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Abstract

We present a model that unifies the cosmic star formation rate (CSFR), obtained through the hierarchical structure
formation scenario, with the (Galactic) local star formation rate (SFR). It is possible to use the SFR to generate a
CSFR mapping through the density probability distribution functions commonly used to study the role of turbulence
in the star-forming regions of the Galaxy. We obtain a consistent mapping from redshift ~z 20 up to the present
(z= 0). Our results show that the turbulence exhibits a dual character, providing high values for the star formation
efficiency ( eá ñ ~ 0.32) in the redshift interval ~ –z 3.5 20 and reducing its value to eá ñ = 0.021 at z=0. The value
of the Mach number (crit), from which eá ñ rapidly decreases, is dependent on both the polytropic index (Γ) and the
minimum density contrast of the gas. We also derive Larson’s first law associated with the velocity dispersion (á ñVrms )
in the local star formation regions. Our model shows good agreement with Larson’s law in the ~ –10 50 pc range,
providing typical temperatures ~ –T 10 80 K0 for the gas associated with star formation. As a consequence, dark
matter halos of great mass could contain a number of halos of much smaller mass, and be able to form structures
similar to globular clusters. Thus, Larson’s law emerges as a result of the very formation of large-scale structures,
which in turn would allow the formation of galactic systems, including our Galaxy.
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1. Introduction

Understanding how galaxies form in the universe is certainly
one of the main goals of modern cosmology. The formation of
galaxies is a process intrinsically related to the evolution of
cosmological structures (for a recent review on this subject see,
e.g., Frenk & White 2012). In particular, after the radiation-
baryonic matter decoupling, which occurred in redshift
~z 1100, the density perturbations, generated during the

inflationary phase of the universe, are able to grow more
enhanced by the action of their self-gravity producing the so-
called halos of dark matter. These dark matter structures generate
potential wells that allow them to capture the baryonic matter of
the surrounding environment, initiating the production of stars at
some time near redshift 20. This is, roughly speaking, the
process that leads to the formation of large-scale structures of the
universe. Within the cosmological context, both theoretically
and observationally, star formation is described by the so-called
cosmic star formation rate (CSFR), represented as a function of
redshift in units of - -

M Mpc yr3 1. The current status of CSFR
in both theoretical and observational aspects can be found in a
recent article by Madau & Dickinson (2014).

On the other hand, our knowledge about the processes
associated with star formation at the local (galactic) level
begins with the work of Schmidt (1959, 1963), whose objective
was to find a correlation between gas surface density in
galaxies and the stellar formation rate. Kennicutt (1998) used
Schmidt’s power-law function to fit observational data of disk
and starburst galaxies and to determine the best-fit slope and
normalization. The derived relation can be represented as
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where SSFR is the star formation rate (SFR) per unit area and
Sgas is the gas surface density. This correlation can be applied
to a large number of nearby galaxies. Although Kennicutt
(1998) found that the relationship was adjusted by the exponent

1.4 0.15, a similar result could be obtained by dividing Sgas,
in Equation (1), by tdyn—the disk orbital time (see, Kennicutt
1998; Martin & Kennicutt 2001).
However, as highlighted by Salim et al. (2015), a significant

scattering remains from these scenarios, so SSFR can vary
significantly for any of the two inputs, i.e.,Sgas and tSgas (see
also Heiderman et al. 2010; Krumholz et al. 2012; Federrath
2013a). Additionally, with the improvement of observational
data over the last 20 years, especially through CO observations,
it has been possible to study the correlation between molecular
gas and SFR at scales ~ –0.5 1 kpc (Leroy et al. 2013). In
particular, this correlation has shown that the depletion time is
approximately constant with t = S S » 2.2 Gyrdep mol SFR ,
where tdep is the time required for the star formation to use
up the current molecular gas supply. It is important to note that
there is some controversy in the literature about the constancy
of tdep. For example, using COLD GASS data (CO LEGACY
DATABASE FOR GASS—Galex Arecibo SDSS Survey),
Saintonge et al. (2011a, 2011b) find a non-constant depletion
time over a wide range of galaxies, although the variation is
small.
Based on the mass of molecular gas within the solar circle,

which is on the order of ☉M109 , and the SFR in the Galaxy
(~ -

☉M1 yr 1, yielding t ~ 1 Gyrdep , corresponding to 100
times the freefall time), Krumholz & McKee (2005) suggest
that the ratio e t t= ~ 1 100ff ff dep could provide an observa-
tional constraint to stellar formation theories. In particular, eff is
called the dimensionless star formation rate per freefall time.
This quantity represents the mass of molecular gas converted
into stars per freefall time of the system.
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The low inferred value for eff surely raises the question of
what is the main factor that makes the star formation rate so
small in molecular clouds. Although it is possible to consider
different mechanisms to explain this result, turbulence has the
greatest potential to regulate star formation. In particular,
interstellar turbulence as a key for star formation has been
studied for a long time (see, e.g., Klessen et al. 2000;
Elmegreen & Scalo 2004; Krumholz & McKee 2005; McKee
& Ostriker 2007) and has been successively refined and
improved by several authors in the last years (see, e.g.,
Hennebelle & Chabrier 2011; Padoan & Nordlund 2011;
Federrath & Klessen 2012; Krumholz et al. 2012; Kritsuk
et al. 2013; Padoan et al. 2014). It is also important to highlight
the recent study by Federrath (2015) showing that only the
combination of turbulence, magnetic fields, and protostellar
feedback (through jets and outflows) yields realistic (low) SFRs
in that observed range of a few percent per freefall time.

Additionally, it has been suggested that turbulence could
play a dual role in star formation. In particular, Klessen et al.
(2010) and Klessen (2011) remark that this duality would
come from the fact that turbulence provides support on a
global scale, but can promote collapse on a local scale. As a
consequence, the birth of a star is dynamically connected with
the parental gas cloud, thus determining when and where a
protostar forms.

Klessen et al. (2010) have also pointed out that the role of
turbulence in the formation of the first stars in the universe,
which put an end to the so-called “dark ages,” is less
understood. In general, the formation of the first stars is
studied through numerical simulations involving the collapse
and virialization ( ~T 10 Kvir

3 ) of dark matter halos at redshift
~ –z 20 30, which generated the conditions for star formation

(see, e.g., Bromm & Larson 2004; Bromm et al. 2009).
Notwithstanding, the results of Klessen et al. (2010) indicated
that the first stars of the universe were subject to the same
dynamic processes of the local star-forming regions. In
addition, the simulations carried out by the authors have
shown that the mass function of the primordial protostars
should be comparable to the present-day initial mass function
(IMF) (see also the recent results on primordial protostars in
Dutta et al. 2015 and Hosokawa et al. 2016).

The objective of the present work is to show the
complementarity between the formulation used to obtain
the CSFR and the modeling used to characterize the local
rate of star formation (described by the SFR). Furthermore,
the SFR can provide the CSFR with an estimate of the
turbulence, through the Mach number, as a function of
redshift. On the other hand, the CSFR can provide the SFR
with a way of naturally obtaining the Larson’s first law that
associates the internal motions with the structure of the
molecular clouds where the star formation takes place. In
principle, our model may give some clues about the dual role
of turbulence in star formation as initially suggested by
Klessen et al. (2010).

This paper is organized as follows: in Section 2, we review
the model of Pereira & Miranda (2010), hereinafter referred to
as PM, that allows deriving the CSFR that will be the
cosmological basis of our work. Also in Section 2, we review
the main points discussed in the literature regarding the SFR, in
order to better characterize our ansatz on the complementarity
between CSFR and SFR. In particular, the characterization of

the SFR, compared with the CSFR, will be based on the works
of Hopkins (2013a) and Federrath & Banerjee (2015), herein-
after referred to as H13 and FB15, respectively. In Section 3,
we present our main results, and we present a summary and our
conclusions in Section 4.

2. Scenarios for Star Formation

2.1. Cosmic Star Formation Rate—CSFR

PM used a Press–Schechter-like formalism to describe the
formation of dark matter halos as a function of the redshift.
The formation of these dark halos created the conditions for
the baryonic matter of the cosmological environment to fall
into the gravitational wells, seeding the birth of the first stars
and thus contributing to the formation of large-scale
structures of the universe. The authors coupled the star
formation to this hierarchical (Press–Schechter) scenario
through the laws of Schmidt and Salpeter. Thus, the CSFR
can be obtained from redshift 20 to the present time, showing
good agreement with the observational data within the range
0–5 in redshift.
Our choice for PM-CSFR is based on its healthy applica-

tions. For example, Pereira & Miranda (2011) analyzed
different CSFRs discussed in the literature; their comparisons
identify the PM-CSFR as the one that allows better adjustment
with the inferred quasar luminosity function. Based on these
results, the authors showed that the PM-CSFR could be directly
connected with the growth of the supermassive black holes
observed in the centers of most galaxies.
On the other hand, Hao & Yuan (2013a) (see also Wei

et al. 2016; Wei & Wu 2017) showed that PM-CSFR can
reproduce very well the cumulative function of Long Gamma
Ray Bursts—LGRBs from redshift z=0 up to ~z 8. These
authors used a Kolmogorov–Smirnov test, which showed that
PM-CSFR presents p-value ∼0.92; that is, much better than the
other CSFRs discussed in the literature. After that, Hao & Yuan
(2013b) used this CSFR to investigate the delay-time
distribution of short GRB progenitors, which is an important
property to constrain the progenitor of these sources (see also
Wanderman & Piran 2015).
The PM-CSFR is formulated on the scenario developed by

Press & Schechter (1974) who heuristically derived a mass
function for bound virialized objects. The basic idea of this
approach consists in defining halos as concentrations of mass
that have already left the linear regime by crossing the
threshold dc for nonlinear collapse. Once the spectrum of
fluctuations (power spectrum) is defined, it becomes
relatively straightforward to calculate the halo mass function
as a function of the mass and redshift. Thus, we can introduce
the scale differential mass function s( )f z, (see Jenkins et al.
2001), defined as the fraction of the total mass per s-ln 1 that
belongs to halos. That is,

s
r r
s r s

º =
- -

( )
( )

( )
[ ( )]
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d

d
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z

dn M z

d M z
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1

where ρ is the dark matter halo density, ( )n M z, represents the
number density of halos with mass M, r ( )zB is the
background density (dark matter component) at redshift z,
and s ( )M z, is the variance of the linear density field. As
highlighted in the work of Jenkins et al. (2001), this definition
of the mass function has the advantage that it does not
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explicitly depend on redshift, power spectrum, or cosmology;
all of these are contained in s ( )M z, (see also Lukić et al.
2007). To determine s ( )M z, , the power spectrum P(k) is
smoothed with a spherical top-hat filter function of radius R,
which on average encloses a mass M pr=( [ ( )] )R M z3 4 B

1 3 .
In this way,

òs
p

=
¥

( ) ( ) ( ) ( ) ( )M z
D z

k P k W k M dk,
2

, , 32
2

2 0

2 2

where ( )W k M, is the top-hat filter in the k-space

= -( )
( )

[ ( ) ( )] ( )W k M
kR

kR kR kR,
3

sin cos , 4
3

and the redshift dependence enters only through the growth
factor D(z). That is, s s=( ) ( ) ( )M z M D z, , 0 . The growth
function can be approximated by (Carrol et al. 1992):

»
W

- W + W + WL

( ) ( )
[ ( ) ( )]
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a a

a a
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2 1
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2

where the relative density of the i-component is given by
r rW =i i c, with “i” representing dark energy (L), and total

matter (m), where total matter is the sum of baryonic matter (b)
and dark matter (dm), while = +( )a z1 1 is the cosmological
scale factor.

The primordial power spectrum has a power-law dependence
on scale, that is, µ( )P k knp. For a scale-invariant spectrum,
the spectral index as predicted by inflation is =n 1p . The
current observational best fit for the spectral index is

= n 0.9667 0.0044p , obtained from the data generated by
the Planck satellite (Ade et al. 2014, 2016). The rate at which
fluctuations grow on different scales is determined by an
interplay between self-gravitation, pressure support, and
damping processes. These effects lead to a modification of
the form of the primordial power spectrum that is expressed in
terms of a transfer function T(k) given by

=( ) ( ) ( )P k BkT k , 6

where the normalization factor B is taken from observational
data. For the transfer function, we consider (Efstathiou et al.
1992)

=
+ + + n n

( )
{ [ ( ) ( ) ] }

( )T k
ak bk ck

1

1
, 7
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with n = 1.13, = G -( )a h6.4 Mpc1 , = G -( )b h3.0 Mpc1 ,

and = G -( )c h1.7 Mpc1 , where G = W -W + W( )h em
h1 2 mb is

the so-called shape parameter1 of the power spectrum (Bardeen
et al. 1986). For the mass function presented in Equation (2),
we use the fit proposed by Sheth & Tormen (1999). That is,
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where d = 1.69c , while a=0.707 and p=0.3.
The parameterization of Sheth & Tormen (1999) incorpo-

rates the possibility that the collapse of the halos is ellipsoidal
—not only spherical, as proposed by Press & Schechter (1974).

In addition, the Sheth & Tormen (1999) fit has a very close
agreement with numerical N-body simulations within a broad
mass spectrum. With these considerations, we can determine
the fraction of baryons that are incorporated into the halos as a
function of both mass and redshift

ò

ò
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The fact that stars can form only in structures that are
suitably dense can be parameterized by the threshold mass
Mmin. With this definition, the baryon accretion rate ( )a tb ,
which accounts for the increase in the fraction of baryons in
structures, is given by (see Pereira & Miranda (2010) and
references therein)

r= W( ) ( ) ( )a t
df

dt
, 10b b c

b

where r p= H G3 8c 0
2 is the critical density of the universe

( = - -H h100 km s Mpc0
1 1 is the value of the Hubble para-

meter at the current time).
To complete the cosmological part of CSFR, we need to

normalize the power spectrum. We often choose to express this
normalization in terms of a parameter called s8, which
represents the value of s ( )M at z=0 within a sphere of
radius = -R h8 Mpc1 . Following Ade et al. (2016) we can find
s = 0.830 0.0158 . Once we have followed these steps, we
will have the cosmological part of the CSFR well characterized.
In particular, the set of equations described above synthesizes
the fundamental basis for the theory of cosmological perturba-
tions, which consequently leads to the formation of large-scale
structures of the universe. As discussed by PM, the CSFR can
then be constructed from this scenario simply by incorporating
the laws of Schmidt and Salpeter. To do this, we should
remember that the star formation for a galactic-like system is
determined by the interplay between incorporation of baryons
into collapsed objects (stars, stellar remnants, and smaller
objects) and return of baryons into a diffuse state (such as
gaseous clouds and the intercloud medium of the system).
The second process can be two-fold: (a) mass return from

stars to the interstellar medium (ISM) through, for example,
stellar winds, and supernovae, which happens at the local level;
and (b) net global infall of baryons from outside of the system.
The former process is a well-known and firmly established part
of standard stellar evolution lore, and although details of mass-
loss in a particular stellar type may still be controversial, there
is nothing controversial in the basic physics of this process.
Thus, we consider the baryon accretion rate ( )a tb , described by
Equation (10), as an infall term that supplies the reservoir
represented by the halos. Therefore, the number of stars formed
by unity of volume, mass, and time is given by

= F Y( ) ( ) ( )d N

dVdmdt
m t , 11

3

where F( )m is the IMF that gives the distribution function of
stellar masses, and Y( )t is the star formation rate. See that Y( )t
is assumed to be independent of mass while F( )m is assumed
to be independent of time. Using the Schmidt law

1 In Sections 2.2 and 3 we will use the same symbol Γ to represent another
physical quantity—the polytropic index.
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(Schmidt 1959, 1963) for Y( )t , we have

 r= Y = a( ) [ ( )] ( )d M

dVdt
t k t , 12

2

g

where k is a constant that will be identified later, rg is the local
gas density, and a = 1. See that (12) shows that stars are
formed by the gas contained in the halos.

On the other hand, we assume that the IMF follows the
Salpeter (1959) form

F = - +( ) ( )( )m Am , 13x1

where x is the Salpeter exponent and A is a normalization
factor.

The constant A is determined by the condition that all stars
are formed into the mass range [ ]m m,inf sup . That is,

ò =- + ( )( )Am mdm 1, 14
m

m
x1

inf

sup

and we consider = m M0.1inf and = m M140sup as limits
in (14).

The mass ejected from stars can be determined by

ò t= - F Y -( ) ( ) ( ) ( )
( )

d M

dVdt
m m m t dm, 15

m t

m

m

2
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r
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where the lower limit of the integral, m(t), corresponds to the
stellar mass whose lifetime is equal to t. The term mr represents
the mass of the remnant, which depends on the progenitor
mass. The star formation rate is taken at the retarded time

t-( )t m , where tm is the lifetime of a star of mass m which can
be calculated by means of (Scalo 1986; Copi 1997)

t = -
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where tm is the stellar lifetime given in years.
The mass of the remnant, mr, in Equation (15) is determined

using the following assumptions:

(a) Stars with < m M1 have a high lifetime, so they do not
contribute to M ;ej

(b) Stars with   M m M1 8 after evolving off the main
sequence left carbon–oxygen white dwarfs as remnants,
where

= + ( )m m0.1156 0.4551; 17r

(c) Stars in the range < M m M8 10 after evolving off
the main sequence left oxygen-neon-magnesium white
dwarfs with = m M1.35 ;r

(d) Stars with < < M m M10 40 explode as supernovae,
leaving neutron stars as remnants ( = m M1.4r );

(e) Stars with   M m M40 140 produce black hole
remnants. In this case, we consider (see Heger &
Woosley 2002)

= -( ) ( )☉m m M
13

24
20 . 18r

We can then write an equation governing the total gas
density (rg) in the halos. Namely,

r = - + +˙ ( ) ( )d M

dV dt

d M

dV dt
a t , 19g

2 2
ej

b

where ( )a tb , Equation (10), gives the rate at which the halos
accrete baryonic (gas) mass.
Numerical integration of (19) produces the function r ( )tg at

each time t (or redshift z). Once obtained r ( )tg , we return to
Equation (12) to obtain the “CSFR” Y( )t . Just replacing Y( )t
by ṙ , we can write

r r=˙ ( )k , 20g

where the constant k represents the inverse of the timescale for
star formation. Namely, t=k 1 s.
The CSFR, as presented in Equation (20), is not yet in its

final form; it is necessary to normalize it. This can be done by
introducing a factor eá ñ that causes the CSFR to take the value

r = - -
˙ M0.016 yr Mpc1 3 at z=0 (see Pereira & Miranda

2010; Pereira & Miranda 2011). This value produces good
agreement with both the present value of the CSFR derived by
Springel & Hernquist (2003), who employed hydrodynamic
simulations of structure formation, and the observational data
taken from Hopkins (2004, 2007). The normalization is also
related to the fact that not all gas captured by halos will be
transformed into stars. Thus, the final form of CSFR is

r e
r

t
= á ñ˙ ( ) ( )z , 21

g

s

where eá ñ is the efficiency for star formation, which also acts as
a normalization factor for the CSFR at z=0.
There are two strong consequences associated with

Equation (21). The first is that the CSFR is a weighted average
that also depends on the masses of all halos capable of
collapsing in a given redshift. At high redshift ( ~z 20), we
have predominantly the formation of halos with masses close to

– M10 106 7 , while at low redshifts we find, in addition to a
large number of halos of low masses, halos with masses
comparable to galaxies. The second point, as commented
above, is associated with the fact that not all gas is used to form
stars. This can be represented as

e
r
r

á ñ =
( )

( )
( )

z

z
, 22mol

g

where rmol is the fraction of the total gas directly used to form
stars. As a consequence of this, eá ñ is a function of the redshift.
It is important to note that the definition for the efficiency of
star formation through Equation (22) is equivalent to the usual
definition e r rá ñ = g, because  r r tº ˙ s in our model.
Table 1 summarizes the parameters used to obtain the CSFR.

As discussed in PM, the best agreement with the observational
data is achieved with x=1.35 (Salpeter exponent) and
t = 2.0 Gyrs , which is the characteristic timescale for star
formation. The behavior of this model can be seen in Figure 1.
See that eá ñ = 0.021 at z=0, in order to obtain

r = = - -
˙ ( )z M0 0.016 yr Mpc1 3. The evolution of eá ñ with

redshift can be seen in Figure 2. Note that star formation
efficiency is high eá ñ = 0.32 at high redshifts ( ~z 20),
reaching 0.021 at z=0.
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2.2. Local Star Formation Rate–SFR

The ISM is a gaseous medium intrinsically connected with
the life cycle of stars. The ISM provides us with a very rich
physics through the interactions of stellar winds, supernova
explosions, jets associated with proto-stellar systems, among
others. This rich interaction causes the ISM to be a complex
and filamentous structure that consequently produces turbu-
lent movements in the gas which, in turn, regulate star

formation (see Federrath et al. 2017 for a review of turbulence
drivers). Since the work of Krumholz & McKee (2005), it has
been discussed in the literature that the small values for the
star formation efficiencies, as highlighted in the Section 1,
could be associated with the supersonic turbulent motions of
the gas in the star formation regions. In particular, turbulence
is a self-similar process that can carry energy from the large
scale to the small. Thus, turbulence could provide the
necessary support to retard the gravitational collapse of
the gas so that star formation would result from the gravo-
turbulent fragmentation of the molecular clouds (Mac Low &
Klessen 2004).
The presence of turbulent motions with high Mach numbers

could create broad (log-normal) distributions for the gas
density. In this way, when we analyze star formation at the
local level (i.e., for redshifts »z 0), it is common to use the so-
called density probability distribution functions (PDFs) of the
column gas density, as well as the volume gas density, as
common tools for studying these star-forming regions. For a
purely isothermal gas, the PDF has the form (see, e.g.,
Vázquez-Semadeni 1994; Passot & Vázquez-Semadeni 1998;
Vázquez-Semadeni et al. 2003)

ps s
= -

-⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )p s

s s1

2
exp

2
, 23

s
2

0
2

s
2

where r r= ( )s ln g 0 is the logarithmic density contrast, ss
2 is

the density variance, and s= -s 20 s
2 is the mean value that is

related to the density variance due to mass conservation. As
pointed out by Hopkins (2013b), if the gas can be considered
isothermal, then Equation (23) may represent density fluctua-
tions in both subsonic and supersonic regimes.
The density variance is a function of the root-mean-squared

(rms) Mach number (), and is given by

s
b
b

= +
+

⎛
⎝⎜

⎞
⎠⎟ ( )bln 1

1
. 24s

2 2 2

The coefficient b is known as the turbulence driving
parameter; it is related to the mixture mode induced by the
turbulent forcing mechanism. The value =b 1 3 corresponds
to the purely solenoidal driving, while b=1 is associated
with the purely compressive driving (see, e.g., Federrath et al.
2008; Federrath et al. 2010). The β parameter represents the
ratio between the thermal and magnetic pressures (see, e.g.,
Padoan & Nordlund 2011; Federrath & Klessen 2012; Molina
et al. 2012).2 In the case of no density correlation of the
magnetic field, we have rµB 0 and so b  ¥ producing

Table 1
Parameters of the CSFR

Wm Wb WL h z np s8 t ( )Gyrs ( )M Mmin x

0.279 0.0463 0.721 0.7 20 0.97 0.84 2.0 106 1.35

Note.Wm Corresponds to the total matter (baryonic plus dark matter) density parameter; Wb is the baryonic density parameter; WL is the density parameter associated
with dark energy (cosmological constant); h is the Hubble constant written as = - -H h100 km s Mpc ;0

1 1 z is the redshift at which star formation begins; np is the
exponent of the primordial power spectrum; s8 is the normalization of the power spectrum, in other words s ( )M, 0 ; ts is the timescale for star formation; Mmin

corresponds to the lowest mass a halo of dark matter must have to detach from the expansion of the universe, to collapse and to virialize (it is approximately equal to
the Jeans mass at recombination); x is the exponent of the IMF.

Figure 1. Evolution of the CSFR with redshift derived for the hierarchical
structure formation scenario (standard ΛCDM cosmological model). At redshift
3.5, the CSFR achieves maximum value ( r = - -

˙ M0.147 yr Mpc1 3). The
observational points (HP) are taken from Hopkins (2004, 2007).

Figure 2. Star formation efficiency as a function of the redshift. The
determination of eá ñ is done through Equation (22). The efficiency is almost
constant within the range ∼3.5–20 in redshift, with an average value close to
eá ñ » 0.32. For z 3.5, the efficiency rapidly decreases, reaching 0.021
at z=0.

2 As discussed in Federrath & Klessen (2012), the definition of the β
parameter as done by Padoan & Nordlund (2011) is slightly different from that
considered in Equation (24).
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(see, e.g., Padoan et al. 1997; Passot & Vázquez-Semadeni 1998;
Price et al. 2011)

s = +( ) ( )bln 1 . 25s
2 2 2

Once we have the PDF, it is enough to integrate it from a
certain threshold to infinity to obtain the SFR. Integration can
be weighted by r r( )tg ff g , where r p r=( ) ( )t G3 32ff g g

1 2 is the
freefall time. The result is then

ò
r

r
r r~

r

¥

( )
( ) ( )

t
p dSFR . 26

g

ff g
g g

crit

Equation (26) is known as the “multi-freefall model” of the
SFR. It can be written in terms of the logarithmic density

r rº ( )s ln g 0 , producing

ò~
¥
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⎝

⎞
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2
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By plugging Equations (23) into (27), it is possible to
analytically solve the integral, which results in
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The model presented above has been used by different
authors to characterize the SFR from the PDF of the density
fluctuations induced in the clouds by the turbulence. These
models are primarily characterized by the definition of a
density threshold usually represented as a~ ( )s lncrit vir

2 ,
where avir is the so-called virial parameter and is the Mach
number (see Federrath & Klessen 2012, for a derivation of
Equations (26)–(28)). The virial parameter is a measurement of
the level of turbulence versus gravitational energy of an object.
Thus, it is given by a = E E2vir k p, where Ek is the kinetic
energy and Ep is the gravitational potential energy (Bertoldi &
McKee 1992). From this definition, we can write
a s= R GM5vir 0

2 , where M, R, and s0 are, respectively, the
mass, radius, and rms velocity within the object (we are using
“object” as a synonym for both molecular clouds and molecular
clumps).

Note that, to quantify avir, we must define a region where the
parameters s0 and M can be estimated. The virial parameter is
only suitable for clouds that have well-defined structures
(Li et al. 2015). However, the morphology of molecular clouds
is, in general, quite complicated. In many cases, it is not trivial
to separate individual clouds from the surrounding environ-
ment. Indeed, the fact that clouds are neither isolated, nor
spherical, nor of uniform density can lead to an order of
magnitude difference in virial parameter (see Federrath &
Klessen 2012). Moreover, as the clouds are observed projected
on the plane of the sky, the morphology of these objects can be
biased by projection effects (see, e.g., Pichardo et al. 2000; Dib
et al. 2006; Shetty et al. 2010; Beaumont et al. 2013). Thus,
there is a large uncertainty concerning the estimated virial
parameters in the literature (see, e.g., Rosolowsky et al. 2007;
Hernandez & Tan 2015). In particular, Padoan et al. (2016,
2017) have analyzed the SFR as a function of the cloud
parameters, obtaining values within the range ∼0.5–25 for the
virial parameter. On the other hand, Hennebelle & Chabrier
(2011) have preferred not to set a threshold for star formation.
In contrast, these authors consider that SFR continuously
increases with gas density, thus producing two different
characteristic regimes.

A step further in the SFR study comes with the so-called
polytropic turbulence models. As pointed out by Federrath &
Banerjee (2015), some important works developed mainly in
the last ten years have shown that the PDF tends to deviate
from the lognormal form given by Equation (23) if the gas is
non-isothermal (see Federrath & Banerjee 2015 and references
therein; Nolan et al. 2015). A physically well-motivated
functional form for a non-isothermal PDF was suggested by
Hopkins (2013a). As pointed out by the author, the proposed
function is considerably good when compared to data on a
large Mach number range, and variance in numerical simula-
tions. In particular, as shown in H13 and FB15, the fit for this
PDF is
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2
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where ( )I x1 is the modified Bessel function of the first kind. The
parameter ss,V is the volume-weighted standard deviation of
the logarithmic density fluctuations, while θ is the intermittency
parameter. In the zero-intermittency limit (q  0), Equation (29)
becomes the lognormal distribution from Equation (23).
In order to obtain the SFR from non-isothermal PDF

(Equation (29)), it is necessary to adequately characterize ss,
because the form given in Equation (25) applies only to the
isothermal case. There are two different ways to do this. The
first is to follow FB15, who use the Rankine–Hugoniot
conditions to obtain the following equation for the density
contrast r rºx g 0

+ G - - =G ⎜ ⎟⎛
⎝

⎞
⎠ ( )x b

x

1
1 1 0, 302 2

where Γ is the polytropic index.
As pointed out by FB15, solving the transcendental

Equation (30), we obtain the variable r r= ( )s ln g 0 and its
logarithmic density variance, which is given by

s
r

r
+

⎛
⎝⎜

⎞
⎠⎟ ( )ln 1 , 31s

2 g

0

where for G = 1, the non-trivial solution of Equation (30)
yields r rº =x bg 0

2 2, such that we retrieve ss for the
isothermal case, as given by Equation (25).
The connection between ss,V and ss is made through the

intermittency parameter (θ), which in turn is related to Γ
(G ¹ 1) by a power law (see the discussion on these points
presented in FB15). Thus,

q = G ( )b0.035 , 322

which in turn produces

s s q= +( ) ( )1 . 33s,V
2

s
2 3 2

The second way to characterize ss is presented by Nolan
et al. (2015) specifically for adiabatic turbulence. In particular,
these authors used high-resolution hydrodynamic simulations
to investigate the relationship between ss and  in both
isothermal and non-isothermal regimes. Their main result is a
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new relationship between density variance and Mach number,
given by

s = + g+[ ] ( )( )bln 1 , 34s
2 2 5 1 3

for  b 1, and
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+

- +

⎡
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⎤
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( )
( )

( )b

b
ln 1

1

1 2
, 35s

2
2 2

2 2

for  >b 1, where γ is the adiabatic index.
Nolan et al. (2015) conclude that, to study adiabatic

turbulence, these relationships can introduce important correc-
tions, especially if the gas is non-isothermal (g ¹ 1). In this
paper, however, we will strictly follow the formalism presented
by FB15. Because we have Γ,, b beside ss,V, it is possible to
use the Hopkins PDF (Hopkins 2013a) to obtain the SFR as
(see, in particular, Federrath & Banerjee 2015)

ò~
¥

⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )s p s dsSFR exp

3

2
. 36

s
hk

crit

Equation (36) holds for the G ¹ 1 cases. In order to make it
an equality, we must define the right-hand multiplicative factor:
it can be in the form S tgas dep if we wish to express the SFR in
units of - -

M kpc yr2 1, or of the form r tgas s if we wish to
express it in units of - -

M yr Mpc1 3. Because we wish to
discuss the possible complementarity between global star
formation (CSFR) and local star formation (SFR), it is more
appropriate to take the latter form by rewriting the
Equation (36) as

òr
r

t
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¥
⎜ ⎟⎛
⎝

⎞
⎠˙ ( ) ( )s p s dsexp

3

2
, 37

s
SFR
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hk
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where rg is the gas density and ts is the timescale for star
formation.

Before closing this section, it is important to discuss one
more aspect associated with the SFR, which is the so-called
Larson’s law.3 In a seminal paper, Larson (1981) proposed that
the protostellar cores are originated by turbulent supersonic
compression, which in turn causes gravity to become dominant
only in the denser regions (which generally possess subsonic
characteristics).

Larson used measures of the velocity dispersion, Vrms, of
molecular clouds showing that, on a scale of < <R0.1 100 pc,
this is given by µV Rrms

0.38. On the other hand, Solomon et al.
(1987) have found a slightly different power index ∼0.5 (see
also Federrath 2013b and references therein). More recently,
Kritsuk et al. (2013) have reviewed the origin of Larson’s law
using recent observational measurements as well as numerical
simulations of the ISM. These authors argue that Larson’s
relations on scales of –0.1 50 pc can be interpreted as supersonic
turbulence fed by the large-scale kinetic energy injection.
However, most likely there are multiple injection mechanisms
on multiple scales acting together in a complex way in the ISM
(see, e.g., Federrath et al. 2017). Thus, a single power law may
result in simplification of the problem.

Following the notation of Hennebelle & Chabrier
(2008, 2009), we will represent Larson’s first law as

á ñ =
h⎛

⎝⎜
⎞
⎠⎟ ( )V V

R

1 pc
, 38rms

2
0
2

2

where -V 1 km s0
1, and h - 0.4 0.5. Once we have

reviewed the bases of CSFR and SFR, we are in a position
to explore the complementarity between these star formation
rates.

3. Model Unifying CSFR with SFR—Results

3.1. How the SFR can Mimic the Evolution of the CSFR

Our ansatz considers that Equations (21) and (37) represent
the same physics, which can be applied on both the
cosmological and local galactic scales. In this way, we propose
that the following equality is valid:

r
e

r
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Looking from the viewpoint of CSFR, the difference
between Equations (21) and (40) is associated with the
inclusion of Hopkins’ PDF (which, as shown by FB15, can
be linked with G ¹ 1) or isothermal PDF (if G = 1). In order to
maintain consistency with the results derived by PM for the
CSFR and reviewed in Section 2.1, the integral in
Equation (40) must be equal to 1 at redshift z=0 to reproduce
the Equation (21). We then set the parameters Γ, b, and scrit in
an attempt to solve the integral as a function of the Mach
number. That is, we look for the value of  that allows to
recover the value of the CSFR at z=0. The second point
considered in our model is to verify if the PDF used to
characterize the SFR may or may not “mimic” the CSFR. That
is, we take the redshift variation of the parameters ṙ and eá ñ on
the left side of Equation (40) and we maintain rg, on the right
side of the equation, “frozen” for its value at z=0. Then, we
determine the values of  that satisfy the equality of this
equation for each redshift value that composes the CSFR. For
all models, we set the parameter b=0.4 (see Federrath &
Banerjee 2015), while the characteristic timescale (ts) for star
formation is 2 Gyr.
Figure 3 shows the results obtained for =s 2crit and different

values of Γ. The black vertical line marks the redshift (z=3.5)
where the CSFR reaches its maximum value. Depending on the
value of Γ, the Mach number reaches values within the range
~ –6 9 at redshift z=3.5. With the increment of redshift
( z 20), it is possible to verify that  decreases. In
particular, at z=0 we have  within the interval ~ –7 13,
depending on the particular value of Γ.
Figure 4 exhibits the results for =s 3crit and 4. It can be seen

that the results are similar to those obtained for the case
=s 2crit . Note, however, that the relation versus z changes

with the increase of scrit. Considering =s 3crit , the peak of the
CSFR corresponds to  within the range ∼9–15, while at
z=0 the Mach number lies in the range ∼11–22. The Table 2
presents, for the nine different models generated in our

3 We are considering in this article just the Larson relation, which is known in
literature as Larson’s first law. The so-called second law shows the relationship
between the velocity dispersion and the mass of the cloud. The third shows that
the size of the cloud is inversely proportional to the density.

7

The Astrophysical Journal, 849:108 (15pp), 2017 November 10 Gribel, Miranda, & Vilas-Boas



analysis, the values reached for the Mach number at both the
CSFR peak (z=3.5) and at z=0.

From Figures 3 and 4, we can immediately verify that indeed
the SFR can, through the Mach number, “mimic” the evolution
of the CSFR from redshift ∼20 up to the present, with the two
curves having excellent agreement. However, to quantify this
agreement between the CSFR and SFR, we divide the redshift
interval 0–20 into 12,000 linearly spaced points, inferring the
degree of deviation (D) from the equality represented by
Equation (40). Table 3 shows the result of this analysis. In
particular, we evaluate the degree of deviation through the
relation





r e r
r e

=
á ñ -

á ñ
´( )

∣ ˙ ˙ ∣
˙

( )D % 100%, 41SFR

taking the distribution of deviations in relation to the total
number of points within three classes: the first class encom-
passing deviations less than 1%; the second class comprising
deviations between 1% and 5%; the last class considering
deviations between 5% and 10%.

From Figures 3 and 4 (and also Table 3), it is possible to
verify the good mapping that the SFR, through the use of both
isothermal and non-isothermal PDFs, has made of the CSFR
since the time when the first star formed in the universe
( ~z 20) up to the present.

Nevertheless, this mapping cannot be performed for any
values of scrit and Γ, as is clear from the absence of specific
models in Tables 2 and 3. For example, if we take the =s 2crit

model with G = 5 3, it will be possible to keep Equation (40)
valid from z=20 to ∼6. From <z 6, the mapping of the
CSFR by the SFR breaks and the equality represented by
Equation (40) is no longer valid. In particular, the integral in
the Equation (40) does not provide sufficient “power,” through
the Mach number, to cover the variation of the r and eá ñ
parameters that are on the left side of the equality. Thus, a full
map over the entire range in redshift can not be obtained.
Specifically for the non-isothermal PDF, the maximum and

minimum values for the Mach number, which can be applied to
provide the solution of the integral (36), are limited by the
condition w ( )s 0. Thus, the models presented are those that
effectively allow a complete mapping of the CSFR through the
SFR within the entire range in redshift. All models that fail to
make the complete CSFR map have similar characteristics.
That is, they can properly map the CSFR from z=20 to
intermediate redshifts (∼7–4), but fail on the z 6 scale. As
our main objective in this paper is to analyze the complete
mapping between the CSFR and the SFR, we do not link scrit

through the a~ ( )s lncrit vir
2 relation. The influence of the

virial parameter on the results of this unified model will be
explored in another publication.

Figure 3. Solution of Equation (40) with =s 2crit , for different values of Γ. The evolution of the CSFR, weighted by the average efficiency, as a function of the
redshift, is presented in the –y x1 1 axes (in red). The axes –y x2 2 (in blue) show the SFR obtained with the frozen value of rg at z=0, looking for the value of the
Mach number that satisfies the equality of this equation. This allows us to relate the redshift, provided by the CSFR, to the Mach number, provided by the SFR. With
this analysis, it is possible to infer the role of turbulence associated with the formation of stars at high redshifts which, in turn, allows to generate the large-scale
structures observed in the universe.
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3.2. Relationship between Mach Number and
Star Formation Efficiency

In Figure 5, we present the evolution of with the redshift
and also how star formation efficiency eá ñ varies with Mach
number. These results derive directly from mapping of the
CSFR by the SFR. The upper panels show some models
identified by the values of Γ, considering =s 2crit , the bottom
panels show the results for the model, with =s 4crit and G = 1,
while the middle panels show some models with =s 3crit .

It is important to emphasize, once again, the complementary
character that exists between the two rates of star formation.

The identification that the SFR, through the PDF commonly
used to study the giant molecular clouds in our Galaxy, can
effectively mimic the behavior of the CSFR, from the time the
first star formed in the universe to the present, allows us to infer
the role of Mach number, and therefore of turbulence, in the
formation of large-scale structures of the universe.
Certainly, our formalism lacks the ability to provide rich

details, as large computational simulations do. However, our
results represent average values weighted by the mass of the

Figure 4. Solution of Equation (40) with =s 3crit and 4 considering different values of Γ. The results are similar to those observed in Figure 3, although the vs. z
relationship changes with scrit when we look at the same polytropic index.

Table 2
Mach Numbers for Each of the Nine Models Analyzed

=s 2crit =s 3crit =s 4crit

Γ z=0 z=3.5 z=0 z=3.5 z=0 z=3.5
1.0 6.8 5.8 10.9 9.3 20.8 16.6
1.1 7.6 6.4 13.8 11.3 L L
1.2 8.7 7.0 21.8 15.2 L L
1.3 10.2 7.9 L L L L
1.4 12.8 9.3 L L − L

Note.The values of  are identified in two distinct instants of time. The
redshift z=3.5 (the universe is about 1.8 Gyr old for the cosmological
parameters used to characterize the CSFR) corresponds to the instant of time
when the CSFR reaches the peak while z=0 (~13.7 Gyr for the age of the
universe) represents the local universe.

Table 3
Distribution of the Deviations of the Equality Established by Equation (40)

When We Divide the Interval in Redshift (0–20) into
12,000 Linearly Spaced Points

scrit Γ <D 1%  <D1% 5%  <D5% 10%

2 1.0 0.980 0.020 ´ -8.33 10 5

2 1.1 0.982 0.018 L
2 1.2 0.983 0.017 L
2 1.3 0.998 0.002 L
2 1.4 0.999 0.001 L
3 1.0 0.994 0.006 L
3 1.1 0.999 0.001 L
3 1.2 0.999 0.001 L
4 1.0 0.999 L ´ -8.33 10 5

Note.For all nine models, the deviations presented can be considered very
small—less than 1% for more than 98% of the points considered in the
analysis.
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dark matter halos that host the baryonic matter that is the basic
material for star formation. By analyzing the panels on the left
side of the Figure 5 ( versus z), we can verify that when the
first set of halos forms at z=20, generating the potential wells
for the fall of the baryonic matter, star formation begins with a
low Mach number.

In the hierarchical structure formation scenario, the first
halos have masses ~ M106 . As the redshift decreases, more
and more massive halos are able to decouple from the Hubble

flow, collapse, and virialize, generating conditions to capture
more and more baryons from the surrounding environment (the
universe itself). Thus, the Mach number increases with the
growth of the CSFR. In the case =s 2crit , there is no great
influence of the polytropic index (Γ) on the results up to
~z 12. For the case =s 3crit , we can verify that a z value up to

∼15 does not observe great influence of the polytropic index,
and the models differ little. However, as the universe evolves,
the Γ parameter becomes more important to the value of.

Figure 5. Curves show the evolution of the Mach number with the redshift from the map generated by the SFR for the CSFR, and also show how the cosmological star
formation efficiency, eá ñ, is linked to. The top panels show some models identified by the values of Γ with =s 2crit . Intermediate panels show the results for

=s 3crit . The bottom panels show the =s 4crit model with G = 1.
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The increase of with the value of Γ is consistent with the
formalism presented in Section 2.2, and synthesized through
Equations (33)–(35), as well as from the analysis of several
authors with respect to the relation ss versus  (see, e.g.,
Federrath & Banerjee 2015; Nolan et al. 2015). Another aspect
associated with the versus z relation is that our results for
both ~ –z 1 3 and z=0 typically correspond to the average
values obtained by Salim et al. (2015). In that paper, the
authors present predictions of the Mach number for extra-
galactic sources. Our results agree with the estimates of these
authors for the disk galaxies (see Table 3 of these authors). A
similar result is obtained from the comparison of our model
with that studied by Renaud et al. (2012). The authors find that
 = 10 for disc galaxies at high redshifts (see, in particular,
Figure 4 of these authors), a result that is consistent with the
results derived by Salim et al. (2015) and those obtained here.
In addition, our results with =s 3crit (G = 1.2) and =s 4crit
marginally return the estimates for the Mach number from
Renaud et al. (2012) to high-z mergers.

Looking at the right-hand panels of Figure 5, we observe the
efficiency behavior associated with the star formation process,
generated by the CSFR, versus  provided by the SFR. All
models show similar characteristics, with a high star formation
efficiency, eá ñ, up to a certain crit. From this critical value,
the star formation efficiency rapidly decreases. This shows the
dual role played by turbulence as proposed by Klessen et al.
(2010). The same authors argue that the formation of the first
stars of the universe were subject to the same dynamic
processes of the local star-forming regions. This is exactly the
result described from the mapping CSFR–SFR.

Note that, for  < crit, the results do not depend
significantly on the polytropic index, while for  > crit,
in addition to a rapid decrease of eá ñ, there exists a
differentiation between the different Γs in the results eá ñ versus
. The higher the value of Γ, the greater the value of 
associated with a given efficiency will be. In particular, see the
dependency that also exists with scrit. That is,  ~ 4crit for

=s 2crit , while for =s 3crit we have  ~ 6crit , and for
=s 4crit we find ~ 8crit .

Klessen et al. (2000) showed that star formation efficiency
decreases systematically as either the driving scale of the
turbulence is decreased or the turbulent Mach number is
increased. In particular, our unified model shows this behavior
when exceedscrit. It is worth stressing that Federrath &
Banerjee (2015) present an interesting analysis of the structures
formed from non-isothermal polytropic turbulence. The authors
find, as a result of their simulations, that G < 1 leads to a more
fragmented density field with filaments with high density
contrasts, while G > 1 softens the density contrasts of small
scales. Observing Figure 3 of Federrath & Banerjee (2015),
especially the intermediate panel showing the volume-weighted
Mach number versus time (t/T, where T is the turbulent
crossing time), it is possible to see that higher values of Γ allow
to reach higher values for for the same time t T . Note that
our results presented in Figure 5 for versus z, considering
different Γ values, show similarity with these results presented
by Federrath & Banerjee (2015). In particular, the redshift is a
parameter directly associated with t. Thus, z 20 represents
the case t T 0 of these authors, where  is practically
insensitive to the Γ value. Below a given redshift, larger values
for the Γ parameter produce higher values for , a result
that is analogous to that of these authors for >t T 0.5

(corresponding, for example, to <z 12 for models with
=s 2crit or <z 15 for models with =s 3crit ).

Another interesting comparison of relation eá ñ versus z
(Figure 2), which in our case allows SFR to map the relation
 versus z, can be made with the recent work of Scoville et al.
(2017). These authors, using ALMA observations from the
long wavelength dust continuum, estimate ISM masses for 708
galaxies within the range ∼0.3–4.5 in redshift. In that work,
they show the evolution of the stellar formation efficiency (SFE
in the nomenclature of those authors) within the range 0–3.5
and through the relative ratio =( ) ( )z zSFE SFE 0 . We observe
that our ratio e eá ñ á = ñ( ) ( )z z 0 is greater than that by
approximately a factor ∼1–2.5 within the same range 0–3.5.
Scoville et al. (2017) conclude that the increase in the star
formation within the analyzed redshift range is due to both the
increase in mass of the ISM and the increase in the conversion
of gas to stars. This result is identically obtained by PM in their
model for the CSFR.
The discussions presented in this section reinforce our

analysis of the complementarity between the CSFR and the
SFR, observed through the “SFR’s mimicry.” In particular,
these results allow us to conclude that the relations versus z
and eá ñ versus  derived from our analysis are perfectly
consistent with the unified model here presented, in addition to
representing well the physical processes that have been
discussed by different authors in recent works on the SFR.

3.3. CSFR Providing Larson’s First Law for the SFR

In the previous section, we have seen that the formalism used
for the SFR can contribute to the CSFR, nominally, Mach
number relations that provide both the redshift and the cosmic
efficiency of star formation. These relationships can not be
directly obtained from the formalism used by PM without the
help of the SFR. In contrast, in this section, we show a
contribution, which can be provided directly by the CSFR to
the SFR, that is a way of providing Larson’s first law.
Rewriting Equation (2) in the form

s
r s
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M

d M z

d M
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, 42B
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where the variables of Equation (42) were defined in Section 2,
enables us to estimate the average mass of the halos formed as
a function of the redshift using the scenario proposed by PM
for the CSFR. This can be done through
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In the theory of cosmological perturbations, fluctuations in
the dark matter begin to grow after equipartition4 (the instant of
time when the densities of matter and radiation become equal).
As they evolve, the perturbations in the dark matter expand
with the Hubble flow in an increasingly slower way. Upon
reaching density contrast d ~ 1.69c , the perturbations detach
from the expansion of the universe and collapse. Because dark
matter is not dissipative, the collapse stops when the density
contrast reaches a value of ∼200. This value represents the

4 In fact, perturbations in the dark matter can grow even during the time when
radiation dominates. However, in this case, the density contrast is d µ ( )tlndm .
After equipartition, the growth of the dark matter density contrast becomes
d µ tdm

2 3. On the other hand, the baryonic density contrast increases only
after recombination ( ~z 1100), when baryons decouple from the radiation.
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condition called virialization of the halos. Thus, we can
estimate the average virial radius, associated with á ñ( )M zH ,
through

pr
á ñ =

á ñ⎛
⎝⎜

⎞
⎠⎟( ) ( )R z

M3

800
. 44V

H

B

1 3

As the baryonic matter is dissipative, it will tend to cluster
more in the interior of the halos. Our ansatz in this case is to
consider that all the gas (rg) is distributed within radius
(á ñ( )R zV ). However, the part of the gas that will produce stars
(rmol) will reside in the innermost part of the halos generating
the density of stars r within an effective radius Rå, which can
be estimated by


r
r

á ñ = á ñ( ) ( ) ( )R z R z , 45
g

V

Equation (45) should be seen as an initial proposal (toy
model) in order to verify the possibility of Larson’s law
emerging from this formulation. In addition, very probably,
there are a large number of fusions of low-mass halos
generating higher-mass halos. From this rich environment
could emerge a scale relation between á ñRV and á ñR , similar to
that proposed by the equation above.

All of these phenomena are likely to contribute to the gas on
the large scale; in this case, the large scale corresponds to á ñRV ,
transferring kinetic energy to the star-forming gas (rmol) that
lies in the innermost part of the halos. As a result the star-
forming gas will produce stars within an effective radius á ñR ,
whose density of stars formed will be r (converting from rmol
to r on a characteristic timescale ts).

The key point of the present analysis is that the mapping
described by Equation (40) must be valid in both directions.
That is, if the SFR can, through the Mach number,
appropriately map the CSFR by allowing parameters such as
efficiency of the cosmological star formation (which is related
to the redshift in the cosmological context) can be associated
with the Mach number, then it must also be possible that the
CSFR can map the SFR through the characteristic scale á ñR in
which the formation of stars regulated by the turbulence occurs.

Following, for example, Hennebelle & Chabrier (2008, 2009),
we wrote for the gas velocity dispersion

á ñ = ( )V c , 46rms
2 2

s
2

where cs represents the thermal sound speed. Considering a
polytropic equation of state and that the gas behaves as a
perfect gas, we have

kr
m

r r= =G ( ) ( )P
k

m
T , 47mol

B

H
mol mol

from which we obtain

k
m

r r= -G ( ) ( )k

m
T . 48B

H
mol
1

mol

Thus, the temperature depends on the density via

r
r
r

=
-G⎛

⎝⎜
⎞
⎠⎟( ) ( )T T , 49mol 0

0

mol

1

and the thermal sound speed can be written as

r m
r r=

¶
¶

= G -G G-
⎛
⎝⎜

⎞
⎠⎟ ( )( )c

P k

m
T , 50s

mol

B

H
0
1

0

1 2

mol
1 2

where kB is the constant of Boltzmann, mH is the mass of the
hydrogen atom, m ~ 0.5 is the average molecular weight of the
gas, and r0 and T0 correspond to the average values for the gas
density and temperature, respectively.
Because the gas falls into the gravitational potential wells

of the halos, it will tend to distribute within á ñRV , generating
an average density r0. The estimate for the value of this
parameter can be obtained from r r= ( )s ln g 0 . Assuming
that, within á ñRV , the gas has a typical density contrast of the
order of scrit (á ñ s scrit), as a characteristic value, then it is
possible to express r0 as a function of rg and of rmol. Defining
the value of the characteristic temperature, T0, we can
calculate the thermal sound speed as a function of redshift.
As we have the solution versus z, for each specific value
of Γ, obtained from the mapping of the CSFR by the SFR, it
is thus possible to calculate á ñVrms in Equation (46).
Once rmol is converted to r on the scale á ñR , we can

construct the solution á ñVrms versus á ñR . If the inverse mapping
can be done, then it will be possible to compare á ñVrms versus
á ñR with the Larson’s first law represented by Equation (38).

The last step is to vary the parameter T0 in order to obtain the
best possible adjustment of the á ñ - á ñV Rrms to the limits given
by Larson’s law within the range ~ –1 50 pc. The result of this
analysis is shown in Figure 6.
The panels at the top of Figure 6 show the models identified

by their Γ values, for =s 2crit (left) and =s 3crit (right), while
the lower panel shows the results for G = 1 with =s 2crit , 3,
and 4. The results are dependent on both the polytropic index
and the scrit values. For G = –1.2 1.3, the change from =s 2crit
to 3 allows to reduce the value of T0 by a factor ∼3. None of
the models studied fit Larson’s law well for  <R 10 pc,
although at the scales closest to 10 pc, the model curves tend to
approximate the R0.5 law. In the range of –10 50 pc, all models
remain within the bounds h  –0.4 0.5 and are approaching the
curve R0.4 on the larger scales. These results show that, in
principle, it would be possible to use for CSFR to obtain
Larson’s law on ~ –10 50 pc scales. All models have tempera-
tures T0 within the range ~ –10 80 K.
Recently, Tang et al. (2017a) presented measurements of

kinetic temperature for six different regions of star formation in
the Large Magellanic Cloud (LMC). Because it is a nearby
galaxy in a low-metallicity environment, it is likely that the
star-forming regions studied by these authors may be more
representative of the model we present in this section. Using
non-local thermodynamic equilibrium (NLTE) models, Tang
et al. (2017a) obtain kinetic temperatures within the interval
~ –25 80 K with 30 Dor the source presenting the highest
sample temperature. Similar results can be observed in Tang
et al. (2017b), who obtain kinetic temperatures ~ –30 61 K for
massive star-forming molecular clumps, from -para H CO2
( - -3 2 3 221 20 03 02) lines ratio. These results are compatible
with the results achieved in our work.
It is worth mentioning that the hierarchical structure

formation scenario predicts the existence at z=0 of a large
number of low-mass halos that are not directly observed. This
can be explained in two different, non-exclusive ways. The first
considers the observational bias associated with the limit of
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detection of objects with low luminosity in a given sample. The
second possibility is associated with the fusion of low-mass
halos, or their incorporation by much more massive halos. In
the second case, massive halos could be composed of a number
of low-mass mini-halos. From the way we map the SFR to get
Larson’s law, the hypothesis that mini-halos can be embedded
by halos of greater mass is implicit. In principle, these mini-
halos would contain a certain number of stars in a similar way
to the one that is verified, mainly, in the globular
clusters (GCs).

In a recent study, Sollima et al. (2016) estimate the fraction
and distribution of dark matter in the innermost regions of
two GCs of the Milky Way, namely NGC 6218 (M12) and
NGC 288. The authors estimate that there is a large mass
fraction in these clusters that is compatible with concentrated
non-luminous matter. More recently, Peñarrubia et al. (2017)
have shown that encounters in the central regions of GCs
embedded in dark matter halos necessarily lead to the
formation of an equilibrium configuration that extends far
beyond the stellar radius of the GCs. In particular, with

~ M M10DM
6 , the authors find that the distribution of stars

could reach hundreds of parsecs while keeping their
equilibrium configurations. In addition, the presence of dark
matter may lead to an increase in the line-of-sight velocity
dispersion of these systems.

4. Summary and Conclusions

We present a unified model that allows us to describe both
the cosmological star formation represented by the CSFR and
the local star formation represented by the SFR. Due to its
healthy characteristics, we use the formulation proposed by
Pereira & Miranda (2010) to describe the CSFR, while the SFR
is described by the formulation discussed in Hopkins
(2013a, 2013b) and Federrath & Banerjee (2015). The central
point of our analysis is synthesized in Equation (40), which in
turn allows, as an anstaz, that the variations of r eá ñ˙ with the
redshift can be mapped by the Hopkins (general case) or
isothermal PDFs through the Mach number (). Complete
mappings from redshift ∼20 to the present can only be
obtained for certain combinations of scrit and Γ (keeping in
mind that the connection between Hopkins’ PDF and G ¹ 1
was established by Federrath & Banerjee (2015)). Looking at
the results presented through Figures 3 and 4 in addition to
Table 3, we can conclude that the PDFs ordinarily used for
studying the formation of stars in our Galaxy and the near
universe can effectively mimic the CSFR, which in turn is
constructed from the hierarchical structure formation scenario.
Our main conclusions are:

(i) Star formation begins at high redshifts ( ~z 20), with gas
presenting low Mach numbers (subsonic scale ~ 0.5).

Figure 6. Panels showing the solutions for the relationship á ñVrms vs. á ñR , considering different values for both the polytropic index and scrit. The temperature T0 is
obtained from the value that produces the best fit for Larson’s law as defined by Equation (38), for the limit values h = –0.4 0.5. The bottom single panel correspond to
the models with G = 1.
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The first stars of the universe are formed in halos of dark
matter with typical masses ~ – M10 106 7 .

(ii) As the number of halos of higher mass increases, with the
reduction of redshift, more baryonic matter falls into the
wells of gravitational potential generated by these
structures. The density of both the gas and the stars
increases, causing the degree of gas turbulence para-
meterized by to increase as well. For  -3 4, the
results are little influenced by the value of the polytropic
index (Γ).

(iii) Within the Pereira & Miranda (2010) formulation for the
CSFR, ṙ reaches its maximum value close to redshift
∼3.5 and the SFE ( e r rá ñ = mol g) varies little within the
~ –z 3.5 20, being close to eá ñ ~ 0.3 in that interval. At

z=3.5, the Mach number reaches a value for =s 2crit

given by the relation  ~ G5.8crit
1.2 ( G )1.3 , while

 ~ G5.8crit
1.4 best describes the Mach number for

G = 1.4. For =s 3crit , we find  ~ G9.3crit
2.65. The

=s 4crit model can map the two star formation rates only
to G = 1; in this case, ~ 16.6crit . For < crit, the
star formation efficiency is high and almost constant.
Abovecrit, the efficiency drops rapidly as grows.

(iv) Because the CSFR provides eá ñ versus z while the SFR
provides the Mach number, it is possible to construct the
relations eá ñ versus and versus z. In particular, the
identified behavior of the relation  versus z, as a
function of different polytropic indices, is similar to that
observed from Federrath & Banerjee (2015) simulations
and related to the volume-weighted Mach number versus
time (where time is parameterized as t T , with T the
turbulent crossing time).

(v) At z=0, the typical values of lie between~ –7 13 for
=s 2crit , ~ –11 22 for =s 3crit and ∼21 for =s 4crit .

Considering = 10 as the typical value for the Milky
Way (see Federrath & Banerjee (2015) and references
therein), our results are close to this value, at z=0, for
most of the nine models analyzed in this work. Another
point is that our results for versus z for both ~ –z 1 3
and z=0 typically correspond to the mean values
obtained by Salim et al. (2015) for disk galaxies (similar
result for the sample of disk galaxies analyzed by Renaud
et al. 2012). In addition, our results with =s 3crit

(G = 1.2) and =s 4crit marginally return the estimates
for the Mach number from Renaud et al. (2012) to high-z
mergers.

(vi) The turbulence shows a dual character, inducing star
formation with high values of eá ñ, until reaching crit.
For  > crit, a strong decrease in the SFE occurs.
Thus, turbulence is a regulator of the star formation,
playing the dual role proposed by Klessen et al. (2010).

(vii) The ratio e eá ñ á = ñ( ) ( )z z 0 provided by PM-CSFR
model is in good agreement with that obtained by
Scoville et al. (2017), within the redshift range –0 3.5.

(viii) Pereira & Miranda (2010) argue that t ~ 2 Gyrs , with a
Salpeter exponent, provides good agreement with the
observational data of the CSFR. With this value for ts, we
obtain eá ñ = 0.021 at z=0, which is comparable with
e ~ 0.01ff and t ~ –1 2.2 Gyrdep , as inferred by several
authors for star-forming regions in our Galaxy (see, e.g.,
Krumholz & McKee 2005).

(ix) Using the CSFR as a map for the SFR, it is possible to
obtain a relation for the velocity dispersion of the gas that
will be directly involved with the star formation within
the dark matter halos. In this case, following the works of
Hennebelle & Chabrier (2008, 2009), we show that
Larson’s first law can be consistently obtained. The
inferred temperatures in our model are within the range
~ –10 80 K, which are values similar to those inferred by
authors such as Tang et al. (2017a, 2017b) for molecular
clouds of our Galaxy and for the LMC. We restrict our
analysis to the ~ –1 50 pc range. Although the fit for
Larson’s law is not good in the ~ –1 10 pc range, our
model shows consistency with Equation (38), particularly
for á ñ ~ –R 10 50 pc.

(x) The formulation that allows to obtain Larson’s law
implicitly adds the hypothesis that halos of greater mass
are composed of a number of halos with much smaller
masses. Thus, the cosmological star formation would be
processed, in part, in structures similar to globular
clusters. The presence of non-baryonic dark matter in
globular clusters has recently been discussed by Sollima
et al. (2016) and Peñarrubia et al. (2017). Our work
shows consistency with the results and analyses of these
authors.

Our study demonstrates that there is strong complementarity
between the formulations used to derive the CSFR and the SFR,
so it is possible to think of a unified model that adequately
describes both cosmological and Galactic star formation.
Although our model is semi-analytical, and therefore cannot
provide rich details like those obtained from computational
simulations, it can provide several interesting clues about the
role of turbulence as a regulator of star formation, as well as the
existence of ancrit from which the efficiency of star formation
rapidly decreases. In addition, our model identifies the role of
Larson’s first law as a result of the very formation of large-scale
structures of the universe, which in turn would allow the
formation of galactic systems including our Galaxy.
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