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Abstract—This work aims to realize a study of rendezvous 

maneuvers between satellite atmospheric reentry (SARA), 

regarded as a chaser vehicle, and a target vehicle in permanent 

LEO orbit. A theoretical study of the modeling of the dynamic 

equations of relative motion, proposed by Hill-Clohessy-

Wiltshire, and a study of control system for such rendezvous 

maneuver is performed, considering the dynamics of the 

actuators negligible. The technical control of multivariable 

Linear Quadratic Regulator (LQR) is used as a method to design 

the control system making use of the computational tool 

MATLAB. In simulations of rendezvous maneuvers, it was used 

as a strategy, approaches between the chaser and target vehicles 

by R-bar and are analyzed the temporal evolution of the position, 

velocity and the force needs to the control with the intention 

evaluate the response velocity of such control system. With the 

graphical visualization of 3D maneuvers, it is observed that the 

LQR control technique applied to the problem plant was 

adequate and with satisfactory results. Stresses those, to design, 

understand and manipulate controllers for increasingly accurate 

orbital rendezvous maneuvers can make the difference between 

success or failure of a project that certainly involves high budget. 

Keywords—Orbital Dynamics; Rendezvous; Hill-Clohessy-

Wiltshire Equation; LQR Controller. 

I. INTRODUCTION 

Recently, due to the high risk and cost of sending 
astronauts into space, a new trend is emerging and being 
implemented to carry out rendezvous and docking operations. 
These operations are migrating to run in a fully autonomous, 
that is, without human interference in place. However, to 
develop systems with this level of self-shading, one should take 
into account the need for innovative technologies, accurate and 
robust. 

The process of rendezvous, refers to the orbital maneuvers 
responsible for aligning the flight of two spacecraft, 
synchronizing their orbital elements and bringing them 
together in the same orbital plane. At the end of this operation, 
both vehicles will be paired. 

The chaser vehicle should come to engage with the target 
withlinear and angular relative velocity zero or close to zero. 
To make this possible, the vehicle chaser must reduce your 

velocity of approach and also synchronize your attitude with 
the vehicle target [1]. 

In this work the equations of relative motion between the 
chaser vehicle and the target vehicle are described by the Hill-
Clohessy-Wiltshire equations, where is considered the target 
vehicle into a circular orbit. The control method used for 
rendezvous maneuvers is the Linear Quadratic Regulator 
(LQR). 

II. THE HILL-CLOHESSY-WILTSHIRE EQUATIONS 

The methodology used to calculate the guiding of chaser 
vehicle during rendezvous maneuvers are introduced by 
Clohessy-Wiltshire [2], where is regarded as a reference axis 
system composed as follows: Its origin is centered on the 
center of mass of the target vehicle for all other coordinates are 
represented in relation to this vehicle. Thus, when the chaser 
vehicle to find the origin of the reference system (while a 
certain offset so there are no collisions) it will have effected the 
maneuver coupling. 

This coordinate system, in red, is shown in Figure 1 below. 

 
Fig. 1. Chaser vehicle and target vehicle orbits. Reference system centered 

on the target vehicle. 

Besides its center is contained in the target satellite and its 
reference plane being the plane of the local horizon of this 
vehicle, its axes have the following guidance: 



 X-Axis: in the same direction and orientation the orbital 
velocity vector (V-bar). 

 Y-Axis: normal to the orbit, with the opposite direction 
of the orbital angular momentum vector (H-bar). 

 Z-Axis: complete de system, oriented in the radial 
direction, perpendicular to the plane of the horizon, 
nadir direction (R-bar). 

Knowing that,   ⃗⃗  and   ⃗⃗⃗   are the distances from the center of 
mass of the Earth to the vehicles, target and chaser respectively 
and    the relative distance between the vehicles.  

     ⃗⃗    ⃗⃗            (1) 

The general equation of motion of the body under the 

influence of a central force is given by Newton's law of 

gravitation [3]. 
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being,    and    the masses of chaser and target vehicles, 

respectively;  ⃗     and  ⃗     are non-gravitational forces on the 

chaser and target vehicle, respectively. These forces include 

external disturbances and the performance of control. 

Substituting (2) and (3) in the second derivative of (1), 

considering only the control is performed only by the 

propulsion system in this chaser vehicle and disregarding the 

influence of external disturbance on the system (       ⃗  and 

        ⃗⃗⃗⃗ ), then: 
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Linearizing the gravitational force on the chaser vehicle 

around the position of the target vehicle by means of a Taylor 

series expansion up to the first order, then [4]. 
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The objective is to represent the motion of the chaser 

vehicle in the referential of  target vehicle, but this is a non-

inertial reference. Thus this relationship is given by [5]: 

 

  ̈    ⃗⃗  ̈⃗   ⃗⃗  ( ⃗⃗    ⃗⃗  ⃗)    ⃗⃗    ⃗⃗  ̇⃗   ⃗⃗ ̇    ⃗⃗  ⃗         (7) 

Substituting (7) in (5), found: 
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Knowing that,   ⃗⃗  ⃗  [   ]  and representing  ⃗⃗  and   ⃗⃗  
in VHR-bar with: 
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Substituting (9) and (10) in the (8) and evolving 

calculations, we obtain the equations of motion of the problem 

[6]. 
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For the special case in which the target vehicle is in a 

circular orbit    and   are constant, thus, according to Bate et. 

al. [7]. 

   
 

  
                         (14) 

Thus, using (14) in (11), (12) and (13) the equations of 

motion are reduced in an easy way known as Hill-Clohessy-

Wiltshire Equations. 

         ̈     ̇  
 

  
           (15) 

        ̈       
 

  
                         (16) 

              ̈      ̇       
 

  
                         (17) 

These are the equations of motion used in this work, since 

the great majority of the rendezvous maneuver is performed 

with the target vehicle on a circular orbit.  

It is important to note that the  (15) and (17) are coupled to 

each other, so it will be convenient to separate the movements: 

outside the orbital plane H-bar (component  ) and in the 

orbital plane RV-bar (component   ). 

Thus, the strategy to control the system separates into two 

subsystems, one SISO (H-bar) and other MIMO (RV-bar). 



III. REPRESENTATION IN SPACE OF STATES 

A. SISO model for the motion on H-bar 

Here the subsystem is presented with two states containing 

one input and one output. 

[
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where    and    represent the position   and the velocity  ̇, 

respectively.  

B. MIMO model for the motion on RV-bar 

Here the subsystem is presented with four states containing 

two input and two output. 
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where          and     represent the position,  ,  the velocity  
 ̇ and  ̇, respectively  

IV. DATA USED 

In this section are presented the physical and orbital 

characteristics of chaser satellite, such data are used in the 

simulations in this work. 

A. Orbital platform recoverable: SARA 

The Atmospheric Reentry Satellite (SARA) it is an Orbital 

Platform Recoverable for scientific applications of 

approximately       of the mass, currently under 

development at the Aeronautics and Space Institute (IAE), of 

the CTA, in São José dos Campos, SP [8]. 

This satellite will be launched to a low Earth orbit (LEO) 

with       of the altitude in equatorial orbit and about after 

10 days in orbit the spacecraft will perform a maneuver 

controlled atmospheric reentry. After reentry, the vehicle 

should be recovered for subsequent reuse your module 

reentrable [9]. 

The SARA is being designed for the purpose of scientific 

applications and will comprise a vehicle with a payload of 

     containing small scientific and technological 

experiments. Some of these experiments may need to be 

serviced or serviced in orbit to be successful throughout the 

duration of the mission. 

Thus, SARA should incorporate couplings to be used by 

another thread orbital permanent (target vehicle). 

Consequently, the pursuer must perform a series of 

rendezvous and docking operations in order to complete the 

mission objectives. 

The configurations of SARA are shown in Table 1 and 2 

below. 

TABLE I.  PHYSICAL SETTING OF ATMOSPHERIC REENTRY SATELLITE 

(SARA). 

Physical characteristics Values 

Mass (  )        

 

TABLE II.  ORBITAL SETTING OF ATMOSPHERIC REENTRY SATELLITE 

(SARA). 

Orbital parameters Values 

Altitude ( )        

Eccentricity ( )    

Inclination ( )    
Angular velocity (ω)                 

V. CONTROL METHOD 

The control technique used in this paper to design the 

optimal controller for the rendezvous maneuver is the Linear 

Quadratic Regulator (LQR). This technique will be used with 

the aid of computational tool MATLAB®. 

A. Linear Quadratic Regulator 

In the case of Linear Quadratic Regulator (LQR), we 

assume that all states are available for feedback [10]. Consider 

the system dynamics given by: 

       ̇                                      (22) 

               

where   a matrix    ,   a matrix    ,   a matrix    , 

     the state variables     and      the control signal 

   . 

To solve this problem of regulating the output signal must 

optimize the cost functional defined as: 

       ∫              
 

  
        (23) 

where,   and   are matrices semi-positive definite, 

symmetrical real  and generally diagonal. 

If   is greater than  , the system response improves, but 

the energy exerted by the control   possibility will increase. If 

  is larger than the  , the system response worsens because 

the energy exerted by the control   is more penalized. 

Using the Pontriagin principle [11], can be written the 

Hamiltonian system, such as: 

         
 

 
              (      )        (24) 



The minimum principle establishes that the optimal control 

and trajectories of the states must meet the following three 

conditions: the state equation, co-state equation and stationary 

equation [11]. 

Evolving calculations is the following equations: 
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where    is the optimal control signal. 

The boundary value problem need not necessarily be 

solved in this way, it is considered that. 

 

                              (28) 

The formulation presented for the solution of the LQR 

problem is known as infinite time which results in a state 

feedback controller with linear time-variant, given by: 

 

                                            (29) 

 

where 

 

                           (30) 

 

In the situation where the process to be controlled resides 

in an infinite time interval provides a simple solution to find 

the LQR controller [11]. If the pair (   ) is controllable, the 

pair (   ) is observable and the matrices  ,  ,   and   s are 

constants, when    ends to infinity, it follows that      and 

     become constant matrices   and . 

Substituting (29) in (22) has control of dynamic closed-

loop. 

 

                     ̇                       (31) 

           

VI. RESULTS OBTAINED 

In this section, we present the results obtained for the LQR 

controller with the plant simulations using MATLAB® tool. 

The system is divided into two subsystems, one MIMO 

representing movement in RV-bar and the other SISO 

representing the movement in H-bar. 

In the simulations it was found that the target vehicle was 

in a circular orbit LEO permanent and the vehicle tracker 

should maneuvers to rendezvous approaching the target 

vehicle by R-bar. 

A. LQR controller for SISO system 

The states of this space are: the position ( ) and the 

velocity ( ̇).  

The control signal (  ) is a force applied to the system in   

and  ̇. The system output is the end position. 

To validate the controller was applied to a situation 

fictitious satellite SARA, chaser vehicle, and this should make 

a rendezvous maneuver to the target vehicle.  

The Table 3, shows the initial position and velocity on H-

bar of chaser vehicle. 

TABLE III.  INITIAL POSITION AND VELOCITY IN H-BAR OF SARA 

RELATIVE TO TARGET VEHICLE 

Parameters Values 

           

 ̇          

 

Figure 2, below, shows the temporal evolution of the 

position, velocity and the control force for the LQR controller. 

 
Fig. 2. Behavior of the position, velocity and control force exerted on H-bar. 

The chaser vehicle reaching a peak in   of       in      , 

reaching the desired position (    ) and  stabilizing at 

      . The peak force exerted by the control is at the 

beginning of the process, the module achieves      on  -

axis. 

B. LQR controller for MIMO system 

The states of this space are: the position (   ) and the 

velocity ( ̇  ̇). 

The control signal (     ) are a force applied to the 

system in      ̇  ̇. The system output is the end position. 

As previously done for the SISO system, to validate the 

controller was applied to a situation fictitious satellite SARA, 

chaser vehicle, and this should make a rendezvous maneuver 

to the target vehicle by an approach in R-bar.  

The Table 4, shows the initial position and velocity on RV-

bar of chaser vehicle. 

 



TABLE IV.   INITIAL POSITION AND VELOCITY IN RV-BAR OF SARA 

RELATIVE TO TARGET VEHICLE 

Parameters Values 

           
            
 ̇           
 ̇            

 

Figure 3, below, shows the temporal evolution of the 

position, velocity and the control force for the LQR controller. 

 
Fig. 3. Behavior of the position, velocity and control force exerted on RV-

bar. 

The chaser vehicle reaching a peak in   of       in       

and a peak in   of        in      , reaching the desired 

position (      ) and  stabilizing at       . The peak 

force exerted by the control is at the beginning of the process, 

the module achieves        on  -axis and        on  -axis. 

The Figures (4) and (5) represent the motion of the chaser 

relative to the target VR-bar and H-bar versus     , 

respectively. 

 
Fig. 4. Motion in RV-bar, R-bar approach with LQR control. 

 
Fig. 5. Motion in H-bar versus t(s), R-bar approach with LQR control. 

To facilitate the visualization, the Figure 6 represents the 

chaser vehicle motion relative to target vehicle on VHR-bar.  

 
Fig. 6. Motion in VHR-bar with LQR control, R-bar approach. 

VII. CONCLUSION 

In this paper we present a simulation analysis of 

rendezvous maneuvers between the Atmospheric Reentry 

Satellite (SARA) in a target vehicle in a LEO orbit with the 

LQR controller. 

The LQR control technique applied in the plant of the 

problem, which was separated into two subsystems being one 

SISO, to represent motion in H-bar and other MIMO, to 

represent motion in RV-bar, showed satisfactory results 

possible design specifications. 

For the rendezvous maneuver, simulated a situation in 

which a stalker as a vehicle approaching from the R-bar target 

vehicle. Recalling that the V-bar approach is considered the 

safest and generally of lower energy consumption since, when 

the spacecraft approaches the target the "front", that is, in the 

direction of the velocity vector, she performs "jumps" 

successive toward the target through his orbital survey. 



So when its orbit increases, its orbital velocity decreases, 

thus increasing its velocities relative to the target (in lower 

orbit, therefore faster). This causes the tracker approaches the 

target successively at low relative velocities, also requiring 

low fuel consumption. 

The LQR control technique is easy to apply; both in SIMO 
systems as in MIMO systems, but one should remember that 
she carries some limitations. This technique does not take into 
account dynamic noise and uncertainties in the measurements 
of the states, moreover it is necessary to know all this states 
plan to implement it, and need to load the chaser satellite with 
sensors to measure position and velocity with respect to the 
target vehicle. 
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