
An Annotation-Based API for Supporting Runtime
Code Annotation Reading

Phyllipe Lima
National Institute for Space Research -

INPE
São José dos Campos, São Paulo

Brazil
phyllipe_slf@yahoo.com.br

Eduardo Guerra
National Institute for Space Research -

INPE
São José dos Campos, São Paulo

Brazil
eduardo.guerra@inpe.br

Marco Nardes
National Institute for Space Research -

INPE
São José dos Campos, São Paulo

Brazil
marconardes@gmail.com

Andrea Mocci
REVEAL - Faculty of Informatics -

University of Lugano
Switzerland

andrea.mocci@usi.ch

Gabriele Bavota
REVEAL - Faculty of Informatics -

University of Lugano
Switzerland

gabriele.bavota@usi.ch

Michele Lanza
REVEAL - Faculty of Informatics -

University of Lugano
Switzerland

michele.lanza@usi.ch

Abstract
Code annotations are the core of the main APIs and frame-
works for enterprise development, and are widely used on
several applications. However, despite these APIs and frame-
works made advanced uses of annotations, the language
API for annotation reading is far from their needs. In par-
ticular, annotation reading is still a relatively complex task,
that can consume a lot of development time and that can
couple the framework internal structure to its annotations.
This paper proposes an annotation-based API to retrieve
metadata from code annotations and populate an instance
with meta-information ready to be used by the framework.
The proposed API is based on best practices and approaches
for metadata definition documented on patterns, and has
been implemented by a framework named Esfinge Meta-
data. We evaluated the approach by refactoring an existing
framework to use it through Esfinge Metadata. The original
and the refactored versions are compared using several code
assessment techniques, such as software metrics, and bad
smells detection, followed by a qualitative analysis based on
source code inspection. As a result, the case study revealed
that the usage of the proposed API can reduce the coupling
between the metadata reading code and the annotations.

CCSConcepts • Software and its engineering→Object
oriented development;

Keywords metadata, code annotation, framework develop-
ment
ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor or affiliate of a national government. As such,
the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.
Meta’17, October 22, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5523-0/17/10. . . $15.00
https://doi.org/10.1145/3141517.3141856

ACM Reference Format:
Phyllipe Lima, EduardoGuerra,MarcoNardes, AndreaMocci, Gabriele
Bavota, and Michele Lanza. 2017. An Annotation-Based API for
Supporting Runtime Code Annotation Reading. In Proceedings of
ACM SIGPLAN International Workshop on Meta-Programming Tech-
niques and Reflection (Meta’17). ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3141517.3141856

1 Introduction
Enterprise applications usually execute in middlewares that
gather information from the software components, providing
the services they need. In the past, most of the information
needed by the application server was defined in external
descriptors. This information was mostly metadata about
the application classes and methods. For large applications,
those descriptors became artifacts really hard to maintain.
An example of such kind of platform was J2EE with EJB 2.1
[15]. Later, code annotations were introduced as a native
feature in the Java language [16] as a solution for metadata
configuration. Nowadays, several official Java APIs [17–19]
and popular frameworks [1, 20], not only in enterprise ap-
plications domain, have code annotations at their core.

Developers are used to annotate their own code using an-
notations provided by frameworks. However, creating their
own solutions based on annotations is much less common.
Based on the popularity of annotations-based frameworks,
empirical evidences [24, 25, 28] and experimental studies
[12], one can say they might be losing an opportunity to use
a more suitable solution to some kinds of problems, such as
entity mapping, creation of callback methods and configur-
ing a crosscutting concern [13]. The native Java API only pro-
vides methods to retrieve annotations directly from a code
element, which is far from what is needed by a framework
that should retrieve information from an entire annotation
schema1.
1Agroup of related annotations that represents framework domainmetadata

6

https://doi.org/10.1145/3141517.3141856
https://doi.org/10.1145/3141517.3141856

Meta’17, October 22, 2017, Vancouver, Canada P. Lima et al.

The goal of the present work is to propose an API to read
annotations at runtime, suitable for the needs of metadata-
based frameworks. It is part of a long term effort to improve
the design of such kind of software. The initial steps were the
documentation of patterns for annotation configuration [7,
10] and for metadata-based frameworks [11]. Aiming to give
a better support to implement these practices, we propose
in this paper this API with its respective implementation,
called Esfinge Metadata2. Metadata validation was the first
feature implemented by Esfinge Metadata [2], but is out
out this paper’s scope. This paper focuses on the features
for annotation reading and sections 3 and 4 are original
contributions.
The usage of the new API was evaluated by refactoring

an existing metadata-based framework for class instances
comparison. This framework was chosen for using advanced
metadata-reading techniques, for instance, that allow an ex-
tension in the annotation schema. A comparison between the
original version and the refactored version was performed
using several techniques, such as object-oriented metrics
[21] and bad smell detection[27].

2 Patterns for Code Annotations
The authors have documented in previous work recurrent
solutions for metadata-based framework internal structure,
focusing on metadata reading and processing[11]. A pattern
called Metadata Container is the core pattern of this lan-
guage, introducing a class whose instances represent meta-
data at runtime, as shown in Fig. 1. The class Metadata
Container is responsible to store metadata read from the
annotations at runtime. The FrameworkController asks the
repository for the metadata for a given class. If the metadata
of that classwas not retrieved, it invokes the MetadataReader,
responsible to get the metadata wherever it is. All peculiar-
ities of the annotation schema and strategies for metadata
definition should be handled by the MetadataReader, that
should return the MetadataContainer with the metadata
ready to be used by the FrameworkController. Since this is
a recurrent practice in several frameworks[11], we assume
that storing metadata in a regular class when reading a com-
plex annotation schema is a general good practice. Therefore
Metadata Container pattern is central for the proposed API.
The same pattern language also has the patterns Del-

egate Metadata Reader and Metadata Processor that sup-
ports the creation of an extensible annotation schema. For
each annotation to be processed there should be a respec-
tive implementation of the ReaderDelegate interface that
knows how to read and interpret its information. Each Del-
egate Metadata Reader should create one or more imple-
mentations of MetadataProcessor and add them in the
MetadataContainer. The MetadataProcessor is the abstrac-
tion that represents the framework behavior associated with

2github.com/EsfingeFramework/metadata

Figure 1. Basic structure of a metadata-based framework
using Metadata Container pattern

each annotation. Based on that, the framework should re-
trieve each processor and invoke them when processing the
logic associated with its respective code element.
New annotations should be associated with their respec-

tive implementation of a Metadata Reader Delegate. This
binding is usually done by a framework annotation that con-
figures the processor class in the custom annotation. Based
on that, the framework should search in all annotations of
a given element, for the ones that are annotated with its
binding annotation. For each one found, it should instanti-
ate the configured class, invoke it to interpret the metadata
from that annotation and add its respective processors to the
metadata container.

Another set of language-dependent patterns, called idioms,
documented a set of practices to represent metadata as anno-
tations [10]. In particular, there are two idioms that focus on
a more efficient metadata definition: General Configuration
and Annotation Mapping. Using a General Configuration it
is possible to define an annotation in a more general context,
such as a class, applying the metadata definition to elements
contained by it, such as its methods. Annotation Mapping al-
lows the creation of a new annotation to represent a group of
annotations, which can be used to create domain annotations
[4, 23].
Finally, another set of patterns documented fundamen-

tal practices for annotation-based APIs [7] that are used by
several frameworks. For instance, pattern Class Stamp doc-
uments the practice of adding an annotation to a class to
differentiate its processing from the others, and patternMeta-
data Parametrization introduces attributes in annotations to
allow more granular and specific definitions.

3 Annotation-Based API to Consume Code
Annotations

This section presents the new general purpose API to read
code annotations. The usage of the proposed API is not lim-
ited to frameworks that already use the patterns, but it is
designed to guide the developers towards the best practices.
It is similar to MVC web frameworks that direct the devel-
opment to a good separation of concerns. It has a Simple

7

github.com/EsfingeFramework/metadata

An Annotation-Based API for Supporting Runtime Code... Meta’17, October 22, 2017, Vancouver, Canada

API for individual metadata retrieval, and a Mapping API
to retrieve metadata into a Metadata Container [11], follow-
ing the pattern presented in section 2. Also, the annotation
schema from the API itself can be extended. If the framework
needs to retrieve a metadata from the class that is not sup-
ported by the native API annotations, new metadata reading
APIs might be defined.

The Simple API has methods that are equivalent to the
Java current API, which retrieves annotations from single
elements. The difference is that it takes in consideration
configurations that can indicate that the target annotation
might be defined in other elements. These configurations are
detailed in subsection 3.1. TheMapping API retrieves infor-
mation from an annotation schema and populates a metadata
container instance with them. The class AnnotationReader
has a method called readingAnnotationsTo() that receives
as parameters the class with the annotations that should be
read and the class that represents the metadata container.
Fig. 2 presents examples from both approaches.

//Simple API usage

List<Annotation> annotList = AnnotationFinder.findAnnotation

(codeElement, MyAnnotation.class);
//Mapping API usage

AnnotationReader annotationReader = new AnnotationReader();

MetadataContainer container = annotationReader

.readingAnnotationsTo(AnnotatedClass.class,
MetadataContainer.class);

Figure 2. Simple and Mapping API usage.

To use the mapping API the metadata container class
should contain annotations that maps each of its attributes
to meta-information that should be retrieved from the target
class. The subsections 3.2, 3.3 and 3.4 detail the mapping
annotations.

3.1 Metadata Search
There are several patterns where annotations can be defined
outside the target element, like on the enclosing code element
or inside other annotations. Because of that, the API provides
a way to configure an annotation about the places where it
can be defined. The following are the annotations provided
by the API that can be added in the annotation definition to
enable its search in other places:

• @SearchInsideAnnotations - This annotation con-
figures when an annotation can be defined inside an-
other one. When an annotation with this configuration
is searched, the API implementation should look for it
inside each of the target element annotations;

• @SearchOnEnclosingElements - This annotation con-
figures when an annotation can be defined in the scope
of its enclosing element. When an annotation with this
configuration is searched in a method, if not found,

the API implementation should verify if it is present
in its class;

• @SearchOnAbstractions - This annotation configures
when an annotation can be defined in abstractions,
such as superclasses and interfaces3. When an annota-
tion with this configuration is searched in types, the
API implementation should verify its superclasses and
interfaces. When it is searched on a method, it should
search on a method that it overrides from the super-
class or that it implements in interfaces.

Those configurations can be freely combined. For instance,
for an annotation with @SearchOnAbstractions and @Sea-
rchInsideAnnotations, it can be defined in an abstraction
and inside other annotations. That means that for a given
class, this annotation could be found inside another annota-
tion which is defined in its superclass.
The API defines an extension point that allows the in-

troduction of new strategies to locate metadata. That could
be used, for instance, to define code conventions that can
be an alternative to annotations for metadata representa-
tion. In order to define a new metadata search annotation, it
should receive the annotation @Locator with the class that
implements the interface MetadataLocator.

3.2 Mapping Simple Metadata
The class that represents a metadata container should have
annotations to map the class metadata to its attributes. This
subsection presents the fundamental annotations of the API,
that maps information that can be directly retrieved from
the target element. It is important to highlight that all anno-
tations for metadata search presented in subsection 3.1 are
considered for the mapping.

The initial configuration that a metadata container needs
to have is the @ContainerFor annotation. It defines the kind
of code element that this container is for. The allowed values
are TYPE (for classes, interfaces, enums and annotations),
METHOD, FIELD orALL (if all kinds of elements are allowed).
Fig. 3 presents the example of a class with a simple mapping.

@ContainerFor(ContainerTarget.TYPE)

public class ContainerClass {

@ElementName private String elementName;

@ContainsAnnotation(Element.class) private boolean element;

@ReflectionReference private Class<?> clazz;

@AnnotationProperty(annotation = Table.class,
property ="value")

private String tableName;

}

Figure 3. Example of an annotated metadata container.

The attributes can receive annotations that maps them
to information on the target class metadata. They can refer
3The annotation @Inherited from the regular Java API configures that an
annotation defined in a class is inherited by its subclasses. However, it does
not work on methods and for implemented interfaces.

8

Meta’17, October 22, 2017, Vancouver, Canada P. Lima et al.

to intrinsic reflective metadata, such as element name, or
to custom metadata on annotations. Table 1 presents the
descriptions of the annotations used on the code example in
Fig. 3.

Table 1. Simple API Annotations

Annotation Description

@ElementName Receives the name of the target code element.

@ContainsAnnotation
Maps to a boolean value that states if the
annotation is present or not.

@ReflectionReference
Receives the instance from the Reflection
API that represents the target code element.

@AnnotationProperty Receives the value of an annotation property.

3.3 Cascade Method and Attribute Mapping
When themetadata of a class is read, usually it is necessary to
retrieve metadata from its methods or attributes. To support
this requirement, the API has annotations that allows the
mapping of methods or fields metadata to collections of their
respective metadata containers. In other words, a metadata
container to represent class metadata can have a collection
of metadata containers to represent its methods metadata.

Fig. 4 presents an example of how each method is mapped
to its own container. The annotation @ProcessMethods can
annotate an attribute whose type is a collection of contain-
ers for methods metadata. This class can contain mapping
annotations from the API to retrieve metadata from each
method.

//class metadata container

@ContainerFor(ContainerTarget.TYPE)

public class ContainerClass {

@ProcessMethods

private List<ContainerMethod> methodContainers;

}

//method metadata container

@ContainerFor(ContainerTarget.METHOD)

public class ContainerMethod {

@AnnotationProperty(annotation = Column.class,
property ="value")

private String columnName;

}

Figure 4. Mapping a list of method containters.

This mapping allows a metadata container that represents
a class to have collections of containers from its internal
elements, such as methods and fields. Other annotations
from the API enable criteria that can include only or exclude
from the list methods with a certain annotation.

3.4 Mapping Metadata Processors
The support for an extensible annotation schema is an im-
portant feature provided by the API, as it is a functionality

that previously needed to be manually implemented by the
framework. Each new annotation introduced should be asso-
ciated with a class responsible for its interpretation. What
should be added in the metadata container is the metadata
processor that results from the execution of the annotation
reading method for the custom annotation.
Fig. 5 presents an example of a mapping of metadata

processors. The attribute from the @CustomReader anno-
tation receives the class from the annotation used to con-
figure the delegate metadata reader. In another words, in
the given example, the API implementation should search in
the target element for annotations that are annotated with
@ReaderConfigAnnotation. The presence of this annota-
tion is used to configure that it is a custom annotation from
the framework.

@ContainerFor(ContainerTarget.TYPE)

public class ContainerClass {

@CustomReader(value=ReaderConfigAnnotation.class,
type=ProcessorType.READER_IS_PROCESSOR)

private List<ProcessorInterface> processors;

}

Figure 5. Mapping a list of metadata processors.

Despite the @CustomReader annotation that get proces-
sors from the target element, other similar annotations named
@MethodProcessors and @FieldProcessors retrieves the
processors respectively from each method and field of a class.
These other annotations are mapped to attributes from the
type Map whose key is respectively from the class Method
and Field.

Fig. 6 presents the example of an annotation that the frame-
work can define to configure new annotations. This is the
annotation that should be the one referenced in @Custom
Reader. This annotation should receive as the value at-
tribute, a class that implements the processor interface. In
order to extend the framework adding a new annotation, it
should receive this annotation with its respective processor.

//Custom annotation definition

@Target(ElementType.ANNOTATION_TYPE)

@Retention(RetentionPolicy.RUNTIME)

public @interface ReaderConfigAnnotation {

Class<? extends ProcessorInterface> value();

}f

//Annotation processor interface definition

public interface ReaderInterface {

@ExecuteProcessor

public void readAnnotation(Annotation ann,

AnnotatedElement ael);

}

Figure 6. Defining a framework annotation with its respec-
tive processor.

9

An Annotation-Based API for Supporting Runtime Code... Meta’17, October 22, 2017, Vancouver, Canada

Fig. 6 also presents the last piece to create the extensible
metadata reading mechanism based on the API, the interface
for reading the annotation. This interface should be imple-
mented by the classes that receive the custom annotations
to retrieve the data necessary to the annotation processor.
This interface should have a method with the annotation
@ExecuteProcessor.

The API supports 3 different approaches to implement the
processors. Those possibilities were based on implementa-
tions of existing frameworks. The desired approach is defined
in the type attribute of the @CustomReader annotation. The
following are the available options:

• READER_IS_PROCESSOR - By using this approach, the
class that reads the annotation also have methods for
processing it. The API implementation should add in
the container the instance itself that reads the annota-
tion;

• READER_RETURNS_PROCESSOR - By using this approach,
the class that reads the annotation should return the
processor in the method with the @InitProcessor an-
notation. The API implementation should add in the
container the instance returned by this method;

• READER_ADDS_METADATA - By using this approach, a
processor is not really required, since the reader re-
ceives the metadata container instance and is responsi-
ble to add the metadata on it. The API implementation
should just pass the container as a parameter to the
method with the @InitProcessor annotation.

4 Esfinge Metadata - API Implementation
The Esfinge project4 is an initiative to create innovative
open-source metadata-based frameworks. It is defined as an
organization on GitHub5 which contains the source code
for all of its projects. Examples of the initiative frameworks
are Esfinge Guardian [26], for flexible access control, and
Esfinge AOM Role Mapper [8], for adaptive object models
implementation. Esfinge Comparison, which is used for the
case study described in section 5, is also part of this initiative.
It is important to state that despite they are part of the same
project, they are all independent softwares.
Esfinge Metadata is a framework that aims to provide

functionality to facilitate metadata reading, specially defined
by annotations. Considering the whole context of Esfinge
project, the idea is that Metadata becomes a meta-framework
used by other projects as well as by external frameworks
developers. It implements the API described in section 3. The
goal of this section is to present some of its implementation
details.
4http://esfinge.sourceforge.net/ - in portuguese
5https://github.com/EsfingeFramework

Figure 7. Basic structure of a metadata-based framework
using Metadata Container pattern

One of the most important features of Esfinge Metadata is
the search for metadata in different places as defined for the
API in Section 3.1. The framework implemented the pattern
Chain of Responsibility [6] where each node is responsible
to search the annotation following a given approach. When
it is necessary to search for an annotation, a locator’s chain
is built for it. This chain is based on the locator’s annotations
that the target annotations have. The class RegularLocator
that search normally for the annotation in the current ele-
ment is always present in the chain as it last element.
Fig. 7 presents a class diagram with some of the main

classes of the framework. It can be used as a reference for
the following explanations. The main facade from the frame-
work is the class AnnotationReader that is responsible to
return a container with class metadata. It uses the class
MetadataRepository to search for the container. When the
container is not found in the repository, it uses the class
MetadataExecute to create it. The repository has a map
that stores containers from Esfinge Metadata itself and from
other frameworks.

MetadataExecute is the class that orchestrates the pro-
cess for metadata reading. Its responsibility is to create the
target metadata container and populate it with the target
class metadata. Its first step is to invoke the class Metadata
Validator to verify if the annotations are used in the class

10

http://esfinge.sourceforge.net/
https://github.com/EsfingeFramework

Meta’17, October 22, 2017, Vancouver, Canada P. Lima et al.

according to the defined constraints. It is important to high-
light that Esfinge Metadata uses itself to read its own an-
notations and create its own container. In other words, the
same classes that use Esfinge Metadata to create and store
the metadata containers from other frameworks are used
to do the same for the framework itself. Due to this fact,
MetadataExecute invokes MetadataRepository to retrieve
the metadata reading container.
The class MetadataContainer is the Esfinge Metadata

container and is composed by instances of AnnotationRead
ingProcessor. All Esfinge annotations that map attributes
to metadata are associated to a processor. Each processor
implementation uses the class AnnotationFinder, which
uses the metadata locator chain to retrieve the annotations.
Despite the usage of Esfinge Metadata in the case study

presented in section 5, it was also applied in the development
of a gamification framework [14]. It was also used internally
to read the Esfinge Metadata annotations, in other words, it
uses itself to read its own annotations.

5 Case Study - Refactoring an Existing
Framework

This section discusses the case study used to validate the
metadata reading API, implemented by Esfinge Metadata.
The framework used for the case study was the Esfinge Com-
parison6. The initial version of the framework was released
on 2012 on Sourceforge platform7, and it is already used in
some real applications currently in production.
The Esfinge Comparison framework compares two in-

stances of the same class and returns a list with the differ-
ences between them. It is heavily based on code annotations,
since it allows applications using the framework to config-
ure the comparison algorithm for each class property. For
instance, the framework provides annotations to configure
numeric tolerance or a property to be ignored.

Esfinge Comparison was chosen for this case study as it is
using patterns for the internal structure of metadata-based
frameworks [11]. It has features to enable the annotation
schema extension, which is specially interesting to evaluate if
the proposed solution supports this appropriately. Its internal
design was evaluated as good in a previous study [9] that
focused on the reference architecture it is based on. These
facts support the claim that comparing the refactored version
of Esfinge Comparison with its previous version can provide
a case study in which it is possible to focus on the impact
generated by the usage of the proposed API, without the
interference of a poor previous design.
The goal of this evaluation is to compare two metadata-

based frameworks inwhich the unique difference is the usage
of the proposed API. Despite the case study is a refactoring

6http://esfinge.sourceforge.net/Comparasion.html - available in portuguese.
7https://sourceforge.net/projects/esfinge/files/Esfinge2/Comparison%201.
0/

of an existing software, the proposed API also aims to be
introduced in the beginning of the framework development.

5.1 Study Design
The case study focuses on answering the following research
question: How does the refactoring performed with the
proposedAPI impact the internal structure of the target
framework?
After the refactoring process, the automated unit tests

were executed to guarantee that Esfinge Comparison main-
tained its expected behavior. Different techniques were used
to assess distinct characteristics from the source code of both
versions.

The following are the approaches that were used in the
study: (a) Object-oriented (OO) and annotation metrics: Ex-
traction of metrics from the source code, including size, com-
plexity and coupling metrics; (b) Bad smell detection: Ana-
lyze if bad smell instances appeared or were removed from
the source code.
Since both versions of the framework implements the

same functionalities, we can perform a direct comparison
between them. This allows, for example, to analyze whether
the code complexity increased or decreased in the refactored
system, without the need for defining thresholds indicating
high/low complexity levels.

5.2 Framework Refactoring
The refactoring focused on changing the annotation reading
class to use EsfingeMetadata for annotation reading. Both
the original8 and the refactored9 versions are available in
GitHub. Table 2 presents a summary of the changes in the
refactoring. These changes were extracted from the GitHub
website using the feature to compare versions. Changes in
configuration and project files were excluded.

Table 2. Changes for refactoring

Changes Added Removed Changed
Classes 4 3 13
Lines of code 317 214 -

The test coverage of the original version measured with
Intellij IDE10 was 83%, and for the refactored version was
80%. A code inspection was performed in the parts of the
code not covered by the tests. It was found that most of them
involved default constructors and access methods.
The greatest difficulty in the mapping of the metadata

container happened when it was necessary to retrieve an in-
formation from the field type that was not supported by the
8https://github.com/EsfingeFramework/comparison/releases/tag/1.1.
0-SNAPSHOT
9https://github.com/EsfingeFramework/comparison/releases/tag/1.2.
0-SNAPSHOT
10https://www.jetbrains.com/idea/

11

http://esfinge.sourceforge.net/Comparasion.html
https://sourceforge.net/projects/esfinge/files/Esfinge2/Comparison%201.0/
https://sourceforge.net/projects/esfinge/files/Esfinge2/Comparison%201.0/
https://github.com/EsfingeFramework/comparison/releases/tag/1.1.0-SNAPSHOT
https://github.com/EsfingeFramework/comparison/releases/tag/1.1.0-SNAPSHOT
https://github.com/EsfingeFramework/comparison/releases/tag/1.2.0-SNAPSHOT
https://github.com/EsfingeFramework/comparison/releases/tag/1.2.0-SNAPSHOT
https://www.jetbrains.com/idea/

An Annotation-Based API for Supporting Runtime Code... Meta’17, October 22, 2017, Vancouver, Canada

Table 3. Metrics changes

Metrics {Original} {Refactored}
LOC 703 729
CYCLO 189 182
NOM 104 106
NOC 35 36
NOP 8 9
CALL 295 266
FOUT 36 30

framework. For list comparison, it was necessary to retrieve
the generic type from the collection, and the framework did
not provide an annotation to map this. The feature for meta-
data extension was used to create a new custom metadata
reading annotation called @Associate. Following this ap-
proach it was possible to map the desired information to the
metadata container.
The class responsible for metadata reading was removed

from the project, as well as the class Repository, which
cached the metadata container instances relative to classes
in which the annotations were already processed. In the
compare()method, which orchestrates the framework func-
tionality, a call to the removed classes was replaced to a call
to the AnnotationReader class from Esfinge Metadata. The
framework, based on the annotations added in the metadata
container classes, was able to retrieve the meta-information
from the classes.

In conclusion, the API was enough to fulfill the metadata
reading requirements for the Esfinge Comparison framework.
The feature for having an extensible metadata schema was
supported by the API standard features. For the retrieve
of a generic type parameter that was not implemented by
Esfinge Metadata, a new reading annotation was created.
That fact presents evidence that the API is flexible enough
for metadata reading requirements that were not directly
supported by the implementation.

5.3 Object-Oriented
The analysis was performed based on a suite of object ori-
ented (OO) metrics proposed by [21]. The tool Infusion11
was used to extract the OO metrics. Table 3 presents the
modifications.
A first change is an increase on the Lines of Code (LOC)

(703 -> 729) and a decrease on the Cyclomatic Complexity
(CYCLO) (189 -> 182). It was expected a reduction in LOC
value, since some code regarding metadata reading was re-
moved. However, the addition of the API and the need for
the framework extension compensated the lines of code re-
moved. The removed lines are primarily concerned with
metadata reading, previously done by code relying on the

11currently discontinued

Java Reflection API. The added lines are annotations pro-
vided by the Esfinge Metadata and the imports associated to
it.
The reduction in CYCLO is explained by the fact that

several of the new lines of codes are annotations, which are
not considered by this metric. The new classes introduced
have small methods and their invocation are orchestrated
by the proposed API, which eliminates much of the need for
conditional expressions. The complexity removed were in
the metadata reading classes, before the refactoring.
Looking at the coupling metrics, both Number of Opera-

tion Calls (CALL) (295 -> 266) and Number of Called Classes
(FOUT) (36 -> 30) reduced. Annotation reading logic usually
is coupled with several other types, specially the ones related
to the annotations that are being retrieved. Inspecting the
code searching were there was a reduction in coupling, we
confirmed that it happened in the metadata reading classes.
The great responsible for this decrease were the removed
classes.
Despite most of the changes observed in the analysed

quality metrics might look minor (e.g., CYCLO going from
189 to 182), it is worth highlighting that the number of classes
impacted by the refactoring is quite limited (see Table 2).
Thus, we cannot expect strong changes in the value of the
considered metrics.

5.4 Bad Smells Elimination
A bad smell detection analysis was carried out to verify if
some bad smell was removed or added by the refactoring.
It is important to highlight that bad smells are not neces-
sarily code bugs, but rather design flaws that might become
troublesome in the long term. The bad smell detection tool
used to perform the anaysis was JSpirit [27]. A total of 16
bad smells were found in the original version and 14 in the
refactored version.
The refactoring removed two bad smells, one Intensive

Coupling and one Dispersed Coupling. This follows what
was already observed in the OO metrics, where we found ev-
idence that the coupling has been reduced by the refactoring.
This results reinforces what was described in the previous
subsection, demonstrating that the cyclomatic complexity is
associated to the metadata reading previously performed in
the Esfinge Comparison.

5.5 Case Study Conclusions
This section presents an evaluation of the results facing the
research question How does the refactoring performed
with the proposed API impact the internal structure of
the target framework?

The proposed API removed the need for the major part of
the metadata reading logic from the original version. There-
fore we expected a decrease in the LOC value. However, the
lines eliminated in that part were compensated by implemen-
tation of a framework extension and to the API annotations

12

Meta’17, October 22, 2017, Vancouver, Canada P. Lima et al.

added in the container class. Also, the API caused a reduction
in code coupling. Evidences of this are seen by the decrease
of CALL and FOUT metrics, and by the removal of two cou-
pling bad smells.

Metadata reading logic usually needs to be coupled to the
annotation types and to the metadata container classes. That
fact makes this logic sensible to changes on both. The use
of the proposed API exchanged the imperative code that
perform the metadata reading for a declarative mapping
using annotations.

5.6 Threats to Validity
The main threat to validity of the results come from the fact
that the case study was conducted based on a single frame-
work. It shows a possible impact that the usage of the pro-
posed API, but it cannot be generalized that all frameworks
that adopt the API would have a similar impact. However,
we can affirm that the reduction in the internal dependencies
found in the results is possible to be achieved.

To mitigate the impact of using the refactoring of a single
framework as the case study, a qualitative analysis based
on code inspection was performed. This qualitative analysis
aimed to investigate more deeply the causes of the differ-
ences between the two versions, understanding in terms of
software design what happened to impact the metrics.

6 Related Work
The metadata-based frameworks widely used by industry
still use the standard Java reflection API to retrieve annota-
tions. Despite there are several works that explore the use of
annotations, we found none that aims to focus on a general
purpose API for reading annotations in runtime.

There are some alternative APIs for reflection in Java based
on the concept of fluent APIs [5]. An example of such im-
plementation is Mirror 12. Despite it gives some support for
annotation reading, it still retrieve each annotation individu-
ally.

There are some implementations that instead of searching
annotations based on the target element, search for classes
with a given annotation. Scannotation 13 and Extensible Com-
ponent Scanner 14 are examples of such solutions. Despite
these solutions can be considered for general purpose, they
focus on searching classes and not on retrieving those classes
metadata.
Checker Framework [3, 22] is a framework for compile

time annotation processing. It aims to extend the Java’s type
system using type annotations to enable verifications that
can detect bugs and bad practices in source code. Despite
it can be used for more general purposes, it is designed to

12http://projetos.vidageek.net/mirror/mirror/
13http://scannotation.sourceforge.net
14http://extcos.sourceforge.net

be used by compiler plugins and not by metadata-based
frameworks.

7 Conclusion
This paper presented the proposal of a new API for reading
code annotations. This API is based on documented patterns
and aims to provide a better support for frameworks to adopt
and implement such practices. The proposed API is based on
metadata mapping, where a class receives annotations that
provide information about what meta-information should be
retrieved from the target class and attributed to each field.

The proposed API provides innovative features, such as: (a)
support to search annotations in other code elements related
to the target code element; (b) mapping for class metadata
and annotation attributes; (c) chain processing of methods
and field metadata; (d) support for implementation of an
extensible metadata schema; (e) extension point that allows
the creation of new metadata reading annotations. Esfinge
Metadata is a framework that implemented the proposed
API as a way to show the viability of its implementation.

A case study was conducted by refactoring an existing
framework aiming to evaluate the impact in source code
of using the proposed API. The most evident conclusion
was the reduction in the number of dependencies in compo-
nents that perform metadata reading. This was confirmed
by the reduction in coupling metrics and the elimination of
two coupling bad smells. The new version of the refactored
framework also has an increase on its number of annotations
as expected. However, an expected reduction in the number
of lines of code does not happened, mainly because of an
extension of the framework that was needed to retrieve a
metadata that was not originally supported by it.
As a future work, there are some points in the API that

could be improved in a further version. One of them is the
support for reading metadata defined by other means, such
as external files and code conventions. Another possibility is
the mapping between equivalent annotations from different
frameworks. Another point to be improved is to investi-
gate the current structure of existing frameworks to search
for additional possibilities on mapping for features that the
framework currently implements. Another future work will
aim to evaluate the usage of the current API by developers.
Some points to be investigated are: (a) How is the impact of
the API learning curve in development?; (b) Are developers
more productive by using the API? To investigate this points
a study involving a controlled experiment might be applied
or its usage in the development of a new framework could
be investigated.

Acknowledgements
This work is supported by CNPq (grant 445562/2014-5) and
FAPESP (grant 2014/16236-6)

13

http://projetos.vidageek.net/mirror/mirror/
http://scannotation.sourceforge.net
http://extcos.sourceforge.net

An Annotation-Based API for Supporting Runtime Code... Meta’17, October 22, 2017, Vancouver, Canada

References
[1] J.A. Cassoli. 2016. Web Application with Spring Annotation-Driven

Configuration: Rapidly Develop Lightweight Java Web Applications Us-
ing Spring with Annotations. CreateSpace Independent Publishing
Platform. https://books.google.ch/books?id=QsUdvgAACAAJ

[2] José Lázaro de Siqueira, Fábio Fagundes Silveira, and Eduardo Martins
Guerra. 2016. An Approach for Code Annotation Validation with Meta-
data Location Transparency. Springer International Publishing, Cham,
422–438. DOI:http://dx.doi.org/10.1007/978-3-319-42089-9_30

[3] Werner Dietl, Stephanie Dietzel, Michael D Ernst, Kivanç Muşlu, and
Todd W Schiller. 2011. Building and using pluggable type-checkers. In
Proceedings of the 33rd International Conference on Software Engineering.
ACM, 681–690.

[4] Erick Doernenburg. 2008. Domain annotations. The Thought-Works
Anthology: Essays on Software Technology and Innovation (2008).

[5] Steve Freeman and Nat Pryce. 2006. Evolving an embedded domain-
specific language in Java. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications. ACM, 855–865.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[7] Eduardo Guerra. 2016. Design Patterns for Annotation-based APIs. In
Proceedings of the 11th Latin American Conference on Pattern Languages
of Programs (SugarLoafPLoP ’16). ACM, New York, NY, USA.

[8] Eduardo Guerra and Ademar Aguiar. 2014. Support for Refactor-
ing an Application towards an Adaptive Object Model. Springer In-
ternational Publishing, Cham, 73–89. DOI:http://dx.doi.org/10.1007/
978-3-319-09156-3_6

[9] Eduardo Guerra, Felipe Alves, Uirá Kulesza, and Clovis Fernandes.
2013. A Reference Architecture for Organizing the Internal Structure
of Metadata-based Frameworks. J. Syst. Softw. 86, 5 (May 2013), 1239–
1256. DOI:http://dx.doi.org/10.1016/j.jss.2012.12.024

[10] Eduardo Guerra, Menanes Cardoso, Jefferson Silva, and Clovis Fer-
nandes. 2010. Idioms for Code Annotations in the Java Language. In
Proceedings of the 8th Latin American Conference on Pattern Languages
of Programs (SugarLoafPLoP ’10). ACM, New York, NY, USA, Article 7,
14 pages. DOI:http://dx.doi.org/10.1145/2581507.2581514

[11] Eduardo Guerra, Jerffeson de Souza, and Clovis Fernandes. 2013. Pat-
tern Language for the Internal Structure of Metadata-Based Frame-
works. Springer Berlin Heidelberg, Berlin, Heidelberg, 55–110. DOI:
http://dx.doi.org/10.1007/978-3-642-38676-3_3

[12] Eduardo Guerra and Clovis Fernandes. 2013. A Qualitative and Quanti-
tative Analysis on Metadata-Based Frameworks Usage. Springer Berlin
Heidelberg, Berlin, Heidelberg, 375–390. DOI:http://dx.doi.org/10.
1007/978-3-642-39643-4_28

[13] Eduardo Guerra, Clovis Fernandes, and Fábio Fagundes Silveira. 2010.
Architectural Patterns for Metadata-based Frameworks Usage. In Pro-
ceedings of the 17th Conference on Pattern Languages of Programs
(PLOP ’10). ACM, New York, NY, USA, Article 4, 25 pages. DOI:

http://dx.doi.org/10.1145/2493288.2493292
[14] Eduardo M. Guerra, Gabriel Fornari, Wanderson S. Costa, Sandy M.

Porto, Marcos P. L. Candia, and Tiago Silva da Silva. 2017. An
Approach for Modularizing Gamification Concerns. Springer Inter-
national Publishing, Cham, 635–651. DOI:http://dx.doi.org/10.1007/
978-3-319-62404-4_47

[15] JSR. 2003. JSR 153: Enterprise JavaBeans 2.1. (Aug. 2003). http:
//www.jcp.org/en/jsr/detail?id=153

[16] JSR. 2004. JSR 175: A Metadata Facility for the Java Programming
Language. (Aug. 2004). http://www.jcp.org/en/jsr/detail?id=175

[17] JSR. 2013. JSR 338: JavaTM Persistence 2.1. (May 2013). http://www.
jcp.org/en/jsr/detail?id=338

[18] JSR. 2013. JSR 344: JavaServerTM Faces 2.2. (May 2013). http://www.
jcp.org/en/jsr/detail?id=344

[19] JSR. 2017. JSR 365: Contexts and Dependency Injection for JavaTM
2.0. (Jan. 2017). http://www.jcp.org/en/jsr/detail?id=365

[20] Jeff Langr, Andy Hunt, and Dave Thomas. 2015. Pragmatic Unit Testing
in Java 8 with JUnit (1st ed.). Pragmatic Bookshelf.

[21] Michele Lanza and Radu Marinescu. 2006. Object-oriented metrics in
practice: using software metrics to characterize, evaluate, and improve
the design of object-oriented systems. Springer.

[22] Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins,
and Michael D Ernst. 2008. Practical pluggable types for Java. In
Proceedings of the 2008 international symposium on Software testing
and analysis. ACM, 201–212.

[23] José Perillo, Eduardo Guerra, Jefferson Silva, Fábio Silveira, and Clovis
Fernandes. 2009. Metadata modularization using domain annotations.
In Workshop On Assessment Of Contemporary Modularization Tech-
niques (ACoM. 09) at OOPSLA, Vol. 3.

[24] Romain Rouvoy and Philippe Merle. 2006. Leveraging Component-
Oriented Programming with Attribute-Oriented Programming. In 11th
International ECOOP Workshop on Component-Oriented Programming
(WCOP’06). 10–18.

[25] Romain Rouvoy, Nicolas Pessemier, Renaud Pawlak, and Philippe
Merle. 2006. Using Attribute-Oriented Programming to Leverage
Fractal-Based Developments. In 5th International ECOOP Workshop on
the Fractal Component Model (Fractal’06), Nantes, France.

[26] Jefferson O. Silva, Eduardo M. Guerra, and Clovis T. Fernandes. 2013.
An Extensible and Decoupled Architectural Model for Authorization
Frameworks. Springer Berlin Heidelberg, Berlin, Heidelberg, 614–628.
DOI:http://dx.doi.org/10.1007/978-3-642-39649-6_44

[27] S. Vidal, H. Vazquez, J. A. Diaz-Pace, C. Marcos, A. Garcia, and W.
Oizumi. 2015. JSpIRIT: a flexible tool for the analysis of code smells. In
2015 34th International Conference of the Chilean Computer Science So-
ciety (SCCC). 1–6. DOI:http://dx.doi.org/10.1109/SCCC.2015.7416572

[28] Hiroshi Wada and Junichi Suzuki. 2005. Modeling turnpike fron-
tend system: A model-driven development framework leveraging
UML metamodeling and attribute-oriented programming. Model
Driven Engineering Languages and Systems (2005), 584–600. http:
//www.springerlink.com/index/l166363337837142.pdf

14

https://books.google.ch/books?id=QsUdvgAACAAJ
http://dx.doi.org/10.1007/978-3-319-42089-9_30
http://dx.doi.org/10.1007/978-3-319-09156-3_6
http://dx.doi.org/10.1007/978-3-319-09156-3_6
http://dx.doi.org/10.1016/j.jss.2012.12.024
http://dx.doi.org/10.1145/2581507.2581514
http://dx.doi.org/10.1007/978-3-642-38676-3_3
http://dx.doi.org/10.1007/978-3-642-39643-4_28
http://dx.doi.org/10.1007/978-3-642-39643-4_28
http://dx.doi.org/10.1145/2493288.2493292
http://dx.doi.org/10.1007/978-3-319-62404-4_47
http://dx.doi.org/10.1007/978-3-319-62404-4_47
http://www.jcp.org/en/jsr/detail?id=153
http://www.jcp.org/en/jsr/detail?id=153
http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=338
http://www.jcp.org/en/jsr/detail?id=338
http://www.jcp.org/en/jsr/detail?id=344
http://www.jcp.org/en/jsr/detail?id=344
http://www.jcp.org/en/jsr/detail?id=365
http://dx.doi.org/10.1007/978-3-642-39649-6_44
http://dx.doi.org/10.1109/SCCC.2015.7416572
http://www.springerlink.com/index/l166363337837142.pdf
http://www.springerlink.com/index/l166363337837142.pdf

	Abstract
	1 Introduction
	2 Patterns for Code Annotations
	3 Annotation-Based API to Consume Code Annotations
	3.1 Metadata Search
	3.2 Mapping Simple Metadata
	3.3 Cascade Method and Attribute Mapping
	3.4 Mapping Metadata Processors

	4 Esfinge Metadata - API Implementation
	5 Case Study - Refactoring an Existing Framework
	5.1 Study Design
	5.2 Framework Refactoring
	5.3 Object-Oriented
	5.4 Bad Smells Elimination
	5.5 Case Study Conclusions
	5.6 Threats to Validity

	6 Related Work
	7 Conclusion
	References

