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Abstract

Climate networks are powerful approaches to disclose tele-connections in climate systems

and to predict severe climate events. Here we construct regional climate networks from pre-

cipitation data in the Amazonian region and focus on network properties under the recent

drought events in 2005 and 2010. Both the networks of the entire Amazon region and the

extreme networks resulted from locations severely affected by drought events suggest that

network characteristics show slight difference between the two drought events. Based on

network degrees of extreme drought events and that without drought conditions, we identify

regions of interest that are correlated to longer expected drought period length. Moreover,

we show that the spatial correlation length to the regions of interest decayed much faster in

2010 than in 2005, which is because of the dual roles played by both the Pacific and Atlantic

oceans. The results suggest that hub nodes in the regional climate network of Amazonia

have fewer long-range connections when more severe drought conditions appeared in 2010

than that in 2005.

Introduction

In recent years, climate network approaches have been successfully applied to uncover some

hidden interaction patterns and large scale circulation variabilities in the climate system. For

instance, this approach discloses intricate tele-connections [1–3], stability properties and tem-

poral evolutionary behavior under the influence of El Niño events [4–7]. Furthermore, some

network algorithms have been proposed to forecast the early arrival of the recent El Niño [8, 9]

and extreme precipitation events of monsoons over South America [10–12]. Complex net-

works help to trace the flow of energy and matter in the air surface temperature field [13, 14],

detecting community structures [15, 16], and shedding many insights on the propagation of

extreme events [17]. Network measures have shown power in differentiating regime changes

from paleoclimate marine records, which covered Million years scale [18, 19]. One other

example of climate network approach is to characterize different types of El Niño episodes by

analyzing the evolving correlation structure of surface air temperatures [20, 21]. Furthermore,

climate network analysis complements classical eigen techniques and provides additional

information on the higher-order structure of statistical interrelationships in climatological
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data [22]. A probabilistic graphical model has been proposed to identify and to visualize net-

work properties of the atmosphere, such as length of local memory and identification of path-

ways of remote impact [23].

Understanding drought events in Amazonia has fundamental importance to the stabilities

of the Earth climate system because the Amazonia is one of the key tipping elements [24].

Extreme climate conditions of rainfall reductions and droughts in Amazonia have been

observed in 2005 and 2010 [25–29]. The substantial difference between droughts 2005 and

2010 has been recently disclosed by computing drought period length [30]. Here we construct

climate networks from the precipitation data in the Amazon region, focusing on the network

structural changes under these two severe drought events in 2005 and 2010. The other motiva-

tion is that we use the Amazonian system as one example to study the stability conditions of

the reconstructed networks under the influences of extreme events, which is one of the crucial

questions in complex climate network analysis.

Materials and methods

Data

Precipitation is evaluated using the Princeton Global Forcings dataset at 0.25˚ resolution [31].

This dataset blends surface and satellite observations with reanalysis and is available for 1948–

2010. Sea Surface Temperature (SST) is evaluated using NOAA high resolution SST data prod-

ucts [32]. We choose the Amazon domain as 75˚W − 48˚W, 5˚N − 15˚S, where there are 8640

spatial points. Time series for precipitation of daily resolution were built for this region, while

time series for SST, are respectively, obtained by area averaging over El Niño3.0, North Atlan-

tic (n-Atlan) and South Atlantic (s-Atlan) domains, according to the definitions of [30, 33].

Daily precipitation anomalies are calculated relative to a base period of 1961–2000. This

40-year base period is chosen as it is representative of the record of the 20th century. More spe-

cifically, given an observational series at a location (i, j) in a year (for instance, precipitation

series of 2005), y(t, i, j), where t 2 [1, 365], the corresponding anomaly series is computed by

xðt; i; jÞ ¼
yðt; i; jÞ � hyðt; i; jÞiT

sT
; ð1Þ

where h�iT is the average value for date t over T = 40 years from 1961–2000 and σT is the associ-

ated standard deviation. We calculate SST anomalies in the same way.

When studying the temporal variations, we compute network statistics (as explained below)

based on daily anomalies with a sliding window size of 60 days and no window overlapping. In

contrast, when discussing the unique characteristics of the extreme drought events in 2005 and

2010, we define summer seasons (winter) as from December to February (April to September,

respectively).

Methods

Expected drought period length. Recently, we have proposed to compute the drought

period length DPL(t) to characterize the waiting time of the present day to the next first non-

negative rainfall anomaly [30]. More specifically, from the daily rainfall anomaly series x(t)
at latitude i and longitude j, we calculate DPL(t, i, j) = min{τ: x(t + τ)� 0, τ 2 [0,1)}, which

captures the expecting time when anomaly series goes from negative to positive. Note that

DPL(t, i, j), where t 2 [1, 365] and 366 for leap years, characterizes the expectation to have a

positive rain anomaly, which provides an alternative way to characterize waiting time distribu-

tion properties of the underlying processes [34].

Regional climate networks during recent drought events
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In order to quantify the strength of dry conditions at spatial location (i, j) in a year, we

count the number of dry days when DPL(t, i, j) is larger than some threshold value. Consider-

ing the specific properties of the local climate dynamics of the measurement point of the

underlying grid, a fixed threshold value may not be appropriate for all locations. Therefore, we

adopt a local threshold ε(i, j) which is chosen as 1/3 of the maximum of all the DPL values at

the coordinate (i, j) in a year, namely, ε(i, j) = 1/3maxDPL(t, i, j). Then, we count the number

of days N(i, j) when DPL(t, i, j) is higher than ε(i, j), i.e., N(i, j) = #{DPL(t, i, j)� ε(i, j)}. Quali-

tatively similar results have been obtained when different definitions of threshold are used, for

instance, with respect to a certain quantile of the DPL distribution.

For better comparison of maps between different years, the normalized drought strength
NDS(i, j) is introduced to normalize N(i, j) to the unit interval [0, 1] by

NDS1=3ði; jÞ ¼
Nði; jÞ � min i;jðNði; jÞÞ

max i;jðNði; jÞÞ � min i;jðNði; jÞÞ
: ð2Þ

The subscript 1/3 of NDS( i, j) is used to emphasize the threshold effects, which may affect

the length of time intervals of the drought events. Furthermore, maxi, j(N(i, j)) and mini, j(N(i,
j)) are with respect to all locations (i, j). Considering the threshold effects, the NDS(i, j) is aver-

aged over two more thresholds ε(i, j), 2/3 and 3/4 of the maximum of all the DPLs, namely,

NDS(i, j) = (NDS1/3(i, j) + NDS2/3(i, j) + NDS3/4(i, j))/3.

Construction of climate networks. We construct the regional climate network in the

Amazonian region from the precipitation anomalies with the following steps:

1. the locations (i, j) at which the considered rainfall anomaly series x(t, i, j) are used as the

spatial locations of network vertices.

2. the linear Pearson correlation is computed for a relevant statistical association between any

pair of series from two different locations [1, 2, 4, 6]. In addition, we restrict the analysis to

the absolute values of correlation coefficients at zero lags as done previously in [13]. Note

that the proper computation of correlation coefficients remains an open question [6, 35].

Nevertheless, climate networks based on statistical association measures (including linear

correlation coefficient and nonlinear mutual information) provide us with novel insights

for understanding the climate system, which complement the traditional eigen techniques

to analyze the high dimensional spatial temporal data [22]. In consequence, a correlation

matrix CM = CMi, j is obtained, where i 2 [1, 108], j 2 [1, 80].

3. We construct the climate network by thresholding the correlation matrix CMi, j, i.e., only

pairs of nodes {i, j} that satisfy CMi, j> γ are regarded as linked. Using the Heaviside func-

tionΘ(x), the adjacency matrix Ai, j of the climate network is then given by

Ai;j ¼ YðCMi;j � gÞ: ð3Þ

Note that Ai, j inherits its symmetry from CMi, j and the resulting climate network is an

undirected and unweighted simple network.

From the viewpoint of numerical simulations, all considered measures below are based on

the adjacency matrix Ai, j, and hence their values necessarily depend on the choice of the

threshold γ. So far, there is no universal threshold selection criterion to obtain Ai, j. On the one

hand, if γ is chosen too small, there are almost no linked nodes and, hence, no feasible infor-

mation on the network structure of the climate system. On the other hand, if γ is too large,

almost every node is a neighbor of every other node, which leads to numerous artifacts. Hence,

Regional climate networks during recent drought events
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we have to seek a compromise for choosing a reasonable value of γ. In this work, a fixed

threshold γ is chosen such that the resulting network has a prescribed link density ρ, which has

been widely used in climate network studies [13, 14]. A further note is that when calculating

network properties using sliding windows, the threshold γ is chosen with respect to the first

window and then it is fixed over time windows.

To characterize the resulted network Ai, j, we focus on the following six network measures,

1. link density ρ, which measures the density of strong links that are larger than the threshold

in the network, namely the density of 1 in the matrix Ai, j.

2. transitivity T [36, 37], which characterizes the global density of closed “triangles” in the

network. Note that T is sometimes referred to as the (Barrat-Weigt) global clustering

coefficient.

3. average clustering coefficient C [38], which gives the arithmetic mean of the local clustering

coefficient Cv taken over all vertices v. This measure is conceptually related to, but distinct

from, T . In particular, T does not explicitly take the degree of each node into account,

whereas C does. In order to avoid confusion, in this work we prefer to discuss both mea-

sures separately.

4. average path length L, which quantifies the average geodesic (graph) distance between all

pairs of vertices, i.e., the average smallest number of edges to be traversed to cover the dis-

tance between two randomly chosen vertices on the graph.

5. assortativity coefficient R [39], which characterizes the correlation coefficient between the

degrees of all pairs of connected vertices reflecting the similarity of the connectivity.

6. modularity Q, which measures how good the division of the graph into modules, or how

separated are the different vertex types from each other. We use the algorithms that are

based on eigenvectors of the modularity matrix which has been developed by Newman

[40]. The value of Q lies in the range [-1/2, 1).

Note that network measures have been widely applied to understand the climate system. In

general, they have already proven to be helpful to distinguish between qualitatively different

types of dynamics [18, 41–43]. The topological structures of climate networks have shown

great potential for predicting the arrival of El Niño events [9], and discriminating types of El

Niño and La Niña events [21]. Large scale of spatial variabilities have been obtained by net-

works that are reconstructed from both temperature [15, 44] and precipitation data [45],

showing proper modularity structures. Here, we compute these network measures as potential

candidates for discriminatory statistics, which may capture the variations of climate networks

under the perturbations from extreme drought events. It remains to be a challenging task to

interpret assortativity coefficient in terms of climate dynamics.

Improved method in constructing extreme drought networks. In order to highlight the

roles of extreme drought events to the networks, we focus on the locations that are severely

affected by drought as characterized by drought strength (Eq (2)). For instance, from the rect-

angular area of 8640 geographical points, we choose 50% locations of large NDS(i, j) values. In

the next step, we follow the same strategy as presented in the previous section to construct

extreme drought climate networks. In addition, the distributions of NDS(i, j) in 2005 are differ-

ent with 2010, which yields different sets of locations in these two years (as will be shown

later). Therefore, we show the network measures separately.

In addition to the extreme drought networks reconstructed from the locations that are

characterized by top NDS values, similar networks obtained from small NDS values (say, 50%

Regional climate networks during recent drought events
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quantile of the distribution of NDS values) provide complement insights for the understanding

of climate without drought conditions. When discussing about the choice of regions of inter-

est, we compare the results from extreme drought networks and that are obtained from net-

works reconstructed from small NDS values.

Delay effects by surrounding oceans to the Amazonia. The surrounding Pacific and

Atlantic oceans play crucial roles in the formation of precipitation networks in the Amazonia.

Therefore, we interpret the unique network properties during the droughts by studying the

ocean effects. More specifically, we extract time delay effects from the ocean to the precipita-

tion patterns in Amazonia by means of transfer entropy, which has been recently proposed in

[46]. This approach was based on the ordinal patterns of time series data and the advantage is

that it allows to extracting time delays with improved statistical power. Using this approach,

we identify the delay effects between ENSO (El Niño 3.0 series), north Atlantic and south

Atlantic to the region of interest in the Amazonia. Given the precipitation anomaly series x(t)
spatially averaged over the Amazon region and S(t) of SST, we compute the delayed mutual

information MIðtÞ by shifting MIðt � tÞ in order to extract the delay information of the

oceans. The delays have shown 95% of significance level by surrogate testing [46].

Results

General behavior of drought period length

The spatial distributions of normalized drought strength of the year 2005 and 2010 in the

Amazonian region are respectively shown in Fig 1A and 1B. In 2005, the center of much severe

dry conditions is observed in the southwestern region, however, the severe dry conditions in

2010 are shifted to the center of the Amazonian area. In order to show the difference between

these two years, we summarize the results by probability density functions (PDF) of NDS as

shown in Fig 1C. The PDF is skewed to the left in 2005 indicating less severity comparing to

2010. In conclusion, in 2010, the Amazonia experienced a large spatial coverage of long tempo-

ral severe dry conditions.

Seasonal variabilities of network measures

We construct climate networks with running windows of 60 days (no window overlapping).

We find that window sizes ranging from 30 to 90 days do not alter our results substantially. In

addition, the threshold γ is chosen according to a specific link density of ρ = 0.01 for the first

window and then this value is fixed when sliding windows over time. We follow the traditional

Fig 1. Normalized drought strength over Amazon region. (A) 2005, (B) 2010, and (C) probability distribution functions of normalized

drought length.

https://doi.org/10.1371/journal.pone.0186145.g001
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choices of these parameters when constructing climate networks using sliding window tech-

niques [20]. Then, we compute the network measures r; T ; C;L;R and Q for each window,

such that following the variation over time. There are 8640 nodes in each network. It is a well-

known fact that the network measures depend on the choice of threshold value γ. To consider

these possible effects, the results shown in Fig 2 are averaged over three representative thresh-

old values such that the link densities of the first window are ρ = 0.01, 0.02, and 0.03.

We find that network measures r; T ; C;L oscillate regularly, showing seasonal effects. For

instance, the average path length L reaches a maximum in the summer rainy seasons while the

minimum in the dry winter seasons (Fig 2D). This is because the network as we built becomes

sparser in the summers requiring large path length to reach different parts of the network,

which is consistent with ρ (Fig 2A), T (Fig 2B) and C (Fig 2C). In contrast, we noticed that T
reached minima during summer periods (Fig 2B). However, the seasonal effects are not well

captured by R and Q (Fig 2E and 2F). In particular, Q shows big variations after 2009, while

almost invariant before 2009. This indicates that the possible subgraph structures are not

pronounced in 2009 and 2010 than that in other years. The underlying mechanisms of the

variations of network measures remain to be investigated in terms of the regional climate

dynamics.

Seasonal variabilities of extreme drought networks

In order to clarify the construction of extreme drought networks, we show in Fig 3 the loca-

tions that are experienced large drought strength, i.e., 50% of top values across the entire

region. In other words, 50% of relative small values of NDS are suppressed in the color plot. It

is easy to see that our method highlights the roles of locations of extreme drought events.

Fig 2. Network measures and gray areas highlight the austral summer periods. (A) link density ρ, (B) transitivity T , (C) clustering coefficient C, (D)

average path length L, (E) assortativity R and (F) modularity Q. Gray time windows highlight the summer seasons.

https://doi.org/10.1371/journal.pone.0186145.g002
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Different definitions of top DPL values yield different sizes for the reconstructed extreme

drought networks. Therefore, we repeat the same analysis for different percentages (thresholds

from 30% to 70%) of top NDS values. When more locations of top NDS values are included in

the extreme networks, the results are close to the case of Fig 2.

In the next step, we follow the same strategy as in the previous section to show the varia-

tions of network measures over time (Fig 2). Note that there are different sets of locations in

the resulting networks, which lead to two curves in Fig 4. One curve corresponds to the spatial

points of the year 2005 and the other is for 2010. Comparing Fig 4 with Fig 2, rather similar

temporal variations of network measures have been obtained for the extreme drought net-

works. Some amount of difference at different time windows may be discerned, which how-

ever requires careful interpretations and statistical evaluations in the future work.

Regions of interest defined by large network degrees

In order to disclose the particular network features for the drought events in 2005 and 2010,

we focus on the correlation structures to some particular regions of interest under the extreme

drought conditions. Since the sets of locations of top NDS values are different between 2005

and 2010 as shown in Fig 3, we cannot compare the networks directly. Therefore, we first com-

pute the map of NDS values for each year from 2004 to 2010 and then produce the map of aver-

aged NDS values, which characterizes the general behavior of drought period length in the

Amazonia. From this map, we choose top 50% of locations of large NDS values to construct

extreme drought networks and the chosen locations are shown Fig 5A. In contrast, drought

networks obtained from 50% of locations of small NDS values capture the climate conditions

without serious droughts and the locations are shown Fig 5B.

In the next step, we construct networks for these two different sets of locations. More spe-

cifically, given precipitation anomaly time series of the chosen locations (for instance, loca-

tions of 50% upper quantile of NDS values), we construct the corresponding climate networks

based on the map of the averaged correlation matrix CMi, j over seven years from 2004 to

2010. The map of network degrees is shown in Fig 6A and the threshold value γ is chosen such

Fig 3. Distribution of 50% large values of drought strength across the Amazon region in the year (A) 2005, and (B) 2010.

https://doi.org/10.1371/journal.pone.0186145.g003
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that the network link densities ρ = 0.01. We have obtained similar results when varying the

threshold.

In a full analogy, the map of network degrees of locations of 50% lower quantile of NDS
values is shown in Fig 6B. On average, the area of large network degrees of extreme drought

Fig 4. Network measures of extreme drought networks. Gray areas highlight the austral summer periods (• spatial points of 2005, and ˚ spatial points

of 2010). (A) link density ρ, (B) transitivity T , (C) clustering coefficient C, (D) average path length L, (E) assortativity R and (F) modularity Q. Gray time

windows highlight the summer seasons.

https://doi.org/10.1371/journal.pone.0186145.g004

Fig 5. Maps of averaged NDS values. Locations of (A) 50% upper quantile and (B) 50% lower quantile of NDS values.

https://doi.org/10.1371/journal.pone.0186145.g005
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network from 50% upper quantile of NDS values spread in the Southeast Amazon (Fig 6A). In

contrast, the area of large network degrees of normal drought conditions from 50% lower

quantile of NDS values is more concentrated in the central region (Fig 6B).

Comparing Fig 6 to Fig 1, we find some relationship between the map of averaged network

degrees and NDS, which may provide insights for choosing proper regions of interest. Neglect-

ing the boundary points in Fig 6A, in general, the central and south east regions where experi-

enced larger drought strength have large network degrees in networks of both extreme

droughts and normal climate conditions without drought events. Therefore, based on Fig 6,

we identify the network hub as Regions of Interest (ROIs) for further correlation analysis in

the next section. In particular, the location at (58˚W, 8.5˚S) is identified as the ROI of the

extreme drought networks, which is pinpointed as a cross mark in Fig 6A. Similarly, the hub

region at (65˚W, 5.5˚S) in Fig 6B is identified as the ROI for the normal climate conditions

without extreme drought events.

Correlations to the ROIs

Computing network measures (as shown in Figs 2 and 4) mainly show seasonal variations.

The difference between the recent two severe droughts in 2005 and 2010 requires further anal-

ysis. In the next step, we focus on the properties of connectivity to the ROIs and the results are

shown in Figs 7 and 8. In addition, we compute the connectivity for the rainy and dry seasons

separately to show the difference in the connectivity patterns.

In the discussion below, we take the ROI at (58˚W, 8.5˚S) as an example. The consistent

results have been obtained for the ROI at (65˚W, 5.5˚S) which is chosen for the climate condi-

tions without extreme drought events. The computation of correlations to the ROI of Fig 7 is

the following: We first draw squares using the ROI as the concenter on the map and the dis-

tance between two squares has the spatial resolution of 0.25˚ which is determined by the reso-

lution of the grid data. Next, the correlations to the ROI of all locations along each square are

respectively computed and then an averaged value over square is used for the y-axes, while the

distance of the square to the concenter of ROI is for the x-axes of Fig 7. In addition, when

Fig 6. Map of the averaged network degrees (normalized to unit interval) for locations that are characterized by 50% upper

quantile of NDS values (A), and (B) 50% lower quantile of NDS values. The ROIs are denoted by ×.

https://doi.org/10.1371/journal.pone.0186145.g006
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computing the correlation coefficients between the ROI and the locations along the concentric

square, we calculate the standard deviation values to represent the significance level. We note

that more advanced methods are required to make statistical tests, for instance, by using surro-

gate techniques. However, it remains open to create appropriate surrogate data which are help-

ful for spatial temporal data (i.e., precipitation). This line of research needs careful algorithmic

steps, which is beyond the scope of the current work and will be of future work.

Because of the strong correlation between two geographical neighboring locations, the cor-

relations to the ROI show gradual decays when moving away from the ROI [47–49]. We find

some difference between 2005 and 2010, especially the summer seasons in both years. Com-

paring Fig 7A to Fig 7C, we find that the correlations to the ROI show relative slower decays in

2005 than that of 2010. This decaying rate has been summarized in Fig 9A in terms of the geo-

graphical distances. Correlations to the ROI drop to less than 1/e (� 0.36) when the distance to

the ROI is larger than 300km in the year 2005, in contrast, this drop appears when the distance

is less than 50km in 2010. However, in both winter seasons, the correlations to ROI show

much faster decreasing speeds as shown in Fig 7B and 7D. Nevertheless, the spatial correla-

tions show faster-decays in the winter season 2010 than that in 2005 (shown in Fig 9B).

Fig 7. Map of correlation coefficients to the ROI at (58˚W, 8.5˚S) as indicated by ×, where large network

degrees are observed in the extreme drought networks. (A) austral summer 2005, (B) winter 2005, (C)

summer 2010, and (D) winter 2010.

https://doi.org/10.1371/journal.pone.0186145.g007
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Qualitatively similar conclusions are obtained when performing the correlation analysis to

the ROI at (65˚W, 5.5˚S), which are shown in Figs 8, 9C and 9D. In summary, the relative

faster decays of the cross-correlation coefficients suggest that hub nodes of the reconstructed

precipitation networks in the Amazonia have fewer long-range connections in 2010 than that

in 2005.

Correlations to surrounding oceanic SST

We conjecture that the observation that there are fewer long-range connections in 2010 might

come from the distinct roles of the surrounding oceans. In particular, both the Pacific and

Atlantic had played different roles in developing the precipitation patterns in Amazonia in

2005, and respectively, 2010.

The anomalous rainfall reduction in the Amazonia has been related to the anomalous

warming of the SST in the surrounding oceans [30], however, with different delays from the

Pacific to the Atlantic [46]. The roles played by the oceans are associated with the climate con-

ditions of the precipitation network, thus the connectivity properties.

To this end, we show the delays of the ocean’s effects in Fig 10. Note that the algorithmic

details of extracting time delays and the associated statistical significance are presented in [46].

Fig 8. Map of correlation coefficients to the ROI at (65˚W, 5.5˚S) as indicated by ×, where large network

degrees are observed in the network of normal drought conditions. (A) austral summer 2005, (B) winter

2005, (C) summer 2010, and (D) winter 2010.

https://doi.org/10.1371/journal.pone.0186145.g008
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In 2005, no significant effects by the ENSO region have been observed (Fig 10A). We identify

one month delay of the north Atlantic and, respectively, 5 months delay of the south Atlantic

to the precipitation patterns in the Amazonia. In contrast, significant influences by both the

ENSO (from 2 to 4 months delays) and Atlantic Oceans (from 2 to 3 months by the north and

Fig 9. Correlation distances to the ROI at (58˚W, 8.5˚S) in the extreme drought network (A, B), and respectively, to the ROI at

(65˚W, 5.5˚S) in the network of normal drought conditions (C, D). (A, C) summer, and (B, D) winter. Error-bars correspond to the

standard deviations.

https://doi.org/10.1371/journal.pone.0186145.g009

Fig 10. Delays of the ocean effects on the precipitations in the Amazon. (A) 2005, no significant delay effects have

been identified from the ENSO region, and (B) 2010.

https://doi.org/10.1371/journal.pone.0186145.g010
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3 and 6 months by the south) have been identified in 2010 (Fig 10B). Note that the delays have

shown 95% of significance level by surrogate testing [46].

Discussions and conclusions

In summary, we have reconstructed the regional climate network in the Amazonia from the

precipitation data, focusing on the associated stability conditions under the recent two severe

drought events in 2005 and 2010. In addition, we have constructed extreme drought network

from spatial locations that are severely affected by drought events, comparing to the networks

of normal climate conditions without droughts.

Generally speaking, the network measures (i.e., link density, clustering coefficient, transitiv-

ity, average path length, assortativity and modularity etc.) show some annual variations (dis-

tinctions between seasons). In order to disclose the particular changes in the Amazonian

region, we focus on the connectivity to the regions of interest (ROIs). The ROI at 58˚W, 8.5˚S
has been chosen because it has large network degrees in the extreme drought networks, which

means it has experienced much longer drought period length during the extreme climate con-

ditions in 2005 and 2010. In addition, the ROI at 65˚W, 5.5˚S has large network degree in the

network of normal drought conditions. Two geographically close regions show gradual (triv-

ial) decays in the correlation structures to the particular chosen ROIs. In the presence of

extreme drought events, we have found that the connectivity to the ROIs shows much faster-

decaying speed during the drought event 2010 than that of 2005. This suggests that hub nodes

in the reconstructed precipitation network of 2010 in the Amazonia have fewer long-range

connections that of 2005. We have conjectured the difference between the 2005 and 2010 con-

nectivity patterns to the ROIs has been related to the role played by both the Pacific and Atlan-

tic Oceans.

One interesting direction for future work is to construct interacting networks, for instance,

a network of networks from the Amazon, Pacific and Atlantic Oceans. The approach of net-

work of sub-networks may provide many detailed changes of the coupling patterns among

these three different geological regions [50], following the propagation of extreme events [17].
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