WMO DATA ASSIMILATION SYMPOSIUM

11-15 September 2017

# Supervised neural network for data assimilation on atmospheric general circulation model

#### Rosangela S. Cintra<sup>1</sup>, Haroldo F. de Campos Velho<sup>1</sup>, Steven Cocke<sup>2</sup>

<sup>1</sup> National Institute for Space Research, (INPE), S. J. Campos, SP, Brazil
 <sup>2</sup> Florida State University (FSU), Tallahassee, FL, USA

Data Asimi WMO DATA ASSIMILATION SYMPOSIUM 11-15 September 2017



Nowadays: challenge for DA with use the exponential growth of the number of observations available + high resolution models. The weather predictions need to be ready to deal with this scenario.

**Data Assimilation** global analysis Observations DATA ASSIILATION xa **METHODS General Circulation** Model forecast

11-15 September 2017

WMO DATA ASSIMILATION SYMPOSIUM

 $x^a = f_{NN}[y^o, x^f]$ 

#### ArtiteMONDATAL NSSIGHLAINON SYMPOSIUM

#### 11-15 September 2017



Some artificial neurons interconnected based on a topology, make an Artificial Neural Network

# WMO GATA ASSIMILATION SYMPOSIUM

#### 11-15 September 2017



**Backpropagation** is algorithm used for NN training, e.g. the adjustments to the weights are conducted by back propagating of the error. Multilayer Perceptron (MLP)



Supervised training

**Training**: an iterative process for adjusting the weights establishing the mapping of input and target vector pairs (supervisor)

**Activation**: for which NN receives new inputs and calculates the corresponding outputs, once it is trained.

WMO DATA ASSIMILATION SYMPOSIUM

The ANN Data assimilation Research:

|                | KF                               | KF<br>3d-Var<br>Particle |                          | KF               |                          |
|----------------|----------------------------------|--------------------------|--------------------------|------------------|--------------------------|
| KF             | MLP                              | Filter                   | LETKF                    | Representer      | LETKF                    |
| MLP            | NN                               | MLP                      | MLP                      | MLP              | MLP                      |
| 6              | -0                               |                          | 0                        |                  |                          |
| (Nowosad)      | (Harter)                         | (Furtado)                | (Cintra)                 | (Furtado)        | (Cintra et al.)          |
| 2001           | 2004                             | 2008                     | 2010                     | 2012             | 2014                     |
| Lorenz63       | SW 1D<br>Solar                   | Lorenz63                 | SPEEDY<br>AGCM           | Wave 1D<br>SW 2D | FSUGSM<br>AGCM           |
| Full<br>domain | Dynamics<br>Grid point<br>domain |                          | Pseudo-obs<br>Sub-domain |                  | Pseudo-obs<br>Sub-domain |

WMO DATA ASSIMILATION SYMPOSIUM

The ANN Data assimilation Research:

# **Development with the supervised ANN for Data Assimilation:**

**Important:** full domain to grid point: implying into a dramatic reduction of algorithm complexity (Harter, 2004)

**Pseudo**-observation concept vs. correlation matrix (Cintra, 2010) Introduce the "influence of observation" = A radius of influence around a grid point (without obs) is considered: weighted average projected on the grid point

**Sub-domains** (regions for global) = different ANN

**Configure supervised ANN** automatically with a optimization tool (Anochi et al, 2015)

The ANN Data assimilation Research:

WMO DATA ASSIMILATION SYMPOSIUM

Error evolution (Lorenz system under chaotic regime):





#### WMCSDATS ASSIMILATION SYMPOSIUM

#### 11-15 September 2017

Forward model  $(x^f)$ :

#### SPEED model

Atmospheric general circulation model 3D spectral model T30L7 simplified parameterization LETKF DA (UMD)



Vertical coordinates:  $\sigma = p_s/p$ . Horizontal coordinates: (lat , lon) on a regular grid

The spectral model: T30 horizontal resolution and 7 vertical levels Observations: 12035 (00 and 12 UTC) = 415 x 4 x 7 + 415 Observations: 2075 (06 and 18 UTC) = 415 x 5 (only surface)



## WMCSDATS ASSIMILATION SYMPOSIUM

#### 11-15 September 2017





## WMCSDATS ASSIMILATION SYMPOSIUM

#### 11-15 September 2017





WMGSDATS ASSIMILATION SYMPOSIUM

#### 11-15 September 2017

#### Forward model (*x<sup>f</sup>*): **SPEED** model



| Execution time            |          |  |  |  |
|---------------------------|----------|--|--|--|
| LETKF                     | MLP-NN   |  |  |  |
| 04:20:39                  | 00:02:53 |  |  |  |
| hours : minutes : seconds |          |  |  |  |



#### WMGSDICSMSSIMILATION SYMPOSIUM

11-15 September 2017

Forward model  $(x^f)$ :

#### FSUGSM

(Florida State University global spectral model) Atmospheric general circulation model

LETKF DA(UMD)



Vertical coordinates:  $\sigma = p_s/p$ . Horizontal coordinates: (lat , lon) on a Gaussian grid

The spectral model: T63 horizontal resolution (approximately  $1.875^{\circ}$ ) and 27 unevenly spaced vertical levels. (~ regular grid 96 x 192 x 27)



#### WMC SUCTA ASSIMILATION SYMPOSIUM

#### 11-15 September 2017

Forward model  $(x^f)$ :

#### **FSUGSM**

(Florida State University global spectral model – T63L27) Complete physical Parametrizations

Globe divided into 4 regions (horizontal sub-domains) with 9 sets of three layers for upper-air variable (vertical sub-domains). One NN for each meteorological variable: 4 upper-air (T, u, v, q) and surface pressure (ps) at each sub-domain

# neural networks:  $4 \times 9 \times 4 + 4 = 148$  networks.

#### How can we do that?

#### WMO DATA ASSIMILATION SYMPOSIUM

11-15 September 2017

#### How does someone configure an artificial neural network?

- 1. Empirically dependent of time to test
- 1. Automatic dependent of one tool

Automatic configuration formulates as an optimization problem, solved by the **MPCA** (Multi-Particle Collision Algorithm) based

PCA (Particle Collision Algorithm): meta-heuristic mimic a neutron (or "particle") traveling inside of nuclear reactor



#### WMO DATA ASSIMILATION SYMPOSIUM MPCA Self-configuration too 11-15 September 2017

The objective function to be minimized has two terms:

$$F_{obj} = \text{penality} \quad * \frac{\left(\Gamma_1 * E_{\text{train}} + \Gamma_2 * E_{\text{activ}}\right)}{\Gamma_1 + \Gamma_2}$$

$$penality = \left(c_1 * \left(e^{\#\text{neuron}}\right)^2\right) \times \left(c_2 * (\#\text{epoch})\right) + 1$$

complexity factor-1

- a) Penalty: measuring neural network complexity
- b) The square error (differences between NN output and the target data) for learning process ( $E_{train}$ ) and square error for generalization ( $E_{activ}$ )

complexity factor-2

WMO DAMPASSINILATION SYMPOSIUM

#### 11-15 September 2017

#### Parameters to be evaluated for NN configuration:

| Parameters          | Value                                           |
|---------------------|-------------------------------------------------|
| # hidden layer      | 1   2   3                                       |
| # neurons           | 1   32                                          |
| Learning rate       | 0   1                                           |
| Momentum            | 0   0.9                                         |
| Activation function | hiperbolic tangente <br> Logistic <br> Gaussian |

MPCA-NN algorithm uses a training data set for a determined problem.

For data assimilation, the MPCA topology is done by trained some multilayer perceptrons with input data (observation and forecast) and target ( $x^{tg}$ ) data (analysis to mimic).  $x^a = f_{NN}[y^o, x^f, (x^{tg})]$ 

# OF MOISTURE Data ASSIMILATION SYMPOSIUM

11-15 September 2017

The MPCA executes 25 realizations (stochastic alorithm) to find the best fitness to 148 Multilayer Perceptrons:

The MPCA topology to each MLP:

- Four input nodes,
  - the synthetic observation vector (y°)
  - the 6-hours forecast model vector  $(x^{f})$ ,
  - the grid point horizontal coordinate (*i*)
  - the grid point vertical coordinate (*j*)

One target node for the analysis vector results (x<sup>a</sup>) (only for training)

- One hidden layer
- The hy
- The hyperbolic tangent as the activation function:

$$\varphi(u_i) = \tanh(u_i) = \frac{1 - e^{u_i}}{1 - e^{u_i}}$$

#### 11-15 September 2017

• Each MLP has its own learning rate, momentum rate, and the number of neuron in the hidden layer configured by MPCA:

| NETWORK         | NEURONS        | LEARNING RATE | MOMENTUM RATE |
|-----------------|----------------|---------------|---------------|
| (var/reg/layer) | (Hidden Layer) | $\eta$        | $\alpha$      |
| qq0101          | 09             | 0.424676      | 0.735560      |
| qq0102          | 07             | 0.695070      | 0.836189      |
| qq0103          | 09             | 0.128201      | 0.987913      |
| qq0201          | 09             | 0.091828      | 0.621134      |
| qq0202          | 10             | 0.247087      | 0.997031      |
| qq0203          | 09             | 0.068212      | 0.994036      |
| qq0301          | 05             | 0.601685      | 0.447649      |
| qq0302          | 06             | 0.543795      | 0.980525      |
| qq0303          | 10             | 0.852829      | 0.909061      |
| qq0401          | 06             | 0.517619      | 0.949778      |
| qq0402          | 10             | 0.355837      | 0.975882      |
| qq0403          | 10             | 0.438510      | 0.995963      |

• Training steps when the cost function is less than 10<sup>-5</sup>.

Synthetic observation is obtained by adding Gaussian random noise at the grid point values on the true fields.

The observational grid is a regularly distributed in a dense network: This grid localization is every other latitude/longitude grid point of the FSUGSM native grid.



Observations localizations of observations divides in four regions of global area each is ( 90° x 180°) size. The dot points represent stations.

MLP for Moisture Data Assimilation (MLP-DA) SYMPOSIUM 11-15 September 2017

Training data sets collected observations, forecast and target analysis: Every day from Jan/2001 up to Jan/2003: 00, 06, 12, and 18 UTC, month to month.  $\begin{bmatrix} i_1 \end{bmatrix}$ 



Activation test data set collected  $(i, j, y^o, x^f)$ : every day of Jan/2004 and **Generalization** phase: every day of Jan/2005: 00, 06, 12, and 18 UTC. (Generalization is the "operational" data assimilation phase)

The 148 MLPs generate analysis for all prognostic variables.



Surface Pressure(Kg/Kg) generalization

04/Jan/2005 – 12 UTC



Specific Humidity (Kg/Kg) generalization

04/Jan/2005 – 12 UTC





Temperature( C<sup>o</sup>)generalization

04/Jan/2005 – 12 UTC

Surface



LETKF analysis

MLP analysis

#### Differences analysis

Temperature( C<sup>o</sup>)generalization

04/Jan/2005 – 12 UTC

500 hPa





#### Stream wind (zonal/meridional component)

#### 08/Jan/2005 -06UTC



#### Vector wind (zonal/meridional component)

08/Jan/2005 -06UTC



COMPUTATIONAL FURIO FMAN OF SIMILATION SYMPOSIUM

#### 11-15 September 2017

| Execution of 124<br>cycles | MLP-DA<br>(hour:min:sec) | LETKF<br>(hour:min:sec) |           |
|----------------------------|--------------------------|-------------------------|-----------|
| Analysis time              | 00:02:29                 | 11:01:20                | 266 times |
| Ensemble time              | 00:00:00                 | 15:50:40                |           |
| Parallel model time        | 00:27:20                 | 00:00:00                |           |
| Total Time                 | 00:29:49                 | 26:52:00 🔶              | 55 times  |

The LETKF analysis runs on 40 nodes at Cray XT/16 (1280 nodes, each node with 2 Opteron 12 cores, total of 30720 cores) (http://www.cptec.inpe.br/supercomputador)).

The MLPs runs with a sequential program.

MLP-DA computed analyses for the FSUGSM model:

- Analyses with similar LETKF quality
- Analysis with better computer performance.

# The ANN Data assimilation Research:

WMO DATA ASSIMILATION SYMPOSIUM

# New developments and challenges

- 1. Emulating NCEP analysis for the Global model from the CPTEC-INPE (under development)
- 2. Hybrid computing (CPU+FPGA or CPU+GPU or CPU+MIC) (see poster S1-51)
- 3. Models with adaptive mesh refining

WMO DATA ASSIMILATION SYMPOSIUM

11-15 September 2017

Thank you for your attention!

Rosangela S. Cintra - INPE, S. José dos Campos, SP - <u>rosangela.cintra@inpe.br</u> Haroldo F. de Campos Velho - INPE, S. José dos Campos, SP <u>–</u> <u>haroldo.camposvelho@inpe.br</u>

Steven Cocke - Florida State University, Tallahassee, FL, USA - scocke@fsu.edu







Center for Ocean-Atmospheric Prediction Studies

