

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Breeding approach for predictability CPTEC-INPE Global Model

Luis Fernando Salgueiro Romero* Sandra A. Sandri** Haroldo F. de Campos Velho** (*) M.Sc. (CAP-INPE) (**) LAC-INPE

CNMAC 2017: São José dos Campos (SP), Brazil, September 19-22

Summary

- Predictability
- Low order systems
- Bred vector and predictability
- Global model: CPTEC-INPE
- Predictability: Ensemble prediction vs Bred Vector
- Neuro-fuzzy: machine learning for inference (not shown)
- Final Remarks

History

INPE

Edward N. Lorenz

Reprinted from Transactions of The New York Academy of Sciences Ser. II, Volume 25, No. 4, Pages 409-432 February 1963

THE PREDICTABILITY OF HYDRODYNAMIC FLOW*†

Edward N. Lorenz

Massachusetts Institute of Technology, Cambridge, Mass.

History

Edward N. Lorenz

A study of the predictability of a 28-variable atmospheric model

By EDWARD N. LORENZ, Det Norske Meteorologiske Institutt^{1,2}

(Manuscript received December 22; revised version February 1)

Abstract View

INPE

Volume 20, Issue 2 (March 1963)

Journal of the Atmospheric Sciences Article: pp. 130–141 | Abstract | PDF (1.02M)

Deterministic Nonperiodic Flow

Edward N. Lorenz

Massachusetts Institute of Technology

(Manuscript received November 18, 1962, in final form January 7, 1963) DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

INPE

Lorenz's attractor

Edward N. Lorenz Simplest chaotic system: the Lorenz Attractor. A metaphor for weather unpredictability

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = x(\rho - z) - y$$
$$\frac{dz}{dt} = xy - \beta z$$

INPE

Lorenz's attractor

$$\begin{aligned} \frac{dx}{dt} &= \sigma(y-x) \\ \frac{dy}{dt} &= x(\rho-z) - y \\ \frac{dz}{dt} &= xy - \beta z \end{aligned}$$

INPE

Lorenz's system

• Two initial conditions (Y component): (w_0) and $(w_0+\Delta w)$

INPE

Lorenz's system

• Two initial conditions (Y component): (w_0) and $(w_0+\Delta w)$

Are the chaotic systems predictible?

- Chaotic regime: evolution non-linear differential equation
- Chaotic systems: determistic equations
- A class of chaos system: dynamics is confined in a region
- Strange attractors have fractal dimension
- They have at least one positive Lyapunov exponent

Are the chaotic systems predictible?

- Chaotic regime: evolution non-linear differential equation
- Chaotic systems: determistic equations
- A class of chaos system: dynamics is confined in a region
- Strange attractors have fractal dimention
- They have at least one positive Lyapunov exponent
- They are strongly dependent on the initial conditions

Are the chaotic systems predictible?

• Questions:

- When will the changes go to occur in the dynamics?
- How long will the new period be?

Are the chaotic systems predictible?

• Questions:

- When will the changes go to occur in the dynamics?
- How long will the new period be?
- Bred vectors can help us!

Are the chaotic systems predictible?

• Questions:

- When will the changes go to occur in the dynamics?
- How long will the new period be?
- Bred vectors can help us!
- What is bred vector?

- Bredding is a method to estimate forecast errors.
- It is applied in weather models (operational centers).
 - Bred vectors are simply the difference between two model runs:
 - The second originating from slightly perturbed initial conditions (periodically rescaled)

- Bredding is a method to estimate forecast errors.
- It is applied in weather models (operational centers).
 - Bred vectors are simply the difference between two model runs:
 - The second originating from slightly perturbed initial conditions (periodically rescaled)

- Bredding is a method to estimate forecast errors.
- It is applied in weather models (operational centers).
 - Bred vectors are simply the difference between two model runs:
 - The second originating from slightly perturbed initial conditions (periodically rescaled)

Mathematical implementation

- 1. Start with a initial perturbation: $\delta_{r_0} = \vec{r}_0 + \delta \vec{r}_0$
- 2. Evaluate de perturbation: $\left\|\delta \vec{r}_{0}\right\|$
- 3. Evaluate perturbation propagation, after n time-steps $\delta \vec{r}(t) = \Phi(\vec{r}_0 + \delta \vec{r}_0, t_0 + n\Delta t) - \Phi(\vec{r}_0, t_0 + n\Delta t)$
- 4. Evalute the growth ratio:

$$g = \frac{1}{n} \log \left(\frac{\left\| \delta \vec{r}(t) \right\|}{\left\| \delta \vec{r}_0 \right\|} \right)$$

5. Re-scale the perturbation, and repete the process.

INPE

19 a 22 de Setembro

XXXVII CONGRESSO NACIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL CNMAC 2017 Matemática Anticada e Computacional acelerand

o desenvolvimento do país - São José dos Campos - Si

X vs Time, Painted with Growth

Bredding method for predictability

• Evan et al. (Bulletim of AMS, 85, 520-524, 2004) have investigated the bred vector ratio growth to infer some "prediction rules".

RISE UNDERGRADUATES FIND THAT REGIME CHANGES IN LORENZ'S MODEL ARE PREDICTABLE

by Erin Evans, Nadia Bhatti, Jacki Kinney, Lisa Pann, Malaquias Peña, Shu-Chih Yang, Eugenia Kalnay, and James Hansen

Bredding method for predictability

- Evan et al. (Bulletim of AMS, 85, 520-524, 2004)
- Using bred vector approach two "prediction rules":
- When the growth rate exceeds 0.064 over a period of eight steps, as indicated by the presence of one (or more) red stars, the current regime will end after it completes the current orbit.
- 2. The length of the new regime is proportional to the number of red stars.

a 22 de Setembro

How good is the prediction?

- Ensemble prediction
 - Data for statistical properties
 - Statistical tendencies
- Confidence interval
 - Large confidence interval: low predictability
 - Short confidence interval: high predictability

How good is the prediction?

- Ensemble prediction
 - Data for statistical properties
 - Statistical tendencies
- Confidence interval
 - Large confidence interval: low predictability
 - Short confidence interval: high predictability
- Predictability: degree of confidence in forecast

How good is the prediction?

- Ensemble prediction
 - Data for statistical properties
 - Statistical tendencies
- Confidence interval
 - Large confidence interval: low predictability
 - Short confidence interval: high predictability
- Predictability: degree of confidence in forecast
- Predictability: quantifying uncertainty

Guidelines on Ensemble Predictio Systems and Forecasting

WMO's report describing/suggesting ensemble prediction 27

Ensemble prediction and confidence interval

INPE

- Numerical Weather Prediction
- Relevant and computer intensive simulation

Numerical Weather Prediction: equations

Movement Equation (momentum)

$$\frac{du}{dt} - fv + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0 \qquad \frac{dh}{dt} + g + \frac{1}{\rho} \frac{\partial p}{\partial z} = 0$$

$$\frac{dv}{dt} + fu + \frac{1}{\rho}\frac{\partial p}{\partial y} = 0$$

Continuity Equation (mass)

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho h) = 0$$

Thermodynamic equation (energy)

Analysis of the Breeding Technique applied to the CPTEC-AGCM Model

³ Luis F. Salgueiro Romero¹, Sandra A. Sandri and Haroldo F. de Campos Velho

CCIS'16 Proceedings www.epacis.net/ccis2016/en/

Ensemble: 15 members

INPE

(a) 6 Horas de previsão

(b) 1 dia de previsão

Ensemble: 15 members

INPE

(c) 5 dias de previsão

Ensemble Spread Temperature 12Dez2014:06-Hs

(d) 10 dias de previsão

INPE

Ensemble Spread Temperature 07Dez2014:06-Hs

(c) 5 dias de previsão

Ensemble Spread Temperature 03Dez2014:06-Hs

Ensemble Spread Temperature 12Dez2014:06-Hs

(d) 10 dias de previsão

INPE

Re-scaling at each 6 hours

(a) 8 dias de Previsão

(b) 10 dias de Previsão

Re-scaling at each 6 hours (12/Dez/2014)

BV(shaded) and Spagueti plot of Ensemble - 12Dez2014:06-Hs

INPE

Re-scaling at each 6 hours (12/Dez/2014)

Re-scaling at each 6 hours (16/out/2012)

(b) Região de América do Norte

Re-scaling at each 6 hours

INPE

Ensemble x Bred vector

Ensemble: isoTemp 305

Ensemble: isoTemp 295

12

11

10

9

8

6

5

3

2

Ensemble: max-Var

INPE

BV: max value

5

0

-2

-3

-4

-5

-6

-7

Predictability: some remarks

- 1. Bred vector demands less computer effort than ensemble prediction.
- 2. There is a good agreement between ensemble maximum variance and higher magnitude of BV.
- 3. When a desagreement is noted, the BV indicates a kind of low predictability see South America case.
- 4. The BV technique can be employed to the CPTEC-INPE mesoscale prediction (BRAMS) and for SUPIM prediction.

Pollutant emission by forest fires and urban-industries

INPE

http://brams.cptec.inpe.br

Ministério da Ciência e	fecnologia	
		0

E-mail:	
Pwde	

INPE

»Forgot your password? »New Register here.

⊨ Home

+ News

+ Download

***** Screenshots

Projects

» Press Release

» Documentation

» Papers, Thesis & Presentations

Skill against Observations

⊨ Bugzilla

+ Users RAMSIN

- ⊨ Links
- » Mailing list

Google

Model Description

Brazilian Regional Atmospheric Modeling System (BRAMS)

BRAMS (Brazilian Regional Atmospheric Modeling System) is a j ATMET, IME/USP, IAG/USP and CPTEC/INPE, funded by FI Funding Agency), aimed to produce a new version of RAMS 1 tropics. The main objective is to provide a single model to Bra Weather Centers. The BRAMS/RAMS model is a multipurpo prediction model designed to simulate atmospheric circulation scale from hemispheric scales down to large eddy simulations planetary boundary layer.

BRAMS Version 3.2 is RAMS Version 5.04 plus:

 Shallow Cumulus and New Deep Convection (mass flux several closures, based on Grell et al., 2002)

INPE

BRAMS 5.2 (new version) Air quality and weather prediction

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-130, 2016 Manuscript under review for journal Geosci. Model Dev. Published: 7 June 2016 © Author(s) 2016. CC-BY 3.0 License.

Model top

mass

inflow

∆z ~100 1000 m

~10 m

20 - 30 km

The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas

Saulo R. Freitas^{1,a}, Jairo Panetta², Karla M. Longo^{1,a}, Luiz F. Rodrigues¹, Demerval S. Moreira^{3,4}, Nilton E. Rosário⁵, Pedro L. Silva Dias⁶, Maria A. F. Silva Dias⁶, Enio P. Souza⁷, Edmilson D. Freitas⁶, Marcos Longo⁸, Ariane Frassoni¹, Alvaro L. Fazenda⁹, Cláudio M. Santos e Silva¹⁰, Cláudio A. B. Pavani¹, Denis Eiras¹, Daniela A. França¹, Daniel Massaru¹, Fernanda B. Silva¹, Fernando Cavalcante¹, Gabriel Pereira¹¹, Gláuber Camponogara⁵, Gonzalo A. Ferrada¹, Haroldo F. Campos Velho¹², Isilda Menezes^{13,14}, Julliana L. Freire¹, Marcelo F. Alonso¹⁵, Madeleine S. Gácita¹, Maurício Zarzur¹², Rafael M. Fonseca¹, Rafael S. Lima¹, Ricardo A. Siqueira¹, Rodrigo Braz¹, Simone Tomita¹, Valter Oliveira¹, Leila D. Martins¹⁶

∆x ~ 10 -100 km

Available online at www.sciencedirect.com

ScienceDirect

Advances in Space Research 54 (2014) 22-36

ADVANCES IN SPACE RESEARCH (a COSPAR publication)

19 a 22 de Setembro

www.elsevier.com/locate/asr

First results of operational ionospheric dynamics prediction for the Brazilian Space Weather program

Adriano Petry^{a,*}, Jonas Rodrigues de Souza^{b,1}, Haroldo Fraga de Campos Velho^{c,2}, André Grahl Pereira^{d,3}, Graham John Bailey^e

SUPIM model

INPE

■ 7, 13, 19 UT: March 19th, 2011

Geographic Longitude

SUPIM model

INPE

■ 7, 13, 19 UT: December 19th, 2011

Geographic Longitude

Obrigado!

INPE