \gamma_{j,\lambda} r_{\lambda}$$

(2.2)

onde: $\gamma_{j,\lambda} \equiv b_{\lambda,j} \otimes G(v_{\star}, \sigma_{\star}), b_{\lambda,j} \equiv \frac{B_{\lambda,j}}{B_{\lambda_0,j}}$ é a razão entre o fluxo da j-ésima componente da base $(B_{\lambda,j})$ e o fluxo no comprimento de onda de normalização $(B_{\lambda_0,j}); G(v_{\star}, \sigma_{\star})$ é o filtro gaussiano centrado em v_{\star} e com dispersão σ_{\star} e $r_{\lambda} \equiv 10^{-0.4(A_{\lambda}-A_{V})}$. Importante notar que como o espectro de entrada é dado em *redshifit* zero, v_{\star} a principio deveria ser igual a zero. No entanto, notamos que valores residuais são observados para todos os espectros. Na Figura 2.10 temos um exemplo do espectro modelado pelo programa.

Toda a informação necessária para a estimativa dos parâmetros de população estelar está contida no vetor de população (\overrightarrow{x}) . Utilizamos as ponderações dada por Fernandes et al. (2005) para a estimativa de idade e metalicidade:

$$<\log t_{*}> = \sum_{j=1}^{N_{*}} x_{j} \log t_{j} / \sum_{j=1}^{N_{*}} x_{j}$$
 (2.3)

Onde t_j é a idade da *j*-ésima SSP. Para metalicidade usamos uma expressão semelhante:

$$\langle Z_* \rangle = \sum_{j=1}^{N_*} x_j Z_j / \sum_{j=1}^{N_*} x_j$$
 (2.4)

Figura 2.10 - Exemplo de ajuste espectral realizado pelo código STARLIGHT. A linha vermelha é o espectro observado e a linha verde o melhor ajuste dado pelo programa. As áreas sombreadas são regiões excluídas do ajuste devido a possível contaminação por linhas de emissão. No painel inferior é mostrado o resíduo entre o espectro observado e o modelado.

Fonte: Produzido pela autora.

Para o ajuste espectral selecionamos uma coleção de 108 SSPs pertencente a versão estendida da biblioteca MILES (VAZDEKIS et al., 2010) denominada MIUSCAT. Os parâmetros utilizados para seleção dos espectros que formam a base de SSPs usada são dados na Tabela 2.4. Os espectros compreendem o intervalo de comprimento de onda $\lambda = 3540.5 - 7409.6$ Å e resolução espectral de 2.3 Å(FWHM). Essa é a mesma base de SSPs usada na síntese de população estelar realizada no Projeto SPIDER.

Tabela 2.4 - Configuração da base de SSPs selecionada para o ajuste espectral realizado pelo programa STARLIGHT. Utilizamos a biblioteca definida por Vazdekis et al. (2010)(Vaz10)

Isócrona	Padova							
IMF	Kroupa Universal							
Idade (Gano)	0.50	1.00	1.12	1.25	1.41	1.58	1.77	1.99
	2.23	2.51	2.81	3.16	3.54	3.98	4.46	5.01
	5.62	6.30	7.07	7.94	8.91	10.0	11.22	12.58
	14.12	15.84	17.78					
Metalicidade	-0.40	-0.71	-1.31	-1.71	0.0	0.22		

O ajuste é realizado no intervalo de comprimento de onda $\Delta \lambda = 4000 - 5700$ Å para evitarmos as regiões mais azuis do espectro. Essas regiões podem apresentar um

abundância maior de elementos não-solares, prejudicando assim as medidas pois a base de SSPs possui abundância quase solar. As regiões além de 5700 Å também são excluídas do ajuste dada a presença de bandas espectrais como TiO. Como nossa amostra é composta por ETGs, selecionamos a lei de extinção definida por Cardelli et al. (1989).

Apesar da base de SSPs selecionada apresentar população estelar com idade superior a estimada para o Universo, apenas cinco galáxias da amostra de ETGs em GCs apresentam idades maiores do que 15 Giga-ano. Dessas cinco galáxias, quatro possuem espectros com erro na subtração do céu e foram excluídos da análise. Mais dois espectros da amostra em GCs foram foram excluídos pois não apresentam dispersão de velocidade determinada. Pelas mesmas razões, 20 espectros da amostra de ETGs no campo foram retirados da análise. Na Figura 2.11, temos o resultado do ajuste espectral para 455 ETGs da amostra completa em GCs (195 da sub-amostra de ETGs) e para 4832 galáxias da amostra de ETGs no campo. Os resultados são apresentados em função da dispersão de velocidade corrigida do tamanho da abertura da fibra óptica do SDSS pela aplicação da lei de potência dada por Jorgensen et al. (1995): log $(\sigma_{ap}/\sigma_n) = -0.04 \log(r_{ap}/r_n)$ onde $\sigma_{ap} = 1.5$ " é o raio da fibra óptica do SDSS e $r_n = 1/8R_e$ sendo R_e o raio efetivo da galáxia.

Vemos claramente no resultado do ajuste espectral que os parâmetros de população estelar em ETGs em GCs e campo seguem o mesmo comportamento. Para ambas as amostras os parâmetros aumentam com a dispersão de velocidade, sendo que esta pode ser considerada uma medida indireta da massa do sistema se considerarmos a Relação de Faber-Jackson ($L \propto \sigma_{\alpha}$ para $\alpha \simeq 3 - 4$) e a razão Massa/Luminosidade. Podemos concluir que galáxias mais massivas são mais velhas e ricas em metais e ambos os ambientes. Quanto ao avermelhamento (A_v), galáxias em GCs apresentam maiores valores de A_v principalmente no regime de baixas massas ($\sigma \leq \sim 130$ km/s).

Uma questão bem conhecida é a dependência do ajuste espectral com o modelo de SSP escolhido. Avaliamos esse problema em nossos resultados selecionando uma nova base composta por 56 espectros da biblioteca MILES. Essa nova base representa populações estelares com 14 idades distintas entre 0.5 - 14.12 Giga-ano e as metalicidades $[M/H] = \{-0.71, -0.40, 0, 0.22\}$. Na Figura 2.12 temos a comparação dos resultados da síntese para nossa amostra de ETGs em GCs e campo utilizando as duas bases selecionadas. Vemos que o comportamento dos parâmetros permanece o mesmo independente do modelo de SSP usado.

Figura 2.11 - Parâmetros de população estelar ponderados pela luminosidade dado pelo ajuste espectral realizado pelo programa STARLIGHT. Da amostra de ETGs em GCs, quatro objetos foram excluídos da análise pois seus espectros apresentavam erro de calibração e dois objetos não possuíam estimativa de dispersão de velocidade também foram excluídos. Da amostra de ETGs no campo, 20 espectros foram excluídos pelas mesmas razões. O resultado apresentado conta com 455 galáxias da amostra em GCs (195 da amostra E) e 4832 galáxias da amostra de campo. Os parâmetros de população estelar comportam-se de maneira semelhante em ambos os ambientes.

Fonte: Produzido pela autora.

2.4.2 Medida de índice

Como foi discutido anteriormente, podemos estimar os parâmetros de população estelar utilizando a largura equivalente de uma linha espectral, técnica conhecida como índices espetrais. De forma geral, o índice espectral é definido por:

Figura 2.12 - Comparação dos resultados obtidos para dois conjuntos distintos de SSPs. A base extraída da biblioteca MILES estendida (MIUSCAT) é composta por 108 SSPs com 27 idades entre 0.5 - 17.78 Giga-Ano e metalicidade $[M/H] = \{-0.71, -0.40, 0, 0.22\}$. A base proveniente da biblioteca MILES é formada por 56 SSPs com 14 idades entre 0.5 - 14.12 Giga-Ano e mesma metalicidade da base anterior. O comportamento dos parâmetros de população estelar de nossa amostra permanece os mesmo independente da base escolhida.

Fonte: Produzido pela autora.

$$W_{\lambda}(\mathring{A}) = \int_{linha} \frac{F_c(\lambda) - F_l(\lambda)}{F_c(\lambda)} d\lambda$$
(2.5)

onde $F_c(\lambda)$ é o nível de contínuo sob a linha de absorção e $F_l(\lambda)$ é o fluxo observado através da linha de absorção no comprimento de onda λ (Figura 2.4.2).

Para o cálculo dos índices espectrais das galáxias elípticas de nossa amostra, utilizamos o código Indexf (CARDIEL et al., 2003). O código utiliza a Equação 2.5 integrando no intervalo de comprimento de onda no qual o índice é definido.
Figura 2.13 - A largura equivalente (W) como definida pela Equação 2.5. A quantidade de energia absorvida pelo perfil Gaussiano na esquerda é equivalente ao absorvido por um retângulo de largura W e altura F_c .

Comprimento de onda

Fonte: Produzido pela autora.

O conjunto de índices mais usados na literatura são aqueles definidos pelo grupo LICK (WORTHEY et al., 1994). O Indexf possui em sua configuração todos os índices Lick acrescentando também os índices de descontinuidade D4000 e B4000 definidos por Gorgas et al. (1999), um índice de cor (CO_KH no infravermelho) e índices genéricos definidos em diversos trabalhos (e.g., Cenarro et al. (2001) e Vazdekis e Arimoto (1999)).

Para obtenção dos parâmetros da população estelar, calculamos os índices MgFe', Fe5270, Fe5335, Fe4383 e Mgb5177. O Mgb5177 é um índice usado na estimativa do $[\alpha/Fe]$ enquanto que para a obtenção da metalicidade, usamos o índice $\langle Fe_3 \rangle$, que é a média da soma dos índices Fe5270, Fe5335 e Fe4383. O índice MgFe' é calculado pela expressão dada em Thomas et al. (2003):

$$[MgFe]' = \{Mgb[0.72(Fe5270) + 0.28(Fe5335)]\}^{1/2}$$
(2.6)

A medida do índice espectral pode ser afetada pela dispersão de velocidade que causa o alargamento das linhas de absorção. é necessário corrigir esse efeito antes de usarmos os índices na estimativa dos parâmetros de população estelar. A correção é dada pela razão entre o índice obtido para $\sigma = 0$ (na verdade dispersão instrumental, σ_{inst}) e o índice obtido considerando a dispersão de velocidade da galáxia (σ_{gal}).

Aplicamos as correções dadas por Rosa et al. (2007):

$$Fe5270_0 = 5270_\sigma (-4.263 \times 10^{-9} \cdot \sigma^3 + 4.450 \times 10^{-6} \cdot \sigma^2 + 1.669 \times 10^{-5} \cdot \sigma + +1.001)$$
(2.7)

$$Fe5335_0 = Fe5335_{\sigma}(6.647 \times 10^{-6} \cdot \sigma^2 - 1.917 \times 10^{-4} \cdot \sigma + 1.009$$
(2.8)

$$Mgb5177_0 = Mgb5177_{\sigma}(-6.88 \times 10^{-10} \cdot \sigma^3 + 3.230 \times 10^{-6} \cdot \sigma^2 - 4.566 \times 10^{-4} \cdot \sigma + + 1.008)$$

$$(2.9)$$

onde $indice_0$ é o índice para $\sigma = 0$ e $indice_{\sigma}$ para σ_{gal} . No artigo de Rosa et al. (2007) foi usado o modelo de Vazdekis (1999) para a obtenção dos polinômios. Estimamos as correções usando o modelo mais recente de Vazdekis et al. (2010) e essas são equivalentes a obtidas com a base Vazdekis (1999), com variação de no máximo 0.06 nos valores corrigidos.

2.4.3 Método Híbrido

Os parâmetros de população estelar usados em nossa análise são obtidos da aplicação do Método Híbrido. Esse método combina o método de ajuste e índice espectral de forma a explorar as caraterísticas mais fortes de cada método. Como é visto na Figura 2.11, a metalicidade dada pelo STARLIGHT possui a limitação da base de SSPs usada cujo maior valor de metalicidade é 0.22 dex. Outro fator a ser considerado na aplicação do ajuste espectral é o parâmetro $[\alpha/Fe]$,que como é mostrado em Vazdekis et al. (2015), depende da região onde é feito o ajuste. Atualmente, alguns modelos contam com esse parâmetro mas o ajuste é preferivelmente realizado em regiões próximas das linhas de Mgb e Fe5270 que são sensíveis à $[\alpha/Fe]$. é necessário usar tais modelos com cautela se desejamos recuperar a medida desse parâmetro. Quanto a técnica de índice espectrais, o índice espectral mais usado para estimativa de idade, o H β , encontra-se em uma região espectral densamente povoada por outras linhas espectrais que contaminam a medida (é comum, por exemplo, contaminação pela própria linha de H β em emissão) e leva a uma estimativa errã 'nea da idade. Com o método híbrido, usamos a idade ponderada pela luminosidade dada pelo

Figura 2.14 - Exemplo de ajuste polinomial realizado para estimativa das metalicidades $[Z/H]_{Mgb}$, $[Z/H]_{Fe}$ e $[Z/H]_{MgFe'}$ utilizada no cálculo do proxy para $[\alpha/\text{Fe}]([Z/H]_{Mgb}, [Z/H]_{Fe})$ e $[Z/\text{H}]([Z/H]_{MgFe'})$.

Fonte: Produzido pela autora.

ajuste espectral e estimamos um *proxy* para a metalicidade e para $[\alpha/\text{Fe}]$ de forma a recuperar todos os parâmetros.

O proxy definido para estimativa de $[\alpha/\text{Fe}]$ baseia-se em duas metalicidades determinadas de forma independentes, Z_{Fe} e Z_{Mgb} . Por sua vez, as metalicidades são obtidas por um ajuste polinomial entre o valor dos índices ($\langle Fe_3 \rangle$ e Mgb5177) e a metalicidade. Para o ajuste usamos os valores de índice e metalicidades do modelo MILES (VAZDEKIS et al., 2010). Um exemplo do ajuste polinomial é mostrado na Figura 2.4.3. O proxy é definido como a diferença entre as metalicidades: $[Z_{Mgb}/Z_{Fe}] \equiv [Z/H]_{Mgb} - [Z/H]_{Fe}$. O $[\alpha/\text{Fe}]$ é dado pela relação definida em Barbera et al. (2014): $[\alpha/Fe] = 0.55 \cdot [Z_{Mgb}/Z_{Fe}]$. A metalicidade é obtida de forma semelhante a metalicidade usada no proxy de $[\alpha/\text{Fe}]$ porém o ajuste polinomial é feito utilizando o índice [MgFe]'.

Os parâmetros de população estelar obtidos pela aplicação do método híbrido é mostrado na Figura 2.15 em função da dispersão de velocidade. O comportamento dos parâmetros é traçado seguindo a média em cada bin de velocidade e as barras de erro indicam o espalhamento em torno da média. Após uma cautelosa inspeção nos parâmetros estimados, foram excluídas 22 galáxias da amostra de ETGs em GCs e 95 galáxias da amostra de ETGs no campo, pois essas apresentam algum tipo de erro na calibração de seu espectro que causaram erros na medida dos índices espectrais. Para algumas galáxias, por exemplo, temos a presença de linha de emissão (como a do dupleto [NI]5199) dentro da região espectral que define o índice Mg_b . Em outros casos, o índice [MgFe]' dado pela expressão 2.6 assume valores negativos. Dentre as galáxias excluídas estão aquelas cuja estimativa de $[\alpha/Fe] \ge 10$ que é uma estimativa irrealista e de fato, trata-se de espectros com problemas na subtração do céu. Dessa forma, o resultado mostrado na Figura 2.15 conta com 447 ETGs em GCs (194 da amostra E) e 4729 ETGs da amostra de campo.

Nossos resultados mostram que as populações estelares em ETGs pertencentes ao ambiente de alta densidade dado pelos GCs se assemelham a populações presentes em ETGs no campo. Os parâmetros [Z/H] e [α /Fe] aumentam para sistemas com maior dispersão de velocidade. A idade aumenta com a dispersão de velocidade até $\sigma \gtrsim 200$ km/s onde torna-se constante em ambas as amostras.

2.5 Análise Dinâmica dos GCs

Para nossa amostra de GCs também foi realizada um estudo dinâmico utilizando o pacote MCLUST para modelagem de grupos. Nessa abordagem, cada componente da densidade de misturas finitas é usualmente associada a um grupo ou aglomerado. Geralmente assume-se que todas as componentes são da mesma família de distribuição paramétrica, na maioria dos casos uma distribuição Gaussiana. Em nossa análise, usamos inicialmente um modelo com misturas de Gaussianas e encontramos 2 modos em 97% de 1000 amostragens. Também comparamos com três tipos de misturas específicas: distribuição normal-normal, normal-lognormal e normal-gamma. Baseado na razão de verossimilhança, o modelo que melhor descreve a distribuição de dispersão de velocidade dos GCs de nossa amostra é a distribuição normal-lognormal, como pode ser vista na Figura 2.16. Dessa forma, temos que nossa amostra de 151 GCs pode ser dividida em dois regimes de dispersão de velocidade (σ_G , a dispersão de velocidade do GC): grupos de baixo σ_G com $\sigma_G \leq 181$ km/s e grupos de alto σ_G $(\sigma_G > 181 \text{ km/s})$. Na Figura 2.16 a linha pontilhada verde mostra a divisão em $\sigma_G = 181 \text{ km/s}$. A distribuição dos grupos nos dois regimes de σ_G é dado na Figura 2.17.

Os grupos de alto e baixo σ_G distinguem-se quanto a distribuição de magnitude absoluta, apresentada na Figura 2.18. A aplicação do Teste de Permutação na distribuição de M_r dos grupos de alto e baixo σ_G fornece um valor p = 0.004 que nos permite rejeitar a hipótese nula de que as distribuições descendem de uma mesma população.

Quanto ao tipo morfológico, os grupos de baixo σ_G apresentam mais espirais (~ 31%) do que os grupos de alto σ_G (~ 24%). Essa razão também pode ser vista na Figura 2.19 onde mostramos a distribuição da fração de espirais em cada regime de σ_G .

Figura 2.15 - Resultado da aplicação do método híbrido nas amostra de ETGs em GCs e no campo. A idade é obtida do ajuste espectral e os demais parâmetros são calculados utilizando proxy. O proxy de [Z/H] é dado pelo ajuste polinomial utilizando as medidas do índice MgFe' e as metalicidades da base MILES. Já o [α /Fe] é obtido da relação [α /Fe] = 0.55 \cdot [Z_{Mgb}/Z_{Fe}] onde [Z_{Mgb}/Z_{Fe}] é o proxy definido como [Z_{Mgb}/Z_{Fe}] \equiv [Z/H]_{Mgb} – [Z/H]_{Fe}. As metalicidades [Z/H]_{Mgb} e [Z/H]_{Fe} são obtidas de forma independente pelo ajuste polinomial do índices Mg_b e $\langle Fe_3 \rangle$, respectivamente.

Fonte: Produzido pela autora.

Figura 2.16 - Resultado da utilização do modelo de misturas finitas executado pelo pacote MCLUST em 1000 amostragens. O melhor ajuste é obtido por duas distribuições: uma normal (vermelho) e uma log-normal (azul). Dessa forma, nossa amostra de 151 GCs é dividida em duas famílias dinâmicas dadas pela dispersão de velocidade do grupo (σ_G): grupos com baixo σ_G são aqueles cujo $\sigma_G \leq 180$ km/s enquanto que os grupos de alto σ_G apresentam $\sigma_G > 181$ km/s. No gráfico também temos o Critério de Informação Bayseiano (BIC - do inglês *Bayesian Information Criterion*) que indica que a distribuição de dispersão de velocidades dos GCs de nossa amostra possui duas componentes.

Fonte: Produzido pela autora.

O valor-p dado pela aplicação do Teste de Proporção, p = 0.03, confirma que as distribuições são distintas. Uma outra maneira de avaliarmos a fração de espirais em cada regime é pela relação entre fração de espirais e dispersão de velocidade mostrada na Figura 2.20. Nesse gráfico, os pontos são as médias dos grupos presentes em cada bin de velocidade e a barra de erro é o desvio padrão. Nota-se que a fração de espirais decresce para σ_G maiores e o coeficiente de correlação (corr = -0.99) indica que a relação é verdadeira. O último ponto foi excluído do Teste de Correlação pois trata da média de apenas 4 grupos. Essa relação também foi encontrada nos trabalhos de

Figura 2.17 - Distribuição da dispersão de velocidade (σ_G) dos 151 GCs de nossa amostra. A linha em vermelho é a separação entre as duas famílias dinâmicas nas quais nossos grupos podem ser divididos.

Fonte: Produzido pela autora.

Hickson et al. (1988), Ribeiro et al. (1998) e Coziol et al. (2004). Na Figura 2.20 mostramos o resultado obtido por Ribeiro et al. (1998) (em preto) no estudo de 17 HCGs. No trabalho de Ribeiro et al. (1998) a classificação morfológica é feita pela medida da largura equivalente da linha de H α sendo as galáxias com $EW(H\alpha) > 6$ Å consideradas espirais. A diferença no método escolhido para classificação morfológica justifica os valores mais elevados para a fração de espirais.

Um parâmetro importante na descrição dinâmica de GCs é o crossing time (t_c) , que é o tempo necessário para uma galáxia atravessar o grupo. O crossing time é calculado pela expressão:

$$t_c = \frac{4}{\pi} \frac{R}{V} \tag{2.10}$$

Onde R é o comprimento médio do vetor de separação entre as galáxias e V é a dispersão de velocidade tridimensional estimada pela equação $V = [3(\langle v^2 \rangle - \langle v \rangle^2 -$

Figura 2.18 - Distribuição de M_r para grupos de baixo e alto σ_G de nossa amostra.

Fonte: Produzido pela autora.

 $\langle \delta v^2 \rangle$]^{1/2} onde v é a velocidade radial da galáxias, δv é o erro da velocidade e o termo em colchetes é a média de todas as galáxias do grupo. Na Figura 2.21 temos a distribuição do *crossing time* dos grupos de alto e baixo σ_G e de onde vemos que os grupos de baixo σ_G apresentam *crossing time* maiores.

Pela definição de crossing time, espera-se que galáxias em grupos com menores valores de t_c sofram mais interações. Algumas interações, como a fusão de galáxias, são responsáveis pela transformação morfológica da galáxia (geralmente de espirais para elípticas) e por isso é razoável esperarmos que grupos de menor crossing time apresentem uma baixa fração de espirais. Na Figura 2.22 temos a relação entre a fração de espirais e o crossing time para nossa amostra de GCs. Nessa figura, os pontos também representam as médias dos grupos presentes em cada bin e a barra de erro é o desvio padrão. A correlação encontrada para grupos de nossa amostra é igual a dada por Hickson et al. (1992) e Ribeiro et al. (1998): a fração de espiral é menor para grupos de menor crossing time. O coeficiente de correlação, corr = 0.81, obtido do Teste de Correlação (excluindo o último ponto pois trata-se da média de apenas 4 grupos) confirma a relação encontrada.

Figura 2.19 - Distribuição da fração de espirais para grupos de baixo e alto σ_G da nossa amostra.

Fonte: Produzido pela autora.

Em relação a população estelar em ETGs, apesar do valor-p obtido do Teste de Permutação indicar que as distribuições dos parâmetros idade (p = 0.006), [Z/H] (p = 0.002) e [α /Fe] (p = 0.05) são originárias de populações distintas, os valores médios desses parâmetros indicam que as populações estelares presentes em ETGs em grupos de alto e baixo σ_G são semelhantes.

No Apêndice A (Seção A.1.2), temos na Tabela A.2 todos os parâmetros dinâmicos dos 151 GCs de nossa amostra. Os parâmetros listados são: (1) identificação de cada grupo, (2) o número de membros; (3) a magnitude absoluta do grupo (M_r) ; (4) dispersão de velocidade do grupo (σ_G) ; (5) Raio Harmônico (em Mpc); (6) Massa do grupo (em M_{\odot}); (7) crossing time (em H₀); (8) Densidade espacial; (9) Fração de espirais e (10) Grupo dinâmico: L para grupo de baixo σ_G e H para grupo de alto σ_G .

2.6 Análise de Atividade Nuclear em GCs

Caracterizamos o tipo de atividade nuclear de uma galáxia principalmente pela razão de linhas de emissão. A medida dessas linhas exige um espectro com alta Figura 2.20 - Fração de espirais em função da dispersão de velocidades para GCs de nossa amostra. A linha tracejada vermelha separa os dois regimes de σ_G . Comparamos nossos resultados com o encontrado no estudo conduzido por Ribeiro et al. (1998) usando uma amostra de 17 HCGs.

Fonte: Produzido pela autora.

razão sinal/ruído (S/N) de outra forma as medidas podem levar a uma classificação errônea da atividade. Infelizmente, os espectros das galáxias de nossas amostras obtidos no SDSS-DR12 apresentam em média $S/N = \sim 20$, que é o limite para uma medição razoável das linhas de emissão. Para contornarmos essa limitação usamos a técnica de empilhamento de espectros (*stack spectra*) para aumentarmos a razão sinal-ruído e termos uma classificação mais precisa da atividade em nossa amostra. Separamos as amostras em bins de dispersão de velocidade entre $\sigma = 100 - 260$ km/s. Definimos o tamanho mínimo para o bin de velocidade igual a $\delta_{\sigma} = 10$ km/s e o tamanho máximo igual $\delta_{\sigma} = 40$ km/s dependendo do número de objetos em cada bin. A amostra de ETGs em GCs é muito menor do que a amostra de ETGs no campo e para essas definimos um mínimo de objetos por bin $N_{bin} \geq 30$. Para a amostra de campo, definimos $N_{bin} \geq 100$. No total, foram produzidos 7 espectros empilhados para a amostra completa de ETGs em GCs (Amostra F com 461 elípticas) e 15 espectros para a amostra de ETGs no campo. Os espectros produzidos para ambas as amostras são dados nas Figuras 2.24 e 2.25. Com a aplicação dessa técnica aumentamos o S/N de nossa amostra, principalmente os espectros da amostra em GCs. O número de galáxias usados na produção de cada espectro empilhado e o S/N é dado na Tabela 2.5.

Figura 2.21 - Distribuição do crossing time para grupos de baixo e alto σ_G .

Fonte: Produzido pela autora.

Uma vez que temos espectros com sinal-ruído suficientemente grande para não comprometer nossas medidas, utilizamos os diagramas de diagnóstico definido por Baldwin et al. (1981) e Fernandes et al. (2011) para classificar o tipo de atividade em ETGs em GCs e no campo. Para a medida das linhas de emissão, executamos o STARLIGHT usando os espectros empilhados como espectro de entrada, obtendo dessa forma um espectro modelado pelo ajuste. As linhas de emissão são medidas do espectro residual proveniente da subtração entre o espectro modelado e o espectro empilhado. Um exemplo do método usado para a realização da medida das razões de linhas de emissão é mostrado na Figura 2.26.

O diagrama de diagnóstico conhecido como BPT (BALDWIN et al., 1981) é baseado nas razões das linhas [O III]/H β e [N II]/H α enquanto que o diagrama WHAN (FERNANDES et al., 2011) requer a razão das linhas [N II]/H α e a largura equivalente da linha H α ($W_{H\alpha}$). Aplicamos os seguintes critérios para a distinção entre os tipos de atividade nuclear no diagrama BPT: para AGN e *Starforming (SF)* usamos a definição dada por Kewley et al. (2001) e Kauffmann et al. (2003) e as definições dadas em Kewley et al. (2006) para os tipos SEYFERT/LINER. Na Figura 2.27

Figura 2.22 - Fração de espirais em função do *crossing time* para os 151 GCs que compõem a nossa amostra. Como esperado pelo modelo de interações entre galáxias, a fração de espirais cresce com o *crossing time*.

Fonte: Produzido pela autora.

temos os diagramas BPT para os espectros empilhados da amostra F em GCs (gráfico a esquerda) e de campo (painel direito). Temos que as ETGs no campo concentra-se na região de "LINERs" que são AGN de baixa ionização enquanto que a amostra em GCs encontra-se mais espalhada entre a região de "Transição" e "LINERs". O diagrama BPT, por exigir medidas de quatro linhas de emissão, é mais usado para galáxias com intensas linhas de emissão e torna-se mais suscetível ao erro na classificação de galáxias com fracas linhas de emissão, como é caso de ETGs.

Quanto a questão da classificação do tipo de atividade em galáxias com linhas de emissão fracas, Fernandes et al. (2011) propõe um novo diagrama de diagnóstico baseado na medida de poucas linhas de emissão. No diagrama WHAN os tipos de atividade são definidos da seguinte forma:

- a) Galáxias star-forming : $log[NII]/H\alpha < -0.4$ and $W_{H\alpha} > 3\text{\AA}$
- b) Seyferts: $log[NII]/H\alpha > -0.4$ and $W_{H\alpha} > 6\text{\AA}$
- c) LINER: $log[NII]/H\alpha > -0.4$ and $3 < W_{H\alpha} < 6\text{\AA}$

Figura 2.23 - Parâmetros de população estelar de ETGs em GCs pertencentes a grupos de baixo e alto σ_G . As linhas tracejadas são as médias dos parâmetros. Apesar do Teste de permutação indicar que as distribuições dos parâmetros são distintas, os valores médios são bem próximos.

Fonte: Produzido pela autora.

- d) Galáxias Aposentadas: $W_{H\alpha} < 3 {\rm \AA}$
- e) Galáxias Passivas: $W_{H\alpha}$ and $W_{[NII]} < 0.5 \text{\AA}$

Os resultado da classificação dos espectros empilhados das amostras em GCs e no campo utilizando o diagrama WHAN é mostrado na Figura 2.28. Com exceção do

Figura 2.24 - Espectros empilhados utilizando a amostra completa (Amostra F) de ETGs em GCs. No total foram produzidos 7 espectros ao estabelecermos um número mínimo de 30 galáxias por bin de dispersão de velocidade. O tamanho do bin de dispersão de velocidade varia entre $10 \leq \delta_{\sigma} \leq 40$ km/s. Para melhor visualização, os espectros empilhados foram deslocados verticalmente.

Fonte: Produzido pela autora.

espectro de maior dispersão de velocidade (em vermelho no diagrama) que encontra-se no limiar entre a região de "Passiva" e "Aposentada", os demais espectros da amostra de ETGs em GCs estão na região da classe "Aposentada". Para a amostra de ETGs no campo, temos o mesmo resultado. Na classe "Aposentada" estão as galáxias que não apresentam novos episódios de formação estelar e cujas linhas de emissão são dadas pela ionização do gás pela presença de estrelas evoluídas e quentes de baixa massa (*HOLMES- Hot Low-Mass Evolved Stars*). Essas galáxias são classificadas como "LINERs" no diagrama BPT, que não consegue em sua definição, discernir as linhas de emissão derivadas de fracos AGN daquelas provenientes da ionização por HOLMES.

Importante ressaltar que em nossos resultados, as ETGs presentes em GCs e no campo apresentam o mesmo tipo de atividade dada pela ionização do gás por parte de fonte estelar.

Figura 2.25 - Espectros empilhados produzidos para a amostra de ETGs no campo. Nesse caso, por ter mais galáxias que a amostra em GCs, definimos o mínimo de 100 galáxias por bin de dispersão de velocidade. Ao todo são 15 espectros empilhados.

Fonte: Produzido pela autora.

2.7 Discussão

2.7.1 Parâmetros de População Estelar

Nosso principal resultado quanto a população estelar presente em ETGs, é a correlação independe do ambiente entre os parâmetros idade, [Z/H] e [α /Fe] com a dispersão de velocidade . O comportamento dos parâmetros, que aumentam para sistemas mais massivos, estão de acordo com o "Downsizing", cenário onde galáxias massivas formam suas populações estelares em épocas mais remotas. Esperava-se encontrar diferenças nas populações estelares presentes em galáxias pertencentes a GCs pois esses oferecem condições ideais para processos de interação. Esses processos, por sua vez, podem provocar novos episódios de formação estelar. No entanto, o resultado da aplicação do método híbrido mostra que os parâmetros de população estelar seguem a mesma tendência em ambos os ambientes. Tal inesperada semelhança entre as populações estelares, pode ser explicada se considerarmos que os GCs são formados por galáxias de campo que caíram em um potencial de matéria escura desprovido de

GCs - Amostra F			Amostra de campo		
$\Delta\sigma(\rm km/s)$	Ν	S/N	$\Delta\sigma(\rm km/s)$	Ν	S/N
100-120	41	43.06	100-110	128	150.71
120 - 140	47	61.39	110 - 120	181	172.99
140-160	41	59.29	120-130	298	214.87
160-180	56	62.68	130-140	387	247.32
180-200	58	87.60	140-150	437	281.90
200-220	49	104.25	150-160	573	310.62
220-240	44	80.49	160-170	519	307.38
			170-180	455	279.81
			180-190	490	304.23
			190-200	341	266.47
			200-210	295	228.43
			210-220	217	241.42
			220-230	169	188.40
			230-240	120	163.78
			240-260	114	184.17

Tabela 2.5 - Tabela com os bins de dispersão de velocidade, número de galáxias por bin de dispersão de velocidade (N_{bin}) e S/N estimado para o espectro empilhado produzido da amostra de ETGs em GCs e no campo.

Figura 2.26 - Exemplo de ajuste gaussiano realizado para a medida das linhas de emissão. Para tanto usamos o espectro residual proveniente da subtração do espectro empilhado original e o modelado pelo programa STARLIGHT.

Fonte: Produzido pela autora.

Figura 2.27 - Diagrama BPT para os espectros empilhados da amostra de ETGs em GCs (esquerda) e no campo (direita). A cor dos pontos é baseada na dispersão de velocidade do espectro empilhado indo do azul para vermelho para maiores valores de dispersão de velocidade.

Fonte: Produzido pela autora.

Figura 2.28 - Diagrama WHAN para os espectros empilhados das amostra de ETGs em GCs (esquerda) e no campo (direita). As cores dos pontos é uma referência a dispersão de velocidades, como pode ser visto no gradiente de cor no gráfico.

Fonte: Produzido pela autora.

bárions. Em estágios iniciais, as galáxias no GC manteria as propriedades do campo como a baixa dispersão de velocidade, até que se inicie os processos de interações.

Um estudo semelhante foi conduzido por Rosa et al. (2007) utilizando uma amostra de 22 ETGs em HCGs e 12 ETGs no campo. A idade e [Z/H] são estimados utilizando as medidas dos índices H β , MgFe', respectivamente e $\left[\alpha/\text{Fe}\right]$ é dado pela razão de abundância [Mg/Fe]. Quanto ao comportamento desses parâmetros, Rosa et al. (2007) não encontra nenhuma relação entre a idade e dispersão de velocidade. A metalicidade aumenta para maiores valores de σ , sendo o crescimento mais acentuado para a amostra de ETGs em HCGs. O resultado mais interessante é dado pelo parâmetro [Mg/Fe] que assume valores maiores para galáxias de baixa massa, decrescendo para galáxias mais massivas. Essa tendência de [Mg/Fe] é interpretada, juntamente com o comportamento de [Z/H], como um truncamento na formação estelar em ETGs de baixa massa pertencentes a GCs. Vale ressaltar que Rosa et al. (2007) conta com poucas galáxias no regime de baixa dispersão de velocidade como pode ser visto na Figura 2.29 onde temos uma comparação com os objetos de nossa amostra. Em nossos resultados, temos que o $\left[\alpha/\text{Fe}\right]$ aumenta para maiores valores de σ , um resultado plausível se considerarmos que galáxias de baixa massa apresentam Histórico de Formação Estelar (SFH - do inglês Star Formation History) mais extensos se comparados ao SFH de galáxias massivas (THOMAS et al., 2005; ROSA et al., 2011). Em galáxias de baixa massa, as populações estelares mais jovens se formam em um meio rico em elementos α produzidos na evolução de estrelas mais velhas e massivas. Dessa forma, a formação de novas estrelas reduz a abundância desses elementos. Galáxias de alta massa passam por um intenso episódio de formação estelar seguido pela evolução das mesmas o que leva a abundância mais alta de elementos α .

Como foi discutido anteriormente no Capítulo 1, existem outras maneiras de definirmos um ambiente. Em Barbera et al. (2014), o ambiente é definido de acordo com a massa do halo no qual a galáxia encontra-se inserida. Foram selecionadas amostras de ETGs centrais e satélites a partir do catálogo de grupos definido por Yang et al. (2007). São consideradas ETGs centrais aquelas de maior massa estelar sendo as demais tidas como galáxias satélites. A amostra de centrais é por sua vez dividida em duas de acordo com a massa do halo: halo de baixa massa (log $(M_h/M_{\odot}) < 12.5$ onde M_h é a massa do halo) ou centrais "isoladas" e halo massivos (log $(M_h/M_{\odot}) \ge 12.5$) ou centrais de "grupos". Já a amostra de satélites foi dividida em três sub-amostras: satélites em halos de baixa massa (log $(M_h/M_{\odot}) < 14$), em halos massivos (log $(M_h/M_{\odot}) \ge 14$) e uma amostra adicional com galáxias na periferia do grupo ($R > 0.5 R_{200}$). Os parâmetros de população estelar para essas amostras indicam que apenas as galáxias centrais apresentam alguma dependência com o ambiente. As ETGs centrais em halos massivos são mais jovens, mais ricas em metais e com baixo [α/Fe] quando comparadas as centrais em halos menos massivos.

Figura 2.29 - Comparação com os resultados obtidos pelo Rosa et al. (2007) para 22 galáxias ETGs em HCGs. Nosso estudo conta com mais galáxias no regime de baixa dispersão de velocidades e não confirmamos o truncamento da formação estelar evidente em Rosa et al. (2007).

Fonte: Produzido pela autora.

As ETGs satélites não apresentam uma correlação com o campo exceto para galáxias de baixa dispersão de velocidade.

Comparamos os parâmetros de população estelar estimados para nossas amostras com os parâmetros estimados para as amostra de centrais e satélites de Barbera et al. (2014). Na Figura 2.30 temos os parâmetros de população estelar para a amostra de ETGs centrais, em GCs e no campo. Para comparação dos parâmetros usamos a idade, metalicidade e avermelhamento dados pelo ajuste espectral (STARLIGHT) e o $[\alpha/\text{Fe}]$ obtido do método híbrido. Vemos que as ETGs centrais são mais velhas se comparadas a ETGs em GCs e no campo no regime de baixa dispersão de velocidade (até $\sigma \sim 150 \text{ km/s}$). Para maiores valores de σ , temos que as amostras apresentam idades semelhantes. As ETGs centrais em halos massivos são mais ricas em metais do que as demais amostras para todos os valores de σ . Quanto ao $[\alpha/\text{Fe}]$, em todas as amostras o parâmetro aumenta ligeiramente até $\sigma \sim 250 \text{ km/s}$ onde ETGs centrais em halos massivos apresentam valores mais baixos e quase constante se comparada a amostra em GCs e campo. Galáxias ETGs em GCs apresentam altos valores de A_{v} .

Comparadas com as satélites (Figura 2.31), para baixos σ ($\sigma \leq \sim 150$ km/s), ETGs satélites em halo massivos são mais velhas do que as demais ETGs. A partir de $\sigma \sim 150$ km/s, as ETGs satélites são mais jovens do que as ETGs em GCs e campo. As três amostras de galáxias satélites são mais pobres em metais quando comparadas a ETGs em GCs e no campo. Até $\sigma \sim 200$ km/s, as amostras de ETGs satélites apresentam maiores valores de [α /Fe]. O avermelhamento também é mais pronunciado em ETGs em GCs do que em satélites.

Em Barbera et al. (2014), as galáxias centrais em halos massivos apresentam SFH mais extensas pois passam por diversas interações ricas em gás. Essas interações ocorrem entre as centrais que atualmente estão nos grupos com as galáxias satélites que estão caindo no potencial do grupo. As ETGs em GCs apresentam populações estelares similares à centrais em halos de pouca massa e são melhor descritas por interações pobres em gás (do tipo "dry").

2.7.2 Dinâmica

Os GCs são dinamicamente associados a interações entre galáxias principalmente processo de fusão galáctica ou efeitos de maré. Pelo modelo de fusão rápida (OLIVEIRA; HICKSON, 1994; GÓMEZ-FLECHOSO; DOMÍNGUEZ-TENREIRO, 2001) após contínuas fusões entre os membros do grupo, teríamos uma galáxia elíptica gigante. Dessa forma, os GCs contribuem para a população de elípticas no campo mas não há correlação

Figura 2.30 - Comparação dos parâmetros de população estelar obtidos por Barbera et al. (2014) para amostras de galáxias centrais e obtidos nesse estudo para as amostras de ETGs em GCs e no campo.

Fonte: Produzido pela autora.

Figura 2.31 - Comparação dos parâmetros de população estelar obtidos por Barbera et al. (2014) para amostras de galáxias centrais e obtidos nesse estudo para as amostras de ETGs em GCs e no campo.

Fonte: Produzido pela autora.

clara entre as galáxias elípticas gigantes e as relíquias de GCs. De simulações dinâmicas de N-corpos (BARNES, 1985; SULENTIC, 1987; GOVERNATO et al., 1996) foi estimado um tempo de vida curto para a configuração de GCs, da ordem de apenas 1 Giga-ano. Entretanto, temos um vasto número de GCs observados. Muitos trabalhos mostram que os GCs, de fato, não seguem o modelo de fusão rápida proposto.

Dinamicamente, os 151 GCs de nossa amostra são divididos em duas famílias: grupos de baixa ($\sigma_G \leq 181 \text{ km/s}$) e alta ($\sigma_G > 181 \text{ km/s}$) dispersão de velocidade. Os grupos de alto σ_G possuem galáxias mais brilhantes e são ligeiramente mais ricos em ETGs $(\sim 76\%)$ quando comparados com os grupos de baixo σ_G (~ 67\%). Também para os nossos grupos, confirmamos a relação obtida por Hickson et al. (1988), Ribeiro et al. (1998) e Coziol et al. (2004) de que a fração de espirais decresce com a dispersão de velocidade do grupo (σ_G). Grupos de alto σ_G também apresentam menores crossing *time* que junto com a baixa fração de espirais pode ser um indício de que esses grupos são estruturas dinamicamente mais velhas. As duas famílias dinâmicas estariam dessa forma em estágios distintos: os grupos de baixo σ_G são grupos recentemente formados enquanto que os de alto σ_G são grupos próximos de alcançar o equilíbrio. Os grupos de baixo σ_G por vezes são tidos como efeitos de projeção (MAMON, 2000) mas tal hipótese não se aplica a nossos grupos. A relação entre a magnitude absoluta e a dispersão de velocidade mostrada na Figura 2.32 é linear como o esperado para sistemas fisicamente ligados. Para garantirmos a relação testamos dois tipos de binagem: fixando o tamanho do bin ($\delta = 100 \text{ km/s}$) e fixando o número de objetos por bin $(N_{obj}/\text{bin} = 15)$ e em ambos os casos, a relação permanece linear.

Nossa interpretação de que GCs de baixo σ_G são estruturas mais jovens vem de encontro com o cenário proposto na análise de população estelar. Seguindo nossa proposta, esses grupos seriam formados por galáxias do campo que recentemente caíram em um halo de matéria escura que não contém bárions de forma que ainda preservam propriedades do campo. O problema dessa interpretação é que deveríamos encontrar nos dados de simulações, halos de matéria escura com massa na ordem de $10^{12-13}M_{\odot}$ sem bárions, o que não é o caso (FATTAHI et al., 2016). Pela simulação EAGLE, os halos de matéria escura sem bárions mais massivos são da ordem de $10^{10}M_{\odot}$.

2.7.3 Atividade Nuclear

A natureza dos GCs (baixa dispersão de velocidade e alta densidade espacial) os torna lugares favoráveis para interações e essas por sua vez, podem ativar o núcleo galáctico ou provocar um intenso episódio de formação estelar. A interação entre galáxias

Figura 2.32 - Relação entre a magnitude absoluta e dispersão de velocidade do grupo. Realizamos um ajuste usando um tamanho fixo de bin ($\Delta = 100 \text{ km/s}$) e número fixo de objetos/bin (N/bin = 15). Em ambos os casos a relação entre as grandezas é linear como o esperado para sistemas ligados.

Fonte: Produzido pela autora.

pode canalizar o gás para as regiões centrais de forma a abastecer o buraco negro supermassivo (SMBH - *Supermassive Black Hole*) presente. Se a interação for rica em gás também pode promover a formação de novas estrelas. Dessa forma, espera-se observar intensa atividade nuclear e formação estelar em galáxias pertecentes a GCs. No estudo de diferentes amostras de HCGs, Coziol et al. (1998), Gallagher et al. (2008) e Martínez et al. (2010) estimaram altas frações de Núcleo Galáctico Ativo (AGN) em GCs, entre 41% e 54%. Já Sabater et al. (2012) não encontra diferença nas frações de AGN em galáxias no campo e HCGs. Segundo a relação entre densidade-morfologia e atividade encontrada por Coziol et al. (1998), Coziol et al. (2004) e Sohn et al. (2013), AGN são mais frequentes em ETGs localizadas em regiões mais internas dos GCs. Entretanto, todos os resultados em relação a atividade nuclear devem ser vistos com cautela pois depende da definição de AGN empregada e entre os autores não existe coesão.

As ETGs em nossa amostra de GCs apresentam um tipo de atividade que não está relacionado a um AGN. Pelo diagrama de análise WHAN, ETGs em GCs e no campo encontram-se na região das galáxias "Aposentadas", cujas linhas de emissão são causadas pela fotoionização do gás pelas estrelas quentes de baixa massa (HOLMES). Nossos resultados indicam que ETGs no campo e em GCs apresentam o mesmo

tipo de atividade. O fato de não detectarmos AGNs ou formação estelar em ETGs pertencentes a GCs, pode ser um indicativo de que as interações envolvendo essas galáxias são do tipo "dry", isto é, evolvendo pouco gás.

2.8 Sumário

Os resultados obtidos no estudo de 151 GCs do catálogo de McConnachie et al. (2009) pode ser sumarizados da seguinte forma:

- A população estelar em ETGs pertencentes a GCs é semelhante a população estelar observada em galáxias no campo. Os parâmetros idade, [Z/H] e [α/Fe] em ambos os ambientes apresentam a mesma relação com a dispersão de velocidades, aumentando para sistemas massivos. A ausência de novos episódios de formação estelar em ETGs em GCs sugere que essas galáxias passam por interações envolvendo pouco gás. Comparada a amostra de centrais e satélites definidas por Barbera et al. (2014), nossas amostras (GCs e campo) comportam-se de forma semelhante a centrais em halos de pouca massa (log(M_h/M_☉) < 12.5);
- Dinamicamente, nossa amostra de GCs pode ser dividida em duas famílias: grupos de baixa dispersão de velocidade ($\sigma_G \leq 181 \text{ km/s}$) e alta dispersão de velocidade ($\sigma_G > 181 \text{ km/s}$). Os grupos de baixo σ_G parecem ser estruturas dinamicamente mais jovens, com valores maiores de *crossing time* e alta fração de espirais enquanto que os grupos de alto σ_G são aqueles provavelmente mais próximos do equilíbrio;
- Da análise de espectros empilhados produzidos para as duas amostras, temos que as linhas de emissão em ETGs de campo e GCs não são causadas por um núcleo ativo e sim por estrelas de baixa massa e quentes. Essas galáxias não apresentam novos episódios de formação estelar.

De acordo com os resultados obtidos, podemos especular que os GCs são formados por galáxias de campo caindo em um halo de matéria escura sem bárions. Esse resultado será investigado em maiores detalhes pelo exame dos resultados da simulação Illustris (VOGELSBERGER et al., 2014). O fato das populações estelares em ETGs serem indistinguíveis em ambos os ambientes, indica que galáxias em GCs ainda preservam propriedades das galáxias em ambientes de baixa densidade.

3 UM ESTUDO MORFOLÓGICO E FOTOMÉTRICO DE UMA AMOS-TRA COMPLETA DE GRUPOS COMPACTOS

3.1 Introdução

No capítulo anterior apresentamos os resultados da análise de uma amostra de 151 GCs pertencentes ao catálogo de McConnachie et al. (2009) (MC09). No total, MC09 conta com 9713 galáxias distribuídas em 2297 GCs, tornando-se um dos maiores catálogos dessas estruturas. Todas as galáxias possuem dados fotométricos no SDSS-DR7 porém apenas ~ 43% também apresentam espectro no banco de dados. O número de objetos com espectroscopia definida pode aumentar para ~ 55% da amostra se usarmos o banco de dados do DR13. O estudo das propriedades das populações estelares em galáxias é limitada ao número de objetos com espectro disponível. Entretanto, com a utilização de *redshifts* fotométricos podemos a princípio eliminar os sistemas que são efeito de projeção. No entanto, para uma avaliação do estado dinâmico do grupo, *redshift* espectroscópico é fundamental.

O estudo anterior é focado nas propriedades de galáxias ETGs pertencentes a uma amostra de GCs completos, isto é, grupos com mais de quatro membros com *redshift* determinado. Para continuidade do projeto, também estamos interessados em avaliar os tipos morfológicos das galáxias pertentes aos 2297 GCs de MC09. Realizamos uma classificação visual das 629 galáxias de nossa amostra anterior (151 GCs). A classificação visual, como a realizada no projeto *The Galaxy Zoo*, produz resultados eficazes e o que torna a classificação imprecisa é a degradação da imagem e não o instrumento, nesse caso o olho humano. Para uma amostra grande, o ideal é dispormos de uma ferramenta que nos permita classificar as galáxias de forma criteriosa e automática.

Para lidar com o problema da classificação morfológica, desenvolvemos o programa Cymorph (BARCHI et al., 2017) que as classifica pela aplicação de um sistema morfológico composto por cinco parâmetros: Concentração, Assimetria, *"Smoothness"*, Entropia e o parâmetro de análise de padrão de gradiente (GPA do inglês *Gradient Pattern Analysis*). Essa é a ferramenta usada na classificação das 9713 galáxias do catálogo de MC09.

Para a análise morfológica das galáxias do catálogo de MC09, também estamos interessados na razão Bojo/Disco. Essa razão pode ser obtida com o auxílio do programa GALPHAT como é descrito em Stalder et al. (2017). Em específico, utilizando o Fator de Bayes estimado pelo ajuste de um modelo de Sérsic e Sérsic +

Exponencial. A razão Bojo/Disco será usada de forma complementar na análise e nos permitirá avaliarmos a evolução do disco em ambientes de alta densidade.

O trabalho com GCs faz parte de um projeto ainda maior cujo objetivo final é a investigação da evolução de galáxias em diferentes ambientes de alta densidade. Cada ambiente propicia diferentes tipos de interações, que por sua vez, irão influenciar de forma distinta na evolução das galáxias. Dessa forma, o estudo torna-se completo ao analisarmos também o ambiente dado pelos aglomerados. Esses podem ser caracterizados tanto por sua densidade espacial, como pelo estado dinâmico como mostra os trabalhos de Ribeiro et al. (2013) e Carvalho et al. (2017). No trabalho de Ribeiro et al. (2013) é apresentada uma definição de Gaussianidade que quando aplicada a distribuição de velocidades de grupos e aglomerados, os separa dado seu estado dinâmico. Nessa classificação, os grupos considerados Gaussianos são aqueles em equilíbrio dinâmico. No resultado apresentado por Ribeiro et al. (2013) os grupos Gaussianos e não-Gaussianos também distinguem-se quanto a população de galáxias. Em grupos Gaussianos, as galáxias localizadas nas regiões internas e externas apresentam propriedades distintas que são interpretadas como a ação do ambiente na segregação das galáxias. O mesmo efeito não é observado nos grupos não-Gaussianos, o que pode ser um indicativo de que esses grupos ainda preservam as propriedades dos processos físicos ocorridos anteriormente. As diferenças nas populações estelares em galáxias pertencentes a grupos Gaussianos e não-Gaussianos também é observada no estudo conduzido por Carvalho et al. (2017) utilizando uma amostra de 319 grupos do catálogo de Yang et al. (2007). Como pode ser visto na Figura 3.1, independente do regime de luminosidade, as galáxias presentes na região interna de grupos Gaussianos, são mais velhas e mais ricas em metais se comparadas a galáxias na mesma região em grupos não-Gaussianos. Para regiões externas ocorre o oposto: galáxias em grupos não-Gaussianos são mais velhas e mais ricas em metais do que as galáxias em regiões externas de grupos Gaussianos. Tal resultado é interpretado como um indicativo de que as galáxias na periferia de grupos não-Gaussianos são pré-processadas dentro dos filamentos antes de cair no potencial do aglomerado.

Dado o número de número de galáxias que formam GCs (menos de uma dezena), a aplicação do critério de Gaussianidade perde sua validade pois não temos uma distribuição de velocidades como a definida para aglomerados. Porém, ao consideramos os resultados de Carvalho et al. (2017) os GCs nos oferecem a chance de estudarmos os efeitos de pré-processamento que ocorrem em sistemas de baixa densidade em torno de aglomerados e/ou filamentos. Figura 3.1 - Parâmetros de população estelar (idade e [Z/H]), massa estelar e avermelhamento em função da distância ao centro do aglomerado normalizado por R_{200} para 319 grupos do catálogo de Yang et al. (2007). Os grupos foram classificados como Gaussianos e não-Gaussianos considerando o estado dinâmico, sendo os grupos Gaussianos aqueles em equilíbrio. A amostra é divida em dois regimes de magnitude: galáxias mais brilhantes (*bright*) são aquelas com $M_r \leq -20.55$ e galáxias de brilho mais fraco (*faint*) entre $-20.55 \leq M_r \leq -18.40$.

Fonte: Carvalho et al. (2017)

3.2 Morfometria

A classificação morfológica desempenha um papel importante não apenas na definição de uma amostra mas também no estudo dos efeitos de diferentes ambientes na evolução e formação de galáxias. Os catálogos desenvolvidos atualmente são baseados na inspeção visual das galáxias ou em parâmetros fotométricos (exemplo, cor ou perfil de brilho superficial) e espectrais. Infelizmente, esses catálogos contam com um limitado número de objetos. A busca tem se concentrado em métodos automatizados de classificação morfológica que permita a criação de catálogos mais extensos e com classe dada de forma mais precisa. Buscando essa eficiência e maior precisão, foi desenvolvido o código Cymorph (BARCHI et al., 2017) para classificação morfológica de galáxias. O programa utiliza o sistema morfométrico não-paramétrico CASGM apresentado por Abraham et al. (1994), Abraham et al. (1996), Conselice et al. (2000) e Lotz et al. (2004) com adição de dois novos parâmetros: entropia (H) e GPA (ROSA et al., 2017). Do sistema CASGM são usados os coeficientes: Concentração (CN), Assimetria (A_3) e Smoothness (S_3) que junto com os dois novos parâmetros, classificam as galáxias a partir de uma imagem da mesma. Desses coeficientes, o GPA mostrou-se mais eficaz na separaão entre as classes espiral e elíptica como mostra os testes apresentados em Barchi et al. (2017).

Ao código do Cymorph foi implementado a classificação pelo treinamento de uma árvore de decisão (BARCHI et al., 2017). Foram realizados testes com processos supervisionados ("Support Vector Machine" e "Àrvore de decisão") e não supervisionados ("Agrupamento por K-médias" e "Aglomerações hierárquicas") para determinação do melhor método para distinção entre as classes morfológicas elíptica e espiral. A amostra usada nos testes de processos supervisionados é composta por 44760 galáxias espirais e 3385 elípticas extraídas do catálogo do projeto The Galaxy Zoo 1. Para testes não supervisionados a amostra usada conta com 1962 galáxias com classes determinadas no mesmo catálogo da amostra anterior. Para a avaliação do melhor método são medidas cinco métricas de avaliação: precisão (P) que é o número de elementos relevantes recuperados dividido pelo número total de elementos recuperados; revocação (R) definida como o número de elementos relevantes recuperados dividido pelo número total de elementos relevantes existentes; Medida F ("F-score") que é a média harmônica dos parâmetros precisão e revocação; acurácia ("Overall Acuracy-OA) dada pela proporção de predições corretas e por último, o índice Kappa (κ) , que define um limiar de concordância entre os anotadores, sendo esses últimos os responsáveis por definir a que classe os objetos pertencem. Os anotadores podem ser humanos ou algoritmos de classificação. De todos os métodos o que melhor separa as classes é o método supervisionado de "Árvore de decisão" com OA $\sim 97\%$.

Aos objetos do catálogo de McConnachie et al. (2009) aplicamos o método da árvore de decisão de forma a obtermos a classe morfológica. Das 9713 galáxias do catálogo, para 577 o parâmetro de concentração, CN, não convergiu e para esses objetos não foi possível aplicar a árvore de decisão cujo primeiro estágio baseia-se nesse parâmetro, como pode ser visto na Figura 3.2. Importante ressaltar que dentre os principais motivos para a não convergência estão: proximidade da borda da imagem; e contaminação severa de outros objetos superpostos. Das 9134 galáxias com os cincos parâmetros determinados, temos que $\sim 94\%$ é da classe espiral e 573 galáxias

foram classificadas como elípticas. A distribuição dos parâmetros para cada classe morfológica é mostrado na Figura 3.2 e seus valores são dados na Tabela A.3 no Apêndice A (Seção A.1.3). Vemos que o parâmetro GPA é de fato o que melhor separa as duas classes seguido do parâmetro H.

Figura 3.2 - Árvore de Decisão usada no treino da rede neural para classificação de galáxias.

Fonte: Barchi et al. (2017)

A alta porcentagem de galáxias espirais dada pela classificação com a árvore de decisão, deve ser averiguada quanto à possível contaminação de galáxias do campo, ambiente este onde as espirais são abundantes. Também será considerada a contaminação por galáxias intrusas, aquelas que não pertencem ao grupo e são efeitos de projeção. Para tanto, será conduzida uma busca pelo *redshift* fotométrico, principalmente das galáxias para as quais não temos o *redshift* espectroscópico. O *redshift* fotométrico não possui precisão suficiente para nos assegurar que uma galáxia pertence a um

Figura 3.3 - Distribuição dos parâmetros morfométricos: Assimetria (A_3) , Concentração(CN), Suavidade (S_3) , Entropia (H) e GPA para as galáxias classificadas como elípticas e espirais pela aplicação do método de Árvore de decisão. Dentre os parâmetros, vemos que o que melhor distingue as duas classes é o GPA.

Fonte: Produzido pela autora.

grupo mas pode ser usado para excluirmos as que configuram efeitos de projeção. Um valor de *redshift* muito distinto do apresentado pelos demais membros do grupo é um indicativo de que a galáxia não faz parte do mesmo.

3.3 Fotometria

No capítulo anterior descrevemos o estudo de galáxias em GCs baseado na informação espectral. Porém, outras propriedades importantes podem ser extraídas da imagem da galáxia, como por exemplo, a magnitude e raio efetivo. Diversos programas destinados a medidas de fotometria encontram-se disponíveis (e.g., GALFIT (PENG et al., 2002), 2DPHOT (BARBERA et al., 2008) e IMFIT (ERWIN, 2015) entre outros) sendo a maioria desses uma aplicação do método estatístico frequentista. Entretanto, a técnica mais comum neste método, "Estimativa por Máxima Verossimilhança', introduz erros sistemáticos de diversas fontes como o rúido da subtração da contribuição do céu, contaminação por objetos próximos e tamanho de imagem. Para aplacar as limitações impostas pelo método frequentista, o GALPHAT (GALaxy Photometric ATtributes) utiliza a abordagem Bayesiana para determinação dos parâmetros fotométricos de uma galáxia. O GALPHAT é um pacote desenvolvido para a análise de imagens de galáxias baseado na ferramenta BIE (Bayesian Inference Engine -Weinberg (2013)) que por sua vez, é usada para inferência de parâmetros e seleção de modelo. Dessa forma, o GALPHAT fornece a distribuição de probabilidade posterior dos parâmetros de dado um modelo. Atualmente é possível explorarmos dois modelos: o modelo de uma componente - Sérsic, que melhor descreve a distribuição de brilho de uma galáxia elíptica e o modelo dado por duas componentes: Sérsic (bojo) e Exponencial (disco).

Em Stalder et al. (2017) foi estimado o viés e a incerteza nos parâmetros estruturais obtidos pelo GALPHAT. Para tanto foram usadas 50 realizações utilizando 24 imagens sintéticas. À essas mesmas imagens foram feitas outras 50 realizações utilizando o código GALFIT (abordagem frequentista) de modo a comparar as incertezas e vieses de ambas as abordagens. Vemos pelo resultado da comparação, mostrada na Figura 3.4, que para baixos valores do índice de Sérsic (n = 2), o bias para os parâmetros n, magnitude (Mag) e raio efetivo (R_e) são insignificantes para ambos os casos. Para n maiores (n = 10), temos que o GALPHAT apresenta menor víes (curva azul) quando comparado com o GALFIT (curva vermelha). Nesse caso o valor dos parâmetros medidos pelo GALPHAT e reais diferem de $4.3 \pm 3.6\%$ para n, $1.5 \pm 9.4\%$ para R_e e 0.000 ± 0.032 mag para a magnitude. As diferenças são maiores para o parâmetros obtidos pelo GALFIT: $17 \pm 8\%$ para n, $22 \pm 22\%$ para R_e e $\sim 0.088 \pm 0.063$ mag para

a magnitude. Dessa forma, o GALPHAT fornece valores mais precisos dos parâmetros principalmente no regime de n mais altos. Além disso, é importante lembrar que a abordagem Bayesiana permite que usemos toda a informação da distribuição de probabilidades ao invés de usar um dado valor, mesmo que esse seja o de maior probabilidade. Esta é a essência da abordagem Bayesiana.

Figura 3.4 - Comparação entre o viés estimado entre os valores reais e medidos pelos programas GALPHAT (curva azul) e GALFIT (vermelho) para os parâmetros magnitude (mag), raio efetivo (r_e) e índice Sérsic (n). O GALPHAT retorna valores mais próximos do reais, especialmente para valores mais altos de n (n =10).

Fonte: Stalder et al. (2017)

Com o GALPHAT, a escolha do melhor modelo é dada pelo Fator de Bayes (BF -*Bayes Factor*). Esse fator é semelhante aos Testes de Razão de Verossimilhança e com ele avaliamos a aceitação da hipótese nula ao contrário do uso comum, que é a rejeição da mesma. Também foi realizado em Stalder et al. (2017) um teste quanto a eficiência do BF na seleção de modelos. Para esse teste foram produzidas 432 imagens sintéticas sendo 360 dessas imagens dada pelo perfil de Sérsic e 72 pelo perfil Sérsic

e um fonte nuclear central (PS - *point source*). Os resultados do teste indicam que para a FWHM e escala de pixel do SDSS, o BF detecta a componente PS em um raio efetivo maior do que 7.92 segundos de arco. Dado o resultado em relação a detecção de uma fonte nuclear no centro de galáxias, também foi testado se o BF pode ser associado a um tipo de atividade nuclear. Para esse segundo teste foram analisadas 102 ETGs extraídas do banco de dados do DR7 e com classe definida no The Galaxy Zoo 1. Essa amostra também respeita o limite de R_e encontrado no teste anterior de forma que todas possuem $R_e \geq 7.92$ segundos de arco. Pela aplicação do diagrama de diagnóstico WHAN, as ETGs encontram-se na região de LINERs (AGN de baixa ionização) e "Aposentadas", sendo essas as galáxias cujas linhas de emissão são formadas pela fotoionização do gás por estrelas quentes e velhas de baixa massa (HOLMES) (Figura 3.5). O GALPHAT mostrou-se eficiente em distinguir as galáxias com e sem emissão nuclear sendo eficaz na separação entre LINERs e "Aposentadas". As galáxias "Passivas" (sem qualquer indício de formação estelar) estão associadas a um maior valor de BF, um indicativo da ausência de uma fonte nuclear, como o esperado.

Figura 3.5 - Diagrama WHAN para a amostra de 102 ETGs e em diferentes regimes do Fator de Bayes (BF). Vemos uma correlaão no sentido de que galáxias com maiores valores de BF (sem PS) encontram-se mais dispersas na região de LINERs a Passivas. Para BF mais baixos, as galáxias se concentram na região limítrofe entre LINER e Aposentadas.

Fonte: Stalder et al. (2017)

Para o subsequente estudo de galáxias ETGs em GCs definidos por McConnachie et al. (2009), onde todas as galáxias já possuem dados de fotometria, o GALPHAT será empregado para o refinamento da amostra de elípticas. Procedendo de forma semelhante ao teste de BF conduzido por Stalder et al. (2017), será executado o GALPHAT para a amostra de ETGs definidas pelo Cymorph. O ajuste será realizado utilizando ambos os modelos disponíveis: primeiramente o Sérsic seguido do modelo Sérsic + Exponencial. Com o Fator de Bayes obtido para cada modelo, podemos calcular a razão Bojo/Disco, parâmetro que permite a segregação entre as lenticulares e elípticas. Para o modelo Sérsic, o mais simples e de menor consumo computacional, já foram estimados os parâmetros R_e , n, μ_e (brilho superficial) e Mag (Tabela A.4). Da amostra inicial de 573 galáxias, para 89 não temos a estimativa dos parâmetros pois essas encontram-se na borda da imagem ou com galáxias próximas. Ainda que preliminares, os resultados do ajuste do modelo Sérsic são interessantes como é mostrado na Figura 3.6 onde temos a relação de Kormendy para as galáxias de nossa amostra. Diferente da abordagem frequentista, onde é escolhido um valor mais próximo do pico máximo de probabilidade, na aplicação do método Bayesiano temos a distribuição posterior de ambos os parâmetros. Podemos notar que em decorrência da abordagem Bayesiana somos capazes de distinguir claramente dois picos - uma bimodalidade que não era conhecida anteriormente e que deverá ser analisada com mais detalhe. Quanto a Relação de Kormendy, temos que as elípticas de nossa amostra apresentam o comportamento esperado: o brilho superficial decresce para maiores R_e .

O próximo passo é ajustarmos o modelo de Sérsic + Exponencial para a mesma amostra de ETGs. Dada a eficiência do BF em separar os tipos de atividade nuclear, especialmente os LINERs da classe Aposentadas, o mesmo também será aplicado na análise de atividade nuclear na nova amostra de ETGs. Essa aplicação será importante pois como vimos no estudo apresentado, as elípticas em GCs apresentam linhas de emissão causadas por fonte estelar (classe Aposentadas) mas na literatura são comumente relacionadas a LINERs.

3.4 Conclusão

Mostramos nesse capítulo os resultados preliminares do uso de novas ferramentas na continuidade do trabalho em GCs. Nesse primeiro estágio, buscamos a completeza do catálogo de McConnachie et al. (2009) a começar pela classificação morfológica de todas as galáxias que o compõem. Para as 9713 galáxias de MC09, utilizamos o novo código Cymorph para classificação morfológica pela aplicação do método de
Figura 3.6 - Relação de Kormendy para a amostra de galáxias ETGs definidas pelo programa Cymorph. Diferente da abordagem frequentista, temos a distribuição posterior dos parâmetros brilho superficial (μ_e) e raio efetivo (R_e). Temos que nossa amostra segue o esperado pela relação: galáxias de menor R_e são mais brilhantes se comparadas a de maior R_e . Nota-se pelo centro na imagem, que a distribuição é bimodal.

Fonte: Produzido pela autora.

Àrvore de Decisão. Das 9134 galáxias classificadas, 573 são ETGs. Para essa amostra definida pelo Cymorph, estamos interessados em obter a razão Bojo/Disco afim de separarmos as galáxias elípticas das lenticulares. O programa foi desenvolvido para performance de fotometria superficial bidimensional e atualmente obtém os parâmetros fotométricos pelo ajuste de dois modelos: Sérsic ou Sérsic + Exponencial. Com o BF, parâmetro usado na avaliação do melhor modelo ajustado, para a amostra de 573 ETGs calculado pelo ajuste de ambos os modelos obtemos a razão desejada. O BF também se mostrou eficaz na distinção dos tipos de atividades presente no núcleo galáctico, principalmente entre as classes LINERs (AGN de baixa ionização) e Aposentadas (fotoionização dada por fonte estelar). Para a mesma amostra de ETGs será feita a análise da atividade pelo emprego do BF. Como mostramos nesse capítulo, o ajuste do modelo mais simples (Sérsic) já foi finalizado. O próximo passo é dado pelo ajuste do modelo Sérsic + Exponencial. Importante lembrarmos que a razão Bojo/Disco é uma grandeza que está diretamente relacionada com os processos

de formação de ambas estruturas, bojo e disco, e como estas se modificam ao longo da sequência hierárquica de formação de galáxias (Veja Figura 1.1). Assim, nosso objetivo é o estudo da distribuição da razão Bojo/Disco em regime de alta densidade, onde o ambiente pode afetar de maneira significativa o crescimento do disco.

4 PERSPECTIVAS

Os resultados apresentados nessa tese vêm contribuir para o estudo dos mecanismos responsáveis pela evolução de galáxias em ambientes de alta densidade, nesse caso dado pelos Grupos Compactos (CGs). Para a continuidade do projeto pretendemos melhor elaborar os resultados aqui obtidos, utilizando uma amostra mais representativa de GCs provenientes do catálogo de McConnachie et al. (2009). A sequência do estudo seguirá os seguintes passos:

- Classificação morfológica de todo o catálogo de McConnachie et al. (2009) e definição de uma nova amostra de ETGs: Como foi descrito no Capítulo 3, para a classificação morfológica de todo catálogo de McConnachie et al. (2009) usaremos as novas ferramentas desenvolvidas no grupo de pesquisa: os programas Cymorph (BARCHI et al., 2017) e GALPHAT (STALDER et al., 2017). Do resultado preliminar, dado pela aplicação do método árvore de decisão nas 9743 galáxias que constituem o catálogo de McConnachie et al. (2009), 573 são *early-type*. Para essa nova amostra será calculada a razão Bojo/Disco pelo ajuste dos modelos Sérsic e Sérsic + Exponencial realizado pelo programa GALPHAT. De fato, a razão é obtida uma vez que usando o Fator de Bayes (BF) calculado para ambos os modelos, saibamos que modelo melhor justifica a imagem da galáxia. Essa informação será complementar a classificação dada pelo Cymorph e também nos permite investigar a evolução do disco em ambientes mais densos;
- Definição de uma nova amostra de campo pela aplicação da técnica "Propensity Score Matching" (PSM): Para a continuidade do estudo em ambientes de alta densidade também será definida uma amostra no ambiente de baixa densidade dada pelo campo. Essa amostra será utilizada para avaliação das propriedades em ambientes distintos. Para a seleção da amostra de campo iremos aplicar a técnica "Propensity Score Matching" (PSM) como descrita em Trevisan et al. (2017). Essa técnica nos permite compor uma amostra de galáxias no campo com a distribuição de parâmetros observados (e.g. redshift ou M_r) semelhante à amostra de GCs. Dessa forma, reduzimos o possível viés em nossos resultado ao assegurarmos que as amostras são equivalentes;
- Análise dinâmica pela caracterização da vizinhança dos GCs do catálogo de MC09: Vimos no estudo anterior, que os GCs podem ser

divididos em duas famílias dinâmicas dado o regime de dispersão de velocidade. Na continuidade do projeto e para uma amostra maior de GCs, vamos analisar também o meio no qual esses grupos estão inseridos pela medida da densidade espacial na vizinhança de GCs. Isso nos permitirá relacionar uma dada família dinâmica a um ambiente e ainda avaliarmos a hipótese de que os grupos próximos de aglomerados são rejuvenescidos pelas galáxias mais externas que são adicionadas ao grupo;

- Análise da atividade nuclear pela aplicação do Fator de Bayes: O Fator de Bayes é originalmente usado para a escolha do melhor modelo ao qual a distribuição de brilho de uma galáxia se ajusta. Nos testes conduzidos por Stalder et al. (2017) com imagens de galáxias ETG de alta massa estelar, o BF mostrou-se eficiente na distinção entre uma ETG com história de formação estelar passiva e "aposentada" (ou até mesmo LINER). Valores mais altos de BF (*BF* > 8) estão relacionados à ausência de uma fonte nuclear e pelo diagrama de diagnóstico WHAN, essas galáxias estão dispersas na região da classe "Passiva". As galáxias tidas como "Passivas", não apresentam qualquer tipo de atividade ou formação estelar. Para valores mais baixos de BF (*BF* ≤ −8), temos que as galáxias estão concentradas na região de LINERs e "Aposentadas" do diagrama. Dados os resultados apresentados em Stalder et al. (2017) da aplicação do BF na determinação do tipo de atividade, será realizada uma análise semelhante para as galáxias de nossa amostra;
- Construção do Histórico de Formação estelar (SFH): O SFH concentra a informação de como as estrelas de uma galáxia se formaram ao longo do tempo. Podemos avaliar, por exemplo, se a formação ocorreu em um breve episódio ou por períodos mais longos. Esse dado é importante no estudo da evolução galáctica em um dado ambiente. Para as galáxias da nossa amostra, serão obtidos os parâmetros de população estelar pela aplicação do Método Híbrido e desses parâmetros será construído o SFH;
- Definição de grupos com auxílio de *redshift* fotométricos: Das galáxias pertencentes ao catálogo de McConnachie et al. (2009) aproximadamente 55% possui medida de *redshift* espectroscópico no banco de dados do SDSS-DR13. Ao definirmos uma amostra de GCs é necessário avaliar o possível efeito de projeção e para tanto aplicamos o critério do *redshift* concordante dado em Hickson et al. (1992). O uso do *redshift* fotométrico no ausência do espectroscópico pode nos auxiliar nessa tarefa, ao excluir os

casos mais díspares em comparação com o redshift dos demais membros do grupo. Essa medida de redshift não é usada nas demais análises.

REFERÊNCIAS BIBLIOGRÁFICAS

ABADI, M.; MOORE, B.; BOWER, R. Ram pressure stripping of spiral galaxies in clusters. Monthly Notices of the Royal Astronomical Society, v. 308, p. 947–954, oct 1999. 12

ABRAHAM, R.; BERGH, S. van den; GLAZEBROOK, K.; ELLIS, R.; SANTIAGO, B.; SURMA, P.; GRIFFITHS, R. The morphologies of distant galaxies. ii. classifications from the hubble space telescope medium deep survey. **Astrophysical Journal**, v. 107, p. 1, nov 1996. 72

ABRAHAM, R.; VALDES, F.; YEE, H.; BERGH, S. van den. The morphologies of distant galaxies. 1: an automated classification system. **Astrophysical Journal**, v. 432, p. 75–90, sep 1994. 72

ALAM, S.; ALBARETI, F.; PRIETO, C. A.; ANDERS, F.; ANDERSON, S.; ANDREWS, B.; ARMENGAUD, E.; AUBOURG, É.; BAILEY, S.; BAUTISTA, J.; AL. et. The eleventh and twelfth data releases of the sloan digital sky survey: Final data from sdss-iii. **The Astrophysical Journal Supplement Series**, jan 2015. 28

ALLAM, S.; TUCKER, D. Compact groups of galaxies in the las campanas redshift survey. Astronomische Nachrichten, v. 321, p. 101–114, 2000. 25

BALDRY, I.; BALOGH, M.; BOWER, R.; GLAZEBROOK, K.; NICHOL, R.; BAMFORD, S.; BUDAVARI, T. Galaxy bimodality versus stellar mass and environment. **Monthly Notices of the Royal Astronomical Society**, v. 373, p. 469–483, dec 2006. 18

BALDWIN, J.; PHILLIPS, M.; TERLEVICH, R. Classification parameters for the emission-line spectra of extragalactic objects. Astronomical Society of the **Pacific**, v. 93, p. 5–19, feb 1981. xxv, 53

BALOGH, M.; PEARCE, F.; BOWER, R.; KAY, S. Revisiting the cosmic cooling crisis. Monthly Notices of the Royal Astronomical Society, v. 326, p. 1228–1234, oct 2001. 9

BANES, J. Formation of gas discs in merging galaxies. Monthly Notices of the Royal Astronomical Society, v. 333, p. 481–494, jul 2002. 14

BARBERA, F. L.; CARVALHO, R. de; KOHL-MOREIRA, J.; GAL, R.; SOARES-SANTOS, M.; CAPACCIOLI, M.; SANTOS, R.; SANT'ANNA, N. 2dphot: A multi-purpose environment for the two-dimensional analysis of wide-field images. Astronomical Society of the Pacific, v. 120, p. 681, jun 2008. 75

BARBERA, F. L.; PASQUALI, A.; FERRERAS, I.; GALLAZZI, A.; CARVALHO, R. de; ROSA, I. de la. Spider - x. environmental effects in central and satellite early-type galaxies through the stellar fossil record. **Monthly Notices of the Royal Astronomical Society**, v. 445, p. 1977–1996, dec 2014. xi, xiii, xx, 18, 29, 45, 60, 62, 63, 64, 67

BARCHI, P.; SAUTTER, R.; CARVALHO, R. de; ROSA, R.; REMBOLD, S.; MOURA, T. Improving galaxy morphology with machine learning. Monthly Notices of the Royal Astronomical Society, 2017. 20, 69, 72, 73, 81

BARNES, J. The dynamical state of groups of galaxies. Monthly Notices of the Royal Astronomical Society, v. 215, p. 517–536, aug 1985. 65

BARTON, E.; GELLER, M.; RAMELLA, M.; MARZKE, R.; COSTA, L. da. Compact group selection from redshift surveys. **Astronomical Journal**, v. 112, p. 871, sep 1996. 25

BERNARDI, M.; SHETH, R.; ANNIS, J.; BURLES, S.; EISENSTEIN, D.; FINKBEINER, D.; HOGG, D.; LUPTON, R.; SCHLEGEL, D.; SUBBARAO, M.; BAHCALL, N.; BLAKESLEE, J.; BRINKMANN, J.; CASTANDER, F.; CONNOLLY, A.; CSABAI, I.; DOI, M.; FUKUGITA, M.; FRIEMAN, J.; HECKMAN, T.; HENNESSY, G.; IVEZIĆ, Ž.; KNAPP, G.; LAMB, D.; MCKAY, T.; MUNN, J.; NICHOL, R.; OKAMURA, S.; SCHNEIDER, D.; THAKAR, A.; YORK, D. Early-type galaxies in the sloan digital sky survey. i. the sample. Astronomical Journal, v. 125, p. 1817–1848, apr 2003. 30

BLANTON, M.; ROWEIS, S. K-corrections and filter transformations in the ultraviolet, optical, and near-infrared. **Astronomical Journal**, v. 133, p. 734–754, feb 2007. xvii, 28, 30

BOWER, R.; BENSON, A.; MALBON, R.; HELLY, J.; FRENK, C. S.; BAUGH, C.; COLE, S.; LACEY, C. Breaking the hierarchy of galaxy formation. Monthly Notices of the Royal Astronomical Society, v. 370, p. 645–655, aug 2006. 9

BUTCHER, H.; OEMLER JR., A. The evolution of galaxies in clusters. i - isit photometry of c1 0024+1654 and 3c 295. Astrophysical Journal, v. 219, p. 18–30, jan 1978. 18

CARDELLI, J.; CLAYTON, G.; MATHIS, J. The relationship between infrared, optical, and ultraviolet extinction. **Astrophysical Journal**, v. 345, p. 245–256, oct 1989. 40

CARDIEL, N.; GORGAS, J.; SÁNCHEZ-BLÁZQUEZ, P.; CENARRO, A.; PEDRAZ, S.; BRUZUAL, G.; KLEMENT, J. Using spectroscopic data to disentangle stellar population properties. **Astronomy and Astrophysics**, v. 409, p. 511–522, oct 2003. 42

CARVALHO, R. de; GONÇALVES, T.; IOVINO, A.; KOHL-MOREIRA, J.; GAL, R.; DJORGOVSKI, S. A catalog of distant compact groups using the digitized second palomar observatory sky survey. **Astronomical Journal**, v. 130, p. 425–444, aug 2005. 24

CARVALHO, R. de; RIBEIRO, A.; STALDER, D. H.; ROSA, R.; COSTA, A.; MOURA, T. Investigating the relation between galaxy properties and the gaussianity of the velocity distribution of groups and clusters. Astronomical Journal, jul 2017. 19, 20, 21, 70, 71

CENARRO, A.; CARDIEL, N.; GORGAS, J.; PELETIER, R.; VAZDEKIS, A.; PRADA, F. Empirical calibration of the near-infrared ca ii triplet - i. the stellar library and index definition. Monthly Notices of the Royal Astronomical Society, v. 326, p. 959–980, sep 2001. 43

CONSELICE, C.; BERSHADY, M.; JANGREN, A. The asymmetry of galaxies: Physical morphology for nearby and high-redshift galaxies. **Astrophysical Journal**, v. 529, p. 886–910, feb 2000. 72

COUCH, W.; ELLIS, R.; SHARPLES, R.; SMAIL, I. Morphological studies of the galaxy populations in distant 'butcher-oemler' clusters with hst. 1: Ac 114 at z = 0.31 and abell 370 at z = 0.37. Astrophysical Journal, v. 430, p. 121–138, jul 1994. 18

COZIOL, R.; BRINKS, E.; BRAVO-ALFARO, H. The relation between galaxy activity and the dynamics of compact groups of galaxies. Astronomical Journal, v. 128, p. 68–88, jul 2004. 49, 65, 66

COZIOL, R.; RIBEIRO, A.; CARVALHO, R. de; CAPELATO, H. The nature of the activity in hickson compact groups of galaxies. **Astrophysical Journal**, v. 493, p. 563–570, jan 1998. 66

DENG, X.; HE, J.; MA, X.; JIANG, P.; TANG, X. Compact groups of galaxies (cgs) from the sdss data release 6. Central European Journal of Physics, v. 6, p. 185–193, jun 2008. 25

DÍAZ-GIMÉNEZ, E.; MAMON, G.; PACHECO, M.; OLIVEIRA, C. Mendes de; ALONSO, M. Compact groups of galaxies selected by stellar mass: the 2mass compact group catalogue. **Monthly Notices of the Royal Astronomical Society**, v. 426, p. 296–316, oct 2012. 25

DRESSLER, A. Galaxy morphology in rich clusters - implications for the formation and evolution of galaxies. **Astrophysical Journal**, v. 236, p. 351–365, mar 1980. xvi, 17, 18, 19

DRESSLER, A.; OEMLER JR., A.; BUTCHER, H.; GUNN, J. The morphology of distant cluster galaxies. 1: Hst observations of cl 0939+4713. Astrophysical Journal, v. 430, p. 107–120, jul 1994. 18

ERWIN, P. Imfit: A fast, flexible new program for astronomical image fitting. Astrophysical Journal, v. 799, p. 226, feb 2015. 75

FAROUKI, R.; SHAPIRO, S. Computer simulations of environmental influences on galaxy evolution in dense clusters. ii - rapid tidal encounters. **Astrophysical Journal**, v. 243, p. 32–41, jan 1981. 16

FATTAHI, A.; NAVARRO, J.; SAWALA, T.; FRENK, C.; OMAN, K.; CRAIN, R.; FURLONG, M.; SCHALLER, M.; SCHAYE, J.; THEUNS, T.; JENKINS, A. The apostle project: local group kinematic mass constraints and simulation candidate selection. **Monthly Notices of the Royal Astronomical Society**, v. 457, p. 844–856, mar 2016. 65

FERNANDES, R. C.; MATEUS, A.; SODRÉ, L.; STASIŃSKA, G.; GOMES, J. Semi-empirical analysis of sloan digital sky survey galaxies - i. spectral synthesis method. Monthly Notices of the Royal Astronomical Society, v. 358, p. 363–378, apr 2005. 37, 38

FERNANDES, R. C.; STASIŃSKA, G.; MATEUS, A.; ASARI, N. V. A comprehensive classification of galaxies in the sloan digital sky survey: how to tell true from fake agn? **Monthly Notices of the Royal Astronomical Society**, v. 413, p. 1687–1699, may 2011. 53, 54

FOCARDI, P.; KELM, B. Compact groups in the uzc galaxy sample. Astronomy and Astrophysics, v. 391, p. 35–46, aug 2002. 25

GALLAGHER, S.; JOHNSON, K.; HORNSCHEMEIER, A.; CHARLTON, J.; HIBBARD, J. The revealing dust: Mid-infrared activity in hickson compact group galaxy nuclei. **Astrophysical Journal**, v. 673, p. 730–741, feb 2008. 66

GÓMEZ-FLECHOSO, M. A.; DOMÍNGUEZ-TENREIRO, R. Is the fast evolution scenario for virialized compact groups really compelling? the role of a dark massive group halo. Astrophysical Journal, v. 549, p. L187–L190, mar 2001. 62

GÓMEZ, P.; NICHOL, R.; MILLER, C.; BALOGH, M. L.; GOTO, T.; ZABLUDOFF, A. I.; ROMER, A. K.; BERNARDI, M.; SHETH, R.; HOPKINS, A. M.; CASTANDER, F. J.; CONNOLLY, A.; SCHNEIDER, D.; BRINKMANN, J.; LAMB, D.; SUBBARAO, M.; YORK, D. Galaxy star formation as a function of environment in the early data release of the sloan digital sky survey. Astrophysical Journal, v. 584, p. 210–227, feb 2003. 18

GORGAS, J.; CARDIEL, N.; PEDRAZ, S.; GONZÁLEZ, J. Empirical calibration of the lambda 4000 å break. Astronomy and Astrophysics, v. 139, p. 29–41, oct 1999. 43

GOVERNATO, F.; TOZZI, P.; CAVALIERE, A. Small groups of galaxies: A clue to a critical universe. Astrophysical Journal, v. 458, p. 18, feb 1996. 65

HICKSON, P. Systematic properties of compact groups of galaxies. Astrophysical Journal, v. 255, p. 382–391, apr 1982. 23

HICKSON, P.; KINDL, E.; HUCHRA, J. Morphology of galaxies in compact groups. Astrophysical Journal, v. 331, p. 64–70, aug 1988. 49, 65

HICKSON, P.; OLIVEIRA, C. Mendes de; HUCHRA, J.; PALUMBO, G. Dynamical properties of compact groups of galaxies. Astrophysical Journal, v. 399, p. 353–367, nov 1992. xvi, 24, 26, 50, 82

HOPKINS, P.; SOMERVILLE, R.; COX, T.; HERNQUIST, L.; JOGEE, S.; KEREŠ, D.; MA, C.-P.; ROBERTSON, B.; STEWART, K. The effects of gas on morphological transformation in mergers: implications for bulge and disc demographics. Monthly Notices of the Royal Astronomical Society, v. 397, p. 802–814, aug 2009. 14

HUBBLE, E. Extragalactic nebulae. Astrophysical Journal, v. 64, p. 321–369, dec 1926. 3

IOVINO, A. Detecting fainter compact groups: Results from a new automated algorithm. Astronomical Journal, v. 124, p. 2471–2489, nov 2002. 24

IOVINO, A.; R.R. de C.; GAL, R.; ODEWAHN, S.; LOPES, P.; MAHABAL, A.; DJORGOVSKI, S. A new sample of distant compact groups from the digitized second palomar observatory sky survey. **Astronomical Journal**, v. 125, p. 1660–1681, apr 2003. 24

JORGENSEN, I.; FRANX, M.; KJAERGAARD, P. Spectroscopy for e and s0 galaxies in nine clusters. Monthly Notices of the Royal Astronomical Society, v. 276, p. 1341–1364, oct 1995. 40

KAUFFMANN, G.; HECKMAN, T.; TREMONTI, C.; BRINCHMANN, J.; CHARLOT, S.; WHITE, S.; RIDGWAY, S.; BRINKMANN, J.; FUKUGITA, M.; HALL, P.; IVEZIĆ, Ž.; RICHARDS, G.; SCHNEIDER, D. The host galaxies of active galactic nuclei. **Monthly Notices of the Royal Astronomical Society**, v. 346, p. 1055–1077, dec 2003. 53

KAUFFMANN, G.; WHITE, S.; HECKMAN, T.; MÉNARD, B.; BRINCHMANN, J.; CHARLOT, S.; TREMONTI, C.; BRINKMANN, J. The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies. Monthly Notices of the Royal Astronomical Society, v. 353, p. 713–731, sep 2004. 18

KEWLEY, L.; DOPITA, M.; SUTHERLAND, R.; HEISLER, C.; TREVENA, J. Theoretical modeling of starburst galaxies. Astrophysical Journal, v. 556, p. 121–140, jul 2001. 53

KEWLEY, L.; GROVES, B.; KAUFFMANN, G.; HECKMAN, T. The host galaxies and classification of active galactic nuclei. **Monthly Notices of the Royal Astronomical Society**, v. 372, p. 961–976, nov 2006. 53

KING, I. The structure of star clusters. i. an empirical density law. Astronomical Journal, v. 67, p. 471, oct 1962. 17

KORMENDY, J.; KENNICUTT JR., R. Secular evolution and the formation of pseudobulges in disk galaxies. Annual Review of Astronomy Astrophysics, v. 42, p. 603–683, sep 2004. 10

LACEY, C.; COLE, S. Merger rates in hierarchical models of galaxy formation. Monthly Notices of the Royal Astronomical Society, v. 262, p. 627–649, jun 1993. 2

LEE, B.; ALLAM, S.; TUCKER, D.; ANNIS, J.; JOHNSTON, D.; SCRANTON, R.; ACEBO, Y.; BAHCALL, N.; BARTELMANN, M.; BÖHRINGER, H.; ELLMAN,

N.; GREBEL, E.; INFANTE, L.; LOVEDAY, J.; MCKAY, T.; PRADA, F.; SCHNEIDER, D.; STOUGHTON, C.; SZALAY, A.; VOGELEY, M.; VOGES, W.; YANNY, B. A catalog of compact groups of galaxies in the sdss commissioning data. Astronomical Journal, v. 127, p. 1811–1859, apr 2004. 24

LEWIS, I.; BALOGH, M.; PROPRIS, R. D.; COUCH, W.; BOWER, R.; OFFER, A.; BLAND-HAWTHORN, J.; BALDRY, I.; BAUGH, C.; BRIDGES, T.; CANNON, R.; COLE, S.; COLLESS, M.; COLLINS, C.; CROSS, N.; DALTON, G.; DRIVER, S. P.; EFSTATHIOU, G.; ELLIS, R.; FRENK, C. S.; GLAZEBROOK, K.; HAWKINS, E.; JACKSON, C.; LAHAV, O.; LUMSDEN, S.; MADDOX, S.; MADGWICK, D.; NORBERG, P.; PEACOCK, J.; PERCIVAL, W.; PETERSON, B.; SUTHERLAND, W.; TAYLOR, K. The 2df galaxy redshift survey: the environmental dependence of galaxy star formation rates near clusters. **Monthly Notices of the Royal Astronomical Society**, v. 334, p. 673–683, aug 2002. 18

LINTOTT, C.; SCHAWINSKI, K.; SLOSAR, A.; LAND, K.; BAMFORD, S.; THOMAS, D.; RADDICK, M.; NICHOL, R.; SZALAY, A.; ANDREESCU, D.; MURRAY, P.; VANDENBERG, J. Galaxy zoo: morphologies derived from visual inspection of galaxies from the sloan digital sky survey. **Monthly Notices of the Royal Astronomical Society**, v. 389, p. 1179–1189, sep 2008. xxv, 31

LOTZ, J.; JONSSON, P.; COX, T.; CROTON, D.; PRIMACK, J.; SOMERVILLE, R.; STEWART, K. The major and minor galaxy merger rates at z 1.5. Astrophysical Journal, v. 742, p. 103, dec 2011. 14

LOTZ, J.; PRIMACK, J.; MADAU, P. A new nonparametric approach to galaxy morphological classification. **Astronomical Journal**, v. 128, p. 163–182, jul 2004. 72

MAMON, G. Understanding low and high velocity dispersion compact groups. In: VALTONEN, M.; FLYNN, C. (Ed.). **IAU Colloq. 174: Small Galaxy Groups**. [S.l.: s.n.], 2000. (Astronomical Society of the Pacific Conference Series, v. 209), p. 217. 65

MARTINEZ-BADENES, V.; LISENFELD, U.; ESPADA, D.; VERDES-MONTENEGRO, L.; GARCÍA-BURILLO, S.; LEON, S.; SULENTIC, J.; YUN, M. Molecular gas content and sfr in hickson compact groups: enhanced or deficient? **Astronomy and Astrophysics**, v. 540, p. A96, apr 2012. 25 MARTÍNEZ, M.; OLMO, A. D.; COZIOL, R.; PEREA, J. Agn population in hickson compact groups. i. data and nuclear activity classification. **Astronomical Journal**, v. 139, p. 1199–1211, mar 2010. 66

MCCONNACHIE, A.; PATTON, D.; ELLISON, S.; SIMARD, L. Compact groups in theory and practice - iii. compact groups of galaxies in the sixth data release of the sloan digital sky survey. **Monthly Notices of the Royal Astronomical Society**, v. 395, p. 255–268, may 2009. xxiii, xxiv, xxv, 20, 25, 26, 27, 67, 69, 72, 78, 81, 82, 97, 104

MOORE, B.; KATZ, N.; LAKE, G. On the destruction and overmerging of dark halos in dissipationless n-body simulations. **Astrophysical Journal**, v. 457, p. 455, feb 1996. 16, 17

MOORE, B.; LAKE, G.; KATZ, N. Morphological transformation from galaxy harassment. Astrophysical Journal, v. 495, p. 139–151, mar 1998. 16

OLIVEIRA, C. Mendes de; HICKSON, P. Morphology of galaxies in compact groups. Astrophysical Journal, v. 427, p. 684–695, jun 1994. 25, 62

PENG, C.; HO, L.; IMPEY, C.; RIX, H. Detailed structural decomposition of galaxy images. Astronomical Journal, v. 124, p. 266–293, jul 2002. 75

PENG, Y.; MAIOLINO, R.; COCHRANE, R. Strangulation as the primary mechanism for shutting down star formation in galaxies. **Nature**, v. 521, p. 192–195, may 2015. 13

PRANDONI, I.; IOVINO, A.; MACGILLIVRAY, H. Automated search for compact groups of galaxies in the southern sky. **Astronomical Journal**, v. 107, p. 1235–1244, apr 1994. 24

RIBEIRO, A.; CARVALHO, R. de; CAPELATO, H.; ZEPF, S. Structural and dynamical analysis of the hickson compact groups. Astrophysical Journal, v. 497, p. 72–88, apr 1998. xix, 49, 50, 52, 65

RIBEIRO, A.; CARVALHO, R. de; TREVISAN, M.; CAPELATO, H.; BARBERA, F. L.; LOPES, P.; SCHILLING, A. Spider - ix. classifying galaxy groups according to their velocity distribution. Monthly Notices of the Royal Astronomical Society, v. 434, p. 784–795, set. 2013. 19, 21, 70

ROSA, I. de L.; BARBERA, F. L.; FERRERAS, I.; CARVALHO, R. de. The link between the star formation history and $[\alpha/\text{fe}]$. Monthly Notices of the Royal Astronomical Society, v. 418, p. L74–L78, nov 2011. 60

ROSA, I. de la; CARVALHO, R. de; VAZDEKIS, A.; BARBUY, B. Truncated star formation in compact groups of galaxies: A stellar population study. Astronomical Journal, v. 133, p. 330–346, jan 2007. xi, xiii, xix, 25, 44, 60, 61

ROSA, R.; SAUTTER, R.; BARCHI, P.; CARVALHO, R. de; STALDER, D.; MOURA, T.; FERREIRA, N. Gradient pattern analysis for galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2017. 72

SABATER, J.; VERDES-MONTENEGRO, L.; LEON, S.; BEST, P.; SULENTIC, J. The amiga sample of isolated galaxies. xi. optical characterisation of nuclear activity. Astronomy and Astrophysics, v. 545, p. A15, sep 2012. 66

SARAZIN, C. X-ray emission from clusters of galaxies. **Reviews of Modern Physics**, v. 58, p. 1–115, jan 1986. 11

SHAKHBAZYAN, R. Compact groups of compact galaxies. Astrofizika, v. 9, p. 495–501, 1973. 23

SOHN, J.; HWANG, H.; LEE, M.; LEE, G.; LEE, J. Activity in galactic nuclei of compact group galaxies in the local universe. **Astrophysical Journal**, v. 771, p. 106, jul 2013. 66

STALDER, D.; CARVALHO, R. de; WEINBERG, M.; REMBOLD, S.; MOURA, T.; ROSA, R. Pypigalphat:towards a fast bayesian surface photometry analysis of early-types galaxies. **Astrophysical Journal**, 2017. 20, 21, 69, 75, 76, 77, 78, 81, 82

SULENTIC, J. Properties of dense galaxy groups and the implications of their existence. Astrophysical Journal, v. 322, p. 605–617, nov 1987. 65

THOMAS, D.; MARASTON, C.; BENDER, R. Stellar population models of lick indices with variable element abundance ratios. Monthly Notices of the Royal Astronomical Society, v. 339, p. 897–911, mar 2003. 43

THOMAS, D.; MARASTON, C.; BENDER, R.; OLIVEIRA, C. Mendes de. The epochs of early-type galaxy formation as a function of environment. **Astrophysical Journal**, v. 621, p. 673–694, mar 2005. 60

TOOMRE, A. Mergers and some consequences. In: **Evolution of Galaxies and Stellar Populations**. [S.l.: s.n.], 1977. (Proceedings of a Conference at Yale University). 14

TREVISAN, M.; MAMON, G.; KHOSROSHAHI, H. Do the stellar populations of the brightest two group galaxies depend on the magnitude gap? Monthly Notices of the Royal Astronomical Society, v. 464, p. 4593–4610, feb 2017. 81

VAZDEKIS, A. Evolutionary stellar population synthesis at 2 å spectral resolution. Astrophysical Journal, v. 513, p. 224–241, mar 1999. 44

VAZDEKIS, A.; ARIMOTO, N. A robust age indicator for old stellar populations. Astrophysical Journal, v. 525, p. 144–152, nov 1999. 43

VAZDEKIS, A.; COELHO, P.; CASSISI, S.; RICCIARDELLI, E.; FALCÓN-BARROSO, J.; SÁNCHEZ-BLÁZQUEZ, P.; BARBERA, F.; BEASLEY, M.; PIETRINFERNI, A. Evolutionary stellar population synthesis with miles - ii. scaled-solar and α-enhanced models. **Monthly Notices of the Royal Astronomical Society**, v. 449, p. 1177–1214, may 2015. 44

VAZDEKIS, A.; SÁNCHEZ-BLÁZQUEZ, P.; FALCÓN-BARROSO, J.; CENARRO, A.; BEASLEY, M.; CARDIEL, N.; GORGAS, J.; PELETIER, R. Evolutionary stellar population synthesis with miles - i. the base models and a new line index system. Monthly Notices of the Royal Astronomical Society, v. 404, p. 1639–1671, jun 2010. xxiii, 39, 44, 45

VERDES-MONTENEGRO, L.; YUN, M.; WILLIAMS, B.; HUCHTMEIER, W.; OLMO, A. D.; PEREA, J. Where is the neutral atomic gas in hickson groups? Astronomy and Astrophysics, v. 377, p. 812–826, oct 2001. 25

VOGELSBERGER, M.; GENEL, S.; SPRINGEL, V.; TORREY, P.; SIJACKI, D.; XU, D.; SNYDER, G.; NELSON, D.; HERNQUIST, L. Introducing the illustris project: simulating the coevolution of dark and visible matter in the universe. Monthly Notices of the Royal Astronomical Society, v. 444, p. 1518–1547, oct 2014. 67

WEINBERG, M. **BIE: Bayesian Inference Engine**. 2013. Astrophysics Source Code Library, ascl:1312.004, 2013. 75

WEINMANN, S.; BOSCH, F. van den; YANG, X.; MO, H. Properties of galaxy groups in the sloan digital sky survey - i. the dependence of colour, star formation and morphology on halo mass. Monthly Notices of the Royal Astronomical Society, v. 366, p. 2–28, feb 2006. 18

WHITE, S.; FRENK, C. Galaxy formation through hierarchical clustering. Astrophysical Journal, v. 379, p. 52–79, sep 1991. 9

WHITE, S.; REES, M. Core condensation in heavy halos - a two-stage theory for galaxy formation and clustering. Monthly Notices of the Royal Astronomical Society, v. 183, p. 341–358, may 1978. 9

WILLETT, K.; LINTOT, C.; BAMFORD, S.; MASTERS, K.; SIMMONS, B.; CASTEELS, K.; EDMONDSON, E.; FORTSON, L.; KAVIRAJ, S.; KEEL, W.; MELVIN, T.; NICHOL, R.; RADDICK, M.; SCHAWINSKI, K.; SIMPSON, R.; SKIBBA, R.; SMITH, A.; THOMAS, D. Galaxy zoo 2: detailed morphological classifications for 304 122 galaxies from the sloan digital sky survey. **Monthly Notices of the Royal Astronomical Society**, v. 435, p. 2835–2860, nov 2013. xxv, 31, 32

WORTHEY, G.; FABER, S.; GONZALEZ, J.; BURSTEIN, D. Old stellar populations. 5: Absorption feature indices for the complete lick/ids sample of stars. Astrophysical Journals, v. 94, p. 687–722, oct 1994. 43

YANG, X.; MO, H.; BOSCH, F. van den; PASQUALI, A.; LI, C.; BARDEN, M. Galaxy groups in the sdss dr4. i. the catalog and basic properties. **Astrophysical Journal**, v. 671, p. 153–170, dec 2007. xx, 20, 60, 70, 71

APÊNDICE A

A.1 Tabelas

A.1.1 Classificação Morfológica

Tabela A.1 - Classificação morfológica das 629 galáxias pertencentes a amostra de 151 GCs. No total cinco colaboradores responderam aos questionários semelhantes aos usados no projeto *The Galaxy Zoo 2*. As classes são atribuídas seguindo a árvore de decisão do *The Galaxy Zoo 2* e seguem a nomenclatura dada pelo projeto: S para galáxias espirais e E para as galáxias elípticas sendo seguido de: (m) = fusão, (l) = lentes e arcos, (r) = anéis, d = distúrbios, i = irregular, (o) = outros e (d) = traços de poeira. Para 14 galáxias espirais não houve consenso quanto a forma do bojo e à essas galáxias foi atribuída a classe "S". A coluna "ID Grupo" é a identificação do grupo no catálogo de McConnachie et al. (2009) e "ID Gal" a identificação da galáxia no grupo, a partir da mais brilhante.

ID Grupo	ID Gal	OBJID	Zoo 0	ID Grupo	ID Gal	OBJID	Zoo 0
42	1	1237661137960632449	Er	1213	5	1237658491211481176	Er
42	3	1237661137960632448	Ei	1213	2	1237658491211481167	\mathbf{S}
42	4	1237661137960632447	Ei	1213	3	1237658491211481094	Ec
42	2	1237661137960632446	Ei	1214	1	1237667551417467049	Ei(m)
46	4	1237654390032629949	\mathbf{Er}	1214	4	1237667551417467050	Ei
46	3	1237654390032629946	Ei	1214	6	1237667551417467051	Ei
46	2	1237654390032629944	Ei	1214	7	1237667551417532533	$\operatorname{Sa}(\mathbf{r})$
46	1	1237654390032629943	\mathbf{Er}	1217	1	1237667108500668735	\mathbf{Er}
70	4	1237662224058024106	Ei	1217	2	1237667108500668749	Ec
70	2	1237662224058024105	Ei(m)	1217	4	1237667108500668750	Ec
70	1	1237662224058024104	\mathbf{S}	1217	3	1237667108500668772	SBb(r)
70	3	1237662224058024103	Ei	1249	3	1237661812810317941	Ei
90	4	1237658493336420472	\mathbf{Er}	1249	1	1237661812810317940	Ei
90	3	1237658493336420471	Ei	1249	2	1237661812810317937	Ei
90	2	1237658493336420470	\mathbf{Er}	1249	4	1237661812810317847	Seb
90	1	1237658493336420469	\mathbf{Er}	1264	1	1237660765912695090	Ei
113	1	1237666340800888945	Ei	1264	4	1237660765912695046	\mathbf{Er}
113	4	1237666340800888947	\mathbf{S}	1264	3	1237660765912695045	\mathbf{Er}
113	3	1237678617426460853	Ser	1264	2	1237660765912695039	Ec
113	2	1237678617426395202	Ei	1265	2	1237654654172070143	\mathbf{Sc}
135	5	1237663204920328359	\mathbf{Er}	1265	3	1237654654172069985	Ei(m)
135	4	1237663204920328296	\mathbf{Ec}	1265	4	1237654654172069984	Ei
135	3	1237663204920328294	Ser	1265	1	1237654654172069983	Ei
135	1	1237663204920328293	Ei	1274	4	1237667781779849331	$\mathrm{Sd}(\mathrm{I})$
177	1	1237657191981449370	Ei	1274	1	1237667781779849337	Ei
177	4	1237657191981449397	Ei	1274	3	1237667781779784040	Sd(d)
177	2	1237657191981449395	Sb(m)	1274	2	1237667781779784011	\mathbf{Er}
	Conti	nua na próxima página					

ID Grupo	ID Gal	OBJID	Zoo 0	ID Grupo	ID Gal	OBJID	Zoo 0
177	3	1237657191981449394	\mathbf{Sb}	1300	2	1237667446201057370	Er
209	5	1237665350782812327	\mathbf{Er}	1300	4	1237667446201057376	Ei
209	2	1237665350782812332	\mathbf{Er}	1300	3	1237667446201057421	Sen
209	4	1237665350782812333	Ei	1300	1	1237667446201057356	SBb
209	3	1237665350782812334	Sd	1301	4	1237663786878239171	Ei
225	2	1237662663215939757	Ei	1301	2	1237663786878238970	\mathbf{Sb}
225	1	1237662663215939756	\mathbf{Er}	1301	1	1237663786878238968	\mathbf{Er}
225	4	1237662225160929530	\mathbf{Er}	1301	3	1237663786878238862	Ei
225	3	1237662225160929458	\mathbf{Er}	1303	3	1237667210526392458	Sen
236	2	1237661124540694683	Er(m)	1303	4	1237667210526392491	Ei(d)
236	1	1237661124540694682	Er(m)	1303	1	1237667210526392456	\mathbf{Er}
236	4	1237661124540694543	Ei	1303	2	1237667210526392457	\mathbf{Er}
236	3	1237661124540694542	Ei(m)	1324	2	1237651537650188408	SBb
252	2	1237661417141305435	\mathbf{S}	1324	1	1237651537650122988	\mathbf{Er}
252	4	1237661417141305434	Ei	1324	3	1237651537650122977	\mathbf{Er}
252	3	1237661417141305433	$\operatorname{Er}(d)$	1324	4	1237651537650122976	Ei
252	1	1237661417141305432	\mathbf{Er}	1327	4	1237667536935190612	Ei
253	4	1237667783384498344	\mathbf{Sc}	1327	2	1237667536935190621	$\operatorname{Er}(d)$
253	3	1237667783384498192	\mathbf{Er}	1327	1	1237667536935190622	Se
253	1	1237667783384498193	\mathbf{Sb}	1327	3	1237667536935190632	\mathbf{Sb}
253	2	1237667783384498194	\mathbf{Sc}	1336	1	1237655369833185508	\mathbf{Sc}
321	3	1237657401342951544	Ei(m)	1336	5	1237655369833185379	Ei(m)
321	2	1237657401342951543	Ei	1336	3	1237655369833185378	\mathbf{Er}
321	1	1237657401342951532	Ei	1336	2	1237655369833185376	Ei
321	4	1237657401342951529	Ei	1341	1	1237663784199585838	Ei
326	1	1237667781205164138	Ei	1341	3	1237663784199585916	\mathbf{Er}
326	4	1237667781205164139	\mathbf{Er}	1341	4	1237663784199585942	\mathbf{Er}
326	2	1237667781205164152	\mathbf{Ec}	1341	2	1237663784199585941	\mathbf{Er}
326	3	1237667781205164153	\mathbf{Ec}	1371	3	1237667212116296203	Ec
353	1	1237667111719796965	Ei	1371	4	1237667212116296183	Ei
353	2	1237667111719796967	Ei(m)	1371	1	1237667212116296160	\mathbf{Er}
353	5	1237667111719796968	\mathbf{Er}	1371	5	1237667212116295861	\mathbf{Er}
353	3	1237667111719796959	Ec	1371	2	1237667212116296215	Ei
375	1	1237666408439611453	\mathbf{Er}	1372	2	1237651250411929839	SBc
375	2	1237666408439611454	\mathbf{S}	1372	3	1237651250411929826	Ec
375	3	1237666408439611569	\mathbf{Sc}	1372	5	1237651250411929630	Sd
375	4	1237666408439611573	\mathbf{Er}	1372	4	1237651250411929629	\mathbf{Sc}
380	2	1237657591931273372	Sd	1385	4	1237655107303243974	Ei(d)
380	4	1237657591931273446	\mathbf{Sc}	1385	8	1237655107303243956	Ei
380	1	1237657591931273445	\mathbf{S}	1385	2	1237655107303243811	\mathbf{Er}
380	3	1237657591931273369	Ei	1385	1	1237655107303243810	\mathbf{Er}
382	3	1237662526844698847	Er	1388	1	1237662238020665565	Sb(d)
382	2	1237662526844698675	Er	1388	2	1237662238020665562	Er
382	1	1237662526844698674	Er	1388	4	1237662238020665552	Ec
382	4	1237662526844698837	Ec	1388	3	1237662238020665542	Sb(l)
389	3	1237651505953898682	Ei	1390	5	1237668670253039776	Ei
389	4	1237651505953898650	Er	1390	1	1237668670253039777	Ei
	Conti	nua na próxima página					

Tabela A.1 – continuação da página anterior

389 2 123765150553898649 Ei 1300 4 1237668670253039821 Ei 389 1 123765150553898648 Ei 1300 2 123766870253039821 Ei 406 2 123765473437990724 Er 1407 5 1237661382777897154 Ei 406 1 123765473437990724 Er 1407 4 1237661382777897154 Ei 406 1 123766773450866703 Sc 1407 3 1237661382777897164 Ei 425 2 123766773450866703 Sc 1409 2 12376603492316547 Fr 425 1 123766778120509606 S 1434 1 123766051492316547 Fr 481 2 123766778120509606 S 1434 1 12376510448106198 Sd 508 3 123766778120509606 Er 1434 1 12376510448106097 Ei 508 1 123766778120509607 Er 1458 <t< th=""><th>ID Grupo</th><th>ID Gal</th><th>OBJID</th><th>Zoo 0</th><th>ID Grupo</th><th>ID Gal</th><th>OBJID</th><th>Zoo 0</th></t<>	ID Grupo	ID Gal	OBJID	Zoo 0	ID Grupo	ID Gal	OBJID	Zoo 0
389 1 12270510005389804.8 Ei 1390 2 1237056473437999724 Ei 1390 2 1237065473437999724 Er 1407 5 1237061382777897154 Ei 406 3 1237055473437999621 SBb 1407 6 123706138277789708 Fr 406 1 1237065773450667003 Se 1407 4 123766138277789709 Fr 425 2 123706773450667003 Se 1409 4 12376603492316567 Fr 425 1 123766773450667030 Ei 1409 1 12370603492316567 Fr 481 1 123766778120509867030 Ei 1409 1 123706034928316518 Fr 481 4 1237667781205098607 Ei(m) 1434 4 123765510044106091 Fr 508 3 1237663784209940657 Er 1434 1 12376510844106091 Fi 508 1 1237663784209940657 Er 1434 1<	389	2	1237651505953898649	Ei	1390	4	1237668670253039820	Ei(m)
406 4 1237655473437999725 Fi 1300 2 1237665473437999724 Er 1407 5 1237665473437999724 Er 406 1 1237655473437999623 SBb 1407 6 123766138277789708 Fr 406 1 1237665473457996783 SE 1407 3 123766138277789708 Fr 425 2 123766773450867012 Ei 1409 4 123766063492816563 S 425 1 1237667781205098605 Ei(m) 1434 4 123765510448106198 Sd 481 2 1237667781205098606 S 1434 3 123765510448106198 Sd 481 4 1237667781205098606 S 1434 3 123765510448106198 Sd 508 2 1237663784209940657 Ei(m) 1434 2 12376510448106198 Sd 508 1 123766378420940654 Ei 1458 3 123765138140052601 Ei 508 <td>389</td> <td>1</td> <td>1237651505953898648</td> <td>Ei</td> <td>1390</td> <td>3</td> <td>1237668670253039821</td> <td>Ei</td>	389	1	1237651505953898648	Ei	1390	3	1237668670253039821	Ei
406 2 1237655473437999724 Er 1407 5 1237661382777897161 Er 406 1 1237655473437999628 Ei 1407 6 1237661382777897096 Er 425 2 1237667734508667003 Sc 1407 3 12376603492816567 Fr 425 4 1237667734508667030 Ei 1409 3 12376603492816567 Fr 425 1 1237667734508667030 Ei 1409 3 12376603492816568 S 425 1 1237667781205098505 Fi(m) 131 4 12376510948106189 Er 481 3 1237663784209940657 Ec 1434 12376510948106027 Ei 508 2 1237663784209940640 Ei 1458 3 1237661388140052601 Ei 508 1 1237663784209940640 Ei 1458 1237661388140052601 Ei 508 1 123766378420940640 Ei 1458 123766474230300897	406	4	1237655473437999725	Ei	1390	2	1237668670253039766	\mathbf{S}
406 3 1237655473437999621 SBb 1407 6 1237651382777897154 Ei 406 1 123765173450867003 Sc 1407 4 123766138277789709 Er 425 3 123766773450867072 Ei 1409 4 123766034928316567 Er 425 4 1237667734508670730 Ei 1409 2 123766034928316547 Ei 481 2 1237667781205098605 Si(m) 1434 4 123765109448106198 Sd 481 3 1237667781205098606 S 1434 3 123765109448106198 Sd 481 4 1237667781205098607 Ei(m) 1434 1 123765109448106190 Er 508 2 1237663784209940654 Ei 1458 3 123766138814005204 Sd 508 1 12376617845069149410 Ei 1458 1 123766138814005204 Sd 508 1 1237663784209940654 Fi 145	406	2	1237655473437999724	\mathbf{Er}	1407	5	1237661382777897161	\mathbf{Er}
406 1 123765547343799928 Fi 1407 4 123766738579798 Fr 425 2 1237667734508667072 Ei 1409 3 12376603492316563 S 425 4 1237667734508667030 Ei 1409 3 12376603492316548 Er 425 1 1237667734508667030 Ei 1409 3 12376603492316547 Fi 481 2 1237667781205098605 Ei(m) 1434 4 1237655109448106180 Er 481 4 1237667781205098607 Ei(m) 1434 2 123765109448106027 Ei 508 2 1237663784209940654 Er 1438 1 1237661388140052601 Ei 508 1 1237663784209940640 Ei 1458 3 1237661388140052601 Ei 510 2 1237671768536711433 Scr 1464 1 1237662474230300897 Ei 533 2 12376549174070409 Str 1464 <td>406</td> <td>3</td> <td>1237655473437999631</td> <td>SBb</td> <td>1407</td> <td>6</td> <td>1237661382777897154</td> <td>Ei</td>	406	3	1237655473437999631	SBb	1407	6	1237661382777897154	Ei
425 2 1237667734508667003 Sc 1407 3 1237661382777897097 Er 425 3 1237667734508667018 Ec 1409 4 1237660034028316563 S 425 1 1237667734508667030 Ei 1409 3 1237660034028316548 Er 481 2 1237667781205098605 Ei(m) 1434 4 1237655109448106198 Sd 481 3 1237667781205098606 S 1434 3 123765109448106198 Sd 481 4 1237667781205098607 Er 1434 1 123765109448106198 Er 508 3 123766378420940057 Er 1458 3 1237661388140052610 Ei 508 4 12376671745036711263 Ei(d) 1458 3 1237661388140052610 Ei 510 1 1237671768536711264 Ei 1464 3 123766214230300988 Ei 510 3 1237671768536711264 Ei 1464 1 1237662474230300898 Ei 533 2 <t< td=""><td>406</td><td>1</td><td>1237655473437999628</td><td>Ei</td><td>1407</td><td>4</td><td>1237661382777897098</td><td>\mathbf{Er}</td></t<>	406	1	1237655473437999628	Ei	1407	4	1237661382777897098	\mathbf{Er}
425 3 1237667734508667072 Ei 1409 4 1237660634928316567 Er 425 4 1237660773450867030 Ei 1409 2 1237660634928316548 Er 481 2 1237667781205098605 Ei(m) 1431 4 1237665109448106198 Sd 481 3 1237667781205098607 Ei(m) 1434 2 1237655109448106198 Sd 508 3 1237667781205098607 Ei(m) 1434 1 1237655109448106027 Ei 508 2 1237667784209940654 Ei 1458 3 1237661388140052601 Ei 508 1 123766374209940654 Ei 1458 1 1237661388140052601 Ei 508 1 1237671768536711263 Ei(d) 1458 2 1237662474230300898 Ei 510 1 1237671768536711433 Scr 1464 1 1237662474230300898 Ei 533 2 1237671768536711433 Scr 1464 2 1237662474230300898 Ei 533 2 </td <td>425</td> <td>2</td> <td>1237667734508667003</td> <td>\mathbf{Sc}</td> <td>1407</td> <td>3</td> <td>1237661382777897097</td> <td>\mathbf{Er}</td>	425	2	1237667734508667003	\mathbf{Sc}	1407	3	1237661382777897097	\mathbf{Er}
425 4 1237667734508667018 Ec 1409 2 1237660634928316563 S 425 1 12376607734500867030 Ei 1409 3 1237660034928316547 Er 481 1 12376607781205098605 Ei(m) 1434 4 1237655109448106198 Sd 481 3 1237667781205098607 Ei(m) 1434 2 123765109448106190 Er 508 3 1237663784209940657 Ec 1458 4 123765109448106027 Ei 508 4 1237663784209940657 Ec 1458 3 1237661388140052601 Ei 508 1 1237663784209940654 Ei 1458 3 1237661388140052601 Ei 510 2 1237671768536711263 Ei(d) 1458 2 1237662474230300989 Ei 510 3 123767178536711442 Ei 1464 3 1237662474230300898 Sc 533 2 123765491749794095 Er 1464 5 1237664093970760079 Ec 533 3	425	3	1237667734508667072	Ei	1409	4	1237660634928316567	\mathbf{Er}
425 1 1237667734508667030 Ei 1409 3 1237660634928316548 Er 481 2 1237667781205098605 Ei(m) 1431 4 1237655109448106198 Sd 481 3 1237667781205098606 S 1431 4 1237655109448106180 Er 481 4 1237667781205098607 Ei(m) 1434 2 123765109448106021 Er 508 3 1237663784209940657 Ec 1458 3 1237661388140052610 Ei 508 1 1237663784209940640 Ei 1458 1 1237661388140052610 Ei 510 2 1237671768536711263 Ei(d) 1458 1 1237661388140052601 Ei 510 3 1237671768536711433 Ser 1464 1 1237662474230300898 Ei 510 3 1237671768536711433 Ser 1464 1 123766474230300898 Ei 510 3 123765491749794095 Er 1464 1 123766403907070094 Er 533 4	425	4	1237667734508667018	Ec	1409	2	1237660634928316563	\mathbf{S}
481 2 1237667781205098072 Sc 1409 1 1237660634928316547 Ei 481 1 1237667781205098005 Ei(m) 1434 4 1237655109448106108 Fr 481 4 1237667781205098007 Ei(m) 1434 2 1237655109448106009 Fr 508 3 1237663784209940654 Ei 1458 4 1237661388140052601 Ei 508 4 1237663784209940654 Ei 1458 1 1237661388140052601 Ei 508 1 1237661786536711263 Ei(d) 1458 2 1237661388140052601 Ei 510 1 1237671768536711264 Ei 1464 3 1237662474230300898 Ei 510 3 1237671768536711442 Ei 1464 2 1237662474230300898 Sc 533 2 1237658491749794095 Er 1464 1 1237664074230300898 Sc 533 6 1237658491749794050 Er 1487 2 1237664074230300898 Sc 559 3	425	1	1237667734508667030	Ei	1409	3	1237660634928316548	\mathbf{Er}
481 1 1237667781205098005 Ei(m) 1434 4 1237655109448106198 Sd 481 4 1237667781205098007 Ei(m) 1434 2 1237655109448106007 Er 508 3 1237663784209940658 Er 1434 1 123765109448106027 Ei 508 2 1237663784209940654 Ei 1458 4 1237661388140052610 Ei 508 1 1237663784209940640 Ei 1458 1 1237661388140052601 Ei 510 2 1237671768536711263 Ei(d) 1458 2 1237661388140052601 Ei 510 1 1237671768536711264 Ei 1464 3 1237662474230309897 Ei 510 3 1237676176853611442 Ei 1464 2 123766474230300897 Ei 533 2 123765849174974090 Er 1464 5 123766409397076079 Ei 533 4 123765849174974050 Er 1487 3 1237664093970759986 Ei 559 3	481	2	1237667781205098772	\mathbf{Sc}	1409	1	1237660634928316547	Ei
48131237667781205098606S143431237655109448106180Er48141237667781205098607Ei(m)143421237655109448106027Ei50831237663784209940654Er143411237661388140052610Ei50841237663784209940654Ei145831237661388140052610Ei50811237663784209940654Ei145811237661388140052604Sd51021237671768536711263Ei146431237662474230300988Sc51031237671768536711264Ei146411237662474230300897Ei5332123765491749704005Scr146451237664093970760079Ec5333123765491749704005Scr148731237664093970760079Ec53361237668270822326447Sb14944123765742948704389S(m)55931237668270822391906Er14873123766493970750987Sc55951237664870822391906Ei14942123765472948704389S(m)55951237664870823291906Ei15322123766472948704389S(m)5595123766487207653980Ei15322123766472948704389S(m)5595123766487207653980Ei15322123766472948704389S(m)55951237664872078239918 <td>481</td> <td>1</td> <td>1237667781205098605</td> <td>Ei(m)</td> <td>1434</td> <td>4</td> <td>1237655109448106198</td> <td>Sd</td>	481	1	1237667781205098605	Ei(m)	1434	4	1237655109448106198	Sd
48141237667781205098007Ei(m)143421237655109448106007Er50821237663784200940658Er143411237655109448106027Ei50821237663784200940654Ei145831237661388140052610Ei50811237663784200940640Ei145811237661388140052601Ei50911237671768536711263Ei(d)145821237661388140052601Ei51011237671768536711423Ser146411237662474230300898Ei51031237671768536711422Ei146421237662474230300898Ei53321237658491749794095Er146451237664093970760079Ec53331237658491749794095Ei148731237664093970750987Sc533412376658491749794050Ei148731237664093970750987Sc53361237658491749794050Ei148711237664093970750987Sc55931237668270822326448Sb14944123765742948704388Sh(m)559112376682708223291906Ei14942123765472948704388Sh(m)559212376682708223291907Er14942123765742948704308Ei(m)56531237664818207653980Ei153221237647174181786Er565312376648182076	481	3	1237667781205098606	S	1434	3	1237655109448106180	\mathbf{Er}
50831237663784209940658Er143411237655109448106027Ei50821237663784209940657Ec145841237661388140052610Ei50841237663784209940640Ei145831237661388140052601Ei51021237671768536711263Ei(d)145821237661388140052601Ei51041237671768536711264Ei146431237662474230300898Ei51031237671768536711442Ei146421237662474230300898Ei53321237658491749794095Er146451237662474230300898Sd(I)53331237658491749794091SBc(r)148751237664093970750979Ec53341237668491749794050Er148731237664093970759987Sc5593123766827082236447SBc148711237664093970759987Sc55941237668270822391906Ei149441237655742948704388Sh(m)55921237668270822391907Er149411237655742948704388Sh(m)55931237664818207653981Ei153221237648721747181784Er56531237664818207653982Sb153231237648721747181784Er5653123766181463778591Ei153941237661724848704300Sc5944123766181463	481	4	1237667781205098607	Ei(m)	1434	2	1237655109448106091	\mathbf{Er}
508 2 1237663784209940657 Ec 1458 4 1237661418210984135 Ei 508 1 1237663784209940640 Ei 1458 3 1237661388140052601 Ei 508 1 123766178536711263 Ei(d) 1458 1 1237661388140052601 Ei 510 2 1237671768536711264 Ei 1464 3 1237662474230300898 Ei 510 3 1237651768536711442 Ei 1464 5 1237662474230300897 Ei 533 2 1237658491749794095 Er 1464 5 1237662474230300880 Sd(1) 533 3 1237658491749794095 Er 1464 5 1237664093970760079 Ec 533 4 1237665491749794075 Ei 1487 3 1237664093970750987 Sc 559 3 1237668270822391906 Ei 1487 1 1237664093970750987 Sc 559 1 1237668270822391906 Ei 1494 2 123765742948704326 Sc 559 2	508	3	1237663784209940658	Er	1434	1	1237655109448106027	Ei
508 4 1237663784209940654 Ei 1458 3 1237661388140052610 Ei 508 1 1237661784209940640 Ei 1458 1 1237661388140052601 Ei 510 2 1237671768536711264 Ei 1464 3 1237662474230300938 Ei 510 3 1237671768536711422 Ei 1464 2 1237662474230300880 Ei 533 2 123765491749794095 Er 1464 5 1237664093070760079 Ec 533 4 1237658491749794075 Ei 1487 2 1237664093070760079 Sc 533 6 123766827082236447 SBc (r) 1487 3 1237664093070750987 Sc 559 3 1237668270822391006 Ei 1487 1 123765742948704326 Ec 559 1 1237668270822391006 Ei 1494 2 123765742948704308 S(m) 559 5 1237664818207653980 Ei 1532 5 1237648721747181778 Ei 565 1	508	2	1237663784209940657	Ec	1458	4	1237661418210984135	Ei
508 1 1237663784209940640 Ei 1458 1 1237661388140052604 Sd 510 2 1237671768536711263 Ei(d) 1458 2 1237662474230300938 Sc 510 4 1237671768536711264 Ei 1464 3 1237662474230300898 Ei 510 3 1237671768536711443 Ser 1464 2 1237662474230300890 Ei 533 2 1237658491749794095 Er 1464 5 1237664093970760034 Er 533 4 1237668270822326447 SBc 1487 3 1237664093970750986 Ei 559 3 1237668270822326447 SBc 1487 1 1237664093970750986 Ei 559 4 123766870822326447 SBc 1487 1 1237664093970759986 Ei 559 3 1237668270822326447 SBc 1487 1 123766473948704389 S(m) 559 4 1237668270822391907 Er 1494 1 123765742948704388 S(m) 565 1237664	508	4	1237663784209940654	Ei	1458	3	1237661388140052610	Ei
510 2 1237671768536711263 Ei(d) 1458 2 1237661388140052601 Ei 510 1 1237671768536711433 Ser 1464 1 1237662474230300898 Ei 510 3 1237671768536711442 Ei 1464 2 1237662474230300898 Ei 533 2 1237658491749794095 Er 1464 5 1237664093970760079 Ec 533 3 1237658491749794095 Ei 1487 5 1237664093970760079 Ec 533 4 1237658491749794095 Ei 1487 3 1237664093970760079 Ec 533 6 1237658491749794095 Er 1487 3 1237664093970750937 Sc 559 3 1237668270822326447 SBc 1487 1 1237655742948704388 Sb(m) 559 4 1237668270822391907 Er 1494 2 123765474948704301 Ei 559 5 1237668270822391907 Er 1494 5 123765472948704388 Sb(m) 555 2	508	1	1237663784209940640	Ei	1458	1	1237661388140052604	Sd
51011237671768536711264E146431237662474230300938Sc51041237671768536711433Ser146411237662474230300898Ei51031237671768536711442Ei146421237662474230300897Ei5332123765849174979005Er146451237662474230300880Sd(1)533312376549174979005Er148751237664093970760034Er5336123765491749790050Er148731237664093970750987Sc55931237668270822326447SBc148711237664093970750986Ei559412376682708223206448Sb149441237655742948704286Ec55911237668270822391906Ei149421237655742948704388Sh(m)55921237668270822391907Er149451237655742948704318Ei(m)565212376648720822391907Er14945123765574294870431Ei(m)56531237664818207653980Ei153221237648721747181786Er56511237664818207653982Sb15323123764721747181747Sc56511237661851463778615Er153911237671931745140907Ei59441237661851463778592Ec153931237671931745140904Ei5945123766185146377859	510	2	1237671768536711263	Ei(d)	1458	2	1237661388140052601	Ei
51041237671768536711433Ser146411237662474230300898Ei51031237671768536711442Ei146421237662474230300897Ei53321237658491749794091SBc(r)148751237664093970760079Ec53331237658491749794091SBc(r)148721237664093970760079Ec53341237658491749794050Er148731237664093970750987Sc55931237668270822326447SBc148711237665742948704626Ec55941237668270822326447SBc149441237655742948704626Ec55911237668270822391906Ei149421237655742948704388Sh(m)55921237668270822391907Er149451237655742948704301Ei(m)56521237664818207653980Ei15322123764872174718178Ei56531237664818207653980Ei15323123764872174718178Ei56511237664818207653982Ei15321123764872174718178Ei56511237664818207653982Ei15321123764872174718178Ei56511237661851463778615Er15391123764872174718174Sc56411237661851463778592Ec153931237661931745140908Sc5943123766185146377	510	1	1237671768536711264	Ei	1464	3	1237662474230300938	\mathbf{Sc}
510 3 1237671768536711442 Ei 1464 2 123766247423030897 Ei 533 2 1237658491749794095 Er 1464 5 1237662474230300808 Sd(1) 533 3 1237658491749794091 SBc(r) 1487 5 1237664093970760079 Ec 533 4 1237658491749794050 Er 1487 3 1237664093970759987 Sc 559 3 123766827082236447 SBc 1487 1 1237664093970759986 Ei 559 4 1237668270822391906 Ei 1494 4 1237655742948704238 Sh(m) 559 1 1237668270822391906 Ei 1494 2 1237655742948704388 Sh(m) 559 2 123766481207653980 Ei 1532 1 1237648721747181786 Er 565 3 1237664818207653981 Ei(d) 1532 1 1237648721747181747 Sc 565 1 1237664818207653980 Ei 1532 1 1237648721747181747 Sc 565 1<	510	4	1237671768536711433	Ser	1464	1	1237662474230300898	Ei
533 2 1237658491749794095 Er 1464 5 123766247423030880 Sd(1) 533 3 1237658491749794091 SBc(r) 1487 5 1237664093970760079 Ec 533 4 1237658491749794075 Ei 1487 2 1237664093970760934 Er 533 6 1237668270822326447 SBc 1487 3 1237664093970759987 Sc 559 3 1237668270822326448 Sb 1494 4 123765742948704389 S(m) 559 4 1237668270822391906 Ei 1494 2 1237655742948704388 Sb(m) 559 2 1237668270822391907 Er 1494 2 1237655742948704308 Ei 559 2 123766481207653980 Ei 1532 2 1237648721747181786 Er 565 2 1237664818207653982 Sb 1532 3 1237647191718174 Sc 565 3 1237661851463778615 Er 1539 1 1237671931745140927 Ei 594 3	510	3	1237671768536711442	Ei	1464	2	1237662474230300897	Ei
53331237658491749794091SBc(r)148751237664093970760079Ec53341237658491749794075Ei148721237664093970760034Er53361237658491749794050Er148731237664093970759987Sc55931237668270822326447SBc14871123765742948704626Ec5594123766827082239106Ei149421237655742948704389S(m)5592123766827082239107Er149451237655742948704388Sb(m)5595123766827082239108Ec14941123765742948704388Sb(m)55951237664818207653980Ei153221237648721747181766Er56521237664818207653980Ei153231237648721747181767Ei56531237664818207653982Sb153231237648721747181747Sc56511237664818207653982Sb153211237661931745140927Ei59431237661851463778615Er153941237661327486390583Ei59431237661851463778592Ec153931237661327486390539Sb(r)59411237661851463778590Ei155121237665127486390539Sb(r)59411237661851463778590Ei155121237665127486390539Sb(r)59611237661851	533	2	1237658491749794095	\mathbf{Er}	1464	5	1237662474230300880	Sd(I)
533 4 1237658491749794075 Ei 1487 2 1237664093970760034 Er 533 6 1237658491749794050 Er 1487 3 1237664093970750987 Sc 559 3 1237668270822326447 SBc 1487 1 123765742948704626 Ec 559 4 1237668270822391906 Ei 1494 2 1237655742948704389 S(m) 559 2 1237668270822391907 Er 1494 5 1237655742948704388 Sb(m) 559 2 1237664818207653980 Ei 1532 2 12376687174718178 Er 565 2 1237664818207653981 Ei(d) 1532 5 123764872174718177 Sc 565 3 1237664818207653982 Sb 1532 3 1237664872174718174 Sc 565 1 1237664818207653982 Sb 1532 3 123766187146377451 Er 565 1 1237661851463778615 Er 1539 1 1237671931745140927 Ei 594 3	533	3	1237658491749794091	SBc(r)	1487	5	1237664093970760079	Ec
53361237658491749794050Er148731237664093970759987Sc55931237668270822326447SBc148711237664093970759986Ei55941237668270822326448Sb149441237655742948704626Ec559112376682708223291906Ei149421237655742948704389S(m)55921237668270822391907Er149411237655742948704388Sb(m)55951237668270822391908Ec149411237655742948704388Sb(m)56521237664818207653980Ei153221237648721747181786Er56531237664818207653982Sb153231237648721747181747Sc56511237664818207654002Ei153211237671931745140927Ei59441237661851463778615Er153911237671931745140944Ei59431237661851463778592Ec15393123761931745140948Sc59411237661851463778591Ei153921237665127486390539Sb(r)59641237660962399715565Ei(d)155121237665127486390551Ei59631237660962399715552S(d)155331237665127486390551Ei59621237661383851573541Er155321237655129844810240Ser5962123766138	533	4	1237658491749794075	Ei	1487	2	1237664093970760034	Er
55931237668270822326447SBc148711237664993970759986Ei55941237668270822326448Sb149441237655742948704626Ec55911237668270822391906Ei149421237655742948704389S(m)55921237668270822391907Er149451237655742948704388Sb(m)55951237668270822391908Ec149411237655742948704301Ei(m)56521237664818207653980Ei153221237648721747181778Er56531237664818207653981Ei(d)153251237648721747181773Ei5653123766481820765002Ei15321123761821747181747Sc56511237661851463778615Er153911237671931745140927Ei59441237661851463778592Ec15393123761931745140904Ei59451237661851463778591Ei15392123766127486390539Sb(r)59411237661851463778590Ei155161237665127486390539Sb(r)596412376609239971555Ei(d)155121237665127486390531Ei596112376609239971555Ei(d)155121237665127486390531Ei596212376609239971555S(d)15533123765129844810240Ser596212376613838	533	6	1237658491749794050	Er	1487	3	1237664093970759987	Sc
55941237668270822326448Sb149441237655742948704626Ec55911237668270822391906Ei149421237655742948704389S(m)55921237668270822391907Er149451237655742948704388Sb(m)55951237668270822391908Ec149411237655742948704301Ei(m)56521237664818207653980Ei153221237648721747181786Er56531237664818207653981Ei(d)153251237648721747181773Ei56531237664818207653982Sb153231237648721747181747Sc56511237661851463778615Er153211237671931745140927Ei59441237661851463778609Ei153941237671931745140904Ei59431237661851463778592Ec153931237671931745140908Sc59451237661851463778592Ec15393123761517486390539Sb(r)596412376601851463778590Ei155161237665127486390534Ec5961123766096239971555Ei(d)155121237665127486390534Ec59611237660138385157354Er155151237665127486390534Ei59621237660138385157354Er155331237655129844810240Ser61821237661383	559	3	1237668270822326447	SBc	1487	1	1237664093970759986	Ei
55911237668270822391906Ei149421237655742948704389S(m)55921237668270822391907Er149451237655742948704388Sb(m)55951237668270822391908Ec149411237655742948704301Ei(m)56521237664818207653980Ei153221237648721747181786Er56541237664818207653981Ei(d)153251237648721747181773Ei56531237664818207653982Sb153231237648721747181747Sc56511237661851463778615Er153211237671931745140927Ei59441237661851463778609Ei153941237671931745140904Ei59431237661851463778592Ec153931237671931745140908Sc59451237661851463778590Ei153921237661517486390539Sb(r)59411237661851463778590Ei153921237661517486390539Sb(r)5964123766096239971555Ei(d)155121237665127486390531Ei59631237660962399715554Er155151237665127486390531Ei596212376601383851573541Ei155331237655129844810240Ser61821237661383851573541Ei155311237655129844810240Ser618312376	559	4	1237668270822326448	Sb	1494	4	1237655742948704626	Ec
55921237668270822391907Er149451237655742948704308Sb(m)55951237668270822391908Ec149411237655742948704301Ei(m)56521237664818207653980Ei153221237648721747181786Er56541237664818207653981Ei(d)153251237648721747181773Ei56531237664818207653982Sb153231237648721747181747Sc56511237664818207654002Ei153211237648721747181584Er59441237661851463778615Er153911237671931745140927Ei59431237661851463778609Ei15394123767193174514094Ei59421237661851463778592Ec15393123767193174514094Ei59451237661851463778591Ei15392123765127486390539Sb(r)59451237661851463778590Ei155161237665127486390539Sb(r)59641237660962399715565Ei(d)155121237665127486390551Ei59611237660962399715564Er155151237665127486390551Ei59621237661838351573541Ei15533123765129844810240Ser61841237661383851573541Ei15531123765129844810238Ei61831237661383851	559	1	1237668270822391906	Ei	1494	2	1237655742948704389	S(m)
5595 1237668270822391908 Ec 1494 1 1237655742948704301 Ei(m) 565 2 1237664818207653980 Ei 1532 2 1237648721747181786 Er 565 4 1237664818207653981 Ei(d) 1532 5 1237648721747181773 Ei 565 3 1237664818207653982 Sb 1532 3 1237648721747181773 Ei 565 3 1237664818207654002 Ei 1532 3 1237648721747181747 Sc 565 1 1237661851463778615 Er 1539 1 1237671931745140927 Ei 594 4 1237661851463778609 Ei 1539 4 1237671931745140944 Ei 594 2 1237661851463778592 Ec 1539 3 1237671931745140904 Ei 594 2 1237661851463778591 Ei 1539 2 123766127486390539 Sb(r) 594 1 123766082399715565 Ei(d) 1551 2 1237665127486390534 Ec 596 1 1237660962399715564 Er 1551 1 1237665127486390583 Ei 596 2 1237660962399715552 S(d) 1553 3 1237655129844810240 Ser 618 2 1237661383851573524 Ei 1553 1 1237655129844810239 Er 618 3 123766133851573523 Ei 1553 4 1237655129844810239 Er 618 4 1237661383851573524 E	559	2	1237668270822391907	Er	1494	5	1237655742948704388	$S_{\rm b}(m)$
56521237664818207653980Ei1337112376648721747181786Er 565 41237664818207653981Ei(d)153251237648721747181773Ei 565 31237664818207653982Sb153231237648721747181747Sc 565 11237664818207654002Ei153211237648721747181747Sc 565 11237661851463778615Er153211237671931745140927Ei 594 41237661851463778609Ei153941237671931745140904Ei 594 21237661851463778592Ec153931237671931745140908Sc 594 51237661851463778591Ei153921237661327486390539Sb(r) 594 11237661851463778590Ei155161237665127486390539Sb(r) 596 11237660962399715565Ei(d)155121237665127486390544Ec 596 11237660962399715564Er155111237665127486390538Ei 596 21237660962399715552S(d)15533123765129844810240Ser 618 21237661383851573524Ei155311237655129844810239Er 618 31237661383851573523Ei155341237655129844810212S	559	5	1237668270822391908	Ec	1494	1	1237655742948704301	Ei(m)
56541237664818207653981Ei155221237648721747181773Ei 565 31237664818207653982Sb153231237648721747181773Ei 565 11237664818207654002Ei153211237648721747181747Sc 565 11237661851463778615Er153911237671931745140927Ei 594 41237661851463778609Ei153941237671931745140944Ei 594 21237661851463778592Ec153931237671931745140908Sc 594 51237661851463778591Ei153921237671931745140913Sb 594 51237661851463778590Ei155161237665127486390539Sb(r) 596 41237660962399715565Ei(d)1551212376615127486390544Ec 596 11237660962399715551Er155151237665127486390533Ei 596 21237660962399715552S(d)155331237665127486390583Ei 596 21237661383851573541Ei155321237655129844810240Ser 618 41237661383851573524Ei155341237655129844810238Ei 618 31237661383851573523Ei155341237655129844810212S	565	2	1237664818207653980	Ei	1532	2	1237648721747181786	Er
5651123766181525755551164(r)155251237648721747181747Sc56511237664818207653982Sb153211237648721747181747Sc56511237664818207654002Ei153211237671931745140927Ei59441237661851463778615Er153911237671931745140904Ei59431237661851463778592Ec153931237671931745140904Ei59421237661851463778592Ec153931237671931745140908Sc59451237661851463778591Ei153921237671931745140913Sb59411237661851463778590Ei155161237665127486390539Sb(r)59641237660962399715565Ei(d)155121237665127486390551Ei59611237660962399715564Er155111237665127486390583Ei59621237660962399715552S(d)155331237655129844810240Ser61821237661383851573524Ei155311237655129844810239Er61831237661383851573523Ei155341237655129844810212S	565	- 4	1237664818207653981	Ei(d)	1532	5	1237648721747181773	Ei
5055125101010120100000000000000000000000000	565	3	1237664818207653982	Sh	1532	3	1237648721747181747	Sc
50511251001010201051002111652112510101211110100011159441237661851463778615Er153911237671931745140927Ei59431237661851463778609Ei153941237671931745140904Ei59421237661851463778592Ec153931237671931745140908Sc59451237661851463778591Ei153921237671931745140913Sb59411237661851463778590Ei155161237665127486390539Sb(r)59641237660962399715565Ei(d)155121237665127486390544Ec59611237660962399715564Er155111237665127486390583Ei59621237660962399715552S(d)155331237665127486390583Ei59621237661383851573541Ei155321237655129844810240Ser61841237661383851573524Ei155311237655129844810238Ei61831237661383851573523Ei155341237655129844810212S	565	1	1237664818207654002	Ei	1532	1	1237648721747181584	Er
594 3 1237661851463778609 Ei 1539 4 1237671931745140904 Ei 594 2 1237661851463778592 Ec 1539 3 1237671931745140908 Sc 594 5 1237661851463778591 Ei 1539 2 1237671931745140908 Sc 594 5 1237661851463778591 Ei 1539 2 1237671931745140913 Sb 594 1 1237661851463778590 Ei 1551 6 1237665127486390539 Sb(r) 596 4 1237660962399715565 Ei(d) 1551 2 1237665127486390544 Ec 596 1 1237660962399715564 Er 1551 1 1237665127486390551 Ei 596 2 1237660962399715552 S(d) 1553 3 1237655129844810240 Ser 618 2 1237661383851573524 Ei 1553 1 1237655129844810238 Ei 618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S	500 594	4	1237661851463778615	Er	1539	1	1237671931745140927	Ei
594 5 125760105140511605 11 1555 4 12570715511405140504 11 594 2 1237661851463778592 Ec 1539 3 1237671931745140908 Sc 594 5 1237661851463778591 Ei 1539 2 1237671931745140913 Sb 594 1 1237661851463778590 Ei 1551 6 1237665127486390539 Sb(r) 596 4 1237660962399715565 Ei(d) 1551 2 1237665127486390544 Ec 596 1 1237660962399715564 Er 1551 1 1237665127486390551 Ei 596 3 1237660962399715552 S(d) 1553 3 1237665127486390583 Ei 596 2 1237660962399715552 S(d) 1553 3 1237655129844810240 Ser 618 2 1237661383851573524 Ei 1553 1 1237655129844810238 Ei 618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S	594	3	1237661851463778609	Ei	1539	1	1237671931745140904	Ei
594 2 1237601001403110052 1c 1555 5 1237011001140140500 5c 594 5 1237661851463778590 Ei 1539 2 1237665127486390539 Sb(r) 596 4 1237660962399715565 Ei(d) 1551 2 1237665127486390544 Ec 596 1 1237660962399715565 Ei(d) 1551 1 1237665127486390544 Ec 596 1 1237660962399715564 Er 1551 1 1237665127486390551 Ei 596 3 1237660962399715552 S(d) 1551 5 1237665127486390583 Ei 596 2 1237660962399715552 S(d) 1553 3 1237655129844810240 Ser 618 2 1237661383851573524 Ei 1553 1 1237655129844810239 Er 618 3 1237661383851573523 Ei 1553 4 1237655129844810238 Ei 618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S	504 504	5 9	1237661851463778502	Ec	1530	3	1237671931745140904	Sc
594 5 12376010514051405140511551 11553 2 12370115511405140515 50 594 1 1237661851463778590 Ei 1551 6 1237665127486390539 Sb(r) 596 4 1237660962399715565 Ei(d) 1551 2 1237665127486390544 Ec 596 1 1237660962399715564 Er 1551 1 1237665127486390551 Ei 596 3 1237660962399715564 Er 1551 5 1237665127486390553 Ei 596 3 1237660962399715552 S(d) 1553 3 1237655129844810240 Ser 618 2 1237661383851573541 Ei 1553 1 1237655129844810239 Er 618 4 1237661383851573524 Ei 1553 1 1237655129844810238 Ei 618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S	504	5	1237661851463778501	Ei	1539	5 9	1237671031745140013	Sh
594 1 12376601631405176550 En 1551 0 1237665127486390539 350(1) 596 4 1237660962399715565 Ei(d) 1551 2 1237665127486390544 Ec 596 1 1237660962399715564 Er 1551 1 1237665127486390551 Ei 596 3 1237660962399715351 Er 1551 5 1237665127486390583 Ei 596 2 1237660962399715351 Er 1551 5 1237665127486390583 Ei 596 2 1237660962399715552 S(d) 1553 3 1237655129844810240 Ser 618 2 1237661383851573524 Ei 1553 1 1237655129844810238 Ei 618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S	504 504	1	1237661851/63778500	Ei	1551	2 6	1237665127486300530	Sb(r)
590 4 1237600962399715363 Eh(tr) 1351 2 1237605127486390544 Etc 596 1 1237660962399715351 Er 1551 1 1237665127486390583 Ei 596 3 1237660962399715351 Er 1551 5 1237665127486390583 Ei 596 2 1237660962399715351 Er 1553 3 1237655129844810240 Ser 618 2 1237661383851573541 Ei 1553 2 1237655129844810239 Er 618 4 1237661383851573524 Ei 1553 1 1237655129844810238 Ei 618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S	506	1	1237660062300715565	$\mathbf{F}_{\mathbf{i}}(\mathbf{d})$	1551	0	1237665127486300544	Ec.
596 3 1237660962399715351 Er 1551 1 1237665127486390531 Er 596 2 1237660962399715351 Er 1551 5 1237665127486390583 Ei 596 2 1237660962399715552 S(d) 1553 3 1237655129844810240 Ser 618 2 1237661383851573541 Ei 1553 2 1237655129844810239 Er 618 4 1237661383851573524 Ei 1553 1 1237655129844810238 Ei 618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S	596	+ 1	1237660062339115564	Er	1551	- <u>-</u> 1	1237665127486300551	Ei
536 5 1237600902359715551 En 1551 5 1237605127480590853 En 596 2 1237660962399715552 S(d) 1553 3 1237655129844810240 Ser 618 2 1237661383851573541 Ei 1553 2 1237655129844810239 Er 618 4 1237661383851573524 Ei 1553 1 1237655129844810238 Ei 618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S	506	1 2	1237660069200715951	Er	1551	15	123766512748630059	Ei
530 2 1237000302333713532 5(d) 1353 5 1237053123844810240 Ser 618 2 1237661383851573541 Ei 1553 2 1237655129844810239 Er 618 4 1237661383851573524 Ei 1553 1 1237655129844810238 Ei 618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S	596	บ ค	1237660069200715559	يت (٦)	1551	ม จ	1937655190244010940	Sor
618 4 1237661383851573524 Ei 1553 1 1237655129844810239 Ei 618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S	090 618	⊿ ?	1237661383851573541	S(U) Fi	1552	ა ე	1237655120844810240	Sel Fr
618 3 1237661383851573523 Ei 1553 4 1237655129844810212 S Continua na próxima página Continua na próxima página S	618	2 1	1237661282851572594	т;	1559	∠ 1	1237655190844010239	Ei Fi
Continua na próxima nágina	618	4 2	1237661383851573599	Ei Fi	1552	1 /	1237655120844810230	с С
· OBLIDING DIG DICOVIDING DIGONICO	010	U Cont	1201001000001010020	171	1000	4	1201000129044010212	5

Tabela A.1 – continuação da página anterior

ID Grupo	ID Gal	OBJID	Zoo 0	ID Grupo	ID Gal	OBJID	Zoo 0
618	1	1237661383851573522	Ei	1592	1	1237651505954095267	Ser
633	3	1237657612339052663	\mathbf{Er}	1592	3	1237651505954095265	Ser
633	1	1237657612339052662	\mathbf{Er}	1592	4	1237651505954095252	\mathbf{Er}
633	4	1237657612339052656	Ei	1592	2	1237651505954095244	\mathbf{Er}
633	2	1237657612339052653	\mathbf{Sc}	1605	2	1237662337863975071	Ei
657	2	1237661066028711987	\mathbf{Er}	1605	1	1237662337863975100	\mathbf{Er}
657	3	1237661066028646548	S(d)	1605	4	1237662337863975084	\mathbf{Er}
657	1	1237661066028646547	Ei	1605	3	1237662337863975081	\mathbf{S}
657	4	1237661066028646588	\mathbf{Er}	1616	3	1237662301904961662	\mathbf{Er}
663	2	1237657774469021842	\mathbf{Er}	1616	1	1237662301904961661	\mathbf{Er}
663	1	1237657774469021840	Ei	1616	4	1237662301904961646	Ei
663	4	1237657774469021825	Ei	1616	2	1237662301904961637	\mathbf{Sc}
663	6	1237657774469021819	\mathbf{Er}	1667	1	1237664291001335858	\mathbf{Er}
670	3	1237660634388889756	\mathbf{Er}	1667	2	1237664291001335857	\mathbf{Sb}
670	5	1237660634388889753	Ei	1667	4	1237664291001336035	Ser
670	2	1237660634388889750	\mathbf{Sc}	1667	5	1237664291001336041	Seb
670	4	1237660634388889718	\mathbf{Er}	1681	1	1237666339726098544	Ei
670	1	1237660634388889717	\mathbf{Er}	1681	3	1237666339726098545	\mathbf{Er}
673	4	1237655369831481389	Ei	1681	4	1237666339726098575	\mathbf{Er}
673	3	1237655369831481388	Ei	1681	2	1237666339726098578	Ei
673	2	1237655369831481386	Ei(m)	1686	3	1237658203429994773	Sb(r)
673	1	1237655369831481385	Er	1686	4	1237658203429994745	Er
711	1	1237668333104988483	\mathbf{Er}	1686	2	1237658203429994744	Ei
711	3	1237668333104988485	Ei	1686	1	1237658203429994743	Ei
711	2	1237668333105053816	Ei	1705	2	1237667292111962138	\mathbf{Er}
711	4	1237668333105053828	Ei	1705	4	1237667292111962139	\mathbf{Er}
724	4	1237655125539618917	\mathbf{Er}	1705	3	1237667292111962280	Ec
724	1	1237655125539618916	\mathbf{Er}	1705	1	1237667292111962286	Ei
724	3	1237655125539618915	Ei	1713	4	1237662307265872079	\mathbf{Sc}
724	2	1237655125539618948	\mathbf{Er}	1713	2	1237662307265871918	\mathbf{Sb}
728	3	1237667912754069712	Ec	1713	3	1237662307265872093	Ei
728	1	1237667912754069693	\mathbf{Er}	1713	1	1237662307265872091	Ei
728	2	1237667912754069694	\mathbf{Ec}	1717	3	1237662301375562108	Ei
728	4	1237667912754069703	Ei	1717	1	1237662301375561891	SBb(r)
735	3	1237661212044427452	\mathbf{Er}	1717	4	1237662301375561870	Ec
735	4	1237661212044427447	SBb	1717	2	1237662301375561869	Ei
735	2	1237658205594779736	Ei	1764	3	1237674650460160269	Ec
735	1	1237658205594714200	Ei	1764	4	1237674650460160281	Ei
737	4	1237665531724497311	Ei	1764	2	1237674650460160283	\mathbf{Er}
737	2	1237665531724497334	Ei	1764	1	1237674650460160291	Ei
737	5	1237665531724497285	\mathbf{S}	1767	4	1237664670051598475	\mathbf{Er}
737	3	1237665531724497302	Er	1767	1	1237664670051598480	Ei
748	5	1237648705136886060	\mathbf{Er}	1767	2	1237664670051598481	Ei(m)
748	4	1237648705136886042	Er	1767	5	1237664670051598507	Ei
748	2	1237648705136886040	Sc(d)	1767	3	1237664670051598508	\mathbf{S}
748	3	1237648705136885796	Ei	1769	4	1237657071696412768	Ser
748	1	1237648705136885792	Ei	1769	1	1237657071696412767	\mathbf{Er}
	Conti	nua na próxima página					

Tabela A.1 – continuação da página anterior

ID Grupo	ID Gal	OBJID	Zoo 0	ID Grupo	ID Gal	OBJID	Zoo 0
773	3	1237655744014909592	Ei	1769	3	1237657071696412762	Ec
773	4	1237655744014909584	\mathbf{Er}	1769	2	1237657071696412797	\mathbf{Ec}
773	5	1237655744014909581	\mathbf{Er}	1779	4	1237654604793118934	\mathbf{Er}
773	2	1237655744014909466	\mathbf{Er}	1779	3	1237654604793118917	Ei
773	1	1237655744014909465	Ei	1779	5	1237654604793118909	Sb(d)
774	2	1237665427558695122	\mathbf{Er}	1779	1	1237654604793118942	\mathbf{Er}
774	3	1237665427558695123	Ei(d)	1783	3	1237657607492993565	Sc(I)
774	1	1237665427558695048	Ei	1783	2	1237657607492993361	Sb(m)
774	4	1237665427558695049	Ei(m)	1783	4	1237657607492993360	Ei(m)
800	4	1237662225701536016	SBb	1783	1	1237657607492993353	Ei
800	3	1237662225701535767	\mathbf{Ec}	1789	4	1237667912196686042	Sd
800	2	1237662225701535766	Ei	1789	5	1237667912196685984	Ec
800	1	1237662225701535765	\mathbf{Er}	1789	1	1237667912196685991	Ei
811	3	1237648722837242029	\mathbf{Ec}	1789	2	1237667912196685992	\mathbf{Er}
811	1	1237648722837242025	\mathbf{Er}	1858	1	1237662239078744148	Ei
811	4	1237648722837242009	Ei	1858	4	1237662239078744142	Sd(m)
811	5	1237648722837242066	Ei	1858	3	1237662239078744141	А
820	1	1237665331455459378	Sb(d)	1858	2	1237662239078744136	Ei
820	4	1237665331455459379	Ei	1886	3	1237667322720157926	$\mathrm{Sd}(\mathrm{I})$
820	2	1237665331455459443	Sd	1886	4	1237667322720157930	Ser
820	3	1237665331455459444	Sd	1886	1	1237667322720157939	S
841	3	1237664337713103003	Ei	1886	2	1237667322720157910	\mathbf{Sc}
841	1	1237664337713103010	\mathbf{Er}	1895	4	1237667291577516263	Ec
841	2	1237664337713103011	\mathbf{Er}	1895	2	1237667291577516287	Ei
841	4	1237664337713103012	\mathbf{Er}	1895	1	1237667291577516288	\mathbf{Er}
850	3	1237651754537648253	\mathbf{Er}	1895	5	1237667291577516385	Sc(d)
850	4	1237651754537648260	\mathbf{Er}	1895	3	1237667291577516289	\mathbf{S}
850	2	1237651754537648278	Ei	1901	3	1237657630584340706	Se
850	1	1237651754537648274	Ei	1901	4	1237657630584340676	Ei
895	1	1237664295294075182	Ei	1901	2	1237657630584340716	\mathbf{Er}
895	3	1237664295294075183	\mathbf{Er}	1901	1	1237657630584340715	Ei
895	2	1237664295294075204	Ei	1909	2	1237660635994718288	Ei
895	4	1237664295294140471	Ei	1909	5	1237660635994718287	Ei
904	1	1237664669514399786	Ei	1909	1	1237660635994718286	\mathbf{Er}
904	2	1237664669514399785	\mathbf{Er}	1909	3	1237660635994718395	\mathbf{Er}
904	3	1237664669514399879	Ec	1909	4	1237660635994718381	Ei
904	4	1237662226210095148	$\mathrm{Sd}(\mathrm{I})$	1987	5	1237658300070887641	\mathbf{Sc}
920	3	1237667113336504522	\mathbf{Sb}	1987	2	1237658300070887640	Ser
920	2	1237667113336504533	\mathbf{Er}	1987	1	1237658300070953149	Ei
920	1	1237667113336504508	\mathbf{Er}	1987	3	1237658300070953139	\mathbf{S}
920	4	1237667113336504535	\mathbf{Er}	1987	4	1237658300070953173	Ei
933	2	1237667322188202140	$\mathrm{Sd}(\mathrm{m})$	2011	4	1237657590852157565	\mathbf{Sc}
933	1	1237667322188202151	Ei	2011	1	1237658802566791242	Ei
933	3	1237667322188202152	$\mathrm{SBb}(\mathbf{r})$	2011	2	1237658802566791236	Sc(d)
933	4	1237667322188202153	\mathbf{Sc}	2011	3	1237658802566791235	Ei
952	2	1237667731270271418	Ei	2021	3	1237665126934708316	SBb
952	1	1237667731270271438	SBc	2021	1	1237665126934708330	Ei
	Conti	nua na próxima página					

Tabela A.1 – continuação da página anterior

95231237667731270336817Ei202141237665126934708355Sd95241237667731270336822Sc(r)202121237665126934708360S(r95421237662664292565374Sb202741237657612875399298Ei95411237662226237555027Ec202721237657612875399293Ec95441237662226237555014Ser202731237657612875399293Ec95431237662226237555014Ser202751237657612875399283Er95431237654602944141485Sc(d)202711237657612875399279Ei100441237654606944141485Sc(d)202711237657612875399268Ei100421237654606944141348Ei205641237655128771133737Ec100411237654606944141348Ei205621237655128771133737Ec100411237654606944141356Ei205631237655128771133461Ser100411237654606944141356Ei205631237655128771133461Ser101121237651736315691322Sc205611237655474509382051SB101111237651736315691320Er20675123766720972351151Ei	о 0
95241237667731270336822Sc(r)202121237665126934708360S(r)95421237662664292565374Sb202741237657612875399298Ei95411237662226237555027Ec202721237657612875399293Ec95441237662226237555014Ser202731237657612875399283Er95431237662226237554991Ser202751237657612875399283Er95431237654606944141485Sc(d)202711237657612875399279Ei100441237654606944141474Ei205641237655474509382034Sd100431237654606944141348Ei205621237655128771133737Ec100411237654606944141356Ei205631237655128771133461Ser100411237651736315691322Sc205611237655474509382051SB101111237651736315691320Er20675123766720972351151Ei	
95421237662664292565374Sb202741237657612875399298Ei95411237662226237555027Ec202721237657612875399293Ec95441237662226237555014Ser202731237657612875399283Er95431237662226237554991Ser202751237657612875399279Ei100441237654606944141485Sc(d)202711237657612875399268Ei100421237654606944141474Ei205641237655474509382034Sd100431237654606944141348Ei205621237655128771133737Ec100411237654606944141356Ei205631237655128771133461Ser100411237651736315691322Sc205611237655474509382051SB101111237651736315691320Er206751237667209972351151Ei	r)
95411237662226237555027Ec202721237657612875399293Ec95441237662226237555014Ser202731237657612875399283Er95431237662226237554991Ser202751237657612875399279Ei100441237654606944141485Sc(d)202711237657612875399268Ei100421237654606944141474Ei205641237655474509382034Sd100431237654606944141348Ei205621237655128771133737Ec100411237654606944141356Ei205631237655128771133461Ser100411237654606944141356Ei205611237655128771133461Ser101121237651736315691322Sc205611237655474509382051SB101111237651736315691320Er206751237667209972351151Ei	
95441237662226237555014Ser202731237657612875399283Er95431237662226237554991Ser202751237657612875399279Ei100441237654606944141485Sc(d)202711237657612875399268Ei100421237654606944141474Ei205641237655474509382034Sd100431237654606944141348Ei205621237655128771133737Ec100411237654606944141356Ei205631237655128771133461Ser100411237654606944141356Ei205631237655128771133461Ser101121237651736315691322Sc205611237655474509382051SB101111237651736315691320Er206751237667209972351151Ei	
95431237662226237554991Ser202751237657612875399279Ei100441237654606944141485Sc(d)202711237657612875399268Ei100421237654606944141474Ei205641237655474509382034Sd100431237654606944141348Ei205621237655128771133737Ec100411237654606944141356Ei205631237655128771133461Ser100411237651736315691322Sc205611237655474509382051SB101111237651736315691320Er206751237667209972351151Ei	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
100421237654606944141474Ei205641237655474509382034Sd100431237654606944141348Ei205621237655128771133737Ec100411237654606944141356Ei205631237655128771133461Ser101121237651736315691322Sc205611237655474509382051SB101111237651736315691320Er206751237667209972351151Ei	
100431237654606944141348Ei205621237655128771133737Ec100411237654606944141356Ei205631237655128771133461Ser101121237651736315691322Sc205611237655474509382051SB101111237651736315691320Er206751237667209972351151Ei	
100411237654606944141356Ei205631237655128771133461Ser101121237651736315691322Sc205611237655474509382051SB101111237651736315691320Er206751237667209972351151Ei	
101121237651736315691322Sc205611237655474509382051SB101111237651736315691320Er206751237667209972351151Ei	n
1011 1 1237651736315691320 Er 2067 5 1237667209972351151 Ei	$\operatorname{Ba}(\mathbf{r})$
1011 3 1237651736315691294 Er 2067 2 1237667209972351154 SB	ßb
1011 4 1237651736315691135 Ec 2067 1 1237667252921827502 Ei	
1012 2 1237655470207598866 SBc 2067 4 1237667252921827503 Ei	
1012 3 1237655470207598848 Ei 2067 3 1237667252921827520 Ei	
1012 1 1237654879130419422 Er 2078 2 1237662641196630455 Ei	
1012 4 1237654879130419418 S(I) 2078 3 1237662641196630428 SB	Bc
1020 1 1237666301092692103 Er 2078 6 1237662641196630368 Ec	
1020 2 1237666301092692104 Ei 2078 4 1237662641196630154 Er	
1020 4 1237666301092692156 Er 2083 4 1237657632727892142 Ei	
1020 3 1237666301092626646 Ei 2083 2 1237657632727892150 Ei	
1036 4 1237651538719867013 Ei 2083 3 1237657632727892148 Ser	n
1036 2 1237651538719866983 Ei 2083 1 1237657632727891995 Er	
1036 1 1237651538719866982 Er 2087 4 1237661849857884337 Ei	
1036 3 1237651538719866961 Ec 2087 1 1237661849857884331 Er	
1044 7 1237658492280242287 Ei 2087 3 1237661849857884323 Ec	
1044 1 1237658492280242185 Ei 2087 2 1237661849857884322 Ei	
1044 2 1237674598389121046 Er 2099 3 1237661382777700536 Ei	
1044 4 1237674598389121191 SBc 2099 1 1237661137962205299 Er	
1059 4 1237651539262570722 Er 2099 4 1237661137962205296 Ec	
1059 2 1237651539262570708 Ei 2099 2 1237661137962205284 Ei((d)
1059 1 1237651539262570702 Ec 2102 2 1237661977084362889 Ei	()
1059 3 1237651539262570681 Er 2102 3 1237661977084362840 Er	
1063 4 1237651755079303238 Sen 2102 1 1237661977084362839 Er	
1063 3 1237651755079303236 Sd 2102 4 1237661977084362822 Ei	
1063 1 1237651755079303224 Ei 2139 5 1237668623551037658 Ei	
1063 2 1237651755079237811 S 2139 2 1237668623551103141 Ei	
1065 2 1237664835394797751 Sb 2139 3 1237668623551103160 Sc	
1065 3 1237664835394797740 Sb(r) 2139 4 1237668623551103170 Sb(r)	(\mathbf{r})
1065 1 1237664835394732253 Sb 2139 1 1237668623551103176 Er	(-)
1065 4 1237664835394732280 S 2149 3 1237667255601659998 Ec	
1070 4 1237661418212491411 Er 2149 4 1237667255601660484 Er	
1070 1 1237661418212491410 Ei 2149 1 1237667255601660227 Ei	
1070 2 1237661418212491403 Ei 2149 2 1237667255601660237 Ei	
1070 3 1237661418212491398 Ei 2155 6 1237665566073815217 Fr	
1075 3 1237648705658945656 Er 2155 3 1237665566073815219 Fi	
Continua na próxima página	

Tabela A.1 – continuação da página anterior

ID Grupo	ID Gal	OBJID	Zoo 0	ID Grupo	ID Gal	OBJID	Zoo 0
1075	2	1237648705658945681	Ei	2155	4	1237665566073815230	Er
1075	4	1237648705658945660	\mathbf{Er}	2155	5	1237667967494521003	\mathbf{Er}
1075	1	1237648705658945659	Ei	2166	4	1237655501883113997	\mathbf{Sc}
1090	5	1237651822717239719	\mathbf{Ec}	2166	3	1237655501883113850	\mathbf{Er}
1090	3	1237651822717239569	\mathbf{Er}	2166	5	1237655501883113819	Ei
1090	1	1237651822717239568	\mathbf{Er}	2166	1	1237655501883113818	Ei
1090	2	1237651822717239335	\mathbf{Sc}	2166	2	1237655501883113805	\mathbf{Sc}
1109	2	1237667211579293950	\mathbf{Sc}	2176	4	1237671932282798107	Ei
1109	1	1237667211579293957	$\operatorname{SBc}(d)$	2176	2	1237671932282798232	\mathbf{Er}
1109	4	1237667211579293990	Sd	2176	1	1237671932282798239	Ε
1109	3	1237667211579293932	$\mathrm{Sb}(\mathbf{r})$	2176	5	1237671932282798247	\mathbf{Er}
1113	3	1237663784740978896	SBb	2202	4	1237667322714521707	\mathbf{Er}
1113	1	1237663784740978876	\mathbf{Er}	2202	3	1237667322714521715	\mathbf{Er}
1113	2	1237663784740978875	\mathbf{Er}	2202	2	1237667322714521720	Ei
1113	4	1237663784740978865	Ei	2202	1	1237667322714521724	\mathbf{Er}
1114	2	1237666302168072381	\mathbf{Sb}	2208	6	1237661068179472567	\mathbf{Er}
1114	1	1237666302168072382	\mathbf{Sc}	2208	5	1237661068179472565	Ei
1114	3	1237666302168072415	Ei	2208	3	1237661068179472557	\mathbf{Er}
1114	6	1237666302168072427	Ei	2208	1	1237661068179472527	\mathbf{Sb}
1114	4	1237666302168072432	\mathbf{Ec}	2208	2	1237661068179472586	Ei
1114	5	1237666302168072440	Ei	2209	1	1237665330387222603	S
1153	1	1237662335717343367	\mathbf{Sb}	2209	4	1237665330387222604	\mathbf{Er}
1153	3	1237662335717343363	\mathbf{Er}	2209	2	1237665330387222626	S
1153	4	1237662335717343351	Ec	2209	3	1237665330387222631	Sd(I)
1153	2	1237662335717343345	\mathbf{Sc}	2225	3	1237653614256455878	Er
1163	3	1237668625162895364	\mathbf{Sb}	2225	5	1237653614256455860	Ei
1163	5	1237668590799749213	Ei	2225	7	1237653614256455853	Ec
1163	2	1237668590799749219	\mathbf{Sb}	2225	1	1237653614256455822	Sb(r)
1163	1	1237668590799683732	SBb	2225	2	1237653614256455820	\mathbf{Sb}
1169	2	1237654599953285317	\mathbf{Er}	2239	5	1237662245524013410	\mathbf{Sc}
1169	5	1237654599953285299	\mathbf{Er}	2239	3	1237662245524013351	\mathbf{Er}
1169	3	1237654599953285283	Er(m)	2239	1	1237662245524013320	\mathbf{Er}
1169	4	1237654599953285282	Ec	2239	2	1237662245524013187	Ei
1169	1	1237654599953285280	Ei(m)	2256	1	1237668584356184160	\mathbf{Er}
1173	3	1237661388146278574	Ei	2256	2	1237668584356184161	\mathbf{Er}
1173	1	1237661388146278573	\mathbf{Er}	2256	3	1237668584356184162	\mathbf{Er}
1173	4	1237661388146278489	\mathbf{Er}	2256	4	1237668584356184276	\mathbf{Er}
1173	2	1237661388146278478	\mathbf{Er}	2263	7	1237655742405279880	Ser
1185	2	1237667734489989284	Sb(d)	2263	1	1237655742405279871	Ei
1185	3	1237667734489989301	Er	2263	6	1237655742405279857	Ei
1185	4	1237667734489989302	Sc(d)	2263	2	1237655742405279856	Ei
1185	1	1237667734489989139	Er	2263	5	1237655742405279839	\mathbf{Sb}
1189	3	1237661812274364581	\mathbf{Sc}	2263	4	1237655742405279903	Er
1189	4	1237661812274364570	Sc(d)	2263	8	1237655742405279897	Ser
1189	2	1237661812274430055	Ei	2284	2	1237661361839931634	Ec
1189	5	1237661812274430063	Ser	2284	1	1237661361839931629	Ei
1189	1	1237661812274430039	\mathbf{Sc}	2284	3	1237661361839931623	Ei
	Conti	nua na próxima página					

Tabela A.1 – continuação da página anterior

ID Grupo	ID Gal	OBJID	Zoo 0	ID Grupo	ID Gal	OBJID	Zoo 0
1202	5	1237662236394193054	Er	2284	4	1237661361839931614	Er
1202	1	1237662236394193052	Ei	2295	8	1237660613976260728	\mathbf{Er}
1202	3	1237662236394193041	Ei	2295	2	1237658492814491797	\mathbf{Er}
1202	2	1237662236394258438	\mathbf{Sb}	2295	3	1237658492814491784	Sb(d)
1213	4	1237662236396421177	Ec	2295	7	1237658492814491821	\mathbf{Er}
1213	1	1237662236396421130	\mathbf{Er}				

Tabela A.1 – continuação da página anterior

A.1.2 Propriedades Dinâmicas

Tabela A.2 - Tabela com os parâmetros dinâmicos dos 151 GCs da amostra. As colunas são:(1) Identificador do grupo no catálogo de McConnachie et al. (2009); (2) Número de gaáxias pertencentes a grupo; (3) Magnitude absoluta do grupo; (4) Dispersão de velocidade do grupo/ (5) Raio harmônico em Mpc; (6) Massa estelar; (7) Crossing time em H_0 ; (8) Densidade média; (9) Fração de espirais e (9) Classe dinâmica: **H** para grupos de alto σ_G e **L** para os grupos de baixo σ_G

GroupID	N_m	M_r	σ_G	R_{harm}	log M	t_c	$\log \rho$	f_{sp}	Class
		(mag)	$(\rm km/s)$	(Mpc)		(H_0)			
1327	4	-21.32059	164.30531	0.03422	11.80918	0.01531	4.3773	0.5	L
70	4	-23.32746	155.6021	0.0516	11.94032	0.02438	3.84206	0.25	L
510	4	-22.23048	153.97421	0.0631	12.01857	0.03012	3.57991	0.25	L
326	4	-23.43101	161.23244	0.06725	12.08627	0.03066	3.49682	0.0	L
820	4	-22.66269	92.04479	0.03939	11.367	0.03146	4.19393	0.75	\mathbf{L}
2209	4	-22.17205	158.51787	0.07893	12.14104	0.0366	3.28828	0.75	L
321	4	-23.09429	153.17699	0.08118	12.12346	0.03896	3.2517	0.0	\mathbf{L}
389	4	-22.52972	159.66516	0.09252	12.21629	0.04259	3.08133	0.0	\mathbf{L}
113	4	-22.46142	129.23766	0.09071	12.02408	0.05159	3.10703	0.5	\mathbf{L}
633	4	-23.07535	130.62134	0.10499	12.09681	0.05908	2.91659	0.25	\mathbf{L}
1114	6	-22.67863	158.65254	0.13108	12.36209	0.06074	2.80343	0.33	L
1616	4	-22.49507	170.37962	0.14116	12.45621	0.0609	2.53081	0.25	L
252	4	-23.55476	134.75757	0.12162	12.18777	0.06634	2.72494	0.25	L
904	4	-23.23118	144.67075	0.13194	12.28478	0.06704	2.61886	0.25	L
1409	4	-23.17326	121.24132	0.11638	12.07683	0.07056	2.78233	0.25	L
1063	4	-22.63152	104.22949	0.10803	11.91319	0.07619	2.87931	0.75	L
1458	4	-22.29223	146.67732	0.15218	12.35874	0.07627	2.43288	0.25	L
1385	4	-22.77454	144.35689	0.15482	12.35237	0.07884	2.41046	0.0	L
1059	4	-22.41693	134.353	0.1444	12.25973	0.07901	2.50123	0.0	L
724	4	-23.37203	176.75452	0.19093	12.61926	0.07941	2.13736	0.0	L
1185	4	-23.22581	153.71902	0.16608	12.43742	0.07942	2.31903	0.5	L
425	4	-22.74902	165.96463	0.1797	12.53824	0.0796	2.21629	0.25	L
1011	4	-23.62991	156.5828	0.17335	12.47206	0.08138	2.26323	0.25	L
Continua	na próz	kima página							

GroupID	N_m	M_r	σ_G	R_{harm}	log M	t_c	$\log \rho$	f_{sp}	Class
		(mag)	$(\rm km/s)$	(Mpc)		(H_0)			
728	4	-21.8888	78.10072	0.08706	11.56879	0.08194	3.16049	0.0	L
2139	5	-22.6674	171.11082	0.19777	12.60637	0.08496	2.1884	0.4	L
1090	4	-22.38491	119.03671	0.14001	12.14117	0.08646	2.54151	0.25	L
1434	4	-22.13416	128.16104	0.15158	12.23982	0.08695	2.438	0.25	L
1895	5	-23.5568	108.89929	0.14542	12.08033	0.09816	2.58899	0.4	L
1767	5	-23.67012	94.37662	0.13608	11.92716	0.10599	2.67553	0.2	L
952	4	-23.06343	151.19118	0.22288	12.55078	0.10837	1.93575	0.5	L
1004	4	-23.16966	172.05598	0.27225	12.74996	0.11632	1.67508	0.25	L
1539	4	-22.97823	117.10299	0.19011	12.2598	0.11934	2.14293	0.5	L
1783	4	-22.59076	57.29758	0.0973	11.34805	0.12484	3.0156	0.5	L
1020	4	-22.65908	97.0623	0.17318	12.05625	0.13116	2.26447	0.0	L
2021	4	-22.96518	156.2697	0.28007	12.67867	0.13175	1.63816	0.75	L
2011	4	-23.70521	94.6297	0.17977	12.05043	0.13965	2.21582	0.5	\mathbf{L}
1886	4	-22.30497	119.47761	0.22944	12.35889	0.14116	1.89798	1.0	\mathbf{L}
1163	4	-23.14993	82.52488	0.16134	11.88458	0.14372	2.35671	0.75	\mathbf{L}
1371	5	-23.5258	124.59372	0.24885	12.43058	0.14682	1.88909	0.0	\mathbf{L}
2155	4	-21.92206	120.5286	0.24101	12.38787	0.14699	1.83386	0.0	L
1202	4	-23.53411	80.5443	0.16772	11.8803	0.15307	2.30625	0.25	L
1553	4	-22.93678	92.58204	0.19447	12.06557	0.15441	2.11338	0.5	\mathbf{L}
1153	4	-23.24351	102.1831	0.22063	12.20607	0.15872	1.949	0.5	L
1858	4	-23.18516	59.49733	0.13608	11.52643	0.16813	2.57863	0.5	L
1109	4	-22.67949	88.81782	0.21703	12.07718	0.17963	1.97039	1.0	L
1667	4	-22.44853	97.20513	0.23881	12.19709	0.1806	1.84579	0.75	L
1605	4	-22.83016	80.76373	0.20159	11.96256	0.18349	2.06655	0.25	L
1075	4	-22.80477	91.26037	0.24006	12.14454	0.19337	1.83901	0.0	L
2149	4	-22.63643	81.35825	0.22432	12.01533	0.20269	1.92734	0.0	L
2078	4	-22.92845	107.98608	0.32292	12.41948	0.21982	1.4527	0.25	L
2176	4	-23.13365	92.03265	0.2929	12.23825	0.23395	1.57982	0.0	L
1264	4	-22.7586	39.24533	0.12627	11.13254	0.23652	2.67604	0.0	L
1213	5	-23.26164	59.47038	0.19653	11.68568	0.24293	2.1966	0.2	L
1987	5	-23.24915	66.6158	0.23337	11.85885	0.25752	1.97277	0.6	L
2202	4	-23.80747	54.25206	0.42696	11.94288	0.57853	1.08879	0.0	L
1217	4	-23.39339	579.8492	0.08246	13.28653	0.01045	3.23124	0.25	Н
559	5	-23.52758	578.21375	0.0878	13.31133	0.01116	3.24637	0.4	Н
42	4	-23.35465	429.73114	0.07248	12.97029	0.0124	3.39925	0.0	Н
481	4	-22.98172	264.16525	0.04732	12.36249	0.01317	3.9547	0.5	Н
90	4	-23.77042	417.0572	0.08009	12.9876	0.01412	3.26931	0.0	Н
1265	4	-21.96506	205.35538	0.04085	12.07988	0.01462	4.14632	0.25	Н
1494	4	-23.76876	559.589	0.11131	13.38593	0.01462	2.84035	0.5	Н
841	4	-22.76582	286.4665	0.06344	12.56013	0.01628	3.57297	0.0	Н
353	4	-23.07829	358.916	0.08182	12.8665	0.01676	3.24139	0.0	Н
236	4	-23.10858	234.0303	0.05883	12.35182	0.01848	3.6711	0.0	Н
46	4	-24.49025	241.84322	0.06581	12.42904	0.02001	3.525	0.0	Н
177	4	-22.68912	292.41367	0.08037	12.68072	0.0202	3.26476	0.5	Н
1336	4	-24.17166	518.2932	0.16047	13.4782	0.02276	2.36379	0.25	Н
774	4	-23.71035	210.6925	0.06763	12.3211	0.0236	3.48952	0.0	Н
Continua 1	na próz	kima página							

Tabela A.2 – continuação da página anterior

(mag)(mpc)(Hq)10364-22.01109270.45430.0888712.656610.024163.133650.0H7114-22.586301.067570.0997412.799870.024352.98330.0H5654-23.43296347.756130.1162612.991640.024582.783650.25H12494-23.48264290.622340.085312.76390.024922.99940.0H5075-22.18198467.630980.1565313.402590.024022.419480.0H5084-23.86641498.623050.1914513.521260.028332.781990.0H5084-22.76212302.058620.1164112.869830.029142.6440.75H5084-22.71388326.486360.1294212.983370.029142.6440.75H5084-22.7138326.486360.1294212.803370.029142.6440.75H5084-22.3191191.671170.0782713.206770.030232.392810.75H5084-22.30191191.671170.0782713.060710.030422.325930.02H5084-22.30191191.671170.0782712.032550.03282.682990.0H5084-22.30191191.671170.0782712.304500.031412.50091.2H <th>GroupID</th> <th>N_m</th> <th>M_r</th> <th>σ_G</th> <th>R_{harm}</th> <th>log M</th> <th>t_c</th> <th>$\log \rho$</th> <th>f_{sp}</th> <th>Class</th>	GroupID	N_m	M_r	σ_G	R_{harm}	log M	t_c	$\log \rho$	f_{sp}	Class
10364-22.01109270.45330.0888712.656610.024163.133650.0H7114-22.586301.067570.0997412.799870.04352.98330.0H5654-23.43266347.756130.1162612.991640.024882.788650.25H12494-23.48264290.622340.085312.76300.024022.919480.0H20275-22.18198467.630913.162613.40290.027863.03040.0H14074-23.86641498.623050.1914513.521260.028332.781990.0H5084-22.71388326.486360.1294212.83370.029142.6440.75H13724-22.71387247.173890.990212.625380.029422.92810.75H10564-22.43337407.351530.1652313.281670.032422.92810.75H20584-22.43837407.351530.1652313.060710.03742.52090.25H1065-23.7094192.538250.838312.35890.032332.68290.0H11695-23.7094192.538250.838412.35890.33733.238260.0H11695-23.7094192.53820.134412.84980.035132.04550.0H11695-23.7094192.5382<			(mag)	$(\rm km/s)$	(Mpc)		(H_0)			
711 4 -22.586 301.06757 0.09974 12.79987 0.02435 2.9833 0.0 H 565 4 -23.43296 347.75613 0.11626 12.99164 0.02458 2.78365 0.25 H 1249 4 -23.48264 290.62234 0.09853 12.76380 0.02492 2.99924 0.25 H 2027 5 -22.18198 467.63098 0.16563 13.40259 0.02604 2.41948 0.0 H 594 5 -22.39405 279.22214 0.10583 12.76016 0.02833 2.78199 0.0 H 1407 4 -22.76121 302.05862 0.11641 12.86983 0.02833 2.78199 0.0 H 1372 4 -22.71358 326.48636 0.12942 12.86937 0.02914 2.644 0.75 H 2056 4 -21.51397 247.17389 0.0902 12.62538 0.02928 2.32573 1.0 H 1065 4 -23.30191 191.67117 0.7827 12.30235 0.03021<	1036	4	-22.01109	270.4543	0.08887	12.65661	0.02416	3.13365	0.0	Н
565 4 -23.43296 347.75613 0.11626 12.99164 0.02458 2.78365 0.25 H 1249 4 -23.48264 290.62234 0.09853 12.76389 0.02492 2.99924 0.25 H 2027 5 -22.18198 467.63098 0.16563 13.40259 0.02604 2.41948 0.0 H 594 5 -22.39405 279.2214 0.10583 12.76016 0.02783 3.00304 0.0 H 1407 4 -22.76121 302.05862 0.11641 12.86983 0.02914 2.644 0.75 H 1372 4 -22.13738 326.48636 0.12942 12.9837 0.02914 2.644 0.75 H 1065 4 -21.51397 247.17389 0.0902 12.62538 0.02914 2.6444 0.75 H 1065 4 -22.30191 191.67117 0.7827 12.30235 0.03021 3.29826 0.0 H	711	4	-22.586	301.06757	0.09974	12.79987	0.02435	2.9833	0.0	Н
12494-23.48264290.622340.0985312.763890.024922.999240.25H20275-22.18198467.630980.1656313.402590.026042.419480.0H5945-22.39405279.222140.1058312.760160.027863.003040.0H14074-23.86641498.623050.1914513.521260.028232.133780.0H5084-22.76212302.058620.1164112.869830.029432.6440.75H20564-22.71358326.486360.1294212.983370.029422.92810.75H20564-22.43837407.351530.1652313.281670.029822.325731.0H20834-22.30191191.671170.782712.302350.030023.29220.75H20834-22.49336340.313960.1423313.060710.030742.520990.2H13905-23.77582303.240480.135312.938520.03282.682990.0H14995-23.70944192.538250.883512.35890.033733.238260.0H15964-23.9121284.136660.132412.87260.33422.64440.5H17134-23.29121284.136660.132412.87260.33452.614280.5H16974-23.28	565	4	-23.43296	347.75613	0.11626	12.99164	0.02458	2.78365	0.25	Н
2027 5 -22.18198 467.63098 0.16563 13.40259 0.02604 2.41948 0.0 H 594 5 -22.39405 279.22214 0.10583 12.76016 0.02786 3.00304 0.0 H 1407 4 -23.86641 498.62305 0.19145 13.52126 0.02833 2.78199 0.0 H 508 4 -22.76123 302.05862 0.11641 12.86933 0.02914 2.644 0.75 H 2056 4 -21.51397 247.17389 0.0902 12.62538 0.02945 2.99281 0.75 H 1065 4 -22.30191 191.67117 0.07827 12.30235 0.03002 3.29922 0.75 H 2083 4 -22.49336 340.31396 0.14233 13.06071 0.03074 2.5009 0.25 H 1390 5 -23.7782 303.24048 0.1353 12.98256 0.03323 3.23826 0.0 H 1390 5 -23.70944 192.53825 0.08835 12.35899 0.035	1249	4	-23.48264	290.62234	0.09853	12.76389	0.02492	2.99924	0.25	Н
594 5 -22.39405 279.22214 0.10583 12.76016 0.02786 3.0304 0.0 H 1407 4 -23.86641 498.62305 0.19145 13.52126 0.02823 2.13378 0.0 H 508 4 -22.76212 302.05862 0.11641 12.86983 0.02833 2.78199 0.0 H 1372 4 -22.71358 326.48636 0.12942 12.98337 0.02914 2.644 0.75 H 2056 4 -21.51397 247.17389 0.09002 12.62538 0.02945 2.99281 0.75 H 1065 4 -22.43837 407.35153 0.16523 13.28167 0.02982 2.32573 1.0 H 933 4 -22.30191 191.67117 0.07827 12.30235 0.3002 3.29922 0.75 H 2083 4 -22.49336 340.31396 0.14233 13.06071 0.03074 2.52099 0.25 H 773 5 -22.77582 303.24048 0.1353 12.93852 0.0328 2.68294 0.2 H 1199 5 -23.84172 298.29538 0.13478 12.92256 0.03321 2.68404 0.2 H 1390 5 -23.79144 192.53825 0.08351 12.35899 0.0373 3.23826 0.0 H 1567 4 -23.36415 301.94986 0.13968 12.94867 0.03425 2.61428 </td <td>2027</td> <td>5</td> <td>-22.18198</td> <td>467.63098</td> <td>0.16563</td> <td>13.40259</td> <td>0.02604</td> <td>2.41948</td> <td>0.0</td> <td>Н</td>	2027	5	-22.18198	467.63098	0.16563	13.40259	0.02604	2.41948	0.0	Н
14074 -23.86641 498.62305 0.19145 13.52126 0.02823 2.13378 0.0 H5084 -22.76212 302.05862 0.11641 12.86983 0.02833 2.78199 0.0 H13724 -22.71358 326.48636 0.12942 12.98337 0.02914 2.644 0.75 H20564 -21.51397 247.17389 0.09002 12.62538 0.02945 2.99281 0.75 H10654 -22.43837 407.35153 0.16523 13.28167 0.02982 2.32573 1.0 H9334 -22.30191 191.67117 0.07827 12.30235 0.3002 3.29922 0.75 H20834 -22.49336 340.31396 0.14233 13.66071 0.03074 2.52009 0.25 H13905 -22.77582 303.24048 0.1353 12.98525 0.03282 2.68299 0.0 H13905 -23.84172 298.29538 0.13478 12.92256 0.03321 2.68804 0.2 H11695 -23.70944 192.53825 0.08351 12.37889 0.0373 3.23826 0.0 H15674 -23.36415 301.94986 0.13968 12.94867 0.03401 2.54453 0.25 H3804 -23.29121 284.13666 0.1324 12.8726 0.03425 2.61428 0.5 H1713 </td <td>594</td> <td>5</td> <td>-22.39405</td> <td>279.22214</td> <td>0.10583</td> <td>12.76016</td> <td>0.02786</td> <td>3.00304</td> <td>0.0</td> <td>Н</td>	594	5	-22.39405	279.22214	0.10583	12.76016	0.02786	3.00304	0.0	Н
5084 -22.76212 302.05862 0.11641 12.86983 0.02833 2.78199 0.0 H 1372 4 -22.71358 326.48636 0.12942 12.98337 0.02914 2.644 0.75 H 2056 4 -21.51397 247.17389 0.0902 12.62538 0.02945 2.99281 0.75 H 1065 4 -22.43837 407.35153 0.16523 13.28167 0.02982 2.32573 1.0 H 933 4 -22.30191 191.67117 0.07827 12.30235 0.03002 3.29220 0.55 H 2083 4 -22.49336 340.31396 0.14233 13.06071 0.03074 2.52009 0.25 H 773 5 -22.77582 303.24048 0.1353 12.93852 0.0328 2.68299 0.0 H 1390 5 -23.84172 298.29538 0.13478 12.92256 0.03321 2.68804 0.2 H 1169 5 -23.70944 192.53825 0.08835 12.35889 0.03733 3.23826 0.0 H 850 4 -23.9121 284.13666 0.1324 12.8726 0.03425 2.61428 0.5 H 1713 4 -22.3627 275.7555 0.13341 12.84989 0.03565 2.60441 0.0 H 1713 4 -22.3027 275.7555 0.13341 12.84989 0.03642 2.83045 0.0 H </td <td>1407</td> <td>4</td> <td>-23.86641</td> <td>498.62305</td> <td>0.19145</td> <td>13.52126</td> <td>0.02823</td> <td>2.13378</td> <td>0.0</td> <td>Н</td>	1407	4	-23.86641	498.62305	0.19145	13.52126	0.02823	2.13378	0.0	Н
13724-22.71358326.486360.1294212.983370.029142.6440.75H20564-21.51397247.173890.0990212.625380.029452.992810.75H10654-22.43837407.351530.1652313.281670.029822.325731.0H9334-22.30191191.671170.0782712.302350.030023.299220.75H20834-22.49336340.313960.1423313.060710.030742.520090.25H7735-22.77582303.240480.135312.938520.03282.682990.0H13905-23.84172298.295380.1347812.922560.032112.688040.2H11695-23.70944192.538250.0883512.358890.033733.238260.0H18004-23.36415301.949860.1396812.948670.034012.544530.25H8504-23.29121284.136660.132412.87260.035132.004550.0H17134-22.87173291.432620.1397412.918040.035252.544030.5H17054-23.4875442.38330.2114213.460390.035622.604110.0H16184-23.99199210.162310.105412.511610.036872.911430.25H2094 <t< td=""><td>508</td><td>4</td><td>-22.76212</td><td>302.05862</td><td>0.11641</td><td>12.86983</td><td>0.02833</td><td>2.78199</td><td>0.0</td><td>Н</td></t<>	508	4	-22.76212	302.05862	0.11641	12.86983	0.02833	2.78199	0.0	Н
20564 -21.51397 247.17389 0.09902 12.62538 0.02945 2.99281 0.75 H 1065 4 -22.43837 407.35153 0.16523 13.28167 0.02982 2.32573 1.0 H 933 4 -22.30191 191.67117 0.07827 12.30235 0.03002 3.29922 0.75 H 2083 4 -22.49336 340.31396 0.14233 13.06071 0.03074 2.52009 0.25 H 773 5 -22.77582 303.24048 0.1353 12.93852 0.0328 2.68299 0.0 H 1390 5 -23.84172 298.29538 0.13478 12.92256 0.03211 2.68804 0.2 H 1169 5 -23.70944 192.53825 0.08835 12.35889 0.03373 3.23826 0.0 H 850 4 -23.9121 284.13666 0.13241 12.8726 0.03425 2.61428 0.75 H 850 4 -23.4877 291.43262 0.13974 12.81649 0.03556 2.60441 0.0 H 1705 4 -22.8027 275.7555 0.13341 12.84989 0.03566 2.60441 0.0 H 1713 4 -22.9252 226.38466 0.11216 12.60319 0.03642 2.83045 0.0 H 1714 4 -23.99199 210.16231 0.154 12.51161 0.03642 2.83045 0.0 H	1372	4	-22.71358	326.48636	0.12942	12.98337	0.02914	2.644	0.75	Н
10654 -22.43837 407.35153 0.16523 13.28167 0.02982 2.32573 1.0 H 933 4 -22.30191 191.67117 0.07827 12.30235 0.03002 3.29922 0.75 H 2083 4 -22.49336 340.31396 0.14233 13.06071 0.03074 2.52009 0.25 H 773 5 -22.77582 303.24048 0.1353 12.93852 0.0328 2.68299 0.0 H 1390 5 -23.84172 298.29538 0.13478 12.92256 0.03321 2.68804 0.2 H 1169 5 -23.70944 192.53825 0.08835 12.35899 0.0373 3.23826 0.0 H 657 4 -23.36415 301.94986 0.13968 12.94867 0.03401 2.54453 0.25 H 380 4 -23.29121 284.13666 0.1324 12.8726 0.03425 2.61428 0.75 H 850 4 -23.4875 442.3833 0.21142 13.46039 0.03513 2.00455 0.0 H 1713 4 -22.87173 291.43262 0.13974 12.91804 0.03525 2.54403 0.5 H 1705 4 -22.9252 226.38466 0.11216 12.60319 0.03642 2.83045 0.0 H 1214 4 -23.99199 210.16231 0.1054 12.51161 0.03675 2.69114 0.25 H <td>2056</td> <td>4</td> <td>-21.51397</td> <td>247.17389</td> <td>0.09902</td> <td>12.62538</td> <td>0.02945</td> <td>2.99281</td> <td>0.75</td> <td>Н</td>	2056	4	-21.51397	247.17389	0.09902	12.62538	0.02945	2.99281	0.75	Н
9334-22.30191191.671170.0782712.302350.030023.299220.75H20834-22.49336340.313960.1423313.060710.030742.520090.25H7735-22.77582303.240480.135312.938520.03282.682990.0H13905-23.84172298.295380.1347812.922560.033713.238260.0H11695-23.70944192.538250.0883512.358890.034733.238260.0H6574-23.36415301.949860.1396812.948670.034012.544530.25H3804-23.29121284.136660.132412.87260.034252.614280.75H8504-23.4875442.38330.2114213.460390.035132.004550.0H17134-22.87173291.432620.1397412.918040.035252.544030.5H17054-22.3627275.75550.1334112.849890.036422.830450.0H12144-23.99199210.162310.105412.511610.036872.911430.25H2094-23.20133273.203920.1390412.859760.037412.550560.25H2144-23.20133273.203920.1390412.859760.037412.550560.25H2094-2	1065	4	-22.43837	407.35153	0.16523	13.28167	0.02982	2.32573	1.0	Н
2083 4 -22.49336 340.31396 0.14233 13.06071 0.03074 2.52009 0.25 H 773 5 -22.77582 303.24048 0.1353 12.93852 0.0328 2.68209 0.0 H 1390 5 -23.84172 298.29538 0.13478 12.92256 0.03321 2.68804 0.2 H 1169 5 -23.70944 192.53825 0.08355 12.35889 0.03373 3.23826 0.0 H 657 4 -23.36415 301.94986 0.13968 12.94867 0.03401 2.54453 0.25 H 380 4 -23.29121 284.13666 0.1324 12.8726 0.03425 2.61428 0.75 H 850 4 -23.4875 442.3833 0.21142 13.46039 0.03513 2.00455 0.0 H 1713 4 -22.87173 291.43262 0.13974 12.91804 0.03525 2.54043 0.5 H 1705 4 -22.9252 226.38466 0.11216 12.60319 0.03642 </td <td>933</td> <td>4</td> <td>-22.30191</td> <td>191.67117</td> <td>0.07827</td> <td>12.30235</td> <td>0.03002</td> <td>3.29922</td> <td>0.75</td> <td>Н</td>	933	4	-22.30191	191.67117	0.07827	12.30235	0.03002	3.29922	0.75	Н
7735 -22.77582 303.24048 0.1353 12.93852 0.0328 2.68299 0.0 H 1390 5 -23.84172 298.29538 0.13478 12.92256 0.03321 2.68804 0.2 H 1169 5 -23.70944 192.53825 0.08355 12.35889 0.03373 3.23826 0.0 H 657 4 -23.36415 301.94986 0.13968 12.94867 0.03401 2.54453 0.25 H 380 4 -23.29121 284.13666 0.1324 12.8726 0.03425 2.61428 0.75 H 850 4 -23.4875 442.3833 0.21142 13.46039 0.03513 2.00455 0.0 H 1713 4 -22.87173 291.43262 0.13974 12.91804 0.03525 2.54403 0.5 H 1705 4 -22.3627 275.7555 0.13341 12.84989 0.03642 2.83045 0.0 H 1214 4 -22.9252 226.38466 0.11216 12.60319 0.03642 2.83045 0.0 H 1214 4 -23.99199 210.16231 0.1054 12.51161 0.03687 2.91143 0.25 H 209 4 -23.20133 273.20392 0.13904 12.85976 0.03741 2.55056 0.25 H 225 4 -23.32515 255.17973 0.13352 12.78288 0.03846 2.60335 0.0 H </td <td>2083</td> <td>4</td> <td>-22.49336</td> <td>340.31396</td> <td>0.14233</td> <td>13.06071</td> <td>0.03074</td> <td>2.52009</td> <td>0.25</td> <td>Н</td>	2083	4	-22.49336	340.31396	0.14233	13.06071	0.03074	2.52009	0.25	Н
13905 -23.84172 298.29538 0.13478 12.92256 0.03321 2.68804 0.2 H11695 -23.70944 192.53825 0.08835 12.35889 0.03373 3.23826 0.0 H6574 -23.36415 301.94986 0.13968 12.94867 0.03401 2.54453 0.25 H3804 -23.29121 284.13666 0.1324 12.8726 0.03425 2.61428 0.75 H8504 -23.4875 442.3833 0.21142 13.46039 0.03513 2.00455 0.0 H17134 -22.87173 291.43262 0.13974 12.91804 0.03525 2.54403 0.5 H17054 -22.3627 275.7555 0.13341 12.84989 0.03642 2.83045 0.0 H12144 -22.9252 226.38466 0.11216 12.60319 0.03647 2.91143 0.25 H5964 -23.20133 273.20392 0.13904 12.85976 0.03741 2.55056 0.25 H2094 -22.26273 242.17967 0.12405 12.70553 0.03741 2.55056 0.25 H2254 -23.32515 255.17973 0.13352 12.78288 0.03846 2.60335 0.0 H3754 -22.17997 208.71983 0.11107 12.52836 0.03912 2.84323 0.5 H1663<	773	5	-22.77582	303.24048	0.1353	12.93852	0.0328	2.68299	0.0	Н
1169 5 -23.70944 192.53825 0.08835 12.35889 0.03373 3.23826 0.0 H 657 4 -23.36415 301.94986 0.13968 12.94867 0.03401 2.54453 0.25 H 380 4 -23.29121 284.13666 0.1324 12.8726 0.03425 2.61428 0.75 H 850 4 -23.4875 442.3833 0.21142 13.46039 0.03513 2.00455 0.0 H 1713 4 -22.87173 291.43262 0.13974 12.91804 0.03525 2.64403 0.5 H 1705 4 -22.9252 226.38466 0.11216 12.60319 0.03642 2.83045 0.0 H 1214 4 -23.99199 210.16231 0.1054 12.51161 0.03687 2.91143 0.25 H 1209 4 -23.20133 273.20392 0.13904 12.85976 0.03741 2.55056 0.25 H 225 4 -23.32515 255.17973 0.13352 12.78288 0.03846	1390	5	-23.84172	298.29538	0.13478	12.92256	0.03321	2.68804	0.2	Н
6574-23.36415301.949860.1396812.948670.034012.544530.25H3804-23.29121284.136660.132412.87260.034252.614280.75H8504-23.4875442.38330.2114213.460390.035132.004550.0H17134-22.87173291.432620.1397412.918040.035252.544030.5H17054-22.3627275.75550.1334112.849890.035662.604410.0H6184-22.9252226.384660.1121612.603190.036422.830450.0H12144-23.99199210.162310.105412.511610.036872.911430.25H5964-23.26273242.179670.1240512.705530.037652.699170.25H2094-22.6273242.179670.1240512.705530.038462.603350.0H3754-22.17997208.719830.1110712.528360.039122.843230.5H16864-23.84638245.405750.1314212.742070.039372.624020.25H16634-23.1078303.563260.1670413.030970.040452.31150.0H13034-22.29249220.341580.1225312.618090.040882.715220.25H	1169	5	-23.70944	192.53825	0.08835	12.35889	0.03373	3.23826	0.0	Н
380 4 -23.29121 284.13666 0.1324 12.8726 0.03425 2.61428 0.75 H 850 4 -23.4875 442.3833 0.21142 13.46039 0.03513 2.00455 0.0 H 1713 4 -22.87173 291.43262 0.13974 12.91804 0.03525 2.54403 0.5 H 1705 4 -22.3627 275.7555 0.13341 12.84989 0.03566 2.60441 0.0 H 618 4 -22.9252 226.38466 0.11216 12.60319 0.03642 2.83045 0.0 H 1214 4 -23.99199 210.16231 0.1054 12.51161 0.03687 2.91143 0.25 H 596 4 -23.20133 273.20392 0.13904 12.85976 0.03741 2.55056 0.25 H 209 4 -22.26273 242.17967 0.12405 12.70553 0.03765 2.69917 0.25 H 225 4 -23.32515 255.17973 0.13352 12.78286 0.03912 <td>657</td> <td>4</td> <td>-23.36415</td> <td>301.94986</td> <td>0.13968</td> <td>12.94867</td> <td>0.03401</td> <td>2.54453</td> <td>0.25</td> <td>Н</td>	657	4	-23.36415	301.94986	0.13968	12.94867	0.03401	2.54453	0.25	Н
850 4 -23.4875 442.3833 0.21142 13.46039 0.03513 2.00455 0.0 H 1713 4 -22.87173 291.43262 0.13974 12.91804 0.03525 2.54403 0.5 H 1705 4 -22.3627 275.7555 0.13341 12.84989 0.03566 2.60441 0.0 H 618 4 -22.9252 226.38466 0.11216 12.60319 0.03642 2.83045 0.0 H 1214 4 -23.99199 210.16231 0.1054 12.51161 0.03687 2.91143 0.25 H 596 4 -23.20133 273.20392 0.13904 12.85976 0.03741 2.55056 0.25 H 209 4 -22.26273 242.17967 0.12405 12.70553 0.03765 2.69917 0.25 H 225 4 -23.32515 255.17973 0.13352 12.78288 0.03846 2.60335 0.0 H 375 4 -22.17997 208.71983 0.11107 12.52836 0.03912 <td>380</td> <td>4</td> <td>-23.29121</td> <td>284.13666</td> <td>0.1324</td> <td>12.8726</td> <td>0.03425</td> <td>2.61428</td> <td>0.75</td> <td>Н</td>	380	4	-23.29121	284.13666	0.1324	12.8726	0.03425	2.61428	0.75	Н
17134 -22.87173 291.43262 0.13974 12.91804 0.03525 2.54403 0.5 H 1705 4 -22.3627 275.7555 0.13341 12.84989 0.03556 2.60441 0.0 H 618 4 -22.9252 226.38466 0.11216 12.60319 0.03642 2.83045 0.0 H 1214 4 -23.99199 210.16231 0.1054 12.51161 0.03687 2.91143 0.25 H 596 4 -23.20133 273.20392 0.13904 12.85976 0.03741 2.55056 0.25 H 209 4 -22.26273 242.17967 0.12405 12.70553 0.03765 2.69917 0.25 H 225 4 -23.32515 255.17973 0.13352 12.78288 0.03846 2.60335 0.0 H 375 4 -22.17997 208.71983 0.11107 12.52836 0.03912 2.84323 0.5 H 1686 4 -23.84638 245.40575 0.13142 12.74207 0.03937 2.62402 0.25 H 1663 4 -23.1078 303.56326 0.16704 13.03097 0.04045 2.3115 0.0 H 1303 4 -22.29249 220.34158 0.12253 12.61809 0.04108 2.71522 0.25 H	850	4	-23.4875	442.3833	0.21142	13.46039	0.03513	2.00455	0.0	Н
17054 -22.3627 275.7555 0.13341 12.84989 0.03556 2.60441 0.0 H 618 4 -22.9252 226.38466 0.11216 12.60319 0.03642 2.83045 0.0 H 1214 4 -23.99199 210.16231 0.1054 12.51161 0.03687 2.91143 0.25 H 596 4 -23.20133 273.20392 0.13904 12.85976 0.03741 2.55056 0.25 H 209 4 -22.26273 242.17967 0.12405 12.70553 0.03765 2.69917 0.25 H 225 4 -23.32515 255.17973 0.13352 12.78288 0.03846 2.60335 0.0 H 375 4 -22.17997 208.71983 0.11107 12.52836 0.03912 2.84323 0.5 H 1686 4 -23.84638 245.40575 0.13142 12.74207 0.03937 2.62402 0.25 H 1663 4 -23.1078 303.56326 0.16704 13.03097 0.04045 2.3115 0.0 H 1303 4 -22.29249 220.34158 0.12253 12.61809 0.04088 2.71522 0.25 H 2256 4 -23.465408 251.71504 0.1405 12.70212 0.04103 2.52608 0.0 H	1713	4	-22.87173	291.43262	0.13974	12.91804	0.03525	2.54403	0.5	Н
618 4 -22.9252 226.38466 0.11216 12.60319 0.03642 2.83045 0.0 H 1214 4 -23.99199 210.16231 0.1054 12.51161 0.03687 2.91143 0.25 H 596 4 -23.20133 273.20392 0.13904 12.85976 0.03741 2.55056 0.25 H 209 4 -22.26273 242.17967 0.12405 12.70553 0.03765 2.69917 0.25 H 225 4 -23.32515 255.17973 0.13352 12.78288 0.03846 2.60335 0.0 H 375 4 -22.17997 208.71983 0.11107 12.52836 0.03912 2.84323 0.5 H 1686 4 -23.84638 245.40575 0.13142 12.74207 0.03937 2.62402 0.25 H 663 4 -23.1078 303.56326 0.16704 13.03097 0.04045 2.3115 0.0 H 1303 4 -22.29249 220.34158 0.12253 12.61809 0.04103	1705	4	-22.3627	275.7555	0.13341	12.84989	0.03556	2.60441	0.0	Н
12144 -23.99199 210.16231 0.1054 12.51161 0.03687 2.91143 0.25 H5964 -23.20133 273.20392 0.13904 12.85976 0.03741 2.55056 0.25 H2094 -22.26273 242.17967 0.12405 12.70553 0.03765 2.69917 0.25 H2254 -23.32515 255.17973 0.13352 12.78288 0.03846 2.60335 0.0 H3754 -22.17997 208.71983 0.11107 12.52836 0.03912 2.84323 0.5 H16864 -23.84638 245.40575 0.13142 12.74207 0.03937 2.62402 0.25 H6634 -23.1078 303.56326 0.16704 13.03097 0.04045 2.3115 0.0 H13034 -22.29249 220.34158 0.12253 12.61809 0.04088 2.71522 0.25 H	618	4	-22.9252	226.38466	0.11216	12.60319	0.03642	2.83045	0.0	Н
596 4 -23.20133 273.20392 0.13904 12.85976 0.03741 2.55056 0.25 H 209 4 -22.26273 242.17967 0.12405 12.70553 0.03765 2.69917 0.25 H 225 4 -23.32515 255.17973 0.13352 12.78288 0.03846 2.60335 0.0 H 375 4 -22.17997 208.71983 0.11107 12.52836 0.03912 2.84323 0.5 H 1686 4 -23.84638 245.40575 0.13142 12.74207 0.03937 2.62402 0.25 H 663 4 -23.1078 303.56326 0.16704 13.03097 0.04045 2.3115 0.0 H 1303 4 -22.29249 220.34158 0.12253 12.61809 0.04088 2.71522 0.25 H 2356 4 -24.45408 251.71504 0.1405 12.70212 0.04103 2.56088 0.0 H	1214	4	-23.99199	210.16231	0.1054	12.51161	0.03687	2.91143	0.25	Н
209 4 -22.26273 242.17967 0.12405 12.70553 0.03765 2.69917 0.25 H 225 4 -23.32515 255.17973 0.13352 12.78288 0.03846 2.60335 0.0 H 375 4 -22.17997 208.71983 0.11107 12.52836 0.03912 2.84323 0.5 H 1686 4 -23.84638 245.40575 0.13142 12.74207 0.03937 2.62402 0.25 H 663 4 -23.1078 303.56326 0.16704 13.03097 0.04045 2.3115 0.0 H 1303 4 -22.29249 220.34158 0.12253 12.61809 0.04088 2.71522 0.25 H 2356 4 -24.45408 251.71504 0.1405 12.70212 0.04103 2.53608 0.0 H	596	4	-23.20133	273.20392	0.13904	12.85976	0.03741	2.55056	0.25	Н
225 4 -23.32515 255.17973 0.13352 12.78288 0.03846 2.60335 0.0 H 375 4 -22.17997 208.71983 0.11107 12.52836 0.03912 2.84323 0.5 H 1686 4 -23.84638 245.40575 0.13142 12.74207 0.03937 2.62402 0.25 H 663 4 -23.1078 303.56326 0.16704 13.03097 0.04045 2.3115 0.0 H 1303 4 -22.29249 220.34158 0.12253 12.61809 0.04088 2.71522 0.25 H 2256 4 -24.45408 251.71504 0.1405 12.70212 0.04103 2.53608 0.0 H	209	4	-22.26273	242.17967	0.12405	12.70553	0.03765	2.69917	0.25	Н
375 4 -22.17997 208.71983 0.11107 12.52836 0.03912 2.84323 0.5 H 1686 4 -23.84638 245.40575 0.13142 12.74207 0.03937 2.62402 0.25 H 663 4 -23.1078 303.56326 0.16704 13.03097 0.04045 2.3115 0.0 H 1303 4 -22.29249 220.34158 0.12253 12.61809 0.04088 2.71522 0.25 H 2256 4 24.45408 251.71504 0.1405 12.70212 0.04102 2.52608 0.0 H	225	4	-23.32515	255.17973	0.13352	12.78288	0.03846	2.60335	0.0	Н
1686 4 -23.84638 245.40575 0.13142 12.74207 0.03937 2.62402 0.25 H 663 4 -23.1078 303.56326 0.16704 13.03097 0.04045 2.3115 0.0 H 1303 4 -22.29249 220.34158 0.12253 12.61809 0.04088 2.71522 0.25 H 2256 4 24.45408 251.71504 0.1405 12.70212 0.04103 2.53608 0.0 H	375	4	-22.17997	208.71983	0.11107	12.52836	0.03912	2.84323	0.5	Н
663 4 -23.1078 303.56326 0.16704 13.03097 0.04045 2.3115 0.0 H 1303 4 -22.29249 220.34158 0.12253 12.61809 0.04088 2.71522 0.25 H 2256 4 24.45408 251.71504 0.1405 12.70212 0.04103 2.52608 0.0 H	1686	4	-23.84638	245.40575	0.13142	12.74207	0.03937	2.62402	0.25	Н
1303 4 -22.29249 220.34158 0.12253 12.61809 0.04088 2.71522 0.25 H 2256 4 24.45408 251.71504 0.1405 12.70212 0.04102 2.52608 0.0 H	663	4	-23.1078	303.56326	0.16704	13.03097	0.04045	2.3115	0.0	Н
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1303	4	-22.29249	220.34158	0.12253	12.61809	0.04088	2.71522	0.25	Н
2230 4 -24.43490 231.71304 0.1403 12.79313 0.04103 2.33090 0.0 11	2256	4	-24.45498	251.71504	0.1405	12.79313	0.04103	2.53698	0.0	Н
800 4 -22.71132 232.23518 0.12979 12.68875 0.04108 2.64025 0.25 H	800	4	-22.71132	232.23518	0.12979	12.68875	0.04108	2.64025	0.25	Н
406 4 -23.74362 240.54518 0.13825 12.74671 0.04225 2.55799 0.25 H	406	4	-23.74362	240.54518	0.13825	12.74671	0.04225	2.55799	0.25	Н
2087 4 -23.05776 185.30817 0.11045 12.42261 0.04382 2.85046 0.0 H	2087	4	-23.05776	185.30817	0.11045	12.42261	0.04382	2.85046	0.0	Н
253 4 -23.08334 230.19572 0.14081 12.71649 0.04497 2.53403 0.75 H	253	4	-23.08334	230.19572	0.14081	12.71649	0.04497	2.53403	0.75	Н
673 4 -23.57003 258.4045 0.16068 12.87422 0.04571 2.36207 0.0 H	673	4	-23.57003	258.4045	0.16068	12.87422	0.04571	2.36207	0.0	Н
135 4 -23.01472 199.39705 0.12633 12.54459 0.04657 2.67546 0.25 H	135	4	-23.01472	199.39705	0.12633	12.54459	0.04657	2.67546	0.25	Н
2166 5 -24.16096 469.9154 0.29866 13.66287 0.04672 1.65135 0.4 H	2166	5	-24.16096	469.9154	0.29866	13.66287	0.04672	1.65135	0.4	Н
1717 4 -23.24431 383.56552 0.24466 13.39989 0.04689 1.8143 0.25 H	1717	4	-23.24431	383.56552	0.24466	13.39989	0.04689	1.8143	0.25	Н
1324 4 -23.33909 260.70352 0.16742 12.89976 0.04721 2.30852 0.25 H	1324	4	-23.33909	260.70352	0.16742	12.89976	0.04721	2.30852	0.25	Н
670 5 -24.18419 377.83524 0.24745 13.39175 0.04814 1.89641 0.2 H	670	5	-24.18419	377.83524	0.24745	13.39175	0.04814	1.89641	0.2	Н
748 5 -23.80492 318.838 0.21586 13.18497 0.04977 2.07436 0.2 H	748	5	-23.80492	318.838	0.21586	13.18497	0.04977	2.07436	0.2	Н
895 4 -22.32889 194.40796 0.14087 12.5699 0.05327 2.53351 0.0 H	895	4	-22.32889	194.40796	0.14087	12.5699	0.05327	2.53351	0.0	Н
1070 4 -22.89126 248.3479 0.18542 12.90193 0.05488 2.17549 0.0 H	1070	4	-22.89126	248.3479	0.18542	12.90193	0.05488	2.17549	0.0	Н
1274 4 -22.9272 275.12704 0.20876 13.04236 0.05578 2.02105 0.5 H	1274	4	-22,9272	275.12704	0.20876	13.04236	0.05578	2.02105	0.5	 Н
1113 4 -23.30823 218.56764 0.16728 12.74627 0.05626 2.30962 0.25 H	1113	4	-23.30823	218.56764	0.16728	12.74627	0.05626	2.30962	0.25	Н
Continua na próxima página	Continua	na pró	xima nágina		0.10120	12., 1021	0.00020	2.00002	0.20	

Tabela A.2 – continuação da página anterior

GroupID	N_m	M_r	σ_G	R _{harm}	log M	t_c	$\log \rho$	fsp	Class
		(mag)	$(\rm km/s)$	(Mpc)		(H_0)			
2208	5	-23.81562	276.8277	0.21869	13.0679	0.05807	2.05741	0.2	Н
1300	4	-22.30241	183.40327	0.15063	12.54837	0.06037	2.44627	0.5	Н
920	4	-23.52712	286.63342	0.23863	13.13602	0.0612	1.84682	0.25	Н
1592	4	-22.70905	191.5309	0.16128	12.61572	0.0619	2.35719	0.5	Н
1769	4	-23.88926	283.71918	0.24039	13.13035	0.06228	1.83722	0.25	Н
1464	4	-22.71718	215.32292	0.18275	12.77169	0.06239	2.1944	0.5	Н
811	4	-22.4584	222.37167	0.18961	12.81566	0.06268	2.14642	0.0	Н
1173	4	-23.81617	276.80832	0.2416	13.1111	0.06416	1.83069	0.0	Н
1909	5	-23.94225	298.64487	0.26658	13.21979	0.06562	1.79941	0.0	Н
1012	4	-22.36551	210.87572	0.19765	12.78761	0.0689	2.09226	0.5	Н
1301	4	-23.52054	257.65	0.2492	13.06226	0.0711	1.79033	0.25	Н
735	4	-23.53957	211.2864	0.20515	12.80547	0.07138	2.04374	0.25	Н
1189	5	-23.13815	233.37009	0.22703	12.93583	0.07151	2.00861	0.8	Н
1789	4	-23.51063	287.02997	0.28038	13.20725	0.07181	1.63673	0.25	Н
1901	4	-23.27581	246.73026	0.24526	13.01772	0.07307	1.8111	0.25	Н
954	4	-22.93381	232.8592	0.23765	12.95378	0.07502	1.85215	0.75	Н
1532	4	-23.48681	290.3558	0.3017	13.24909	0.07638	1.54125	0.25	Н
382	4	-23.66696	235.03648	0.25684	12.99559	0.08033	1.75098	0.0	Н
1551	4	-23.05234	218.18669	0.23852	12.89883	0.08036	1.84741	0.25	Н
2225	5	-23.31458	271.63577	0.29852	13.1866	0.08079	1.65197	0.4	Н
2295	4	-23.13318	379.60504	0.41893	13.62446	0.08113	1.11354	0.25	Н
1487	4	-23.21317	236.5384	0.26164	13.00915	0.08131	1.72688	0.25	Н
2263	7	-24.03493	309.5383	0.34409	13.36175	0.08172	1.61299	0.43	Н
2067	5	-23.32188	187.8088	0.22045	12.73439	0.08629	2.04698	0.2	Н
1779	4	-24.19759	349.39413	0.44331	13.57699	0.09327	1.03984	0.25	Н
737	4	-23.46191	182.11754	0.23148	12.72887	0.09344	1.88643	0.25	Н
1764	4	-23.34622	186.03825	0.24803	12.77735	0.098	1.79648	0.0	Н
533	4	-23.43282	205.0583	0.27449	12.90593	0.0984	1.66439	0.25	Н
2284	4	-22.62204	182.58755	0.25591	12.77468	0.10303	1.75571	0.0	Н
1341	4	-24.649	227.4405	0.32053	13.06326	0.1036	1.46235	0.0	Н
2102	4	-24.14641	192.48509	0.27218	12.8473	0.10395	1.67541	0.0	Н
2099	4	-23.58294	249.14816	0.35999	13.19286	0.10622	1.31109	0.0	Η
1044	4	-23.70229	205.87936	0.30124	12.9498	0.10756	1.54321	0.25	Н
1681	4	-23.29212	184.97379	0.32199	12.88571	0.12796	1.45646	0.0	Н
1388	4	-23.85669	197.21857	0.38342	13.01723	0.14292	1.22893	0.5	Н
2239	4	-23.62445	217.1688	0.44853	13.16904	0.15182	1.02461	0.25	Н

Tabela A.2 – continuação da página anterior

A.1.3 Morfometria - Cymorph

Tabela A.3 - Parâmetros morfométricos estimados pelo Cymorph e classe morfológica dada pela aplicação do método de Árvore de decisão. Os parâmetros são: Assimetria (A3), Smoothness (S3), Concentração (CN), Entropia (H), Gradient Pattern Analysis - GPA.

Obiid	A3	S3	CN	Н	GPA	Classe
588010358544924882	0.772	0.869	0.32	0.671	1.445	S
587729388223201461	0.46	0.901	0.315	0.807	1.543	S
587729407546229054	0.607	0.845	0.346	0.731	1.651	\mathbf{S}
587736586040967385	0.858	0.937	0.298	0.766	1.744	S
587731514232078513	0.441	0.819	0.395	0.771	1.818	\mathbf{S}
588017979453341736	0.359	0.86	1.218	0.712	1.754	\mathbf{S}
587730021723799636	0.72	0.792	0.401	0.633	1.129	\mathbf{S}
587742775100571751	0.26	0.961	0.425	0.64	1.076	\mathbf{S}
587741490354389310	0.907	0.945	0.389	0.808	1.794	\mathbf{S}
587742902326132967	0.501	0.805	0.392	0.641	1.463	\mathbf{S}
587734894367539290	0.76	0.899	0.254	0.811	1.843	\mathbf{S}
587736753005396194	0.762	0.893	0.305	0.78	1.742	\mathbf{S}
587731513156632722	0.698	0.853	0.361	0.777	1.789	\mathbf{S}
587739406261485802	0.855	0.895	0.313	0.763	1.574	\mathbf{S}
588023722317840542	0.647	0.891	0.316	0.729	1.693	\mathbf{S}
587731186738004075	0.76	0.829	0.362	0.742	1.652	\mathbf{S}
587731499184423092	0.571	0.863	0.475	0.776	1.709	\mathbf{S}
588023722317840548	0.152	0.928	0.777	0.803	1.703	\mathbf{S}
587741601495253171	0.725	0.892	0.319	0.747	1.694	\mathbf{S}
587742010045432119	0.787	0.913	0.355	0.762	1.709	\mathbf{S}
587742902326198417	0.899	0.962	0.268	0.847	1.835	\mathbf{S}
587741600963297386	0.527	0.844	0.477	0.603	1.036	\mathbf{S}
587739610230554752	0.513	0.943	0.36	0.817	1.662	\mathbf{S}
587729407546228763	0.071	0.982	0.416	0.829	1.764	\mathbf{S}
587742190971781305	0.662	0.839	0.281	0.698	1.632	\mathbf{S}
587729388223201436	0.623	0.809	0.431	0.67	1.323	\mathbf{S}
587729157905514698	0.509	0.736	0.423	0.751	1.757	\mathbf{S}
587742062159593500	0.882	0.947	0.345	0.753	1.609	\mathbf{S}
587729157905514683	0.494	0.836	0.386	0.797	1.86	\mathbf{S}
588017979453342020	0.652	0.763	0.555	0.679	1.61	\mathbf{S}
587731891650494559	0.589	0.881	0.359	0.742	1.775	\mathbf{S}
587739405709803663	0.695	0.874	0.231	0.807	1.776	\mathbf{S}
587742611880083613	0.805	0.837	0.451	0.704	1.528	\mathbf{S}
587741601495253156	0.774	0.82	0.345	0.675	1.338	\mathbf{S}
588017605215584535	0.7	0.87	0.389	0.732	1.676	\mathbf{S}
587739610230554751	0.239	0.918	0.353	0.69	1.693	\mathbf{S}
587742013283762328	0.106	0.826	0.073	0.737	1.749	\mathbf{S}
587732482205090041	0.72	0.835	0.328	0.778	1.81	\mathbf{S}
588848901533401288	0.892	0.926	0.341	0.81	1.769	\mathbf{S}
587741724976152667	0.337	0.945	0.305	0.811	1.748	\mathbf{S}
587732578845982949	0.614	0.846	0.339	0.722	1.581	\mathbf{S}
587735695916400754	0.506	0.815	0.453	0.723	1.706	\mathbf{S}
588848901533663328	0.842	0.935	0.27	0.778	1.748	\mathbf{S}
587725817494962352	0.771	0.863	0.295	0.691	1.612	\mathbf{S}
			Con	tinua na	próxima	a página

Objid A3 S3CN Η GPA Classe 587742060554879300 0.828 0.893 0.340.715 1.587 \mathbf{S} \mathbf{S} 587725818033799307 0.5680.8030.690.5851.2470.2890.82 \mathbf{S} 588007004163735580 0.8610.9391.8220.935 \mathbf{S} 588017979961901100 0.5350.340.7971.797587741724976152746 0.1990.911 0.4050.7971.809 \mathbf{S} 587731186738004068 0.8620.9370.3130.8131.774 \mathbf{S} 0.7030.880.5080.7471.731 \mathbf{S} 587735662626668789 587739609162317939 0.694 0.7980.918 0.7311.646 \mathbf{S} 587731870706368717 0.580.7440.403 0.7521.743 \mathbf{S} \mathbf{S} 0.885587726033854398529 0.4660.3460.7631.710.8020.4690.638 \mathbf{S} 588848901533401316 0.7461.48 587725818033799312 0.6340.8120.430.71.449S 587729388223201448 0.8090.8920.460.5180.58Ε \mathbf{S} 587744727687954659 0.7340.8780.3320.7711.697 \mathbf{S} 588848900429119680 0.8290.9330.3430.8091.755877293860783392390.6490.8650.440.751.778 \mathbf{S} 588017978912735478 0.7880.8310.4620.7061.583 \mathbf{S} \mathbf{S} 587738372745855292 0.6140.9310.2930.8261.844588017566026170438 0.5670.9470.3870.7941.649 \mathbf{S} 587746210788671665 0.6070.8220.3110.7431.612S \mathbf{S} 0.6050.8930.6521.309588017605215584540 0.4110.8580.4610.652 \mathbf{S} 588016891714011248 0.6241.412587722983345291446 0.770.8520.4080.7521.718S 5877315131566326790.7460.8640.350.6531.482 \mathbf{S} \mathbf{S} 5877286688038586990.1710.998 0.3480.8411.729 \mathbf{S} 0.9740.35587731514232013076 0.6360.6751.359587739114169893048 0.5310.9550.4680.5870.963 \mathbf{S} 587738065653334434 0.6010.821 0.2970.741.718 S 0.808 0.6270.3091.553S 588007004163735763 0.929587731514216743040 0.5870.819 0.490.6241.428 \mathbf{S} 587742062159593649 0.493 0.9240.30.7921.817 S \mathbf{S} 587742611880149164 0.380.9060.3750.7421.7215880103606959474330.693 0.879 0.3810.758 \mathbf{S} 1.710.6720.7210.612Е 587738574069170419 0.8491.307 \mathbf{S} 587744727687954658 0.7930.880.3680.7951.760.735 \mathbf{S} 588007004163735579 0.7710.9040.3461.64S 0.6270.8561.0520.661.387588018055656767593 587741489301487650 0.0120.9240.4160.7871.796 \mathbf{S} 587735696986079381 0.6650.7810.5650.6921.639 \mathbf{S} \mathbf{S} 587729408619905432 0.4660.7350.490.6421.409587741601495253177 0.6490.9340.3340.7881.62 \mathbf{S} 587731187283787949 0.326 0.827 0.3970.7421.766 \mathbf{S} \mathbf{S} 0.888 0.928 0.2530.795587739609162317916 1.81587742013283762321 0.6730.8990.3350.7391.43S 587741421098041757 0.686 0.7960.0350.6971.719S \mathbf{S} 587736586040967223 0.740.9080.3340.7611.44 \mathbf{S} 587731499184423091 0.3740.8930.3340.8011.8090.838S 0.7350.4570.6191.276587741815710285869 5877414903543892830.5020.8370.3660.7441.59 \mathbf{S} 5877229833452914450.7860.890.3010.7031.624 \mathbf{S} 0.761 \mathbf{S} 0.794 0.3741.6285877413921115998350.899587736753005396250 0.2910.9360.5870.7761.638S Continua na próxima página

Tabela A.3 – continuação da página anterior

Tabela A.3 – continuação da página anterior

Objid	A3	S3	CN	Н	GPA	Classe
587741600963297385	0.82	0.86	0.435	0.583	1.072	S
587738574069235783	0.558	0.853	0.368	0.632	1.422	\mathbf{S}
587727865644974417	0.671	0.786	0.547	0.51	1.031	E
587730022790004875	0.595	0.908	0.414	0.62	1.166	\mathbf{S}
588010360695947306	0.568	0.876	0.44	0.692	1.612	\mathbf{S}
587732770524889290	0.74	0.774	0.418	0.722	1.631	\mathbf{S}
587742902326198430	0.338	0.621	0.437	0.516	0.804	\mathbf{S}
588017566562123889	0.646	0.746	0.774	0.766	1.806	\mathbf{S}
587738616488198303	0.753	0.875	0.439	0.78	1.682	\mathbf{S}
587742775100571754	0.248	0.855	0.406	0.74	1.797	\mathbf{S}
587722984434040992	0.279	0.861	0.361	0.795	1.681	\mathbf{S}
588023045863768261	0.48	0.815	0.243	0.736	1.721	\mathbf{S}
587725818037665979	0.776	0.847	0.449	0.605	1.203	\mathbf{S}
588015509281898679	0.791	0.866	0.328	0.614	1.419	\mathbf{S}
588017566026170537	0.467	0.973	0.318	0.812	1.637	\mathbf{S}
587726101492334640	0.734	0.928	0.334	0.736	1.51	\mathbf{S}
587741490354389274	0.174	0.849	0.37	0.809	1.714	S
588017605215584524	0.136	0.903	0.404	0.803	1.715	S
588017704529821799	0.743	0.802	1.148	0.727	1.745	\mathbf{S}
587731513156632689	0.257	0.816	0.295	0.76	1.741	\mathbf{S}
588023722317840535	0.848	0.893	0.385	0.547	0.807	\mathbf{S}
587738569776431306	0.574	0.729	0.054	0.735	1.755	\mathbf{S}
587741815710285868	0.794	0.872	0.413	0.709	0.872	\mathbf{S}
587730022790004866	0.863	0.899	0.361	0.623	1.206	\mathbf{S}
587731891650494556	0.601	0.91	0.359	0.782	1.564	\mathbf{S}
587731869627252855	0.785	0.897	0.342	0.701	1.615	\mathbf{S}
587741490891391177	0.759	0.791	0.343	0.648	1.567	\mathbf{S}
588017605215584368	0.853	0.874	0.346	0.613	1.086	\mathbf{S}
587739610230554685	0.418	0.688	0.448	0.546	0.659	\mathbf{S}
587732769986576485	0.856	0.893	0.322	0.702	1.797	\mathbf{S}
588018091615781045	0.576	0.734	0.278	0.539	0.948	\mathbf{S}
588017979453341735	0.669	0.798	0.498	0.557	1.077	Е
588018055656767614	0.84	0.893	0.347	0.617	1.407	S
588009368008261825	0.317	0.912	0.366	0.785	1.649	\mathbf{S}
588018089469149306	0.835	0.923	0.021	0.785	1.638	S
587731886268088699	0.256	0.709	0.347	0.733	1.789	S
588018089469149329	0.427	0.953	0.289	0.809	1.687	\mathbf{S}
587736618789962030	0.459	0.817	0.498	0.611	1.437	\mathbf{S}
587731187283787989	0.79	0.863	0.441	0.755	1.758	S
587744727687954648	0.588	0.762	0.464	0.632	1.501	S
587739114169827582	0.599	0.944	0.335	0.606	0.627	S
587729753279496522	0.72	0.81	0.701	0.628	1.265	\mathbf{S}
587734892753977458	0.726	0.969	0.343	0.769	1.619	\mathbf{S}
587734891683053709	0.766	0.774	0.651	0.746	1.807	\mathbf{S}
587732770524889316	0.846	0.908	0.295	0.769	1.577	\mathbf{S}
587733081341886541	0.42	0.876	0.429	0.683	1.552	S
587725818037666015	0.813	0.847	0.462	0.625	1.274	\mathbf{S}
587732484369809510	0.631	0.986	0.42	0.633	1.213	\mathbf{S}
587741387275764125	0.541	0.835	0.339	0.674	1.426	\mathbf{S}
587731514232078517	0.159	0.901	0.325	0.833	1.822	\mathbf{S}
587739609162317937	0.392	0.915	0.476	0.812	1.76	\mathbf{S}
588017115591737522	0.468	0.957	0.408	0.681	1.513	\mathbf{S}
			Con	tinua na	próxima	n página

Objid A3 S3CN Η GPA Classe 587741724976152695 0.7390.799 0.4050.606 1.408S \mathbf{S} 588023668103250074 0.5070.906 0.4090.7731.6720.654 \mathbf{S} 587736805619794082 0.7130.8490.3891.3160.869 \mathbf{S} 587735662626668788 0.5560.7810.6751.487587725817494962324 0.4790.8570.360.5691.013 \mathbf{S} 588017705070100577 0.6710.8410.8190.6671.209 \mathbf{S} 5877380656533342200.7870.9160.3590.721.512 \mathbf{S} 587738569776431166 0.4840.944 0.3580.7241.441 \mathbf{S} 587736919971725743 0.270.929 0.673 0.7891.721 \mathbf{S} \mathbf{S} 0.7720.2320.684588015509813002350 0.4121.5550.8540.3050.757S 587739096982749306 0.4861.645587741421098041459 0.3430.7590.4320.7411.667S \mathbf{S} 587741815710285870 0.2620.8680.3990.687 1.369 \mathbf{S} 588011123583287489 0.4950.8730.4040.7271.558 \mathbf{S} 587734892751356015 0.7790.8120.3310.7371.7545877229844340409730.7740.8730.3230.6781.593 \mathbf{S} 587722983911981381 0.688 0.749 0.280.697 1.709 \mathbf{S} 0.721 \mathbf{S} 588848901519179937 0.8720.3830.5941.114587736618789962015 0.2750.883 0.4310.7561.615 \mathbf{S} 588023240744173717 0.4240.7860.8370.71.574S 587734894367539289 \mathbf{S} 0.8350.9110.2920.8411.817587739629557907609 0.8740.270.652 \mathbf{S} 0.6511.395587741709940359362 0.5310.8530.3920.6331.209S 5880168917140112590.3140.8030.8740.7151.816 \mathbf{S} \mathbf{S} 588017705070100601 0.680.760.550.7131.633 \mathbf{S} 0.3780.655587725816425283711 0.4070.9891.19587739844848910551 0.8750.9270.3270.6941.654 \mathbf{S} 587722983911981324 0.4150.8370.5960.7451.712S 0.8790.9040.3231.426 \mathbf{S} 587722984434040969 0.651587741601495253174 0.4740.8020.3460.7511.801 \mathbf{S} 587731187280183456 0.7030.831 0.396 0.721.73S \mathbf{S} 5877297532794965580.6310.8540.2950.698 1.593588018055127367830-0.3670.847 0.299 0.414 \mathbf{S} 0.444587739629557907607 0.7830.8550.323 0.7261.668 \mathbf{S} 0.2940.654 \mathbf{S} 587735696987586734 0.8070.8551.4970.304 1.779 \mathbf{S} 588017991772471534 0.4210.9170.803S 0.836 0.4310.803587732771589587099 0.441.771587739096982749305 0.4290.8220.4360.7441.675 \mathbf{S} 587726101492334875 0.650.7480.4110.5651.108 \mathbf{S} 0.274 \mathbf{S} 587732771055337552 0.7930.8950.7091.6925877318862680886680.7710.8720.4080.5370.838 \mathbf{S} 5877311872801833020.6730.8770.411 0.677 1.497 \mathbf{S} \mathbf{S} 0.860.9250.303 0.7011.772588018091615781047 588010879291424891 0.839 0.9040.3020.7931.819 S 588297863656833164 0.4550.9290.338 0.8021.759S \mathbf{S} 587731680118046843 0.5220.8290.3340.7221.727 \mathbf{S} 588297863117406339 0.6560.8040.2950.7481.763 \mathbf{S} 0.7650.8260.9780.671.514588848901533401287 5877260333127435760.7510.817 0.5030.7391.655 \mathbf{S} 5877315142167429350.7970.8780.470.6471.244 \mathbf{S} \mathbf{S} 0.6781.467 5877394062614858430.5960.8650.4135877420605549446520.5470.960.406 0.7791.524S Continua na próxima página

Tabela A.3 – continuação da página anterior

Objid A3 S3CNΗ GPA Classe 588013384336146677 0.5980.834 0.3150.638 1.553S \mathbf{S} 587736524299108724 0.5510.90.3540.7481.788Е 587735662626668801 0.6830.819 0.5260.5460.957Е 587735695916400753 0.7570.7270.5070.5911.461587745244697329759 0.6360.7690.6260.6721.466 \mathbf{S} 587742902326198436 0.8380.8840.5470.5140.554Ε 5877300227900048680.7820.8670.4321.084 \mathbf{S} 0.5975877315142320785220.726 0.809 0.4380.6591.548 \mathbf{S} 587726101492334907 0.5330.7720.045 0.7161.757 \mathbf{S} \mathbf{S} 0.7930.9320.2830.827 587729753279496516 1.6130.683S 588009368008261846 0.8350.9050.5511.3690.736587742190971781280 0.2880.8790.2681.808 S \mathbf{S} 587735695916400765 0.710.8980.3280.6771.622 \mathbf{S} 5877356669151479120.7820.9160.360.691.6060.703 \mathbf{S} 588297863103512716 0.7960.8370.481.7055877315142167430360.6660.8260.5840.7181.689 \mathbf{S} 587736586040967249 0.60.8520.4340.611.251 \mathbf{S} 0.7921.734 \mathbf{S} 587736919971725706 0.3150.4420.7595877327699865764830.638 0.9420.340.7561.514 \mathbf{S} 588015509281898682 0.4610.828 0.3940.5861.251S 587731886268088671 \mathbf{S} 0.2980.7880.8380.6991.625877383727458553580.4230.672 \mathbf{S} 0.5510.8151.629588009368008261793 0.4830.9120.4230.6771.407 \mathbf{S} 5877462110578934780.7880.8730.3290.6551.536 \mathbf{S} \mathbf{S} 5877356969875867190.639 0.8620.3550.681.492 \mathbf{S} 587731891114147937 0.7560.7410.5040.7341.57587727865644974418 0.6310.8320.5550.5950.978Ε 587732578846048491 0.7120.8650.4220.614 1.205S 0.8625877327705248891730.436 \mathbf{S} 0.6160.7331.544587731187280183301 0.816 0.8730.4020.6291.362 \mathbf{S} 588017566026235984 0.7440.963 0.2770.811.551S \mathbf{S} 587739844848910554 0.720.8810.3830.6591.409587739114169893058 0.990.492 0.591.013 \mathbf{S} 0.4490.746 588023240744173699 0.3610.375 \mathbf{S} 0.8961.7840.253 \mathbf{S} 587729157905514681 0.7730.8540.7611.790.414 0.454Е 587725817494962197 0.5520.7130.5960.658 \mathbf{S} 0.5960.8470.334588848901533663337 1.57587741387275764110 0.6450.8330.3640.686 1.595 \mathbf{S} \mathbf{S} 5877416014896170250.7620.7790.3230.5781.322 \mathbf{S} 588016878292500502 0.5270.8760.4310.7111.5675877229839119813620.8030.8240.2920.6671.522 \mathbf{S} 5877318911141479350.640.909 0.309 0.7521.631 \mathbf{S} \mathbf{S} 0.8590.9190.645587725816425218176 0.3460.52587731187283787974 0.2670.9070.4410.7131.52S 588017566026236005 0.4150.860.3920.64 \mathbf{S} 1.34 \mathbf{S} 588023722317840536 0.3650.8940.4290.6271.302 \mathbf{S} 587745244697329861 0.5240.9420.3490.7861.579 \mathbf{S} 0.5330.8170.4160.5571.042587725818037666001 5877318911141479380.816 0.90.3790.7561.59 \mathbf{S} 5880236681032500730.3710.810.5260.6541.307 \mathbf{S} 0.769 \mathbf{S} 0.248 0.413 1.6045877254728074527810.942588017115591737500 0.8040.8140.4420.6491.47S Continua na próxima página

Tabela A.3 – continuação da página anterior

CN Objid A3S3Η GPA Classe 587741390494892361 0.811 0.838 0.386 0.5861.368 S \mathbf{S} 587741392111599834 0.7220.8650.3740.6481.2730.732 \mathbf{S} 587729408619905465 0.5110.770.6351.804 \mathbf{S} 588016891712438466 0.5180.8070.5960.591.108587746211057893403 0.5620.7760.2970.7071.725 \mathbf{S} 587732578846048451 0.2960.8760.4370.6941.341 \mathbf{S} 5877315136836732890.3640.9890.3590.7351.683 \mathbf{S} 587742903937990667 0.7710.922 0.429 0.5460.827 \mathbf{S} 587742010045366647 0.208 0.9530.3740.692 1.648 \mathbf{S} \mathbf{S} 0.5670.963 0.548587742902326198400 0.4610.807587736805619794051 0.8750.379S 0.4710.711.636587742062159593498 0.7380.8660.4950.581.06Е \mathbf{S} 588011123584991440 0.7530.9220.3020.7871.705 \mathbf{S} 588007003658256665 0.7350.8320.370.6861.6590.833 \mathbf{S} 588297863656833166 0.7360.4120.6651.455880177195667293270.5350.809 0.3410.8131.803 \mathbf{S} 588017704529821780 0.3640.883 0.3820.819 1.682 \mathbf{S} 0.954 \mathbf{S} 588010360695947424 0.5460.7790.4430.541588297863117406335 0.4610.936 0.3250.8031.737 \mathbf{S} 587731680118046856 0.7170.8770.3320.8441.896 S \mathbf{S} 0.380.6921.628588023240744173733 0.6350.8180.9270.2960.822 \mathbf{S} 587741490354389266 0.6021.774587732482205090050 0.6930.8780.329 0.771.739S 5877229839119813610.150.8110.550.7551.652 \mathbf{S} \mathbf{S} 5880155092818986830.6310.8380.4420.68 1.492 \mathbf{S} 0.5470.822 0.4350.713587739810499592639 1.669588017566026235994 0.7730.8490.4210.5480.865 \mathbf{S} 587739629557907538 0.7410.9170.3350.7281.51S \mathbf{S} 588013384336146702 0.8120.3730.5650.5911.174587729408619905493 0.8530.909 0.3960.6931.401 \mathbf{S} 587726102559129681 0.7270.8120.401 0.7111.634S \mathbf{S} 587741421098041658 0.6850.8480.6020.6321.3085877385740691704420.842 0.4590.5050.771 \mathbf{S} 0.6560.813 0.4560.5240.835 \mathbf{S} 588018091615781037 0.7110.666 \mathbf{S} 587738372745855316 0.7580.80.3931.4360.423 0.572 \mathbf{S} 587741724976152684 0.8390.891.08S 587732769986576394 0.3450.9310.4660.7291.621588017566562123799 0.4880.8420.7460.7551.647 \mathbf{S} 587738616488198301 0.7620.8420.6080.5570.993Ε 0.2920.945 \mathbf{S} 587735666915147907 0.3540.8121.7165877258164252182490.4730.866 0.360.6231.226 \mathbf{S} 587738569776431285 0.694 0.7780.392 0.6411.282 \mathbf{S} \mathbf{S} 0.7410.8720.409 0.484587742775100571759 0.597587726033846534343 0.446 0.7570.4690.7221.637S 587731186738004065 0.580.8450.4410.5550.923S \mathbf{S} 587736805619794049 0.8250.890.4550.6771.243 \mathbf{S} 587741709940359357 0.5460.8750.4910.6221.1881.683 \mathbf{S} 587722983345291440 0.640.8760.310.7765877462110578934860.7230.8510.3270.6761.717 \mathbf{S} 587741709940359354 0.5830.8140.450.6251.249 \mathbf{S} 0.29 \mathbf{S} 587746210788671661 0.8330.8380.6621.541587731513141952650 0.6670.7331.2430.6811.685S

Tapela A.3 – continuação da pagina anterio	Tabela A.3	- continuação	da página	anterior
--	------------	---------------	-----------	----------

Continua na próxima página

Objid A3S3CNΗ GPA Classe 587731513683673256 0.681 0.8030.2870.674 1.713 S \mathbf{S} 588011123584991337 0.8320.9440.2830.7561.458 \mathbf{S} 587726015090786431 0.5740.7560.3060.6521.59 \mathbf{S} 587731499184423094 0.4770.901 0.5080.5780.984588018089469149312 0.4780.807 0.048 0.7221.7 \mathbf{S} 588016878292500503 0.6580.7980.2880.6991.69 \mathbf{S} 5877260333127435780.7260.8310.3420.7221.761 \mathbf{S} 587735696987586726 0.780.891 0.336 0.7061.607 \mathbf{S} 587741830192627835 0.446 0.5760.929 0.639 1.473 \mathbf{S} \mathbf{S} 0.4970.9560.3220.764587742062159593499 1.401587739610230554684 0.864 0.3830.573S 0.3841.362587729407546229070 0.4620.8370.5330.4370.435S \mathbf{S} 587739406261485806 0.5120.8820.370.581.106 \mathbf{S} 587725816425218250 0.7090.8070.4070.5941.150.893 \mathbf{S} 588297864723234999 0.7350.3190.7481.7555877462107886716720.5870.898 0.4170.6851.386 \mathbf{S} 587726033312743597 0.676 0.7770.4270.649 1.401 \mathbf{S} \mathbf{S} 587734894367539285 0.7420.8030.4110.6591.474587736919971725473 0.7780.8050.6160.5781.204 Ε 587731870706368716 0.3560.8050.3560.7731.747S \mathbf{S} 0.7370.3010.678588018089469149326 0.8151.5465877394057098036260.8240.3910.612S 0.6391.2588017730836168797 0.780.8190.5440.7381.771S 5877261025591297170.4790.8050.3970.7491.751 \mathbf{S} \mathbf{S} 5877385697764312760.4380.8450.3710.5841.065 \mathbf{S} 0.7350.812 0.4880.7221.583587741392111599825 588018055127367852 0.5180.8710.3570.6991.359 \mathbf{S} 587746211057893473 0.699 0.7710.3590.691.551S \mathbf{S} 0.668 0.810.7870.658 1.388587731886268088670 587735346954567824 0.6420.7260.4510.5410.95 \mathbf{S} 588017705070100599 0.7130.8890.3240.7831.76 \mathbf{S} \mathbf{S} 587731870706368702 0.4070.9190.2910.8441.793587741390494892327 0.438 0.833 0.629 0.6121.18 \mathbf{S} 0.646 0.807 0.333 0.729 \mathbf{S} 587741601489617029 1.643 \mathbf{S} 587735661552992438 0.7350.8030.370.6241.4790.421 \mathbf{S} 587739629557907618 0.6970.7610.5791.1S 0.5910.7640.7480.6371.399587725472807452702 587726033846534223 0.8530.8520.370.6921.703 \mathbf{S} 587742013283762346 0.5490.8690.3580.5520.897 \mathbf{S} \mathbf{S} 587734891683053699 0.5380.7460.4790.6851.5825880171155917375130.7740.8910.3650.6711.478 \mathbf{S} 588018091615781059 0.7430.815 0.494 0.5350.8Е \mathbf{S} 0.801 0.850.3620.673 1.684587731513141952683 588023045863768265 0.5260.8440.5560.5791.093S 587731513683673259 0.5360.8390.2720.711.707 S 588018055656767613 0.7320.8370.5030.5340.83Ε 0.32 \mathbf{S} 587741490891391455 0.6950.8710.5911.117 \mathbf{S} 588010879291424869 0.7150.8730.340.751.7825877398104995926600.7070.8620.3480.6741.563 \mathbf{S} 5877327715895871320.7230.7540.4340.7391.762 \mathbf{S} \mathbf{S} 0.722 0.916 0.439 1.28587736941991035079 0.625588017991772471550 0.6020.9020.3960.6491.29S Continua na próxima página

m 1 1		· · ~	1	<i>.</i> .	
Tabela	A.3 -	continuacad) da	nagina	anterior
200010		comunacya		Pagna	
Objid A3 S3CN Η GPA Classe 587736753005396203 0.7590.931 0.402 0.5860.959S \mathbf{S} 587741390494892332 0.7060.8750.4630.6651.0450.656 \mathbf{S} 588848901533663339 0.4440.890.3441.3710.8550.398 \mathbf{S} 587738948289495081 0.669 0.550.773587741490891391476 0.4340.8280.4060.5831.118 \mathbf{S} 588017603609690231 0.4950.8710.380.7531.81 \mathbf{S} 0.7580.8040.7130.7281.618 \mathbf{S} 587731513141952685 587739844848910433 0.560.7610.3870.619 1.377 \mathbf{S} 587726033854398532 0.0520.917 0.380.7541.764 \mathbf{S} Е 587741489301487649 0.8140.8410.5050.4660.41587739405709803670 0.8950.6421.22 \mathbf{S} 0.7060.345587739706333790401 0.5610.8360.3340.821.757 \mathbf{S} 588297863103512715 0.7740.8150.4860.6091.286Ε \mathbf{S} 588010879291424871 0.7850.8510.4960.7621.787588017990148227140 0.606 S 0.7660.890.4621.1245888489015191799730.698 0.8540.4470.629 1.43 \mathbf{S} 588297863656833153 0.649 0.7110.5670.667 1.587 \mathbf{S} 0.737 \mathbf{S} 587735241174810653 0.8530.4730.6961.526588017978912735440 0.7550.7870.3580.5741.172 \mathbf{S} 587729752213095108 0.3780.7650.6350.6821.629S \mathbf{S} 588011123583287342 0.3270.8470.8061.7070.495880230458637680980.7730.7590.507 \mathbf{S} 0.6771.63587725817494962196 0.760.8050.406 0.4670.508S 5877324822050900240.6460.7020.5520.591.504Ε \mathbf{S} 5880168917140112790.6140.9520.3690.6511.586 \mathbf{S} 0.7350.910.507587727865644974416 0.5230.525877352411748108220.5790.8040.4410.7141.545 \mathbf{S} 587735241174810831 0.6850.7860.5410.678 1.602S 588017603609690232 0.3210.7821.747 S 0.5710.861587731680118046846 0.6040.7910.3640.6651.469 \mathbf{S} 588017991772471524 0.5210.790.5590.6611.422S 587742060554944656 \mathbf{S} 0.670.9930.4340.636 1.165877356669151478240.7880.887 0.3450.6351.309 \mathbf{S} 0.8540.296 0.634 \mathbf{S} 587738948826693776 0.811.332Е 587736919971725534 0.6770.8160.6310.5751.045 \mathbf{S} 587725472807452700 0.7150.816 0.5340.6361.168 \mathbf{S} 0.7610.7980.3790.689587741601489617013 1.591587738574069170418 0.6740.7950.5540.4720.445Ε 587738616488198296 0.6290.820.4220.5731.063 \mathbf{S} \mathbf{S} 587726033312743589 0.7180.811 0.5110.7341.6015882978647232350170.7310.833 0.3060.6631.424 \mathbf{S} 587725818033799200 0.680.870.499 0.5640.351Е \mathbf{S} 0.7390.803 0.420.628587729157905514687 1.398587732053244117154 0.7930.8440.4560.628 1.309S 587741390494892330 0.7210.9050.4430.639S 0.898 \mathbf{S} 588007004163735736 0.3920.9040.3870.6431.431 \mathbf{S} 588017977809830040 0.6470.7610.4970.6851.3940.552 \mathbf{S} 0.8130.880.3490.769587726101492334874 587745244697395467 0.609 0.7740.4170.7091.585 \mathbf{S} 5877325788459829410.4170.920.4310.5590.841 \mathbf{S} \mathbf{S} 0.790.371.738587731870706368699 0.8090.695588009368008261791 0.510.8850.4950.6541.355S Continua na próxima página

Tabela A.3 – continuação da página anterior

Tabela A.3 – continuação da página anterior

Objid	A3	S3	CN	H	GPA	Classe
587742611880149155	0.589	0.978	0.373	0.765	1.554	S
588017977809830041	0.6	0.71	0.528	0.672	1.281	\mathbf{S}
588017566562123886	0.788	0.867	0.378	0.652	1.506	\mathbf{S}
587729388223201338	0.592	0.878	0.449	0.39	0.536	\mathbf{S}
587736524299108659	0.68	0.824	0.64	0.68	1.609	\mathbf{S}
587731891650494572	0.605	0.882	0.43	0.664	1.598	\mathbf{S}
587726033854398517	0.622	0.827	0.468	0.622	1.308	\mathbf{S}
587725472807452831	0.746	0.848	0.442	0.601	1.172	\mathbf{S}
588297864723235000	0.676	0.713	0.031	0.709	1.598	\mathbf{S}
587742863131279506	0.678	0.699	0.341	0.722	1.86	\mathbf{S}
587738065653334167	0.54	0.845	0.337	0.629	1.427	\mathbf{S}
588848900429119723	0.726	0.787	0.615	0.653	1.474	\mathbf{S}
588023045863768097	0.843	0.886	0.465	0.643	1.384	\mathbf{S}
588017603609690246	0.709	0.831	0.277	0.731	1.808	\mathbf{S}
587739810499592683	0.514	0.848	0.497	0.711	1.468	\mathbf{S}
588017704529821803	0.735	0.806	1.12	0.661	1.39	\mathbf{S}
587732053244117137	0.751	0.834	0.405	0.636	1.438	\mathbf{S}
587726015090786658	0.503	0.89	0.372	0.689	1.353	\mathbf{S}
587726102559129704	0.657	0.779	0.626	0.684	1.737	\mathbf{S}
587722983345291450	0.704	0.804	0.503	0.701	1.539	\mathbf{S}
587735490819522751	0.767	0.833	0.463	0.515	0.648	Ε
587735696987586733	0.707	0.85	0.389	0.544	0.842	\mathbf{S}
587741709940359340	0.457	0.664	0.468	0.526	1.004	\mathbf{S}
588297863103512712	0.447	0.901	0.466	0.671	1.449	\mathbf{S}
587738948289495080	0.755	0.824	0.511	0.417	0.275	Ε
587725818037665995	0.583	0.845	0.473	0.512	0.77	\mathbf{S}
588010879291424870	0.673	0.76	0.402	0.701	1.489	\mathbf{S}
587735666921373874	0.761	0.825	0.722	0.712	1.695	\mathbf{S}
587735666921373788	0.741	0.78	0.329	0.717	1.672	\mathbf{S}
588023240744173716	0.74	0.78	0.531	0.653	1.557	\mathbf{S}
587726033846534358	0.689	0.813	0.546	0.604	1.184	Ε
588017991772471548	0.785	0.85	0.406	0.697	1.567	\mathbf{S}
587730022790004850	0.676	0.808	0.411	0.467	0.526	\mathbf{S}
587729386078339250	0.843	0.887	0.456	0.622	1.05	\mathbf{S}
587736753005396204	0.821	0.869	0.53	0.631	1.003	\mathbf{S}
588018055127368041	0.725	0.813	0.414	0.568	1.035	\mathbf{S}
587742611880083611	0.776	0.82	0.533	0.535	0.671	Ε
588297863103512736	0.809	0.9	0.459	0.611	1.205	\mathbf{S}
587729408619905512	0.582	0.863	0.36	0.591	1.143	S
587742013283762234	0.78	0.855	0.444	0.441	0.263	E
587741600963297384	0.589	0.826	0.491	0.452	0.433	Е
587732772111515784	0.804	0.849	0.309	0.711	1.681	S
588015509813002339	0.772	0.827	0.415	0.656	1.455	S
588848901533663319	0.82	0.87	0.401	0.609	1.143	S
587732053244117142	0.699	0.876	0.288	0.615	1.417	S
587742190971781287	0.786	0.779	0.487	0.624	1.391	S
587731513156632699	0.683	0.807	0.53	0.49	0.545	E
588013384336146507	0.706	0.611	0.424	0.443	0.574	E
588017603609690238	0.671	0.764	0.419	0.674	1.542	S
58775010022790004851	0.759	0.804	0.38	0.501	0.707	5 F
587721514020012075	0.750	0.882	0.484	0.532	0.316	E C
087731014232013075	0.74	0.894	0.421	0.007	0.971	5
			Con	tinua na	proxima	ı pagına

Objid	43	52 52	CN	н	CPA	Classo
597744797697054509	0.751	0.842	0.484	0.565	0.051	F
501144121001954500	0.751	0.842	0.404	0.303	1.901	E C
00770700000790000 50770500001070000	0.527	0.840	0.550	0.770	1.040	3 C
587755000921575880	0.079	0.734	0.410	0.694	1.079	о Б
587742010045366634	0.704	0.786	1.06	0.594	1.315	E
587729752213094729	0.341	0.725	0.488	0.416	1.349	S
588023668103250093	0.516	0.814	0.511	0.635	1.144	S
587731186738003987	0.782	0.861	0.488	0.509	0.598	E
588848901519179952	0.607	0.885	0.392	0.585	1.086	S
588017705070100613	0.537	0.827	0.476	0.615	1.197	S
588017977809830038	0.737	0.882	0.359	0.67	1.521	\mathbf{S}
587731514216742934	0.781	0.858	0.499	0.5	0.597	Ε
587738616488198302	0.778	0.825	0.554	0.628	1.081	\mathbf{S}
587730021723799644	0.474	0.859	0.013	0.77	1.749	\mathbf{S}
587735241174810830	0.719	0.806	0.603	0.634	1.313	\mathbf{S}
587736618789962059	0.562	0.845	0.527	0.499	0.645	\mathbf{E}
587739810499592653	0.741	0.812	0.316	0.665	1.482	\mathbf{S}
587735662626668787	0.753	0.841	0.579	0.496	0.576	Ε
587738372745855281	0.743	0.795	0.42	0.597	1.19	\mathbf{S}
587735666921373776	0.721	0.744	0.818	0.699	1.503	\mathbf{S}
588015509281898663	0.699	0.832	0.482	0.53	0.755	Ε
588011123583287333	0.821	0.873	0.502	0.495	0.59	Ε
587726015090786626	0.805	0.843	0.403	0.543	0.983	\mathbf{S}
587728668807725240	0.81	0.893	0.422	0.74	1.606	\mathbf{S}
587741490891391482	0.609	0.832	0.015	0.527	0.625	\mathbf{S}
587729407546228751	0.641	0.847	0.371	0.431	0.387	\mathbf{S}
588016891712438467	0.48	0.839	0.535	0.55	0.41	\mathbf{S}
587741490891391432	0.798	0.874	0.372	0.537	0.733	\mathbf{S}
587734891683053641	0.621	0.882	0.506	0.639	1.339	\mathbf{S}
588023240744173715	0.655	0.8	0.429	0.675	1.602	\mathbf{S}
587741489301487648	0.736	0.879	0.507	0.426	0.243	Е
587732484369809590	0.678	0.89	0.425	0.579	0.849	\mathbf{S}
587745244697395466	0.644	0.809	0.538	0.644	1.26	\mathbf{S}
588015509271609356	0.624	0.684	0.549	0.658	1.744	S
587739706333790400	0.697	0.798	0.388	0.771	1.734	S
588017977809830039	0.618	0.93	0.413	0.74	1.663	$\tilde{\mathbf{S}}$
588016891712438465	0.756	0.728	0.382	0.467	0.884	ŝ
587732771589587113	0.677	0 754	0.508	0.62	1 331	ŝ
588297863117406314	0.708	0.795	0.300	0.653	1.001 1 427	S
587736618789962047	0.422	0.889	0.43	0.557	0.852	S
587733081341886545	0.603	0.805	0.30	0.793	1 44	S
587745244697329758	0.003	0.851	0.35	0.618	1.179	S
5877/1/210080/1651	0.134	0.001	0.57	0.510	0.891	S
5877/1820102569205	0.040	0.004	0.400	0.944	1 2/0	с С
587796033846534335	0.090	0.010	0.404	0.020	1.949	S
587730091799700697	0.004	0.002	0.420	0.000	164	с С
587796109550190600	0.049	0.779	0.001	0.199	1.04	ມ ຊ
507721187990109900 587721187990109900	0.095	0.765	0.999	0.099	1.008	2 2
507726594900109646	0.111	0.901	0.470	0.010	0.74	ວ ຕ
001100024299108040	0.028	0.845	0.303	0.080	1.3/8	5 C
00011000210004021	U.75	0.801	0.458	0.513	0.077	с Б
088848900429119695	0.694	0.82	0.474	0.578	0.966	E C
587732772111515782	0.636	0.730	0.332	0.075	1.378	5
588011123584991336	0.777	0.826	1.069	0.717	1.622	<u> </u>
			Con	tınua na	próxima	a pagina

Tabela A.3 – continuação da página anterior

Objid	A3	S3	CN	<u>н</u>	GPA	Classe
587741830192562376	0.505	0.879	0.435	0 711	1.582	S
587732053244117152	0.676	0.814	0.447	0.591	0.841	S
588017566562123888	0.637	0.776	0.584	0.001	1 521	S
587731513683673258	0.001	0.110	0.447	0.644	1.021	S
588023668103250091	0.718	0.887	0.464	0.011	0.675	S
587725472807452806	0.710	0.833	0.404	0.001	1 259	S
588017710566720326	0.100	0.000	0.010	0.000	1.205 1.67	2
588015500271543037	0.555 0.771	0.84	0.34	0.091	1.07	с Р
587730006082740304	0.771	0.150	0.403	0.032	1.131	с Р
588848001510170047	0.400	0.879	0.405	0.000	1.440	с С
507721600119179947	0.647	0.809	0.308	0.555	1.014	с С
588848000420110710	0.508	0.878	0.445	0.037	1.597	с С
587725605016400752	0.000	0.828	0.407	0.7	0.000	с С
5001025054400752	0.094	0.962	0.497	0.550	0.909	с С
587730021723700814	0.703	0.807	0.337	0.05 0.73	1.490	с С
597746910799671696	0.099	0.188	0.209	0.75	0.021	с Г
507740210700071000	0.711	0.007	0.001	0.00	1.951	E C
500011125505207554 597790759912005107	0.094	0.915	0.303	0.555	1.207	с Г
587724804267520305	0.741	0.801	0.490	0.307	1.102	E C
587754894507559295 587741287275764008	0.715	0.870	0.455	0.057	1.301	с Г
587741387275764098	0.743	0.8	0.474	0.559	1.012	E
587745244097529700	0.848	0.973	0.300	0.848	1.379	с П
588297863117406313	0.64	0.858	0.515	0.607	1.21	E
587722984434040972	0.683	0.778	0.364	0.503	0.751	5
587742190971781280	0.637	0.767	0.456	0.55	1.028	5
587742863131279484	0.558	0.618	0.916	0.705	1.79	S
587731499184422941	0.751	0.863	0.64	0.377	0.229	E
587732770524889320	0.719	0.924	0.535	0.498	0.68	S
587729386078339106	0.767	0.845	0.524	0.591	0.623	E
587726102559129721	0.823	0.863	0.436	0.681	1.521	S
587731187283787947	0.734	0.836	0.506	0.558	0.82	E
587739405709803642	0.472	0.806	0.418	0.512	0.688	S
588016891712438464	0.775	0.903	0.461	0.592	0.673	S
587726015090786657	0.735	0.83	0.348	0.566	0.963	S
588017704529821779	0.718	0.801	0.512	0.608	1.09	E
587731513141952654	0.75	0.817	0.415	0.623	1.155	s
587735661552992262	0.658	0.762	0.491	0.611	1.227	E
588017730836168816	0.68	0.743	1.142	0.666	1.442	S
587741601489617031	0.727	0.752	0.469	0.627	1.454	S
588297863117406341	0.707	0.77	0.447	0.659	1.487	\mathbf{S}
587726102559129701	0.787	0.846	0.41	0.614	1.243	S
587731891114147933	0.686	0.785	0.407	0.672	1.645	S
587739706333790359	0.767	0.801	0.375	0.747	1.645	\mathbf{S}
587734891683053708	0.73	0.813	0.467	0.661	1.393	S
587739096982749328	0.577	0.842	0.496	0.539	0.825	Ε
587732772111515781	0.733	0.797	0.288	0.676	1.465	S
588016878292500646	0.611	0.761	0.478	0.676	1.213	S
588023668103250090	0.668	0.831	0.543	0.498	0.56	E
587735661552992264	0.64	0.773	0.448	0.633	1.427	S
587732772111515783	0.732	0.854	0.305	0.699	1.622	S
587734892753977437	0.831	0.925	0.481	0.507	0.606	S
587736586040967247	0.696	0.86	0.504	0.43	0.324	E
587741709940359339	0.703	0.783	0.431	0.521	0.841	S
			Con	tinua na	próxima	a página

Tabela A.3 – continuação da página anterior

Objid A3 S3 CN H GPA Classe 588297864723234909 0.707 0.761 0.406 0.646 1.502 S 588733081341886540 0.674 0.868 0.437 0.677 1.73 S 58801055127367829 0.749 0.856 0.435 0.555 0.988 S 588010550813002338 0.825 0.344 0.665 0.541 0.818 E 587732484369875061 0.732 0.938 0.491 0.533 0.69 S 58801771966729310 0.64 0.764 0.517 0.719 1.496 S 5887728668807725238 0.691 0.937 0.444 0.647 1.511 S 587728668807725213094726 0.718 0.733 0.695 0.485 0.646 E 58772975213094726 0.718 0.743 0.695 0.483 0.432 0.828 S 588016509271609439 0.65 0.540 0.666 1.798 S <th></th> <th>- cont</th> <th>muaçao</th> <th>ua pag</th> <th>gina an</th> <th></th> <th></th>		- cont	muaçao	ua pag	gina an		
588297864723234909 0.707 0.761 0.406 0.646 1.502 S 587733081341886540 0.674 0.868 0.437 0.677 1.73 S 588018055127367829 0.749 0.856 0.435 0.585 0.585 0.585 0.585 585 58801550981302338 0.825 0.344 0.665 0.541 0.818 E 5877366563334212 0.669 0.788 0.665 0.541 0.818 E 587724668807725231 0.64 0.764 0.517 0.719 1.496 S 58773652429910844 0.731 0.473 0.668 1.325 S 58772663880772523 0.691 0.977 0.444 0.647 1.511 S 587726752213094726 0.718 0.743 0.665 0.547 0.828 S 5887741392111599806 0.716 0.848 0.455 0.477 0.55 0.911 S 588726033846534334 0.804 0.862 0.444	Objid	A3	S3	CN	Н	GPA	Classe
587733081341886540 0.674 0.868 0.437 0.677 1.73 S 588018055127367829 0.749 0.856 0.435 0.585 0.988 S 588015509813002338 0.825 0.825 0.344 0.691 1.61 S 58773065653334212 0.669 0.788 0.665 0.541 0.818 E 587732484369875061 0.732 0.938 0.491 0.533 0.69 S 587742863131279483 0.544 0.764 0.517 0.719 1.496 S 587728668807725238 0.691 0.937 0.444 0.647 1.511 S 587729752213094726 0.718 0.743 0.695 0.485 0.646 E 587741392111599806 0.716 0.848 0.455 0.547 0.828 S 588016891714011263 0.664 0.885 0.47 0.551 0.61 S 588015509271609439 0.655 0.566 0.540 0.666 1.798 S 5880105509271609439 0.633 0.748 0.508 <t< td=""><td>588297864723234909</td><td>0.707</td><td>0.761</td><td>0.406</td><td>0.646</td><td>1.502</td><td>\mathbf{S}</td></t<>	588297864723234909	0.707	0.761	0.406	0.646	1.502	\mathbf{S}
588018055127367829 0.749 0.856 0.435 0.585 0.988 S 588015509813002338 0.825 0.825 0.844 0.601 1.61 S 587738065653334212 0.669 0.788 0.665 0.541 0.818 E 5877326102559129689 0.704 0.844 0.635 0.654 1.356 S 5887732484369875061 0.732 0.938 0.491 0.533 0.69 S 5887728668807725238 0.691 0.937 0.444 0.647 1.511 S 587732213094726 0.718 0.733 0.638 0.485 0.464 E 58871432111599806 0.716 0.848 0.455 0.547 0.828 S 588705027109439 0.65 0.956 0.544 0.663 1.798 S 588772603384653434 0.804 0.862 0.444 0.583 0.939 S 588774603384654334 0.804 0.862 0.531 0.451 S <	587733081341886540	0.674	0.868	0.437	0.677	1.73	\mathbf{S}
588015509813002338 0.825 0.825 0.844 0.691 1.61 S 587738065653334212 0.669 0.788 0.665 0.541 0.818 E 587726102559129689 0.704 0.844 0.635 0.654 1.356 S 588017719566729310 0.64 0.764 0.517 0.719 1.496 S 587728668807725238 0.691 0.937 0.444 0.647 1.511 S 587736524299108484 0.731 0.793 0.433 0.638 1.325 S 587741392111599806 0.716 0.848 0.455 0.547 0.828 S 588016891714011263 0.664 0.885 0.476 0.521 0.61 S 58872720735235007 0.639 0.82 0.283 0.702 1.634 S 588015509271609439 0.65 0.504 0.666 1.798 S 5887742603384653434 0.802 0.478 0.531 1.032 E	588018055127367829	0.749	0.856	0.435	0.585	0.988	\mathbf{S}
587738065653334212 0.669 0.788 0.665 0.541 0.818 E 587726102559129689 0.704 0.844 0.635 0.654 1.356 S 588017719566729310 0.64 0.764 0.517 0.719 1.496 S 587742863131279483 0.554 0.697 0.719 1.787 S 587728668807725238 0.691 0.937 0.444 0.647 1.511 S 587729752213094726 0.718 0.743 0.695 0.485 0.646 E 587741392111599806 0.716 0.848 0.455 0.547 0.828 S 588016891714011263 0.664 0.885 0.47 0.55 0.911 S 588015509271604339 0.65 0.566 0.504 0.666 1.798 S 588010358544924886 0.633 0.748 0.539 1.647 S 58801719566729309 0.643 0.786 0.476 0.618 1.032 E	588015509813002338	0.825	0.825	0.344	0.691	1.61	\mathbf{S}
587726102559129689 0.704 0.844 0.635 0.654 1.356 S 587732484369875061 0.732 0.938 0.491 0.533 0.69 S 5887742863131279483 0.554 0.594 0.625 0.719 1.787 S 587728668807725238 0.691 0.937 0.444 0.647 1.511 S 587736524299108484 0.731 0.733 0.638 1.325 S 587729752213094726 0.718 0.743 0.695 0.485 0.646 E 587741392111599806 0.716 0.848 0.455 0.547 0.828 S 588016891714011263 0.664 0.885 0.47 0.551 0.911 S 58872603384653434 0.804 0.862 0.444 0.583 0.939 S 587739406261485814 0.633 0.748 0.508 0.636 1.447 S 588013719566729309 0.643 0.786 0.478 0.639 1.81 S 5880135254924886 0.633 0.744 0.566 0.618 <t< td=""><td>587738065653334212</td><td>0.669</td><td>0.788</td><td>0.665</td><td>0.541</td><td>0.818</td><td>Ε</td></t<>	587738065653334212	0.669	0.788	0.665	0.541	0.818	Ε
587732484369875061 0.732 0.938 0.491 0.533 0.69 S 588017719566729310 0.64 0.764 0.517 0.719 1.496 S 587742863131279483 0.554 0.594 0.625 0.719 1.787 S 587736524299108484 0.731 0.793 0.444 0.647 1.511 S 587736524299108484 0.731 0.638 1.325 S S S 58779752323004726 0.718 0.743 0.655 0.547 0.828 S 588016891714011263 0.664 0.885 0.47 0.551 0.911 S 588732071055337475 0.743 0.936 0.476 0.521 0.61 S 5887726033846543344 0.663 0.786 0.474 0.533 0.939 S 588010358544924886 0.633 0.748 0.568 0.636 1.447 S 58801171956672309 0.643 0.786 0.478 0.639 1.181 S 588010358544924891 0.647 0.747 0.376 0.703<	587726102559129689	0.704	0.844	0.635	0.654	1.356	\mathbf{S}
588017719566729310 0.64 0.764 0.517 0.719 1.496 S 587742863131279483 0.554 0.594 0.625 0.719 1.787 S 587728668807725238 0.691 0.937 0.444 0.647 1.511 S 587736524299108484 0.711 0.793 0.473 0.638 1.325 S 587729752213094726 0.716 0.848 0.455 0.547 0.828 S 588016891714011263 0.664 0.885 0.476 0.521 0.61 S 5887328764723235007 0.639 0.82 0.283 0.702 1.634 S 588015509271609439 0.65 0.504 0.666 1.798 S 588010358544924886 0.633 0.748 0.508 0.634 S 588010719566729309 0.643 0.786 0.478 0.639 1.181 S 5882978635683152 0.692 0.825 0.531 0.581 1.032 E	587732484369875061	0.732	0.938	0.491	0.533	0.69	\mathbf{S}
587742863131279483 0.554 0.694 0.625 0.719 1.787 S 587728668807725238 0.691 0.937 0.444 0.647 1.511 S 587736524299108484 0.731 0.793 0.473 0.638 1.325 S 587729752213094726 0.716 0.848 0.455 0.547 0.828 S 588016891714011263 0.664 0.885 0.47 0.55 0.911 S 588016891714011263 0.664 0.885 0.476 0.521 0.61 S 5877271055337475 0.743 0.936 0.476 0.521 0.61 S 588015509271609439 0.65 0.956 0.504 0.666 1.798 S 5887726033846534334 0.804 0.862 0.444 0.533 0.939 S 588010358544924886 0.633 0.748 0.508 0.636 1.447 S 58801719566729309 0.643 0.769 0.844 0.566 0.618	588017719566729310	0.64	0.764	0.517	0.719	1.496	\mathbf{S}
587728668807725238 0.691 0.937 0.444 0.647 1.511 S 587736524299108484 0.731 0.793 0.473 0.638 1.325 S 587729752213094726 0.718 0.743 0.695 0.485 0.646 E 587741392111599806 0.716 0.848 0.455 0.547 0.828 S 588016891714011263 0.664 0.885 0.47 0.55 0.911 S 588297864723235007 0.639 0.82 0.283 0.702 1.634 S 587732771055337475 0.743 0.936 0.476 0.521 0.61 S 5887726033846534334 0.804 0.862 0.444 0.583 0.939 S 5887739406261485814 0.633 0.748 0.508 0.631 1.447 S 588017719566729309 0.643 0.786 0.478 0.639 1.81 S 58873248205090023 0.704 0.787 0.481 0.594 1.017 <td>587742863131279483</td> <td>0.554</td> <td>0.594</td> <td>0.625</td> <td>0.719</td> <td>1.787</td> <td>\mathbf{S}</td>	587742863131279483	0.554	0.594	0.625	0.719	1.787	\mathbf{S}
587736524299108484 0.731 0.793 0.473 0.638 1.325 S 587729752213094726 0.718 0.743 0.695 0.485 0.646 E 587741392111599806 0.716 0.848 0.455 0.547 0.828 S 588016891714011263 0.664 0.885 0.47 0.55 0.911 S 588297864723235007 0.639 0.82 0.283 0.702 1.634 S 587732771055337475 0.743 0.936 0.476 0.521 0.611 S 588015509271609439 0.65 0.956 0.504 0.666 1.798 S 587726033846534334 0.804 0.862 0.444 0.583 0.939 S 588010358544924886 0.633 0.748 0.508 0.636 1.447 S 58801719566729309 0.643 0.786 0.478 0.639 1.181 S 5887741830192562375 0.769 0.844 0.566 0.618 1.061 S 58871286619794033 0.670 0.747 0.376 <t< td=""><td>587728668807725238</td><td>0.691</td><td>0.937</td><td>0.444</td><td>0.647</td><td>1.511</td><td>\mathbf{S}</td></t<>	587728668807725238	0.691	0.937	0.444	0.647	1.511	\mathbf{S}
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	587736524299108484	0.731	0.793	0.473	0.638	1.325	\mathbf{S}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	587729752213094726	0.718	0.743	0.695	0.485	0.646	Ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	587741392111599806	0.716	0.848	0.455	0.547	0.828	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588016891714011263	0.664	0.885	0.47	0.55	0.911	\mathbf{S}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	588297864723235007	0.639	0.82	0.283	0.702	1.634	\mathbf{S}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	587732771055337475	0.743	0.936	0.476	0.521	0.61	\mathbf{S}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	588015509271609439	0.65	0.956	0.504	0.666	1.798	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	587726033846534334	0.804	0.862	0.444	0.583	0.939	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	587739406261485814	0.635	0.831	0.457	0.49	0.634	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588010358544924886	0.633	0.748	0.508	0.636	1.447	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588017719566729309	0.643	0.786	0.478	0.639	1.181	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588297863656833152	0.692	0.825	0.531	0.581	1.032	E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	587741830192562375	0.769	0.844	0.566	0.618	1.061	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588011123584991334	0.647	0.747	0.376	0.703	1.647	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	587732482205090023	0.704	0.787	0.481	0.594	1.017	E
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	587741387275764109	0.599	0.793	0.442	0.63	1.266	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588010360695947314	0.659	0.846	0.531	0.477	0.405	Ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	587736805619794035	0.802	0.878	0.498	0.568	0.846	E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588017730836168796	0.75	0.835	0.459	0.637	1.284	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	587732578846048470	0.517	0.888	0.481	0.495	0.494	Ε
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588010358544924919	0.672	0.738	1.081	0.629	1.379	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	587728668807725243	0.68	0.824	0.446	0.776	1.703	\mathbf{S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588013384336146506	0.624	0.853	0.561	0.42	0.207	E
5877286688077252370.7890.9390.4340.6991.442S5880168782925006470.6760.7560.3580.6671.222S5880179794533417340.6840.870.520.4420.31E5888489015334012860.6790.7830.7360.5390.92E5877229839119813220.650.7880.5990.5140.721E5880070036582566640.7160.8250.5510.5150.747E5880155092716093550.7320.8330.3240.6961.631S	587742863131279482	0.74	0.752	0.445	0.722	1.814	\mathbf{S}
5880168782925006470.6760.7560.3580.6671.222S5880179794533417340.6840.870.520.4420.31E5888489015334012860.6790.7830.7360.5390.92E5877229839119813220.650.7880.5990.5140.721E5880070036582566640.7160.8250.5510.5150.747E5880155092716093550.7320.8330.3240.6961.631S	587728668807725237	0.789	0.939	0.434	0.699	1.442	\mathbf{S}
5880179794533417340.6840.870.520.4420.31E5888489015334012860.6790.7830.7360.5390.92E5877229839119813220.650.7880.5990.5140.721E5880070036582566640.7160.8250.5510.5150.747E5880155092716093550.7320.8330.3240.6961.631S	588016878292500647	0.676	0.756	0.358	0.667	1.222	\mathbf{S}
588848901533401286 0.679 0.783 0.736 0.539 0.92 E 587722983911981322 0.65 0.788 0.599 0.514 0.721 E 588007003658256664 0.716 0.825 0.551 0.515 0.747 E 588015509271609355 0.732 0.833 0.324 0.696 1.631 S	588017979453341734	0.684	0.87	0.52	0.442	0.31	E
5877229839119813220.650.7880.5990.5140.721E5880070036582566640.7160.8250.5510.5150.747E5880155092716093550.7320.8330.3240.6961.631S	588848901533401286	0.679	0.783	0.736	0.539	0.92	E
588007003658256664 0.716 0.825 0.551 0.515 0.747 E 588015509271609355 0.732 0.833 0.324 0.696 1.631 S	587722983911981322	0.65	0.788	0.599	0.514	0.721	E
588015509271609355 0.732 0.833 0.324 0.696 1.631 S	588007003658256664	0.716	0.825	0.551	0.515	0.747	E
	588015509271609355	0.732	0.833	0.324	0.696	1.631	S

Tabela A.3 – continuação da página anterior

A.1.4 Fotometria - GALPHAT

_

Tabela A.4 - Parâmetros fotométricos estimados pelo programa GALPHAT para a amostra de 573 ETGs. As 89 galáxias cuja imagem apresenta algum problema (galáxia na borda ou galáxias muito próximas) não estão listados.

Objid	Mag	Maa	R	Re err			n	n
588023047476871443	15.65	0.02	10.804	0.78	$\frac{\mu}{22.65}$	$\frac{\mu_{err}}{3.04}$	6.0	$\frac{n_{err}}{0.52}$
588018253761610012	15.00 15.71	0.02	5.065	0.10	22.00 21.22	1.04	7 59	0.64
588017979453341734	14.81	0.02	6.013	0.31	21.22	1.21	5.26	0.01
588007005236953219	14.01	0.01	14 165	0.01	20.23	2.01	7.0	0.21
588297863656833152	16.22	0.01	2176	0.45	19.17	0.73	2.91	2.51
588017000600254046	15.01	0.02	1 896	0.10	21.24	1 1 2	8 59	0.84
588011501531627710	14.77	0.01	6 53	0.25	21.24 20.51	1.12	6.76	0.04
588017625632660807	16.02	0.01	3 028	0.20	20.01 21.28	1.00	7 33	0.44
588017023032003037 588017002311504012	10.32 15.47	0.01	9.920 8.487	0.23	21.20 21.78	1.00	1.00	0.09 3.49
588017605765160317	16.95	0.05	5 227	0.10	21.70	1 20	7.99	0.83
58801150003070478	10.20	0.01	14.95	0.55	21.40 21.00	1.52	7.08	0.85
500011500995970470	14.52	0.01	16 202	1.90	21.99	2.32 E 49	7.00 6.19	0.21
0001770171105001	14.47	0.05	10.202	1.29	22.37	0.4Z	0.12	0.37
588017721711855081	15.19	0.01	0.313	0.49	20.73	1.95	4.13	0.83
588017005214001390	10.01	0.0	0.152	0.24	21.95	0.91	0.31	0.14
588017627235287166	14.45	0.0	14.228	0.28	21.6	1.18	5.08	0.67
588017116128870418	16.56	0.01	6.873	0.55	22.35	2.02	7.74	0.65
588017992301805571	15.53	0.0	5.073	0.1	20.76	0.41	6.41	0.1
588017726543822988	15.22	0.0	4.086	0.13	20.27	0.51	5.1	0.27
588017116130574568	17.21	0.01	2.036	0.18	20.63	0.66	7.06	1.23
588017725483253816	16.06	0.01	3.824	0.18	20.97	0.68	6.19	0.79
588017704533426335	14.58	0.01	6.935	0.4	20.16	1.66	4.57	1.47
588017710976991387	15.25	0.0	5.71	0.05	21.02	0.21	5.31	0.04
588017711514189837	15.65	0.01	3.563	0.23	20.32	0.9	3.94	0.28
588007003658256664	14.6	0.03	13.498	1.12	21.97	4.68	6.99	0.51
588007004198470059	16.11	0.03	4.04	0.32	20.97	1.21	7.2	0.7
588007004731670716	15.18	0.01	5.192	0.24	20.27	0.96	4.55	0.6
588013383799865404	14.28	0.0	7.841	0.28	20.24	1.2	5.64	0.43
588015509267284119	14.19	0.03	18.259	1.71	22.22	7.32	7.25	0.71
588013384336146506	13.92	0.04	18.884	1.86	21.88	8.13	7.03	0.6
587745540505076142	13.72	0.01	21.37	1.18	21.89	5.25	6.24	0.29
587745403069005892	16.21	0.02	8.011	0.37	22.5	1.4	6.97	1.61
588010879840813143	14.91	0.01	7.981	0.49	21.09	2.0	6.53	0.42
587745540509401430	17.78	0.02	1.198	0.15	19.53	0.87	4.16	1.44
587745540508090670	14.56	0.01	18.577	0.73	22.39	3.06	7.19	0.26
587742572685426781	17.1	0.02	1.98	0.18	20.43	0.67	5.93	1.05
587742627450061002	14.91	0.01	5.745	0.34	20.32	1.4	5.2	1.23
587742783682707677	16.48	0.07	2.633	0.32	20.41	1.27	4.4	4.23
587742783682642277	14.94	0.02	7.095	0.58	21.18	2.36	8.06	0.76
587742589328490649	15.14	0.01	8.289	0.38	21.34	1.51	5.68	0.14
587742610272682188	15.87	0.02	6.066	0.36	21.55	1.38	6.27	0.46
587742864207905024	14.26	0.0	15.939	0.04	22.18	0.17	7.47	0.01
587742612141310062	16.17	0.01	3.458	0.24	20.79	0.91	5.11	0.61
587742061080543380	16.97	0.01	3.315	0.14	21.22	0.53	6.01	0.28
587742593622409394	14.6	0.0	12.671	0.18	22.0	0.74	6.68	0.24
587742611345965330	15.84	0.02	3 479	0.53	20.39	2.05	3 5	0.58
587742611342950584	17.9	0.01	0.676	0.05	18 73	0.43	7.97	3.25
	10	0.01	0.010	0.00	Contin	ia na m	róxima r	nágina
					Commu	a na pi	. Swinia F	-aprila

Tabela A.4 – continuação da página anterior

Objid	Mag	Mag_{err}	R_e	Re, err	μ	μ_{err}	n	n_{err}
587739863112024533	14.6	0.0	9.574	0.27	21.03	1.13	5.43	0.23
587739608099324044	14.16	0.01	17.935	0.84	21.95	3.6	7.61	0.54
587742573761986687	14.16	0.02	18.667	1.17	22.11	5.01	5.94	0.3
587741815713759466	17.45	0.03	10.784	1.14	24.36	3.99	5.37	1.52
587742573760938159	15.73	0.01	8.138	0.48	21.89	1.86	5.41	0.48
587742189912653966	14.48	0.01	12.255	0.65	21.64	2.72	7.33	0.45
587742189909246032	15.1	0.01	8.823	0.56	21.27	2.25	7.98	0.49
587739849681010990	15.64	0.01	5.051	0.27	20.95	1.05	5.24	0.26
587742190446510217	16.12	0.01	5.207	0.29	21.29	1.1	6.32	0.48
587742190987640855	14.8	0.0	6.363	0.06	20.81	0.24	6.98	0.04
587741600963297384	15.68	0.01	2.604	0.25	19.07	0.99	3.92	2.82
587739408409166065	16.61	0.03	3.621	0.34	21.06	1.29	8.04	0.94
587741830196691015	14.66	0.03	2.908	0.18	18.5	0.77	3.15	3.53
587739849676423486	16.46	0.01	3.897	0.27	21.16	1.0	6.95	1.05
587742015428624534	14.96	0.02	9.496	0.67	21.84	2.74	6.18	1.72
587741489301487649	15.58	0.0	5.959	0.05	21.45	0.21	9.16	0.06
587741828581687487	16 41	0.01	5 592	0.33	21.62	1.25	6.87	0.35
587739408408248495	16.11	0.01	3 728	0.00	20.38	0.93	6.74	0.56
587739408408248494	15.24	0.01	4.03	0.21 0.27	19.8	1.07	5.03	0.37
587730812006835684	10.20 14.74	0.01	10 474	0.47	21.63	1.07	0.00 4 30	0.57
587739812096835685	17.25	0.01	0.8/3	0.47	18.87	0.01	7.0	0.12 2.2
587741601405646323	17.20 15.75	0.01	3517	0.07	20.1	1.84	1.0	2.2 1.10
58772081102085540	14.01	0.14	12 066	0.45	20.1	1.04	4.04 9.96	4.49
587730850220830058	14.01 16.10	0.02	2.645	0.04	21.9	4.55	5.00	0.92
597741401427205993	14.27	0.0	2.040	0.04	20.29	1.67	0.20 6.14	0.10
507741491457505002	14.07	0.01	10.223 6 419	0.59	21.00	1.07	0.14	0.29
007741409007441100 59772091777759277	15.05	0.02	0.412 10.426	0.58	21.24 21.02	2.27	6.49	1.27
001109014111200214	10.1	0.01	10.450	0.40	21.92	1.0	0.42	0.18
087739802071942017	15.4	0.03	9.508	1.14	21.78	4.5	0.93	0.78
001109040140000241	17.49	0.01	0.700	0.05	10.55	1.05	1.50	5.04 1.40
087739800220830900	14.1	0.01	10.802	0.45	21.9	1.90	3.28 7.19	1.49
587741392112058518	16.4	0.0	0.010	0.28	22.33	1.03	7.12	0.18
587737933580992745	10.57	0.01	2.475	0.13	20.16	0.5	1.54	0.92
587738065653334212	14.17	0.02	25.738	1.54	22.83	0.01	6.94	0.41
587739406264303822	15.76	0.02	8.207	0.58	21.79	2.25	6.67	0.65
587739380452950265	16.6	0.02	4.754	0.3	21.5	1.11	6.04	0.51
587739651571318831	14.65	0.01	4.835	0.26	19.74	1.1	4.45	0.73
587738067266896071	15.77	0.03	10.197	0.54	22.46	2.1	3.15	2.39
587737826213494994	15.6	0.01	6.815	0.22	21.56	0.85	6.07	0.54
587737826209497467	15.61	0.01	5.47	0.25	21.22	0.97	7.23	0.7
587738948289495080	14.95	0.01	5.703	0.25	20.72	1.02	7.99	1.11
587739158193045584	17.18	0.01	1.604	0.12	19.92	0.46	6.0	1.17
587738946681766103	15.75	0.01	4.018	0.1	20.45	0.39	4.81	0.34
587739132959326287	15.48	0.01	6.022	0.26	21.35	1.01	5.6	1.1
587737809563549999	15.39	0.01	5.491	0.24	20.92	0.96	6.26	0.34
587738946674360573	15.48	0.0	7.311	0.17	21.51	0.68	8.79	0.3
587736980106051607	15.14	0.02	7.967	0.71	21.35	2.88	7.03	0.86
587738372204396692	15.59	0.0	8.342	0.25	21.95	0.96	6.52	0.1
587738372204396691	14.76	0.0	13.045	0.19	22.23	0.76	5.82	0.03
587738411406196856	14.24	0.0	9.099	0.09	20.77	0.38	6.16	0.02
587736899574890809	16.3	0.01	4.538	0.27	21.31	1.0	5.17	0.48
587736964533715056	15.3	0.01	5.361	0.28	20.53	1.13	5.64	0.33
587736976343433449	15.64	0.02	6.996	0.37	21.61	1.46	7.86	0.53
					Continu	ia na pi	óxima 1	oágina

Tabela A.4 – continuação da página anterior

Objid	Mag	Mag_{err}	R_e	Re, err	μ	μ_{err}	n	n_{err}
587736941995884904	17.05	0.01	1.974	0.15	20.27	0.56	5.61	1.61
587736542554554455	14.51	0.01	13.111	0.73	21.86	3.07	6.82	0.28
587736585506980155	14.99	0.01	20.02	0.68	23.24	2.77	5.92	0.14
587736586036052161	17.46	0.01	1.121	0.1	19.27	0.5	3.65	2.08
587736547383705837	17.08	0.01	1.962	0.17	20.54	0.62	5.54	1.89
587736546848800990	15.81	0.0	3.059	0.09	20.06	0.35	6.2	0.22
587736805619794035	14 56	0.01	8 287	0.7	20.92	2.9	4 21	12
587736586040967247	15 15	0.02	4 377	0.29	19.98	1 18	4 38	0.47
587736585513271500	15.10 15.32	0.0	9 179	0.24	21.82	0.95	6.78	0.11
587734892215074966	14.6	0.02	17 171	1.05	21.02	1 38	6.03	0.11
587736478667505800	14.0	0.02	13.002	0.86	22.44 21.67	3.64	5.67	0.54
587736478135025777	16.32	0.02	15.002	0.00	21.07 21.15	1.04	5.84	0.50
587735340105066036	18.01	0.01	4.050	0.23	21.15	0.21	0.04	0.4
567735349105000030	16.01	0.01	1.279	0.04	19.1	0.21	2.97	0.65
587795949105000055	10.04 17.95	0.01	1.072	0.1	10.07	0.57	4.07	0.09
507735540507750405 E87739770E94E61444	11.20	0.00	1.000	0.20	20.55	1.01	6.76	0.77
08//02//0024001444	15.85	0.01	3.22	0.18	19.93	0.73	0.70	0.77
587735348563804341	15.47	0.01	4.754	0.33	20.53	1.32	5.47	0.74
587735348552794336	14.94	0.01	8.307	0.38	21.29	1.55	6.22	0.3
587733079742873691	16.32	0.02	3.142	0.2	20.51	0.77	5.47	0.78
587735348025819360	16.05	0.01	2.794	0.13	20.1	0.52	7.22	1.11
587735044141744355	15.36	0.01	8.342	0.41	21.85	1.62	9.17	0.82
587735662626668787	15.07	0.01	10.554	0.68	21.96	2.75	6.98	0.34
587732772669358111	14.76	0.01	5.495	0.17	20.11	0.71	5.46	0.36
587733410447294700	15.76	0.01	4.824	0.21	20.82	0.82	6.41	0.44
587735348025819262	15.24	0.0	8.971	0.08	21.99	0.31	8.43	0.12
587735042544566327	15.67	0.01	5.158	0.3	20.66	1.19	10.44	1.11
587733424943857715	15.15	0.01	4.533	0.23	20.07	0.93	5.34	0.29
587730815755223194	15.57	0.03	2.962	0.82	19.32	3.21	2.55	2.03
587733441050837148	14.35	0.0	6.053	0.1	20.2	0.4	7.35	0.12
587732578296528949	14.82	0.01	9.021	0.47	21.14	1.91	6.19	0.33
587732483820617937	16.42	0.01	5.386	0.39	21.75	1.45	7.19	0.59
587732771589718196	15.69	0.02	5.208	0.26	21.02	1.04	5.5	1.22
587732772116758676	16.47	0.01	3.924	0.19	21.41	0.72	7.66	0.46
587732772116758675	15.23	0.01	14.23	0.72	22.83	2.88	7.87	0.62
587729385547038745	13.82	0.03	19.513	1.67	21.91	7.34	6.68	0.44
587730021715869940	15.44	0.01	7.065	0.25	21.4	0.98	6.03	0.36
587732482205090024	15.91	0.04	16.428	0.85	23.14	3.27	2.12	2.15
587728880331587897	16.13	0.01	3.788	0.25	20.63	0.94	7.88	0.97
587731513146278023	16.66	0.04	0.849	0.13	18.02	1.02	5.3	3.87
587731887343403172	14.8	0.05	4.73	0.49	19.96	2.07	6.25	3.82
587731186738003987	15.31	0.0	4.717	0.03	20.52	0.11	5.1	0.03
587731514216742934	14.3	0.0	7.789	0.1	20.38	0.45	5.44	0.18
587731512067620976	15.34	0.0	8.357	0.05	21.69	0.21	8.53	0.05
587730848502841441	15.55	0.01	3.64	0.33	19.43	1.34	5.99	0.5
587731187283787945	14.99	0.0	6.006	0.16	20.78	0.66	6.28	0.41
587731512611373069	16.15	0.01	4.757	0.33	21.29	1.25	6.58	1.15
587729772070633569	14.76	0.04	7.063	0.11	20.71	0.49	1.89	4.86
587729150922063879	14.36	0.01	5.515	0.39	19.73	1.68	5.46	0.48
587728918445228179	15.67	0.01	11.31	0.38	22.7	1.5	8.05	0.29
587728906097131620	15.41	0.03	7.792	0.86	21.41	3.43	8.43	1.51
587729388220711037	14 99	0.02	8.269	0.55	21.36	2.24	6.17	0.48
587728920057610396	14.78	0.0	8.367	0.07	21.00 21.25	0.31	5.71	0.03
					Contin	ia na pi	róxima r	página

Tabela A.4 – continuação da página anterior

Objid	Mag	Mag_{err}	R_e	Re, err	μ	μ_{err}	n	n_{err}
587729386068705388	14.75	0.0	4.858	0.23	19.79	0.97	4.96	0.41
587727221949137234	15.97	0.01	3.075	0.3	20.27	1.14	5.21	1.11
587726100408434843	14.53	0.0	8.099	0.14	21.07	0.6	5.34	0.27
587725552269656203	15.38	0.0	7.137	0.09	21.46	0.37	4.91	0.04
587727225699172376	16.12	0.02	2.783	0.36	19.88	1.38	3.05	1.09
587727866181320772	17.04	0.01	2.061	0.11	20.24	0.45	5.85	1.01
587725816425152519	14.97	0.04	6.595	0.79	20.76	3.25	9.37	1.56
587726016164659594	14.58	0.01	10.147	0.48	21.21	2.01	4.3	0.39
587725590923575596	14.67	0.01	5.644	0.3	20.2	1.24	4.16	0.24
587725469590814886	14.83	0.02	2.081	0.34	17.8	1.52	3.28	1.02
587725074450940007	14.97	0.01	6.089	0.39	20.4	1.59	4.46	0.21
587724648717222130	15.31	0.01	4.663	0.39	20.37	1.55	4.14	0.29
587725075524681934	14.44	0.01	11.517	0.49	21.74	2.05	7.39	0.75
587724650331111441	14.16	0.01	8.198	0.29	20.72	1.24	7.42	0.3
587725083581481059	14.62	0.01	18.56	0.86	22.96	3.59	8.19	0.45
587724242307973183	15.6	0.01	4.489	0.25	20.86	0.98	6.58	0.69
587746210788671686	15.86	0.01	4 273	0.21	20.00 20.64	0.8	5.99	0.00
588023669702000804	15.00	0.01	2 693	0.17	19.82	0.65	4 64	0.20
588017729768652919	14 84	0.01	20.386	0.98	23.16	4 01	6.57	0.11
588848900429119695	15.62	0.01	20.000 5 113	0.37	20.10	1.01	4 1	2.78
588017949358948481	10.02 14 97	0.00	4.689	0.01	20.01	0.07	4.85	0.02
5888/8001523/30607	16 30	0.05	4.061	0.02	20.10	0.01	2.50	0.02 2.81
588017070453341735	16.00	0.05	2.001	0.10	21.01	0.00	$\frac{2.51}{4.71}$	2.01
588848800001047058	10.99 17.93	0.01	2.201	0.00	20.4	0.25 0.37	4.71	0.2 2.72
588018252220470140	16.24	0.05	2.05	0.08	20.01	0.57	4.57	2.72
500010200220479149	16.60	0.01	2.000	0.15	19.90	0.0	4.57	0.31
588848001533401286	10.09 15.02	0.0	3.013	0.17	21.21 20.11	0.03 0.67	6.30 6.77	0.40
000040901000401200	10.92	0.01	0.000 2.017	0.10	20.11	0.07	0.77	1.32
200040900422009922	10.07	0.0	0.419	0.15	21.1 91.19	0.0	(.01 6.00	0.51
566025006105250090	14.72	0.02	9.410	0.04	21.15	2.25	0.22	0.4
588017991255175789 5990177917599	15.74	0.02	1.081	0.42	21.83	1.05	8.32	0.50
588017721723846730	15.0	0.01	4.658	0.25	19.96	1.04	5.49	0.72
588298063582695684	16.2	0.01	5.68	0.26	21.81	0.96	6.56	0.19
588017627236532459	15.10	0.02	4.946	0.37	20.31	1.52	4.07	1.45
588023668635467814	15.66	0.01	3.179	0.35	19.3	1.38	4.76	1.53
588017605211324551	17.22	0.01	2.071	0.2	19.81	1.05	6.12	3.17
588017703997997141	15.27	0.02	9.892	0.75	21.74	3.01	7.29	0.71
588017603608248470	15.39	0.01	7.199	0.42	21.67	1.66	6.95	0.36
588017564949479460	14.86	0.01	9.105	0.47	21.19	1.95	5.13	0.43
588017719565156432	16.12	0.01	4.158	0.25	21.21	0.96	6.12	0.92
588017719570399366	15.75	0.0	4.52	0.12	20.57	0.47	6.58	0.11
588017704529821779	15.48	0.05	6.597	0.19	21.43	0.79	2.49	3.71
588016841245655239	16.32	0.02	3.837	0.24	20.86	0.91	6.56	0.41
587745970540445759	15.69	0.01	7.693	0.36	22.08	1.39	8.3	0.57
588010359076815129	16.31	0.02	4.466	0.3	21.1	1.13	7.62	0.57
588013383799865569	17.05	0.01	1.833	0.22	20.23	0.79	3.07	0.62
588015509283995840	17.49	0.01	0.791	0.04	18.87	0.21	4.47	1.14
588013382728221044	15.89	0.02	4.837	0.4	21.31	1.56	7.46	1.01
588016890631946323	15.76	0.01	5.457	0.41	21.02	1.59	8.67	1.01
588016890631946322	15.01	0.02	9.055	0.87	21.44	3.53	7.71	0.85
588013383806746889	16.74	0.01	2.661	0.27	20.34	1.02	5.46	0.88
588013384336146507	16.27	0.01	2.597	0.16	20.34	0.62	7.47	1.08
588011124115046600	15.29	0.03	5.084	0.32	20.7	1.29	6.42	1.85
					Continu	ia na pr	óxima j	oágina

Tabela A.4 – continuação da página anterior

Objid	Mag	Mag_{err}	R_e	Re, err	μ	μ_{err}	n	n_{err}
588013382204784905	16.86	0.01	2.02	0.08	20.22	0.31	5.12	0.38
588013382202425521	17.27	0.02	1.575	0.17	19.77	0.77	5.93	2.14
587744727687954508	15.3	0.01	9.582	0.29	22.0	1.16	7.61	0.34
587742578065473729	17.09	0.0	0.987	0.01	19.06	0.32	3.61	0.24
587742903404462283	16.42	0.01	4.22	0.22	21.18	0.83	5.62	0.43
587742575924084745	15.83	0.0	6.531	0.23	21.67	0.88	7.44	0.16
587742902326198436	15.55	0.0	7.659	0.05	21.8	0.19	8.15	0.04
587742863133376610	16.05	0.01	2.644	0.14	19.35	0.57	6.45	1.47
587742012755673115	15.59	0.01	6.189	0.28	21.38	1.09	5.4	0.18
587742012765569120	15.86	0.02	1.599	0.21	18.24	0.95	3.12	4.26
587742013830463580	14.89	0.05	2.262	0.73	18.46	3.03	4.16	4.56
587742013830463579	14.34	0.03	3.017	0.15	18.55	0.68	5.0	2.07
587742903938908310	15.51	0.0	4.511	0.1	20.78	0.4	5.87	0.4
587742576450273398	15.01	0.02	5.692	0.38	20.10 21.47	1 46	6.83	0.67
587742551761027186	16.69	0.01	3 41	0.23	21.17	0.84	7.03	0.7
587742189365035157	15.00	0.01	4 59	0.23	20.78	0.88	5.88	0.52
5877/201/000317286	15.10	0.01	1.05	0.20	19.81	1 59	4.94	0.52
587742577521000613	16.15	0.01	3.073	0.55	20.56	0.45	4.94 6.20	0.9
587741817313497661	15.68	0.01	5 1 9 1	0.12	20.00	1.21	0.25 8.24	0.20
587741815713750465	16.76	0.01	1.716	0.04	21.1 10.1	0.76	5.0	0.03
587742010045366634	16.70	0.01	2.078	0.07	19.1 91.1	0.70	0.9 8.67	0.94
587742010045500054	16.40	0.01	0.910	0.22	21.1 10.69	1.97	0.07 5.56	0.59
007741020000274901	10.20	0.07	2.347	0.31	19.02	1.27	0.00	3.70
00774102004004000 587741700050027020	10.21	0.02	2.210 E 200	0.39	19.52	1.0	2.39	2.0
587741709959057250	15.08	0.00	0.328	0.4	20.3	1.08	5.11 5.10	3.3
587741830192562409	15.08	0.02	4.9	0.3	21.04	1.10	5.16	0.88
587739815314718728	15.14	0.0	7.066	0.15	20.99	0.62	7.42	0.07
587741533841785091	15.94	0.01	6.762	0.27	21.68	1.05	7.65	0.25
587739844321345934	16.74	0.01	1.908	0.16	20.13	0.58	10.46	2.08
587739648355663926	14.56	0.06	7.26	0.66	20.66	2.78	7.06	2.69
587739648355663925	14.46	0.03	5.57	0.27	20.01	1.18	3.84	1.92
587739828197458035	15.11	0.01	13.281	0.65	22.41	2.61	8.29	0.51
587739721910779953	14.62	0.02	9.56	0.8	21.15	3.33	7.39	1.34
587739097523486744	14.23	0.01	10.976	0.34	21.02	1.46	5.31	0.33
587739406268694610	15.43	0.03	8.585	0.84	21.91	3.35	6.26	1.97
587739646207721602	16.0	0.03	6.145	0.48	21.83	1.86	7.11	0.62
587739707943813168	15.08	0.06	5.578	0.11	20.44	0.52	2.26	4.23
587739296162316451	15.48	0.01	3.27	0.37	19.98	1.47	3.98	1.15
587739296162316442	15.63	0.0	4.053	0.12	20.67	0.46	5.16	0.15
587739406235205813	15.88	0.0	4.179	0.14	20.9	0.52	7.08	0.19
587739304751726754	14.91	0.0	10.216	0.16	21.88	0.63	9.01	0.11
587739303148322984	15.5	0.02	6.182	1.06	21.07	4.18	3.01	0.43
587739407339749600	17.06	0.02	1.824	0.19	19.82	0.76	5.52	1.6
587737826207007169	15.97	0.05	6.105	0.54	21.73	2.09	7.77	1.36
587739380987592820	13.94	0.0	13.052	0.22	21.3	0.95	6.82	0.03
587739406798160133	15.72	0.03	7.68	0.76	21.78	2.94	7.38	1.3
587739115244421240	16.85	0.03	1.325	0.2	18.79	0.86	5.54	2.23
587738570310549698	16.77	0.02	1.799	0.24	19.49	0.94	2.73	0.83
587738574069170419	17.26	0.03	4.294	0.44	22.27	1.59	6.86	1.17
587738574069170418	15.86	0.01	3.768	0.29	20.11	1.11	4.75	0.54
587738569236807810	15.35	0.02	6.422	0.38	20.78	1.51	5.94	0.57
587738569236807847	15.62	0.01	5.763	0.34	20.99	1.34	5.08	0.56
587738616488198301	15.55	0.0	8.081	0.18	22.01	0.72	6.82	0.1
					Continu	ia na pi	róxima p	oágina

Tabela A.4 – continuação da página anterior

Objid	Mag	Mag_{err}	R_e	Re, err	μ	μ_{err}	n	n_{err}
587736975269757093	17.3	0.01	1.739	0.12	20.41	0.44	6.05	1.78
587738946663022629	16.42	0.01	3.479	0.19	21.01	0.72	9.13	0.69
587738569779314775	14.56	0.0	9.971	0.11	21.16	0.46	5.93	0.02
587736783075803253	16.38	0.01	3.384	0.17	20.74	0.65	5.65	0.65
587738565479170551	16.09	0.01	6.033	0.3	21.33	1.16	5.53	0.28
587736919971725473	16.97	0.02	1.795	0.12	19.98	0.5	5.76	1.92
587736920508858742	15.57	0.0	9.285	0.28	22.03	1.08	6.88	0.09
587736585506980153	16.92	0.02	2.861	0.24	20.5	0.93	7.58	2.35
587736964533649610	14.93	0.04	27.804	2.4	23.82	9.78	7.28	0.55
587736546310881575	15.42	0.0	8.857	0.2	21.84	0.78	7.05	0.07
587735743684870394	15.24	0.01	5.722	0.3	20.24	1.21	6.53	0.49
587736618789962059	15.39	0.01	5.426	0.2	20.49	0.78	5.76	0.6
587736916753907830	14.7	0.0	9.812	0.07	21.53	0.27	9.06	0.04
587736585514189165	15.71	0.0	8.091	0.21	22.07	0.81	7.15	0.51
587735344799744156	15.03	0.02	8.89	0.33	21.6	1.36	5.44	1.89
587736543103877672	14.34	0.0	18.152	0.01	22.63	0.04	6.85	0.0
587736477598285891	15.58	0.01	8.164	0.45	21.68	1.77	6.19	1.28
587736525369573609	17.29	0.01	1.612	0.13	19.85	0.56	8.21	1.36
587735343190966458	16.55	0.02	3.405	0.28	21.04	1.04	6.78	1.63
587736525369376860	15.33	0.01	6.324	0.52	20.64	2.07	9.51	1.02
587735743156715708	16.47	0.01	3.86	0.24	21.09	0.89	6.6	1.51
587735744225542223	15.18	0.0	4.98	0.03	20.43	0.12	5.25	0.03
587735348562690164	16.36	0.04	4 722	0.4	21.2	1.53	6.8	0.86
587735695916400753	17.74	0.06	0.682	0.04	18.44	1.59	7.2	5.32
587735663162228785	14.82	0.01	9.069	0.33	21.08	1.34	5.85	0.29
587735662626668801	16.09	0.02	6 755	0.46	21.75	1 76	6.48	0.6
587735490819522751	16.05	0.0	3.126	0.03	20.28	0.14	5.11	0.1
587733398639870068	16.89	0.01	2 315	0.17	20.09	0.72	5 52	11
587733079742873699	16.01	0.02	5.303	0.36	21.45	1.37	7.31	0.86
587735665858379939	14.41	0.02	18.695	1.1	22.49	4.64	7.64	0.57
587735430153568407	16.35	0.02	4 365	0.43	21 11	1.63	7 78	1 19
587734893827915845	17.24	0.05	0.786	0.16	17.4	4.05	1.43	6.03
587734894360264818	15.48	0.01	4.064	0.18	20.06	0.72	5.13	0.38
587735347486326930	15.28	0.03	2.844	0.26	19.53	1.07	4.98	3.31
587732583130529989	15.71	0.03	7.293	0.58	21.81	2.26	5.12	0.68
587734949127782653	15.0	0.03	10.149	0.6	21.71	2.46	6.88	0.15
587733410992029837	15.84	0.06	1.999	0.22	18.73	0.93	6.02	3.58
587732701794009248	16.96	0.01	1.825	0.14	20.26	0.52	4.91	0.89
587732703397544132	15.59	0.01	4.772	0.19	20.76	0.73	6.7	1.15
587732578846048470	14.85	0.01	6.264	0.46	20.27	1.88	4.47	0.42
587729409156448740	16.84	0.01	2.795	0.19	21.07	0.68	7.16	1.33
587733412590583827	15.95	0.04	4.081	0.62	19.71	2.44	10.54	2.52
587732703397609477	14.72	0.0	8.181	0.06	21.28	0.24	8.64	0.04
587733410991964351	16.45	0.01	1.875	0.16	18.72	1.2	4.7	3.12
587731869632823378	14.42	0.02	16.778	1.37	22.25	5.79	7.39	0.51
587732577234649255	16.49	0.01	4 232	0.16	21 19	0.61	4.5	0.59
587731869631512768	14.99	0.01	6.593	0.21	20.79	0.86	5.8	0.33
587732134840107116	15.38	0.01	6.369	0.17	21.03	0.00	4 45	0.00
587730818437873677	14 81	0.01	10 433	0.21	21.00	0.87	8 17	0.15
587732482205090023	15 11	0.0	5.064	0.21 0.33	21.01 20.25	1 42	5.85	3.2
587731887343403171	13 05	0.00	25 674	0.55	20.20	3 24	2.30	0.2 0.57
587728677929615597	15.30 15.24	0.01	4 315	0.12	20.17	0.49	5 36	1 48
					Contini	ia na pi	róxima r	agina

Tabela A.4 – continuação da página anterior

Objid	Mag	Mag_{err}	R_e	Re, err	μ	μ_{err}	n	n_{err}
587729777440784543	16.83	0.06	1.859	0.22	20.17	0.89	5.03	3.93
587729777442488471	15.5	0.01	5.609	0.26	20.89	1.03	6.64	0.35
587731512611373068	15.75	0.01	6.801	0.43	21.76	1.68	6.82	0.69
587729752213094726	15.47	0.0	8.741	0.07	22.01	0.29	9.08	0.06
587729752213095107	16.14	0.0	4.828	0.17	21.5	0.66	5.88	0.66
587729972324663582	16.36	0.02	3.653	0.3	21.16	1.18	8.09	1.49
587728932417896460	16.12	0.0	3.896	0.12	21.07	0.48	12.39	0.79
587728949048574073	15.59	0.01	5.883	0.39	21.01	1.55	6.12	0.64
587728906097131559	15.37	0.01	4.928	0.34	20.62	1.34	7.02	1.17
587728932417896459	16.22	0.01	1.18	0.13	18.57	0.88	13.19	2.1
587729388220711038	16.53	0.02	2 108	0.23	19.48	0.94	5 35	1 13
587725817494962197	15.84	0.01	2.732	0.13	19.28	0.68	3.1	0.19
587725816420892691	14 66	0.0	7 194	0.22	19.83	0.9	6.01	0.77
587729386078339106	14.60	0.04	7 526	0.22	20.84	1 17	3 29	1.27
587726033846534358	15.7	0.01	7.820	0.52	20.01 22.17	2.04	7.14	0.52
587727231059624044	15.8	0.01	4 25	0.28	20.51	11	5.32	0.59
58772/108822/12/73	14.83	0.01	120	0.20	20.01 22.10	1.1	7.74	0.07
587727865644974418	15.86	0.0	3 647	0.23	22.13	1.21 1.72	1.14	3.85
587726101482207770	16.01	0.00	6 501	0.45	20.20	1.72 0.75	7.54	0.10
587725919022700200	14.64	0.0	6 991	0.2	21.74	0.75	6.09	0.19
587796014522705072	14.04	0.04	1 995	0.00	20.45	2.75	0.90 6.17	3.07 1.47
507720014555795975	16.75	0.02	4.000	0.52	20.11	1.20	0.17	1.47
0011200100000020012	10.75	0.01	2.002 4.50C	0.15	20.70	0.57	1.11 F.CF	0.5
587724C40700C80158	15.90	0.01	4.520 C.011	0.14	20.75	0.50	0.00 0.40	1.0
587724049799080158	10.9	0.01	0.011	0.39	21.17	1.5	8.49	1.24
587722983367376979	16.2	0.01	3.501	0.2	20.38	0.78	6.2	1.89
587725471207588030	14.57	0.01	20.651	0.47	23.09	1.99	6.19	1.24
587725505018986745	16.44	0.01	3.083	0.18	20.5	0.7	6.54 0.72	0.72
587742013830463683	15.69	0.01	4.274	0.4	20.34	1.56	3.72	0.41
587742573761986688	16.75	0.05	6.815	0.74	22.91	2.75	6.48	1.41
587741489301487648	14.81	0.01	11.409	0.54	21.75	2.21	7.88	0.46
587739648355663927	14.53	0.02	9.903	0.53	21.08	2.25	5.51	0.33
587739720310063195	14.07	0.05	19.264	1.97	22.2	8.54	6.86	0.68
587738618091405327	14.86	0.02	12.759	0.89	21.92	3.63	7.35	0.65
587736976889610625	16.69	0.0	3.161	0.11	20.58	0.44	5.49	0.21
587736542020042950	15.19	0.01	5.201	0.22	19.89	0.91	4.81	0.39
587734950201720982	14.23	0.02	16.022	1.23	21.91	5.24	7.2	0.65
587728932417241302	13.85	0.03	20.628	1.59	22.17	6.98	5.39	0.52
587724198279053335	15.13	0.01	10.295	1.03	21.6	4.14	7.95	0.97
588018056739947027	15.17	0.03	9.285	0.82	21.64	3.29	6.65	0.56
588018091615781059	15.54	0.01	7.388	0.32	21.87	1.26	7.38	0.29
588848899937140966	15.5	0.01	9.164	0.56	22.1	2.19	7.0	0.41
588848900437311559	14.85	0.0	4.764	0.02	19.96	0.09	4.79	0.01
588018254824865933	15.21	0.01	7.281	0.35	21.15	1.42	6.49	0.78
588848900991353004	15.04	0.01	9.109	0.3	21.56	1.2	6.27	0.23
588023670779412617	14.05	0.0	14.041	0.36	21.51	1.58	5.33	0.12
588848900435869931	15.1	0.01	10.729	0.44	21.95	1.79	8.04	0.23
588018253226049824	14.17	0.0	15.274	0.14	21.96	0.59	8.53	0.08
588018054575751304	15.41	0.0	5.215	0.16	20.99	0.65	6.99	0.24
588017991225770019	15.4	0.0	10.347	0.11	22.13	0.44	7.49	0.04
588017991768015027	15.59	0.01	2.709	0.34	19.75	1.33	4.43	0.95
588297863115374718	15.14	0.01	11.064	0.35	22.35	1.41	7.8	0.28
588297863656177670	15.34	0.02	9.932	0.88	21.76	3.51	7.05	1.06
					Continu	ia na pi	róxima r	página

Tabela A.4 – continuação da página anterior

Objid	Mag	Mag_{err}	R_e	Re, err	μ	μ_{err}	n	n_{err}
588297863117406313	14.91	0.02	14.55	1.11	22.37	4.52	6.52	0.44
588017627221721240	15.35	0.0	6.319	0.07	21.19	0.29	5.99	0.05
588017604153573442	14.96	0.01	7.849	0.39	21.05	1.57	7.46	0.32
588017626700775492	14.68	0.03	11.705	0.92	21.68	3.83	8.3	1.14
588017603614212127	14.48	0.01	6.317	0.19	19.97	0.78	5.03	1.29
588017710976991413	15.09	0.01	6.165	0.19	20.96	0.78	5.28	0.2
588017606287753473	14.4	0.0	19 754	0.01	22.88	0.03	6.65	0.0
588010360689852537	14.72	0.01	11 648	0.77	21.00	3.19	7.81	0.0
587742568396947536	16.98	0.01	1 637	0.07	19.89	0.15	4.88	0.34
588016841245655250	14.88	0.01	15 13/	0.01	22/10	3.78	7.62	0.01
588015508108105337	15.06	0.02	5 503	0.52	22.45	0.53	1.64	0.4
588016841949444914	15.00	0.0	1 378	0.10	20.74	0.00	4.04	0.9
588016878830157047	14.00	0.01	7 700	0.32	20.20	1.01	4.52	0.25 0.37
500010070030137947	14.99	0.01	1.109 E 7E9	0.55	21.1	1.44	0.23	0.37
500013302202423320	15.00	0.0	0.702 2 0 / 1	0.00	20.65 20.17	0.2	4.70	0.03
500010559000250040	15.58	0.01	5.641	0.25	20.17	0.94	0.18	0.41
08//44038020/113/4	15.90	0.01	5.095 2.05	0.20	21.02	1.01	4.73	0.30
588015509281898063	15.9	0.01	3.25	0.23	19.94	0.91	4.8	1.21
588010358005760023	14.15	0.02	16.139	1.29	21.94	5.50	(.5	0.8
588011219145916635	14.77	0.01	9.665	0.38	21.55	1.55	4.73	0.15
588011123583287333	14.82	0.01	6.839	0.4	20.77	1.65	7.5	1.16
588010360695947314	14.71	0.0	10.53	0.29	21.46	1.21	7.45	0.1
588007005794336935	15.44	0.03	10.741	1.08	22.32	4.26	7.07	0.87
587742567862829076	14.44	0.0	6.368	0.15	19.74	0.66	4.87	0.27
587742569469509744	15.49	0.02	8.683	0.73	21.59	2.86	7.25	0.62
587744874785276164	14.75	0.02	10.723	1.13	21.54	4.67	7.58	1.13
587742903404462260	15.22	0.02	8.946	0.74	21.79	2.96	7.24	0.6
587742589866737785	15.49	0.0	7.037	0.24	21.54	0.93	6.78	0.13
587742773489107071	15.27	0.01	4.024	0.17	19.82	0.68	5.57	0.62
587742610811846956	15.25	0.02	8.722	0.63	21.82	2.5	8.46	1.25
587742772939260015	15.74	0.01	5.548	0.3	21.41	1.18	6.71	0.63
587742775104176280	15.9	0.01	4.062	0.17	20.92	0.64	4.93	0.18
587742865284005899	15.54	0.0	5.74	0.17	21.16	0.66	6.55	0.22
587742571609850050	15.5	0.0	6.37	0.04	21.22	0.17	9.64	0.05
587742550151462938	15.39	0.01	7.203	0.35	21.42	1.4	4.6	0.41
587742060517523663	14.44	0.01	13.593	0.86	21.79	3.64	7.91	0.56
587742551222518055	15.86	0.01	4.433	0.21	21.08	0.81	5.37	0.55
587742061600702583	15.7	0.0	4.648	0.11	20.85	0.43	6.13	0.12
587742575367487610	15.12	0.0	5.452	0.13	20.75	0.51	6.53	0.16
587741489294409824	15.01	0.02	10.876	0.97	21.57	3.95	8.23	0.85
587741708334530887	15.0	0.04	9.152	0.85	21.33	3.47	7.84	0.65
587741724969795763	15.57	0.01	5.186	0.24	20.9	0.96	5.04	0.26
587739845397381589	14.58	0.02	15.245	0.82	22.31	3.41	6.71	0.57
587741817324503172	15.3	0.02	10.387	0.65	22.19	2.58	9.33	0.72
587739844855529699	15.25	0.02	14.977	1.14	22.88	4.56	7.46	0.85
587739844847075507	14.64	0.01	9.285	0.25	21.26	1.06	5.01	0.14
587741816237654341	15.66	0.01	3.991	0.26	20.22	1.01	6.49	0.99
587739707943813269	15.08	0.02	7.077	0.58	21.11	2.35	7.79	0.7
587739630093992011	14.81	0.01	9.092	0.33	20.99	1.35	6.24	0.54
587739407850930187	14.39	0.01	4.6	0.27	19.64	1.14	3.2	0.17
587739407864365113	14.75	0.01	7.998	0.27	21.16	1.13	7.23	0.21
587738067263160487	15 41	0.01	4 795	0.15	20.64	0.6	4 69	0.21
587739406268039264	15.09	0.01	2.839	0.19	19.25	0.77	5.21	1.11
	10:00	0.01		0.10	Contin	ia na pi	róxima i	página

Tabela A.4 – continuação da página anterior

Objid	Mag	Mag_{err}	R_e	Re, err	μ	μ_{err}	n	n_{err}
587739720842739833	15.3	0.01	8.15	0.39	21.54	1.57	8.35	0.37
587739096982749328	15.16	0.02	9.956	0.81	21.65	3.26	6.38	0.43
587738195037585445	15.27	0.0	13.258	0.03	22.75	0.11	7.38	0.02
587739305554477126	14.48	0.02	7.715	0.39	20.58	1.67	5.48	0.87
587739380451770549	15.52	0.01	5.138	0.23	20.76	0.92	5.17	0.27
587739377773510968	15.38	0.02	7.08	0.49	21.52	1.95	7.69	0.66
587739382065266889	16.37	0.02	1.368	0.21	19.04	0.81	4.59	1.3
587739380991262768	14.76	0.0	8.974	0.31	21.2	1.29	6.64	0.37
587739380452950244	16.21	0.01	7.206	0.41	22.49	1.54	7.91	0.44
587738569250177052	15.04	0.01	14.089	0.65	22.48	2.65	7.09	0.3
587739132421799992	14.55	0.01	6.002	0.33	20.24	1.37	7.75	0.57
587738565482643805	14.61	0.01	7.545	0.22	20.99	0.91	5.79	0.4
587738410329768088	15.18	0.01	13.012	0.58	22.5	2.34	7.75	0.58
587736809917382807	15 71	0.01	4 705	0.27	20.81	1.03	6 16	0.59
587736941444595730	14 83	0.01	7 345	0.05	$\frac{20.01}{21.05}$	0.23	5.10 5.59	0.03
587736809382150221	15.33	0.02	9.518	0.67	22.2	2.68	7 23	0.59
587736808305590347	15.00	0.02	9.428	0.58	21.2	2.00 2.34	77	0.55
587736010071725461	15.12	0.01	7 802	0.00	21.04	1.68	73	0.00
587736800010470886	1/ 80	0.01	1.052	0.41	20.5	1.00	0.15	1.86
587735666013947348	15.85	0.02	0.181	0.31	20.12	1.0	9.10 8 0	0.50
587736010072446654	15.60 15.64	0.01	9.101 3.762	0.59	22.00	0.81	0.0 1.8	0.39
587736586046013549	14.50	0.01	10 003	0.21	20.20	0.01	7.44	1 11
587726584077008002	14.09	0.02	5 226	0.00	21.47	2.60	1.44	1.11
507726619790502240	15.45	0.0	0.000	0.1	20.7	0.39	4.40	0.20
507736594431306630	10.07	0.03	9.990	0.00	22.42	0.00 0.05	0.81	0.05
007700004401200009 F07700477F00004F00	14.40	0.01	9.301	0.55	21.10	2.20	4.0	0.48
0877369477099924020 687736947600261604	10.28	0.0	2.429	0.05	19.94	0.21	0.21 6 9	0.41
087730347000301004 197796479191001774	14.90	0.01	4.001	0.31	19.47	1.3	0.8	0.00
587736478135025774	14.23	0.0	10.167	0.19	21.0	0.82	6.03	0.09
587730525909393000 5877355744999994796	15.31	0.01	9.400	0.38	22.19	1.51	0.97	0.69
08//00/44228294/00	15.09	0.02	13.405	0.82	23.09	3.18	1.03	0.47
587735489212710946	14.72	0.01	8.708	0.17	21.09	0.7	4.88	0.13
587735348563804348	15.72	0.01	14.000	0.46	21.72	1.77	4.65	0.82
587735744225542163	14.64	0.0	14.232	0.19	22.4	0.79	5.39	0.1
587735662085341247	14.6	0.01	9.225	0.47	21.08	1.98	7.93	0.6
587733410447294661	14.31	0.01	15.393	0.47	22.05	2.01	6.23	0.11
587733079742808182	14.1	0.01	12.022	0.44	21.35	1.91	7.12	0.35
587732770524561443	15.01	0.01	3.971	0.38	19.45	1.56	4.25	0.64
587733442128117896	15.63	0.02	8.193	0.49	22.07	1.91	5.0	0.9
587733080809078923	15.01	0.01	8.701	0.32	21.7	1.28	7.02	0.59
587735348033356018	15.58	0.0	3.277	0.04	19.98	0.17	6.14	0.1
587734621635477607	15.26	0.01	6.696	0.3	21.04	1.21	6.44	0.39
587735348012843029	17.26	0.02	1.079	0.16	18.78	0.8	7.47	3.34
587734691426533635	15.25	0.0	6.641	0.22	21.21	0.89	4.72	0.31
587734303269519629	15.05	0.0	6.849	0.17	21.21	0.67	5.36	0.14
587735347480232034	15.01	0.01	4.887	0.23	19.91	0.94	5.0	0.67
587732579383771244	15.94	0.01	3.089	0.23	20.39	0.87	5.16	0.59
587733080272404633	14.7	0.02	17.509	0.8	22.88	3.3	7.28	0.38
587732701790470316	16.15	0.02	5.9	0.4	21.65	1.52	6.56	0.61
587732578296528981	14.38	0.01	5.202	0.19	19.4	0.8	5.76	0.57
587731912037433507	14.19	0.01	22.973	1.01	22.82	4.33	6.93	0.42
587732482753298444	14.6	0.0	10.379	0.01	21.33	0.05	10.47	0.04
587731890041716905	14.41	0.01	9.509	0.23	20.99	0.96	6.03	0.15
Continua na próxima página								

Tabela A.4 -	- continuação	da página	anterior
--------------	---------------	-----------	----------

Objid	Mag	Mag_{err}	R_e	Re, err	μ	μ_{err}	n	n_{err}
587728669341188155	14.6	0.0	9.183	0.28	21.33	1.19	4.18	0.33
587728669878714582	15.12	0.01	4.883	0.28	20.56	1.12	4.9	0.22
587732702326096073	14.56	0.03	19.688	1.93	22.53	8.06	6.57	0.82
587731513156632699	14.32	0.02	15.527	1.21	21.9	5.14	7.15	0.5
587732482743599193	16.37	0.01	5.026	0.38	21.58	1.44	6.01	0.92
587730773870510126	15.27	0.01	4.686	0.24	20.28	0.97	7.22	0.87
587729408080150761	14.19	0.01	13.269	0.65	21.33	2.8	6.07	0.29
587730022256738525	14.35	0.01	12.061	0.4	21.28	1.71	5.22	0.41
587730022260670673	15.39	0.01	9.603	0.5	22.05	1.99	6.83	0.72
587730022251626698	14.76	0.01	13.018	0.64	22.09	2.63	5.73	0.9
587731498652139686	15.31	0.01	5.849	0.31	20.91	1.24	5.57	0.61
587729388223201448	14.48	0.0	11.782	0.02	21.79	0.1	7.86	0.12
587727180608503815	14.24	0.01	12.898	0.52	21.7	2.22	7.42	0.27
587729386610557092	15.09	0.0	6.598	0.09	21.05	0.38	5.67	0.07
587727225157124149	14.42	0.01	10.672	0.27	21.3	1.12	5.82	0.43
587726033878122590	15.22	0.02	8.046	0.57	21.52	2.3	9.18	0.91
587727865646612811	15.58	0.01	5.211	0.21	21.11	0.83	5.02	0.34
587726101491089605	14.74	0.03	13.658	1.65	22.06	6.81	8.17	0.95
587727179001823253	14.91	0.02	7.644	0.67	21.1	2.75	9.23	1.51
587727213885915309	14.6	0.01	15.509	0.54	22.42	2.26	6.81	0.22
587724649799680055	14.97	0.03	14.25	1.5	22.45	6.13	6.81	0.87
587727222470934941	15.45	0.0	9.879	0.25	22.19	0.99	6.19	0.07
587724649255862420	15.5	0.01	5.326	0.25	20.88	0.97	8.0	0.4
587725490524258569	14.9	0.01	9.291	0.47	21.57	1.92	7.25	0.6
587722983911981322	14.34	0.03	24.095	2.09	22.77	8.87	6.67	0.54

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI)

Teses e Dissertações apresentadas nos Cursos de Pós-Graduação do INPE.

Notas Técnico-Científicas (NTC)

Incluem resultados preliminares de pesquisa, descrição de equipamentos, descrição e ou documentação de programas de computador, descrição de sistemas e experimentos, apresentação de testes, dados, atlas, e documentação de projetos de engenharia.

Propostas e Relatórios de Projetos (PRP)

São propostas de projetos técnicocientíficos e relatórios de acompanhamento de projetos, atividades e convênios.

Publicações Seriadas

São os seriados técnico-científicos: boletins, periódicos, anuários e anais de eventos (simpósios e congressos). Constam destas publicações o Internacional Standard Serial Number (ISSN), que é um código único e definitivo para identificação de títulos de seriados.

Pré-publicações (PRE)

Todos os artigos publicados em periódicos, anais e como capítulos de livros.

Manuais Técnicos (MAN)

São publicações de caráter técnico que incluem normas, procedimentos, instruções e orientações.

Relatórios de Pesquisa (RPQ)

Reportam resultados ou progressos de pesquisas tanto de natureza técnica quanto científica, cujo nível seja compatível com o de uma publicação em periódico nacional ou internacional.

Publicações Didáticas (PUD)

Incluem apostilas, notas de aula e manuais didáticos.

Programas de Computador (PDC)

São a seqüência de instruções ou códigos, expressos em uma linguagem de programação compilada ou interpretada, a ser executada por um computador para alcançar um determinado objetivo. Aceitam-se tanto programas fonte quanto os executáveis.