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ABSTRACT
Complexity and notation of formal methods are still major
impediments for a wider use of these mathematical-based ap-
proaches in Software Engineering which include its adoption
in software testing. While formal, Statecharts are relatively
simple to use and many projects in different domains have
been relying on them. In this paper, we present a hierarchy-
based translation method, HiMoST, to generate software
test cases via Model Checking. Starting with a behavio-
ral modeling in Harel’s Statecharts, we propose a method to
translate from Statecharts into a general structure based on
the NuSMV language, and we formalize CTL properties by
means of specification patterns and a Combinatorial Interac-
tion Testing algorithm. We also present a cost-effectiveness
evaluation (quasiexperiment) to compare four different pat-
terns/pattern scopes. Results indicate that the Precedence
Chain (P precedes S, T ) pattern with Global scope presents
the best performance.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Formal software verification; Empiri-
cal software validation;

Keywords
Software Testing; Model Checking; Statecharts; Specifica-
tion Patterns System; Quasiexperiment

1. INTRODUCTION
While software testing basically aims at empirically ve-

rifying the correctness of a Software Under Test (SUT), for-
mal methods (including formal verification methods [3]) usu-
ally deal with the mathematical (formal) correctness of the
software. In the past, formal methods and testing had often
been viewed as rivals [7], and researchers argued that formal
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methods would be enough and software testing could then
be discarded.

Nowadays, we can say that both processes are impor-
tant within the Verification & Validation (V&V) context,
and companies/institutes can benefit from testing and for-
mal methods because they produce information that can be
used in a complementary way, thus enabling the applica-
tion of both approaches in a single project through joint
actions. To corroborate this statement, several studies have
been published where Model Checking [3], a formal verifi-
cation method, helps generating test cases [1, 2, 9, 11, 14,
12, 19, 4, 10, 18, 16, 17]. The main idea is to consider the
counterexamples, i.e. traces of the Transition System (TS)
which show that a certain formalized trap property (Φ) is
not satisfied by the TS, as test cases. Thus, a formalized
trap property Φ forces counterexample generation. Howe-
ver, some studies have used witness properties rather than
trap ones. Anyway, the greatest challenge is to use the Mo-
del Checker (tool) to systematically create such test cases.

However, none of the previous approaches neither explici-
tly explore Specification Patterns Systems (SPSs) [8, 20] to
formalize the properties nor present a more rigorous and sys-
tematic empirical evaluation aiming at test case generation.
The main reasoning behind SPSs is to provide guidelines to
the professionals so that they can formalize their properties
(requirements) via a set of patterns and patern scopes. Once
identified a pattern and a pattern scope, the SPS provides a
series of templates tailored to several logics such as Linear
Temporal Logic (LTL), Computation Tree Logic (CTL), and
Timed Computation Tree Logic (TCTL) [3].

Moreover and despite their importance, formal methods
have not been widely adopted in practice and major impe-
diments are their complexity for understanding and notati-
ons. While formal, Statecharts are relatively simple to use
and many projects in different domains have been relying on
them to model the behavior of the SUT. Hence, in this pa-
per we present a method, called Hierarchy-based translation
from Statecharts into Model Checking and Specification Pat-
terns Properties for Testing (HiMoST), to generate software
test cases via Model Checking. Starting with a behavioral
modeling in Harel’s Statecharts [15], we propose a method
to translate from Statecharts into a general structure based
on the NuSMV Model Checker language, and we formalize
CTL properties by means of the SPS proposed by Dwyer et
al. [8] and Combinatorial Interaction Testing (CIT) via the
T-Tuple Reallocation (TTR) algorithm [5, 6]. We have par-



tially implemented HiMoST within the SOLIMVA tool [23].
We also present a cost-effectiveness evaluation (quasiexpe-
riment) to compare four different patterns/pattern scopes.
Results indicate that the Precedence Chain (P precedes S,
T ) pattern with Global scope presents the best performance.

This paper is organized as follows. Section 2 presents our
method, HiMoST. Section 3 details the planning and detai-
led description of the quasiexperiment. Results and analysis
of the empirical evaluation are in Section 4. In Section 5,
we present some relevant studies which use Model Checking
to generate test cases. Section 6 shows the conclusions and
future directions of this research.

2. MODEL CHECKING TO GENERATE
TEST CASES

The HiMoST method is presented in this section where
we detail the main algorithms to translate from a Harel’s
Statechart model into a general structure that is based on
the language of the NuSMV Model Checker. Having this
structure, it is then possible to generate the NuSMV code
itself. As we will mention later, although we focused on a
specific Model Checker, this structure is general enough to
be adapted to other tools. By running NuSMV, the TS is
then generated. We also show how we suggest the formaliza-
tion of properties in CTL (Φ) via a combined use of the SPS
proposed by Dwyer et al. and the TTR algorithm. Figure 1
is a running example where the model shows two database
operations: add and retrieve. An exception (exc) may be
raised when this system is in operation and it is properly
handled (handled_exc) by the SUT. Note that we have two
events not shown in the figure: λ1 which make the transiti-
ons from T11 to T12, and λ2 which allows the change from
T21 to T22. These are events for processing the operations.
Moreover, shallow history (H) is present in the model.
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Figure 1: Statetchart model: database operations

Our translation approach basically deals with all featu-
res of Harel’s Statecharts: XOR and AND (parallel) states,
events, shallow and deep history, hierarchy. However, in Hi-
MoST, the main characteristic which drives the translation
process is hierarchy. We chose hierarchy because of the great
potential that Statecharts have to model complex systems
or Systems-of-Systems (SoS) via modularization. The main
algorithm of the translation is shown in Algorithm 1.

Algorithm 1 The HiMoST method: main algorithm

input: Σ = {σi | i = 1 · · ·m}, ∆ = {δi | i = 1 · · ·n}
output: P = NuSMV structure

1: V AR← createV AR(Σ)
2: INIT ← createINIT (V AR)
3: NEXT ← createNEXT (Σ,∆, V AR)
4: return P ← (V AR ·∪ INIT ) ·∪ NEXT

In Algorithm 1, ·∪ is the disjoint union operator while Σ
and ∆ characterize all states and transitions of the model,
respectively. Σ is a set of tuples where each tuple (σi) has
several elements such as the name of a state (n), the type
of state (t = XOR, AND), if this is a state with history
related (deep or shallow; ht), the hierarchy (h) related to
this state, the set of outgoing events (E), and some others.
The set ∆ contains tuples due to the transitions where each
tuple (δi) is composed of elements such as the source (s)
and destination (d) states, the event (e), and the hierarchy
related to the transition (h). It is assumed that Σ and ∆ are
somehow obtained based on the Statechart model. Output
of Algorithm 1 is a structure based on NuSMV composed
of the disjoint union of the sets V AR, INIT , and NEXT
which mean the declaration of variables, the initialization of
variables and the transitions of the model, respectively.

The createV AR procedure is presented in Algorithm 2.
Note that the output is a set, V AR, where each element
(V ari) is indeed a set of three other sets. EvDisph is a
set which controls the firing (value on) or not firing (value
off) of events within each hierarchy level. Statesh is indeed
another set with all states within a certain hierarchy level
(note

⋃
in line 7). On the other hand, Eventsh relate to

the events within a certain hierarchy level (note
⋃

in line 8).
If we have parallelism (AND states), HiMoST creates sets
EvDisph, Statesh, and Eventsh for each state of the AND
state within a hierarchy level. In Figure 1, the set of Hierar-
chy, Hi, contains the following elements: {M,A, T1, T2}.
Then, for all σi ⊂ Σ, the algorithm verifies whether the
hierarchy in σi matches some hierarchy h ∈ Hi (see line
6; the upper script h means the hierarchy element of tu-
ple σi). If this is so, sets Statesh and Eventsh are created
with the respective states and events. For instance, when
h = A ∈ Hi, then StatesA = {W,T1, T2} because these
are the states within the hierarchy level A. On the other
hand, EventsA = {add, retrieve, exc}. Here, we must note
that exc also relates to hierarchy A because it is possible to
leave state A if an exception is raised when T1 or T2 are the
active states of A.

Algorithm 3 presents the createINIT procedure. The
goal is to initialize all sets (variables). At the beginning,
createINIT identifies the state (s1) which has an event
that can be fired in the first place (line 2). In Figure 1,
s1 = W because this is the initial state of A which has
events that can be fired. Hence, the corresponding event



Algorithm 2 The createV AR procedure

input: Σ = {σi | i = 1 · · ·m}
output: V AR = {V ari | i = 1 · · ·h}

1: initializeAllSets()
2: Hi← identifyHierarchy(Σ)
3: for all h ∈ Hi do
4: EvDisph ← {on} ∪ {off}
5: for all σi ⊂ Σ do
6: if σh

i = h then
7: Statesh ←

⋃
σs
i

8: Eventsh ←
⋃
σE
i

9: end if
10: end for
11: V ari ← EvDisph ∪ Statesh ∪ Eventsh
12: V AR← V AR ∪ V ari
13: end for
14: return V AR

dispatcher (EvDisph) is initialized to on and all others
are initially defined as off (lines 4-8). Thus, initially,

InitEvDispM
1 = off , InitEvDispA

2 = on, InitEvDispT1
3 =

off , and InitEvDispT2
4 = off . The initial values of sta-

tes (Statesh) and events (Eventsh) are randomly selected.

Note that |INIT | = |V AR| but each element Init
EvDisph
i ,

Init
Statesh
i , and Init

Eventsh
i is really a single element and

not a set as it is in V ari.

Algorithm 3 The createINIT procedure

input: V AR = {V ari | i = 1 · · ·h}
output: INIT = {Initi | i = 1 · · ·h}

1: initializeAllSets()
2: s1 ← identifyF irstState(V AR)
3: for all V ari ⊂ V AR do

4: if V ar
Statessh
i = s1 then

5: Init
EvDisph
i ← on

6: else
7: Init

EvDisph
i ← off

8: end if
9: Init

Statesh
i ← random(V ar

Statesh
i )

10: Init
Eventsh
i ← random(V ar

Eventsh
i )

11: Initi ← Init
EvDisph
i ∪ InitStatesh

i ∪ InitEventsh
i

12: INIT ← INIT ∪ Initi
13: end for
14: return INIT

The last step of our method refers to the definition of the
transitions (set NEXT ) in the NuSMV structure. Algo-
rithm 4 presents the createNEXT procedure. Inputs are
the sets Σ, ∆, and V AR which have already been defined.
Note that we work basically with the same reasoning which
has been presented for the creation of V AR. In other words,
we define sets of tuples for each event dispatcher within a hi-
erarchy (EVDh), state transitions (STh), and event changes
(EVh). Each element in EVDh, STh, and EVh is a tuple of
the form 〈evd, s, e, v〉, where evd is a event dispatcher, s is
a state, e is a event, and v is the next value of a certain va-
riable. All these elements refer to the same hierarchy level,
h.

The basic idea to interpret each of the tuple 〈evd, s, e, v〉

Algorithm 4 The createNEXT procedure

input: Σ,∆, V AR
output: NEXT = {Nexti | i = 1 · · ·h}

1: initializeAllSets()
2: Hi← identifyHierarchy(Σ)
3: for all h ∈ Hi do
4: [Da,Dd]← identifyActivateDeactivateDisp(V AR)
5: for all da ∈ Da do
6: EVDh ← EVDh ∪ 〈V arEvDisph=on

i ,−, da, on〉
7: end for
8: for all dd ∈ Dd do
9: EVDh ← EVDh ∪ 〈V arEvDisph=on

i ,−, dd, off〉
10: end for
11: St← identifyStateTransitions(∆)
12: for all st ∈ St do
13: STh ← STh ∪ 〈V arEvDisph=on

i ,−, st, δdi 〉
14: end for
15: Ec← identifyEventChanges(∆)
16: for all ec ∈ Ec do
17: EVh ← EVh ∪ 〈V arEvDisph=on

i ,−, ec, next(δei )〉
18: end for
19: Nexti ← EVDh ∪ STh ∪ EVh

20: NEXT ← NEXT ∪Nexti
21: end for
22: return NEXT

when generating the next statements in the NuSMV code is
as follows:

evd ∧ s ∧ e→ v

In other words, we create a next statement where we have
a predicate evd ∧ s ∧ e that will result in the next value of
a variable (v) when it evaluates to true. We should remark
that we then create a standardized NuSMV code in this way.

The identifyActivateDeactiveDisp procedure (line 4)
aims at identifying which events activate or deactivate a
certain dispatcher within a hierarchy level. Thus, they show
which events, e, make it possible to enter or go back to a
certain hierarchy level so that events of such hierarchy may
be fired in consequent steps. The output are two sets, one
with the events to activate (Da) and other with events to de-
activate (Dd) the dispatchers. Let us consider Figure 1 and
hierarchy T1 (h = T1). Hence, DaT1 = {add, handle exc}
because from state W the system goes to T1 via the event
add, and goes back to T1 when coming back from state F
after handling an exception (handled exc) if the the system
was in T11 or T12 when the exception happened. This is
due to the shallow history (H) in the model. Precisely, the
system returns to T11, the initial state of T1. Likewise,
DdT1 = {done a, exc} because these are the events that
make the system leaves hierarchy T1.

After Da and Dd are filled, each tuple in EVDh

can then be created. The tuples are of the form
〈V arEvDisph=on

i ,−, da, on〉 or 〈V arEvDisph=on
i ,−, dd, off〉.

Important to mention that all values in the set EvDisph
are considered on within the predicates. The dash “-” me-
ans that the state contribution to the predicate (s) is not
present. In fact, states are just considered in some next
statement predicates in order to deal with very specific si-
tuations, e.g. history (deep, shallow). The most common
predicate form includes only evd and e. Due to space cons-



traints we decided not to show the createNEXT procedure
in too detail by choosing to describe it in its most common
form.

Consider h = M in Figure 1. One element in EVDM is
〈V arEvDispT1=on

3 ,−, exc, on〉. Translating this tuple into a

next statement predicate for the variable V arEvDispM
1 this

means: if the current active event dispatcher is T1 and the
event to be fired within T1 is exc then the next value of (se-

lected element from) V arEvDispM
1 is on. More specifically,

if the system is in T1 (T11 or T12) and an exception hap-
pens (exc), the model leaves hierarchies T1, A and the next
active hierarchy will be M (on).

The identifyStateTransitions procedure (line 11) takes
the set of transitions (∆) as input and just searches this
set in order to find updated values for variables of the kind
V ar

Statesh
i . The set St consists of mappings e 7→ v saying

which will be the next state (v) if e is fired. Hence, the
new value, v, of the variable is δdi ∈ δi ⊂ ∆, i.e. it is the
destination state of the set δi. Consider h = T1 in Figure
1. One element in STT1 is 〈V arEvDispT1=on

3 ,−, λ1, T12〉.
Translating this tuple into a next statement predicate for the
variable V arStatesT1

3 it means the transition T11 7→ λ1 7→
T12 in the original Statechart model.

To identify event changes (identifyEventChanges proce-
dure in line 15), the set of transitions (∆) is also taken as
input. Each element in Ec is a mapping ei 7→ ej stating
which will be the next event to be fired (ej) considering the
current event (ei). In this case, it is possible that ej is indeed
a set because two events may be able to be fired in a certain
state s. For instance, if h = A then one element in EVA

is 〈V arEvDispT1=on
3 ,−, done a, {add, retrieve}〉. After pro-

cessing an add operation (done a), events add or retrieve
may be fired in state W . The Model Checker chooses it
non-deterministically.

Considering the Statechart model in Figure 1, the set of
variables (V AR) is made of 4 sets (V ari) which in turn each
V ari is the union of 3 other sets: EvDisph, Statesh, and
Eventsh. In total, we have 12 sets which will be 12 variables
in the NuSMV code (after the implementation step). Each
one of these 12 variables has an associated next statement
and, thus, |NEXT | = 12.

2.1 Implementation
As we have just presented, the output of the HiMoST

method is a NuSMV structure, the set P , where we have
three main sets: V AR, INIT , and NEXT . To translate the
sets V AR, INIT and NEXT into NuSMV variables, their
initial values, and next statements (transitions) respectively,
we need to go through these sets to create the corresponding
code. For the next statements, we follow the predicate based
on tuples that we have described in the last section.

We have partially implemented the solutions proposed in
the HiMoST method in the SOLIMVA tool [24]. Moreover,
SOLIMVA creates the input sets, Σ and ∆, for the HiMoST
method by reading a State Chart XML (SCXML) file which
our tool itself generates based on the diagrammatic repre-
sentation of the Statechart model defined in the Graphical
User Interface (GUI) of SOLIMVA.

Despite the fact that this translation has been done for
NuSMV, we also envisage that transformation into other
Model Checkers, such as SPIN, is possible since the set P
can be regarded as a general structure. As we have alre-
ady pointed out, the model in Figure 1 derive 12 sets (in

set V AR). In NuSMV code, it means that we will have 12
enumerated variables in the VAR section and 12 next sta-
tements in the code. Hence, we may think in 12 Promela
processes (proctype) where the reasoning of transitions (in
set NEXT ) is implemented via do statements, process com-
munications via channels or global (shared) variables, and
enumerations can be addressed via message types (mtype).

2.2 Properties Formalization and Test Case
Generation

The other contribution of our method is a systematic way
to formalize properties via an SPS [8] and CIT based on
the TTR algorithm [5, 6]. We believe that this is an impor-
tant step for practical purposes because professionals de-
mand guidelines to proper apply a theory to their software
projects. The systematic manner to formalize CTL proper-
ties is presented in Algorithm 5 included with the steps to
generate the test suite, T .

Algorithm 5 Properties formalization and test case gene-
ration
input: P = NuSMV structure, C = NuSMV code
output: T = Test Suite

1: Consider all events, e, in the original Statechart model
by inspecting V ar

Eventsh
i ⊂ V AR ⊂ P

2: Split equally all such events in three sets: S1, S2, S3

3: Run the TTR algorithm considering sets S1, S2, S3, and
strength = 2. A Mixed-value Covering Array, M|m|×3,
is the TTR output

4: Define the SPS Pattern and Scope set, Ψ
5: for all m ⊂M do
6: for all ψ ∈ Ψ do
7: Formalize a CTL property, Φ, according to ψ by

replacing the formulas with the elements of m
8: end for
9: end for

10: Run the Model Checker with all Φ against C
11: Consider the counterexamples whose sizes are greater

than a threshold, τ
12: Generate an initial test suite, Ti, based on such counte-

rexamples
13: Eliminate possible redundant test cases in Ti, and gene-

rate the final test suite, T
14: return T

First, we should remark that we propose only the events
(e ∈ V arEventsh

i ) of the original Statechart model to forma-
lize the properties. Other studies generate properties taken
into account a combination of different types of variables or
even sets that are created due to certain coverage criteria
[17]. As events are the basic elements to stimulate the SUT,
we decided to consider only events in our formulas with no
corresponding use of other variables (sets). We believe that
this solution simplifies the generation of formulas because we
need to focus only on a combination of events to generate
formulas to force the derivation of counterexamples.

Even so, the number of events may produce a great num-
ber of combinations and this may be infeasible in practice.
Thus, we suggest using a CIT algorithm, TTR, to avoid
such an excessive combinations of events. These methods
have proven to be suitable for software testing by genera-
ting lower cost test suites [6]. Then, we equally divide all



the events in 3 sets, S1, S2 and S3 (line 2), and run the
TTR algorithm considering these sets and the degree of in-
teraction (strength) equals to 2 (line 3). TTR outcome is
a Mixed-value Covering Array, M|m|×3. Let us consider Fi-
gure 1 again. Hence, we have S1 = {exc, handled exc, add},
S2 = {retrieve, λ1, done a}, S3 = {λ2, done r}. By running
TTR, we have the results presented in Table 1.

Table 1: TTR outcome: M
m S1 S2 S3

1 exc retrieve λ2

2 exc λ1 λ2

3 exc done a done r
4 handled exc retrieve λ2

5 handled exc λ1 done r
6 handled exc done a λ2

7 add retrieve done r
8 add λ1 λ2

9 add done a λ2

SPSs are very important for practical purposes. They
give formula templates once a pattern and pattern scope are
identified by a professional based on the requirements of the
SUT. Currently, there are 9 patterns and 5 pattern scopes
for CTL based on [8]. We suggest the following combination
of pattern/patern scope as shown below:

1. Absence/Global (ABS). CTL: ∀2(¬P );

2. Response Chain (S, T responds to P )/Global (REC).
CTL: ∀2(P → ∀3(S ∧ ∀© (∀3(T ))));

3. Precedence Chain (P precedes S, T )/Global (PC1).
CTL: ¬∃[¬P ∪ (S ∧ ¬P ∧ ∃© (∃3(T )))];

4. Precedence Chain (S, T precedes P )/Global (PC2).
CTL: ¬∃[¬S ∪ P ] ∧ ¬∃[¬P ∪ (S ∧ ¬P ∧ ∃ © (∃[¬T ∪
(P ∧ ¬T )]))].

In the above CTL formulas, we have the path quantifiers
for all paths (∀) and for some path (∃). Moreover, there are
the temporal modalities always (2), eventually (3), next (©),
and until (∪). Of course, a test designer may choose only one
or all of these patterns/pattern scopes or even use another
combination. But, we believe that these four suggestions are
suitable due to the chain of events that they have related.

From lines 5 to 9 in Algorithm 5, we show how we mix
SPS with CIT. Let us assume that we selected only Response
Chain (S, T responds to P )/Global, i.e. Ψ = {REC}. As
we have |m| = 9 in Table 1, for each row m we replace the
formulas within the SPS template (in this case P , S and T )
with the corresponding elements of m. Hence, for m = 3 we
have:

∀2(exc→ ∀3(done a ∧ ∀© (∀3(done r)))).

At first, our test suite has 9 test cases (|m| = 9). But
not all CTL formulas will produce a counterexample. In
addition, some counterexamples may have only a single (the
initial state) or few states. Hence, the threshold τ (line
11) serves to discard very short counterexamples which, in
practice, there is no sense to execute. Finally, it is likely
that some counterexamples are precisely equal. Then, we
need to eliminate possible redundant test cases in order to
get the final test suite, T .

We should emphasize that there is a certain randomness
in defining the sets S1, S2, S3 and, consequently, to gene-
rate the CTL formulas. Thus, some CTL properties may
seem inadequate because they demand a certain sequence
of stimuli to the SUT that are not in accordance with the
requirements of the system. But we need to recall that the
idea is to force the Model Checker to generate counterexam-
ples. Hence, this randomness is interesting to precisely show
that the SUT does not present some “no sense“ behaviors.
The conclusion is that a test suite generated in this way
may be useful not only for conformance testing but also for
robustness testing.

Considering the 4 patterns/pattern scopes we propose,
τ = 2 (i.e. size of counterexamples more than 2 to consider
as a test case), elimination of redundant test cases, and Fi-
gure 1, the test suite T according to the HiMoST method is
as shown bellow:

T = {[add, λ1, done a, exc],

[add, λ1, exc, handled exc, λ1, exc, handled exc],

[add, λ1, done a, add],

[add, λ1, exc, handled exc, λ1],

[add, λ1, done a, retrieve, λ2],

[add, λ1, done a, retrieve, λ2, done r],

[add, λ1, done a, retrieve]}.

Note that 7 test cases were generated (each test case is
enclosed by [· · · ]). In this work, we define a test case (tc)
as: tc = [tsi | i ∈ N\{0}], where tc = test case, and tsi =
test step i. A test step, tsi, is an atomic activity to prepare
or stimulate the SUT. The stimulus contains the test input
data and, possibly, the expected results (in some cases, there
are no explicit expected results). In other words, a test case
is a sequence (repetitions are allowed and order matters) of
test steps.

It is important to stress that the first 4 test cases were due
to Response Chain (S, T responds to P )/Global (REC), and
the last 3 due to Precedence Chain (P precedes S, T )/Global
(PC1). The other two patterns generated no test case.

3. MULTI-OBJECTIVE EXPERIMENTAL
EVALUATION

In this section, we present the description of a multi-
objetive empirical evaluation. In fact, this empirical eva-
luation is classified as a quasiexperiment.

3.1 Definition
This multi-objective empirical evaluation aims at asses-

sing together two characteristics, cost and effectiveness, of
test suites generated via each one of the patterns/pattern
scopes presented in Section 2: ABS, REC, PC1, and PC2.
Hence, rather than using all of these patterns/pattern sco-
pes to derive a unique test suite, we want to evaluate which
of these patterns has better performance, with respect to
cost and effectiveness, if we consider them alone to generate
a test suite.

Cost is defined as the total number of test steps (#ts) of all
test cases of a test suite. This is a more realistic definition
of cost because one test case, tc1, might have associated
a few test steps, let us say 5, and, for instance, a second
test case, tc2, might be composed of 100 test steps. We
define effectiveness in accordance with three perspectives.



First, we examine the proportion of transitions covered in
the original Statecharts developed for a sample (case study).
Second, we examine the coverage of instructions, and finally
the coverage of branches by running the test suite against
the code of the sample.

3.2 Context and Research Question
The experiment was conducted by the researchers who de-

fined it. We used the implementation of the TTR algorithm
[5, 6] to create the matrix M , and NuSMV 2.6.0 to accom-
plish Model Checking for test case generation. All samples
(case studies) were developed in Java. Hence, we verified
coverage of instructions and branches via EclEmma.

Our set of samples is composed of four case studies as
detailed below:

1. Simple SWPDC. This is a simplified version of the
Software for the Payload Data Handling Computer
(SWPDC) [23, 24]. It is a space application software
product developed at the Instituto Nacional de Pes-
quisas Espaciais (INPE - National Institute for Space
Research). The main goal of this project was to out-
source the development of software embedded in satel-
lite payload;

2. Train Controller. This software implements the main
operations to safely transport train passengers. It si-
mulates the operations of the doors of a train;

3. Digital Library. With this product, it is possible to
build a record of books and create a Library, by adding
new books, saving them, etc.;

4. TTR. The implementation of the TTR algorithm itself
was used as a case study.

The Research Question (RQ) we want to answer is shown
below:

RQ 1 - What is the best approach regarding cost-
effectiveness for test case generation considering these four
patterns/pattern scopes within the HiMoST method: ABS,
REC, PC1, and PC2?

3.3 Variables
With respect to the independent variables, the ones which

can be manipulated or controlled during the process of trial
and define the causes of the hypotheses, we considered the
selected patterns/pattern scopes. The dependent variables,
where we can perceive the result of manipulation of the in-
dependent variables, are the number of test steps due to
each test suite, the proportion of transitions covered in the
original Statechart model, the coverage of instructions and
coverage of branches by running the test suite against the
code of the sample.

3.4 Description of the Experiment
We started by creating one Statechart model for a sample

(case study). This model was created in the GUI of the
SOLIMVA tool. By running SOLIMVA, an SCXML file was
generated which represents this model, and our tool reads
such an SCXML file and creates the sets Σ and ∆ presented
in Section 2. After that, the implementation of the HiMoST
method within the SOLIMVA tool translated the Statechart
model into the NuSMV code. As we have already mentioned,

this translation process is not fully implemented yet so that
we needed to make some manual adjustments in the NuSMV
code before going on.

After that, we followed Algorithm 5 (Section 2.2) for pro-
perties formalization and test case generation. Then, we cre-
ated a test suite due to each pattern/pattern scope and mea-
sured the dependent variables. We selected an initial sample
and we simply recorded the total number of test steps due
to each test suite: TABS , TREC , TPC1, and TPC2. Regar-
ding effectiveness, we visually inspected which transitions in
the Statechart model were covered based on each test suite.
Hence, we calculated the proportion of covered transitions
taken into account the total number of transitions of the
Statechart model. Covered instructions and branches were
achieved via EclEmma after running each test suite.

We repeated these previous steps for all the other samples.
Then, we needed a consolidated value to represent the cost
and effectiveness of a test suite. For cost, we considered the
average number of test steps per test case (ts) taking into
account all 4 samples, and we normalized this mean value
based on the selected threshold (τ). Thus, if τ = 2 then
the normalized result, tsn, is: tsn = ((τ + 1)/ts)× 100 (we
multiplied by 100 to have a percentage between 0 and 100).
Hence, as close ts to τ + 1, better the cost (minimum cost).

Effectiveness regarding the proportion of transitions co-
vered in the original Statechart model, the coverage of ins-
tructions and coverage of branches is simply the average
value taken into account the 4 samples. Hence, each pat-
tern/pattern scope derives a point, p, in a 4-dimensional
space of the form:

(tsn, tr, in, br),

where tsn is the normalized average number of test steps
per test case, tr is the average value of the proportion of
transitions covered in the original Statechart model, in is the
average value of covered instructions, and br is the average
value of covered branches.

To know which approach is more interesting in terms of
cost-effectiveness, we need to observe which pattern/pattern
scope generates a smaller test suite (smaller average num-
ber of test steps per test case) and has greatest effectiveness
(greatest coverage). We achieved this conclusion based on
the Euclidean distance, d(o, p), between an optimum point,
o, and each p from each pattern/pattern scope. This opti-
mum point is:

o = (α× 100, β × 100, β × 100, β × 100).

Note that the first dimension relates to cost (tsn in p)
and the other three dimensions are related to effectiveness
(tr, in, br in p). Besides, α and β are weights. In other
words, if we want that cost and effectiveness contribute
equally then α = β = 1. But, if we decide that effective-
ness must contribute more in the cost-effectiveness outcome
then we must consider β > α. In this case, we must also
multiply each dimension in p which relates to effectiveness
(tr, in, br) by β. Giving more weight to effectiveness seems
a good alternative because, eventually, very short test cases
may not be good to detect software defects. Thus, a smaller
Euclidean distance between o and p means a better solution
with respect to cost-effectiveness.

We should state that for the ABS partern/pattern scope,
we replaced P by a disjunction (∨) of three formulas (one



contribution from each set S1, S2, S3). In this situation,
the CTL formula template is ∀2(¬(P1 ∨P2 ∨P3)). One last
remark is the way we executed the test suites. For SWPDC
and Train Controller, the level is unit testing. Therefore,
we created JUnit test suites and ran them against these
samples. For Digital Library and TTR, the level is system
testing. Thus, test steps are indeed interactions with GUI
elements (Digital Library) or input data via command line
interface (TTR).

3.5 Validity
The conclusion validity relates to how sure we are that the

treatment we used in an experiment is really related to the
actual observed outcome. One of the threats to the conclu-
sion validity is the reliability of the measures. Our results
are associated with four tools: SOLIMVA in which HiMoST
has been partially implemented, TTR, NuSMV which auto-
matically created the test cases, and EclEmma responsible
to automatically provide instruction and branch coverages.
The only measure obtained in a totally manual way was the
one of the transitions covered in the original Statechart mo-
del. Hovewer, the Statechart models are not very big (the
most complex has 10 states and 12 transitions) and hence
we were able to obtain this measure reliably by visual ins-
pection. We believe that replication of this study by other
researchers will produce similar results and our study has a
high conclusion validity.

For the internal validity, we need to be sure whether other
factors have not caused the outcome, factors that have not
been controlled or measured. There are many threats to in-
ternal validity such as testing effects (measuring the subjects
repeatedly), history (external events of the experiment may
influence the responses of the subjects, e.g. interruption of
the treatment), maturation (participants might mature du-
ring the study), selection bias (differences between groups),
etc. The participants of our experiment were behavioral
models and source code, and thus we neither had any hu-
man/nature/social factor nor unanticipated events to inter-
rupt the collection of the measures once started to pose an
internal validity. Hence, we claim that our quasiexperiment
has a high internal validity.

In the construct validity, the goal is to ensure that the
treatment reflects the construction of the cause, and the
result the construction of the effect. This is also high because
we selected four classical CTL patterns/pattern scopes to
assess the cause, and the results, supported by the decision-
making procedure via Euclidean distance to an optimum
point, clearly provided the basis for the decision to be made
between the four strategies.

However, we have a threat to external validity, specifi-
cally a threat to population which refers to how significant
is the set of samples of the population used in the experi-
ment. We chose four samples with one Statechart model per
sample. Hence, we need more significant samples in order
to generalize the results. But, we believe that the results
of this quasiexperiment are interesting where we can per-
ceive some repeated outcomes when assessing a particular
test suite (more details in Section 4).

4. RESULTS AND ANALYSIS
In this section, we present the results of the multi-

objective evaluation. Table 2 shows the results related to
cost where column #tc has the total number of test cases

due to a pattern/pattern scope, #ts presents the total num-
ber of test steps due to a pattern/pattern scope, rep is the
number of repeated test cases, and disc shows the number of
discarded test cases. A test case was discarded if its length
(number of test steps) was less than or equal to the threshold
τ . We chose τ = 2 and hence a test case must have length
at least 3 to be considered in the final test suite, T . Also
note the average number of test steps per test case (ts) and
its normalized value (tsn).

The TTR algorithm generated 16, 9, 16, and 12 combi-
nations for SWPDC, Train Controller, Digital Library and
TTR, respectively. We then had 16, 9, 16, and 12 forma-
lized CTL properties for each pattern/pattern scope. We
noticed that ABS presented the better cost (greatest tsn)
followed by REC and in the last position is PC1. To our
surprise, PC2 generated no test case for all 4 samples. In
fact, it did generate counterexamples (test cases) for all CTL
properties for all 4 case studies but they were all discarded
because these counterexamples had only 1 state (the initial
state) and thus less than our τ . Since PC2 is a Precedence
Chain pattern as it is PC1, just changing the order of prece-
dence of formulas, we did expect that some test cases were
created as it happened when choosing PC1.

ABS also created a significant number of test cases which
were discarded. For instance, for the Train Controller, 1 sin-
gle test case was in the final TABS while we had to ged rid
of 7 test cases. On the other hand, REC showed a propor-
tionally huge number of repeated test cases. For the Digital
Library, TREC has only 4 test cases while 12 test cases were
repeated.

Huge number of discarded or repeated test cases is an
indication that, in accordance with the strategy proposed in
the HiMoST method, these patterns can contribute, albeit
marginally, to increasing the cost of the testing process as
a whole. Even if it is possible to automate this verification
of test cases that are repeated or need to be discarded, this
excessive proportion of useless test cases tends to increase
the demand for processing to perform such checks. Although
the cost of the testing process is deeply influenced by the
test execution activity, meaning that the smaller the number
of test steps of a suite the better (in this respect, ABS is
considered the best alternative), the cost to generate the
final test suites can not be completely neglected.

PC1 had more satisfied (true) CTL formulas. Let us con-
sider the sample SWPDC in Table 2. The final TPC1 is
composed of 5 test cases, and we have just one repeated test
case. As 16 CTL formulas were verified, the conclusion is
that 10 of such formulas hold. Thus, it is not necessary to
perform any processing/verification of repeated or discarded
test cases for such formulas that were satisfied.

In Table 3, we see the results with respect to effectiveness.
In this table, column tr is the proportion of transitions co-
vered in the original Statechart model, in means the percen-
tage of covered instructions of the source code, and br is the
percentage of covered branches of the source code. The ave-
rage of the covered transitions (tr), instructions (in), and
branches (br) are in the last row of Table 3.

Considering the three measures of effectiveness (tr, in,
br), we note that PC1 is the best solution followed by REC,
and ABS is the worst. This is precisely the inverse order
of the cost analysis. In some samples (SWPDC, Digital Li-
brary), PC1 even achieved 100% of covered transitions of
the Statechart model.



Table 2: Cost results
Cost ABS REC PC1 PC2

#tc #ts rep disc #tc #ts rep disc #tc #ts rep disc #tc #ts rep disc
SWPDC 4 13 0 12 4 34 10 0 5 51 1 0 0 0 0 16

Train 1 3 1 7 3 14 6 0 4 22 0 0 0 0 0 9
Library 3 10 3 10 4 30 12 0 4 40 2 0 0 0 0 16
TTR 3 11 3 6 4 20 8 0 3 24 0 0 0 0 0 12

ts 3.36 6.53 8.56 -
tsn(%) 89.19 45.92 35.04 -

Table 3: Effectiveness results
Effectiveness ABS REC PC1

tr (%) in (%) br (%) tr (%) in (%) br (%) tr (%) in (%) br (%)
SWPDC 58.33 61 27 83.33 72 31 100 74 33

Train 33.33 50 22 44.44 58 33 88.89 87 56
Library 54.55 54 24 72.73 65 35 100 66 37
TTR 50 26 13 40 26 13 90 73 70

Average 49.05 47.75 21.5 60.13 55.25 28 94.72 75 49

However, we must emphasize that even PC1 did not not
present a very high average coverage of instructions (75%)
and especially branch coverage (49%) of the source code.
This is explained by the Statechart model. In general, such
models have some normal behavior addressed and a few ex-
ception handling situations. Hence, to get higher coverage
of the source code it is required more detailed situations in
the Statechart models and particularly more events that are
associated with non-normal behavior of the SUT.

In spite of these isolated evaluations, we are truly inte-
rested in obtaining a combined cost-effectiveness result as
we have previously explained. Hence, we calculated the Eu-
clidean distance between the optimum point, o, and each
point p due to the patterns. Table 4 shows the results for
two situations. In the uniform case (row Equal), cost and
effectiveness have the same weights. Hence, α = β = 1 (see
Section 3.4). In the second situation (row Double Effective-
ness), we doubled the influence of effectiveness compared to
cost, i.e. β = 2 and α = 1.

Table 4: Cost-Effectiveness results: distances
Cost-Effectiveness ABS REC PC1

Equal 107.73 108.17 86.45
Double Effectiveness 214.64 195.01 131.28

Based on Table 4, we see that PC1 is better in all situ-
ations. When cost and effectiveness contribute equally, the
Euclidean distance from the optimum point, o, to ABS is
24.62% greater than the distance from o to PC1. And from
o to REC, the distance is 25.12% greater than from o to
PC1. However, we can see that basically there is no cost-
effectiveness difference if we compare ABS with REC with
a slight advantage for ABS.

If we double the contribution of effectiveness, again PC1
is the best option where the Euclidean distances from o to
ABS and to REC are 63.5% and 48.55% greater than the
distance from o to PC1, respectively. However, here REC
performs better than ABS where the distance from o to the
latter is 10.07% greater than from o to the former.

The overall conclusion of this quasiexperiment is that
the Precedence Chain (P precedes S, T ) pattern with
Global scope (PC1) is the best test suite regarding cost-
effectiveness. The Response Chain (S, T responds to P )
pattern with Global scope (REC) is better than the Ab-
sence pattern with Global scope (ABS) only if we consider
that effectiveness has a priority over cost. If they contribute
equally, there is no difference between REC and ABS.

This conclusion is interesting because some previous works
[12] basically use, although the authors did not explicitly
mention, ABS to force the Model Checker to generate test
cases (counterexamples). Note that ABS is a type of sa-
fety property which informally means that “something bad
will never happen” [3]. Hence, the results presented in this
work suggest that it is interesting to investigate other pat-
terns/pattern scopes to obtain test suites with greater cost-
effectiveness.

5. RELATED WORK
In [12], the authors divided the strategies to generate test

cases via Model Checkers in two classes: coverage-based and
mutation-based classes. In the coverage-based class, Mo-
del Checkers can be used to automatically create test suites
which satisfy a certain coverage criteria (e.g. state, tran-
sitions, instructions, branches). They also subdivided this
category into some subclasses. In specification language-
specific coverage criteria, the concept of trap properties was
proposed related to Software Cost Reduction (SCR) specifi-
cations [13]. Trap properties were created from SCR tables,
and such properties derived a test suite to satisfy branch
coverage for SCR specifications.

Other coverage-based subclass is coverage of general tran-
sition systems where a framework for test case generation
based on specifications addressing structural coverage was
defined regardless of any specific formalism [21, 22]. Thus,
several coverage criteria similar to the structural ones for
Control Flow Graphs (branch, Modified Condition/Decision
Coverage (MC/DC), etc.) were presented.

Another subclass is control and data flow coverage crite-



ria [18, 16, 17, 10]. The same perspective of structural tes-
ting was used where control and data flow coverage criteria
were considered. Extended Finite State Machines (EFSMs)
[18], Data Flow Graphs [16], Statecharts [17], and Functi-
onal Block Diagram (FBD) [10] (see remarks below) were
some models and CTL was the selected logic for most of the
studies. However, the idea was not to use trap but rather
to rely on witness properties. Roughly speaking, a witness
property is a negation of a trap property. And most of the
strategies defined CTL formulas to address the control and
data flow coverage criteria.

One particular study related to control and data flow co-
verage which addressed real-time analysis is shown in [10].
The authors described a tool-supported approach that al-
lows test case generation of programs written in FBD, a pro-
gramming language suited to industrial application systems.
They translated FBD programs into timed automata [3] and
the UPPAAL Model Checker was used to generate test ca-
ses. Control flow criteria (condition coverage, MC/DC, etc.)
were selected for test case generation. Also, the strategy is
based on witness properties. One drawback of their propo-
sal is that they must annotate the created model such that
a condition describing a single test case can be formulated.
This may demand a huge effort from users.

We can mention two main differences between our method
and these previous approaches. First, the reasoning of our
method is not driven by the coverage of any aspect of the
original model of the SUT. In other words, we do not aim to
cover state, transition, branch, all-definitions, all-uses, etc.
of the models. We take all the events (input data) of the
model and randomly combine them via a CIT algorithm and
generate trap properties via specification patterns. Hence,
coverage of the model (and the respective source code) is an
effect and not a cause for us. Second, it is the simplicity to
generate the formulas. For instance, some approaches [18,
16, 17] require the identification of def and use sets (data
flow testing) to create the formulas while we just rely on the
events that make the transitions happen. Other approaches
[12] consider the expected result of the original model as a
variable of the NuSMV code increasing the state space. We
just consider the inputs (events) resulting in a smaller state
space.

The second main class in [12] is based on mutation testing
[2, 1, 11]. Basically, the authors suggested creating mutated
models [2], TSm, or mutated properties [2, 1], Φm, and gene-
rating test cases. Despite its importance, mutation testing
has two main issues. The huge number of mutants (mo-
dels, properties) and determination of equivalent mutants
may impose limitations for practical applications of these
approaches.

The Polyglot tool allows the translation from a Statechart
model into a common intermediate representation which is
then translated into Java code that represents the structure
of the model [4]. Polyglot is integrated with the Java Path-
finder verification toolset which can generate test cases for
Java [25]. We believe that our translation proposal is more
generic because we provide a structure which is composed
of sets (variables, their initializations, and transitions of the
model) and not particularly coupled with a given program-
ming language as it seems to be the case of Polyglot. The
authors mentioned they used specification patterns but it
is not clear which pattern/pattern scope they relied on and
which formal language (LTL, CTL,...) they selected.

Unit checking is a method that allows the symbolic verifi-
cation of a unit of code and the derivation of test cases [14].
It combines principles of Model Checking and Theorem Pro-
ving and searches the paths of the flow chart of a program
for possible executions that satisfy the specification in LTL.
Although the authors claimed that most of the features were
implemented, they did not show whether their method is
adequate for several application domains. The case studies
they presented look like scientific/mathematical computing
programs.

To sum up, we can cite the following differences and in
some cases advantages of our method, HiMoST, compared
with these studies: (i) our transformation method, although
creates a structure suitable to generate code for the NuSMV
language, can be regarded as general enough. At the end, we
generate sets that can be mapped to other Model Checkers
and which are not specifically coupled with a certain pro-
gramming language [4]; (ii) our method is not motivated to
cover certain aspects of the original model as others [13, 21,
22, 18, 16, 17, 10]. To some extent, we use ideas from ran-
dom testing to create sets of events that are input to a CIT
algorithm. So we make use of specification patterns to for-
malize properties to force the creation of counterexamples.
In addition, we believe that we propose a clear, relatively
simple and systematic way to formalize CTL properties and
generate test cases. Systematic procedures are very impor-
tant to transfer the knowledge produced by academia to real
world practice; and (iii) although some studies presented in-
teresting empirical evaluations [16, 11, 10, 4], they did not
do it via a rigorous evaluation as we shown in this paper
(quasiexperiment). We also present a clear way to jointly
consider cost and effectiveness in a multi-objective perspec-
tive.

6. CONCLUSIONS
This paper presented a novel method, HiMoST, where

a formal verification method (Model Checking) helped
another V&V process, i.e. software testing. HiMoST is
a hierarchy-based translation strategy where starting with
a behavioral modeling in Harel’s Statecharts, it transforms
such a model into a general structure based on the NuSMV
language. Properties are formalized by joining CIT and spe-
cification patterns with some principles from random tes-
ting. The translation process which results in a general
structure and the way we formalize the properties and cre-
ate the final test suite, T , are important contributions of our
research.

We also presented a rigorous cost-effectiveness evalu-
ation (quasiexperiment) to compare four different pat-
terns/pattern scopes. Results indicate that the Precedence
Chain (P precedes S, T ) pattern with Global scope demons-
trates the best performance not only if we consider cost and
effectiveness contributing equally but also if we double the
contribution of effectiveness. The Response Chain (S, T
responds to P ) pattern with Global scope is better than
the Absence pattern with Global scope only if we consider
that effectiveness has a priority over cost. If they contribute
equally, there is no difference between them.

We had to make some manual adjustments in the NuSMV
code produced by the SOLIMVA tool. Hence, we need to fi-
nish the implementation of HiMoST within our tool. We can
not generalize the results because the set of samples needs to
be improved. Thus, we will develop a controlled experiment



with more samples in order we can tackle this threat to ex-
ternal validity. We also aim to develop another controlled
experiment, with mutation testing to address effectiveness,
comparing our method with other Model Checking-based
test case generation approaches or even with studies that
generate test cases based on Statechart test criteria.
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