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Abstract. In this work, we introduce and evaluate a data magnitude of the precipitation errors and that of their spa-
assimilation framework for gauged and radar altimetry- tial correlation, while temporal correlation showed to be dis-
based discharge and water levels applied to a large scalpensable. The deterioration of model performance at some
hydrologic-hydrodynamic model for stream flow forecasts unmonitored reaches indicates the need for proper charac-
over the Amazon River basin. We used the process-basetérisation of model errors and spatial localisation techniques
hydrological model called MGB-IPH coupled with a river for hydrological applications. Finally, we evaluated stream
hydrodynamic module using a storage model for flood-flow forecasts for the Amazon basin based on initial con-
plains. The Ensemble Kalman Filter technique was used tdlitions produced by the data assimilation scheme and us-
assimilate information from hundreds of gauging and al-ing the ensemble stream flow prediction approach where the
timetry stations based on ENVISAT satellite data. Model model is forced by past meteorological forcings. The result-
state variables errors were generated by corrupting preciping forecasts agreed well with the observations and main-
itation forcing, considering log-normally distributed, time tained meaningful skill at large rivers even for long lead
and spatially correlated errors. The EnKF performed welltimes, e.g.> 90 days at the Soliges/Amazon main stem.
when assimilating in situ discharge, by improving model Results encourage the potential of hydrological forecasts at
estimates at the assimilation sites (change in root-meankarge rivers and/or poorly monitored regions by combining
squared erroArms =—49 %) and also transferring informa- models and remote-sensing information.

tion to ungauged rivers reacheArfns =—16 %). Altimetry

data assimilation improves results, in terms of water levels

(Arms =—44 %) and discharge\fms =—15 %) to a minor

degree, mostly close to altimetry sites and at a daily basis,

even though radar altimetry data has a low temporal res-

olution. Sensitivity tests highlighted the importance of the
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1 Introduction 2007). Such methods can also be used to estimate balanced
initial states of hydrological models for forecasting the afore-
Land surface waters play an important role in global wa- mentioned extreme events. There are already some hydrolog-
ter cycle and earth system, regulating freshwater dischargéecal regional/global forecast systems founded on physically-
from land into oceans (Oki and Kanae, 2006) and alsobased hydrological models (e.g. Wood et al., 2002; Thielen
land-atmosphere exchanges of water, energy (Krinner, 2003t al., 2009; Alfieri et al., 2013), and also several physical
Decharme et al., 2011) and gases such as methane (Gedneynebdelling experiments in the Amazon basin, as previously
al., 2004). Moreover, it directly affects society that uses it for mentioned. However, current attempts for developing hydro-
drinking water and also transportation of people and goodslogical forecasts in this particular basin are mostly based on
agriculture and energy production from hydropower. More statistical methods (e.g. Uvo and Grahan, 1998; Uvo et al.,
specific to the Amazon basin, important extreme hydrologi-2000). Furthermore, Paiva et al. (2012) showed that, for lead
cal events have occurred recently, for instance, the 2009 antimes up to 3 months, uncertainty of initial conditions plays
2012 floods and the 1996, 2005 and 2010 droughts (Chen &t major role for discharge predictability on main Amazonian
al., 2010; Tomasella et al., 2010; Marengo et al., 2008, 2011Rivers, if compared to the importance of precipitation forc-
Espinoza et al., 2011). These events caused several impadtsy, suggesting the importance of DA techniques for stream-
on local population that strongly depends on the rivers andlow forecasts in this region.
is very vulnerable to floods since most settlements lie along Research on data assimilation applied to hydrology has
the rivers. increased in past years with various applications utilising
In situ measurements of river stage and discharge at streaidalman filters (e.g. the Ensemble Kalman Filter — EnKF,
gauges are the most conventional alternative for monitor-developed by Evensen, 2003), particle filters or variational
ing surface waters, although observation networks are rathemethods, as extensively reviewed in Liu and Gupta (2007),
sparse at several regions such as the Amazon River basin. AReichle (2008) and Liu et al. (2012). These applications in-
ternatively, radar altimetry techniques have been developedlude a wide range of observations, both in situ and remotely
in past years to monitor water levels (e.g. Santos da Silvasensed, data assimilation methods and models representing
et al., 2010; Alsdorf et al., 2007) or discharges using ratingdifferent hydrological processes, at different spatial scales
curves (e.g. Leon et al., 2006; Papa et al., 2010a; Getiranand with several objectives, such as: the assimilation of snow
and Peters-Lidard, 2013). If compared to in situ gauges in(Andreadis and Lettenmaier, 2006) and soil moisture (Re-
remote regions, these satellite instruments can provide obichle et al., 2002) data into land surface models using the
servations with much better spatial coverage, but with worseEnKF; assimilation of in situ water level measurements into
temporal sampling. Moreover, the forthcoming Surface Wa-a small scale 1-D hydrodynamic model for flood forecast us-
ter and Ocean Topography (SWOT) mission (Durand et al.ing Kalman filtering methods (Neal et al., 2007; Ricci et al.,
2010a) is designed to provide high resolution images of in-2011); assimilation of synthetic SWOT data into hydrody-
land water surface elevation, including rivers, lakes, wetlandsnamic models at restricted areas using the EnKF and some
and reservoirs, using a swath mapping radar altimeter withvariations (Biancamaria et al., 2011; Andreadis et al., 2007;
high frequency repeat orbit. Additionally, it may also be pos- Durand et al., 2008); assimilation of discharge data into dis-
sible to derive discharge estimates from SWOT data by usindributed hydrological models (Clark et al., 2008; McMillan et
specially developed algorithms (e.g. Durand et al., 2010b). al., 2013; Lee et al., 2012; Thirel et al., 2010; Rakovec et al.,
In contrast, there are several efforts on hydrological mod-2012) using the EnKF or variational methods; simultaneous
elling to simulate processes as river and floodplain dynamicsssimilation of soil moisture and discharge data into a dis-
in large river basins such as the Amazon (Paiva et al., 2013aributed hydrological model using variational DA (Lee et al.,
b; Yamazaki et al., 2011; Getirana et al., 2012; Decharme eR011); assimilation of radar altimetry data of reservoir water
al., 2011; Coe et al., 2008; Wilson et al., 2007; Trigg et al., levels using the EnKF (Pereira-Cardenal et al., 2011); devel-
2009). These models can potentially provide detailed infor-opment of a modelling platform (Land Information System —
mation on surface waters, both spatially and temporally, but_IS) to merge multiple in situ and remotely sensed observa-
such estimates are somehow imperfect due to uncertainty itions with land surface models (Kumar et al., 2008); merg-
model structure, parameters and forcing data (Liu and Guptaing water levels information derived from a satellite Syn-
2007). thetic Aperture Radar (SAR) image and digital terrain model
Data assimilation (DA) methods are an alternative to op-(DTM) with a 1-D hydrodynamic model for estimating river
timally merge uncertain model predictions with both in situ discharge (Neal et al., 2009); assimilation of water levels de-
and the newly remote-sensing observations of surface watersived from SAR images and DTMs into hydrodynamic mod-
The aim of DA techniques is to “produce physically consis- els using variational (Hostache et al., 2010) or particle fil-
tent representations or estimates of the dynamical behaviouer (Matgen et al., 2010; Giustarini et al., 2011) methods;
of a system by merging the information present in imper-assimilating water levels and surface velocity derived from
fect models and uncertain data in an optimal way to achievdloaters monitored by global navigation satellite systems into
uncertainty quantification and reduction” (Liu and Gupta, hydrodynamic models (Hostache et al., 2011); among others.
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Although there is an extensive bibliography on hydrological The hydrodynamic model of MGB-IPH (Paiva et al., 2011)
data assimilation, the current state of the art regional/globabkolves the full 1-D Saint-Venant equations for the river net-
hydrological prediction systems (e.g. Thielen et al., 2009;work and flood inundation is simulated using a simple model
Alfieri et al., 2013) still do not incorporate advanced data as-assuming that the floodplains act only as storage areas. River-
similation systems for updating model initial states. Also, the floodplain parameters (river width, bottom levels, roughness
assimilation of discharge and water levels from in situ and re-coefficient, floodplain bathymetry) are estimated using GIS-
motely sensed observations into regional/global hydrologic-based algorithms from the Shuttle Radar Topography Mis-
hydrodynamic models is still uncommon. sion (SRTM) Digital Elevation Model (DEM) (Farr et al.,
In this paper, we present the development and evaluatior2007) and using geomorphological relations.
of a data assimilation framework for both gauged and radar
altimetry-based discharge and water levels into a large scalé-2 The Ensemble Kalman Filter
hydrologic-hydrodynamic model of the Amazon River basin S ) )
using the EnKF. We also explore the usefulness of such Sys'j'he goal of data _aSS|m|Ia_t|on is to combine the uncertaln_ and
tem to provide streamflow forecasts when forced by past rec0mplementary information from measurements and simu-

motely sensed precipitation data and based mostly on moddftion models into an optimal estimate of the hydrological
initial conditions. This paper is in the context of recent de- fi€lds of interest, providing a general framework for dealing

velopments of techniques for integrating information from With uncertainty from measurements and also from model

hydrological models with newly remotely sensed data suchinp”t_s' structure and .outputs (Reichle, 2008; Liu and Gupta,
as the forthcoming SWOT mission and also in the context2007; Liu etal., 2012; Vrugt et al., 2005).
of regional/global hydrological forecast systems including A 9réat part of the hydrological applications of data as-

large, poorly gauged river basins. Through our eXperimen_similation methods uses schemes based on the Kalman fil-

tal results, we explore questions such as: is an EnKF-baseff" (Kalman, 1960), specially the Ensemble Kalman Filter

DA scheme feasible for assimilating discharge and watefEVensen, 2003, 2009), which is also used in this study and
level data into large scale hydrologic-hydrodynamic mod-iS Priefly described below. The model representing the dy-

els? Is it able to improve discharge and water level estimate§2Mics of the simulated system can be shown in a discrete
at sites where data were assimilated and also at ungaugd@'™m Py the process equation:

rivers? Does the assimilation of radar altimetry data also im-

prove model estimates at large river basins, considering thaf*** = M (i, uk. 0) + g (1)

it has lower temporal resolution and accuracy if compared tQ, ey represents the state variables an@ndé represent

gauged in situ data? Would it be possible to provide accu+y,,gel forcings and parameters respectivadyis the nonlin-

rate streamflow forecasts at large basins such as the Amaza@, - yodel operator that relates model states from time inter-
using a large scale hydrologic-hydrodynamic model based,, f 10 trs1 = 1 + At, andg, represents errors in model

mostly on the initial hydrological states gathered by the DA g¢,ctyre, parameter, forcings and antecedent states. In this

scheme? At which spatial and temporal scales? study, x is a vector composed by all MGB-IPH state vari-
ables, i.e. soil moisture, storage and discharge from sur-

2 Methods face, subsurface and groundwater reservoirs, soil tempera-
ture, canopy storage and river discharge and water level. The

2.1 The hydrologic-hydrodynamic model measurement equation is defined by:

We used the MGB-IPH model (Collischonn et al., 2007), ¥« = H(xi) + & (2)

which is a large scale, distributed and process-based hy- . . ) .
drological model with a hydrodynamic module described in Wherey is observation vectog, is the vector of observation
Paiva et al. (2011). It simulates surface energy and water bal€70rs andH is the observation operator which relates the
ance and also discharge, water level and flood inundation off'0deél state variables vectarto the observations vector.
a complex river network. Vertical hydrological processes in- In our case, observations are river discharges or water levels
clude soil water budget using a bucket model, energy budgeft Selected sites. ,
and evapotranspiration using the Penman Monteith approach, N the context of forecast systems and sequential data as-
and also surface, subsurface and groundwater flow gener&Milation methods, at each time interval, the model is in-
tion, among others. The flow generated within each catch!€grated in time using Eq. (1) to provide a short-term fore-
ment is routed to the stream network using a linear reservoif@st (or backgroundy, ,, and whenever an observation is
type model. River flow routing is performed using a com- available, the forecast errors (called model innovations) are
' f
bination of either a Muskingum-Cunge (MC) method or a COMPuted as(+1~H (¥ ,)). Therefore, the goal of data
hydrodynamic model (HD). assimilation is to obtain an optimal estimate of model state
variablesx? (called analysis) given model and observation
errors. In the case of the original Kalman Filter (Kalman,
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1960), the DA problem is solved using a linear estimator as-a computational efficient analysis scheme for nonlinear mod-
suming that (i) model and observation operatdsand H) els that provides a satisfactory solution, although it is subop-
are linear; (ii) observation errors are unbiased and both temtimal, that somehow lies between a linear Gaussian update
porally and spatially uncorrelated; (iii) model errors are unbi- and a full Bayesian computation (Evensen, 2009). Also, the
ased and temporally uncorrelated; and (iv) there is no correadvantage of the EnKF is that it can be easily implemented
lation between model and observation errors. Consequentlyn any mathematical model, e.g. it does not require the devel-
an unbiased and minimum variance estimate of model statespment of a particular adjoint model as the variational meth-

is obtained by: ods, and it usually requires smaller ensemble sizes, and con-
sequently less computational effort, if compared to particle
x®=x 4K (y . fo) (3) filter methods (Liu et al., 2012).
-1 2.3 Uncertainty in precipitation forcin
K =P'HT [HP'HT +R] @ y in precip 9

) o ) We perturbed model states variables by adding a noise in pre-
whereK is the Kalman gain® is the covariance of model er- - cipitation forcing, considering (i) that this is the most un-
rors¢, andR is the covariance of measurement er@rshe  certain model input (Liu et al., 2012) and possibly the most
Kalman filter also provides the maximum likelihood solu- jnnortant source of model uncertainty and (ii) that this is a
tion of the DA problem when model and measurement eITors,oner method to generate physically coherent model errors.
are assumed to be also Gaussian. However, the applicabilit gjmijar approach performed satisfactorily in other hydro-
of the KF is limited since most hydrological systems exhibit gica| applications of DA methods such as Andreadis and
nonlinear dynamics (Liu and Gupta, 2007) and the assumpy gttenmaier (2006) and Biancamaria et al. (2011). Precipita-
tions about model errors (e.g. Gaussian, unbiased, amongy, yajues were corrupted using a log-normally distribution

others) are not always valid. Moreover, both the original KF ;¢ presented by Nijisen and Lettenmaier (2004) and also ap-
and also its nonlinear version, the Extended KF (EKF), havep"ed by Andreadis and Lettenmaier (20086):

additional drawbacks when applied in large and complex sys- .

tems with lots of state variables (e.g. distributed hydrological , _ +8 ex < /In E24+1 s) P 6

models) due to extra programming and heavy computational ‘T VE?F1 P [ ] ©

requirements associated with the storage and forward inte- v . L

gration of the error covariance matx(Vrugt et al., 2005). V;’:giiiclgr?;ntﬁet u]nlset:frgs(;u:jr:i?d drzl(l:)i/ ?t;%?mlt?gfé
Evensen (2003) presented the Ensemble Kalman FiIteF P Y precip

. 0 i ) ! N .
(EnKF), which is a stochastic or Monte Carlo alternative for relative error [/.0]’!3 is the relat_|ve bias and~N(0,1) is .
the deterministic EKF (Evensen, 2009). In this method en-2 normally distributed and spatially correlated random vari-

. able with zero mean and unit variance. Spatially correlated
sembles of model states and/or observations are generate(? P y

using a priori-known errors and by means of the model Op_pseudo random fields were generated by means of the al-

eratorM, the algorithm generates an ensemble of model tra_gorithm based on the two dimensional Fourier transform pre-

) . . . . sented in Evensen (2003) (sk#p://enkf.nersc.nafor For-
jectories from which the time evolution of model errors and . . ) . .
. . i tran codes), having zero mean, unit variance and isotropic
error covariance matrix can be sampled: : . : 1 ;
covariance function decreasing to the value at the dis-

P ¢ A\ (o T\ tancety called spatial decorrelation length. At each spatial
PP =P, = (x - ) (x * ) ’ location, temporal correlation was also considered using the
following equation for simulating the time evolution of errors
(Evensen, 2003):

Each ensemble member is then updated using the same anal- a—
ysis equation from the original KF (Egs. 3 and 4). Alterna- ¢ = %Sk-11 1-o?w (7)
tively, efficient computational implementations of the EnKF wherek is the time intervals; is a sequence of time cor-
are presented in Evensen (2003, 2004 and 2009)tpe  related errors with zero mean and unit variance (input for
/lenkf.nersc.nofor Fortran codes) where the explicit compu- Eq. 6) andx determines the time decorrelation of the stochas-
tation and storage d¥ are not required. We used the square tic forcing, e.g.a = 0 generates a sequence of white noise
root scheme presented in Evensen (2004, 2009) where thghile « = 1 removes the stochastic forcing. The parameter
perturbation of measurements is not performed, in order tds determined by:
reduce sampling errors. At

For linear systems and with large ensemble sizes, they =1— — (8
EnKF provides the same solution as the KF method. How- Tt
ever, it is noteworthy that it does not fully take into account wherez; is the temporal decorrelation length, that determines
non-Gaussian errors nor solve the Bayesian update equatidhats decreases by the ratio! after a time period = r if
for non-Gaussian probability distribution functions. Still, itis the stochastic termy is excluded.

Pz P2 = (xa—x3) (xa—x3)" (5)
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2.4 Measurement errors 3.2 Model implementation

Water level {) and discharge@) observations errors were We used a MGB-IPH implementation on the Amazon basin

modelled using the following relations: developed by Paiva et al. (2013b), as briefly described be-
low. The model was forced using meteorological data ob-
Ze=2+6,86,~ N<0, 0Z2> (9)  tained from the CRU CL 2.0 dataset (New et al., 2002)

and remotely sensed precipitation estimates from the TRMM
2 3B42 v6 product (Huffman et al., 2007), with spatial res-

Qc=0+eg.e0~ N (0’ (000) ) (0)  oiution of 0.2% x 0.25 and daily time step for a period

spanning 12yr (1998-2009). The model parameters related
wherez. [m] and Q. [m®s~1] are the observations afm] {0 soil water budget were calibrated using daily discharge
andQ[m®s™1], &, [m] ands( [m®s~*] are the normally dis-  data from stream gauges (see next section for description of
tributed errors with parametess [m] andog [%] of z and  gauged data). Then, the model was validated against daily
0, respectively. The formulation of discharge errors allows discharge and water level data from stream gauge stations,
representing larger uncertainties for high stage levels than fofyater levels derived from ENVISAT satellite altimetry data
low flows due to uncertainties in discharge rating curves, agSantos da Silva et al., 2010) (212 sites with 35-day repeat
pointed out by Clark et al. (2008). Alternatively, simulated orbit), monthly Terrestrial Water Storage from GRACE mis-
and observed discharges were also transformed into the 10§jon (Frappart et al., 2010, 2011) and monthly flood inun-
space before the assimilation, following Clark et al. (2008). dation extent from Papa et al. (2010b). Simulations agreed

In this case, observation errors were modelled by: with observations, with relatively high Nash and Suttcliffe in-
) dex (Ens) values:Ens > 0.6 in~ 70 % of discharge gauges,
0c=¢'00,¢'g ~logN (170/Q> (11)  Ens>0.6 in ~60% of the water level stations derived

from satellite altimetryFns = 0.71 for total flood extent and
where nowe’ is a log-normally distributed error with unit  Ens=0.93 for terrestrial water storage.

mean and standard deviatiotip [%], similar to Eq. (10). Since this study aimed at applications of data assimilation
At log space, standard deviation is given byiegp =  to hydrological forecasting, we also used a real time precip-
2 itation product to force the MGB-IPH model. We choose to

log (‘7 ot 1)' use the TRMM Merge product (Rozante et al., 2010), which

is a near to real time precipitation estimate based on TRMM
. ) 3B42RT (Huffman et al., 2007) merged with data from in
3 Experimental design situ gauges and provided by the Brazilian centre for weather
forecasts and climate studies CPTEC (Centro de Faevis
Tempo e Estudos Cliaticos), a division of the Brazilian Na-
dional Institute for Space Research INPE (Instituto Nacional
de Pesquisas Espaciais).

3.1 The Amazon River basin

The study area is the Amazon River basin, known as th
largest hydrological system of the world- 6 million km?

of surface area) and contributing with 15% to the total ) _
fresh water released into the oceans. The Amazon basin i8-3 Discharge and water level observations

characterised by extensive seasonally flooded areas (Hess et

al., 2003; Papa et al., 2010b; Melack and Hess, 2010), whiche eyaluated the assimilation of three types of data: (1) in
store and release large amounts of water from the rivers angitU discharge observations; (2) remotely sensed water levels

consequently attenuate and delay flood waves in several dayi€rved from the ENVISAT radar altimeter; and (3) remotely

or months (Paiva et al., 2013a, b; Yamazaki et al. 2011)_sensed discharge estimates derived from radar altimetry wa-
Also, complex river hydraulics are present, where the low!€r 1€vels and rating curves.

river slopes cause backwater effects that control part of river N Situ daily discharge from 109 stream gauges were pro-
dynamics (Meade, 1991; Trigg et al., 2009; Tomasella etvided by the Brazilian agency for water resources ANA

al., 2010; Paiva et al., 2013a, b). Additionally, this region (Ag&ncia Nacional dag\guas), the Peruvian and Bolivian
presents high precipitation rates (averagg200 mmyrl) natlor_la_l metec_)rology and hydrolpgy ser_wces,SENAMHl
with high spatial variability and contrasting rainfall regimes (Servicio Nacional de Meteoroleg e Hidrologa) and
in the northern (rainfall peak at JJA) and southern (rain-th€ French ORE-HYBAM programme (Hydrologie, Bio-
fall peak at DJF) parts of the basin, with more defined wetd€ochimie and Geodynamique du Bassin Amazorfip;

and dry seasons occurring in southern and eastern regiod&VWw.ore-hybam.org We also used stage data from 66
(Espinoza et al., 2009). ANA gauge stations, but only for validation purposes.

Remotely sensed water levels were obtained from the EN-
VISAT satellite altimeter. The ENVISAT satellite has a 35-
day repeat orbit and an 80km inter-track distance at the

www.hydrol-earth-syst-sci.net/17/2929/2013/ Hydrol. Earth Syst. Sci., 17, 2922346 2013
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Equator. The database used is an extension of the one predtimetry assimilation (Exp 2) and (iii) Assimilation of
sented in Santos da Silva et al. (2010), consisting in 21Zdischarge series based on satellite altimetry (Exp 3).
altimetry stations (AS — deduced from the intersection of a In the first experiment, we tested: (Exp. 1la) the assim-
satellite track with a water body) with water level time se- ilation of discharge from almost all gauge stations (80 %)
ries for the 2002—2009 period. ENVISAT data selection tech-using a few of them for validation (20 %), where these sta-
niques preconized by Santos da Silva et al. (2010) result itions where randomly chosen; (Exp. 1b) the assimilation of
~ 10 to 40cm water level accuracy. Due to differences inonly 12 stations+{ 10 %) located at some of the major tribu-
water levels datum reference, the comparisons between simaries to emulate the situation of using only telemetric stream
ulated and observed water levels were performed in terms ofjauges for real time applications — we choose 1 or 2 stations
anomalies, i.e. after removing the long-term average. located at the downstream reach of the largest Amazonian
Altimetry-based discharge data was developed by Getiranaivers; (Exp. 1c) the assimilation of discharge from almost
and Peters-Lidard (2013) for the Amazon basin. This dataseall gauge stations, similar to (Exp. la), but without trans-
was constructed using a rating-curve-based methodology dderming discharge into the log space (Sect. 2.4.). Moreover,
riving water discharge from ENVISAT altimetry data at 475 we explored the sensitivity of the DA scheme to some of its
altimetric stations. The stage-discharge relations at each Aparameters, namely the ensemble sizeprecipitation rela-
were built based on satellite altimetry and outputs from ative errorE and temporal and spatial decorrelation lengths of
global flow routing (GFR) scheme (Getirana et al., 2012). precipitation errorst, andzy.
A second experiment was performed by Getirana and Peters- The second experiment (Exp. 2) evaluated the assimilation
Lidard (2013) using observed discharges at gauge stationsf ENVISAT radar altimetry water level anomalies from all
to force the GFR scheme at downstream reaches. Validatioaltimetry stations. Stage data from all in situ gauges were
of the methodology against observed discharges at 90 sitegsed for model verification. Simulations were also compared
showed a mean relative error of 27 % for the experiment usin terms of discharge using in situ data to evaluate the impact
ing in situ discharge within the GFR scheme. We assimilatedof water level assimilation in discharge estimates.
data only from the 287 ASs located downstream of a gaug- In the third experiment (Exp. 3), we assessed the assimila-
ing station where the accuracy of discharge estimates frontion of discharge derived from radar altimetry water level at
Getirana and Peters-Lidard (2013) was generally better.  all altimetry stations. Discharge data from all stream gauges
were used for verification.
3.4 Parameters of the DA scheme In all cases, simulations started in 1998 and ran to 2002 for
model spin-up. The year of 2003 was used for the spin-up of
The first sensitivity experiments used the following standardthe DA scheme, where no update was performed in the first
parameters of the DA scheme. Ensemble size of the EnKFnonths allowing the system to develop a coherent correlation
was set agv = 200. Precipitation fields were corrupted con- structure, following Andreadis and Lettenmaier (2006). To
sidering the following error parameters: precipitation relative access the DA scheme performance, model simulations us-
error E =25 %, and precipitation relative bigs= 1.0 follow- ing (EnKF simulation) and not using (Open-loop simulation)
ing Andreadis and Lettenmaier (2006); temporal decorrela-data assimilation were compared. Results were evaluated for
tion length of precipitation errorg; =10 days; and spatial the two year period 2004—2005 by means of the following
decorrelation length of precipitation errotg=1.0°, sim- model performance statistics that compare simulation results
ilarly to Andreadis and Lettenmaier (2006) and Clark et with observations: (i) the Nash-Suttcliffe coefficieRlys
al. (2008). The parameter of water level measurements erranging from—oo to 1 (optimum) and (ii) changes in root-
ror was set as, =0.20m, based on the accuracy of EN- mean-square erroArms= 100 (rms-rmg)/rms;, ranging
VISAT estimates provided by Santos da Silva et al. (2010).from —100 % (optimum) toco, where rmg and rms are
We computed the mean relative error between in situ distoot-mean-squared errors from Open-loop and EnKF simu-
charge measurements and values provided by rating curvdations, respectively. The period 2004—2005 was chosen for
at 87 gauging stations from the ANA database as a surrogatits highest availability of in situ discharge and stage data to-
of the discharge error parametgs. The median value of all  gether with altimetry data, and also because it contains an
stations was 13 %, while Clark et al. (2008) used 10 % in itsimportant extreme hydrological event — the 2005 drought.
DA experiments. Therefore, we choose to alsoqge 10 %
for simplicity. We usedrp =27 % for assimilation of satel- 3.6 Prospects of streamflow forecasting
lite based discharge data, based on the error value found in

Getirana and Peters-Lidard (2013). Hindcast streamflow forecasts were generated using an en-
semble streamflow prediction (ESP) approach (Day, 1985),
3.5 Data assimilation experiments as described below. The model uses an estimate of initial

conditions derived from the DA scheme and runs forced
We performed three data assimilation experiments,by an ensemble of observed meteorological data from past
namely: (i) in situ discharge assimilation (Exp 1) (ii) Radar years. An estimate of initial conditions is computed during
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the spin-up period using a hydrological model driven by ob- 0
served meteorological forcings, updated using data assimi-__ -jo ‘\}_\\_‘ BN L
lation of observations up to the time of forecast (e.g. fore- &, 1
cast starts with model states from 1 June of 2010). Then, ang
ensemble forecast is obtained using observed meteorologi = :
cal data resampled from past years (e.g. meteorological dat: -0 — \«\*\\
from 1 June to 1 September of years 1998, 1999,...,2009). -0

Precipitation from TRMM Merge was used during spin-
up period, while during forecast the model was forced with N E[%]
TRMM 3B42 data for the period spanning 12 years (1998— 0
2009) and, consequently, the forecast ensemble had 12 menr
bers. The DA scheme used the configuration from Exp. 1b g
where in situ discharge data were assimilated to update o
model states before starting a forecast. ESP runs generate 5 )
decadal forecasts up to 90 days lead time and starting atever 40 H—¥ ek *
1st, 10th and 20th day of the month for the two year period of ~ -50
2004—-2005. Aiming at exploring the usefulness of such sys-
tem to provide streamflow forecasts in future applications, © [°] 7, [days]
we chose to test it for a past period (2004-2005) where a
large amount of discharge data is available for verification.Fig. 1. Sensitivity tests of DA scheme parameters. Mean change
For simplicity reasons, forecasts were evaluated only by dein root-mean-square erron(ms) for the assimilation (line with
terministic means by averaging ensemble values into a singl§t@rs) and validation (line with dots) stream gauges as function of
forecast. We used the skill score Svhich compares the ~ cnsemble sizeN), precipitation relative error) and spatial &)
performance of the model forecasts with a control forecas,[and temporal+) decorrelation lengths of pre.C|p|tat|on errors. First
based on climatology (Wilks, 2006): guess values are represented by the black line.

Zt: (Qtobs_ Q%or)2
SSi=1- S0 —0. 2 (12) According to the analysis, the DA scheme strongly de-
T obs =cli pends on the ensemble si2e. Small N values produce

(=)

100 200 300 0 20 40 60 80

|
\

w
o
7

o

1 2 3 0 20 40

small improvements in discharge results and larger values
enhance the DA performance (smallarms values), al-

; ; . though the improvement rate is small for values larger
the climatological value of discharge on dagomputed from g P . . . 9
. ; than 150 members. Such behaviour is possibly due to nu-
observations. S ranges from-oo to 1 (optimum) and pos- . ; )
merical reasons, since a largérenable a better sampling of

itive values show an improvement over a forecast based on . )
model covariance errors from the ensemble, as discussed by

wherer is the time intervalQopsis daily discharge observed
at stream gauge station8soy is forecasted discharg@,i is

climatology. Evensen (2009). The DA scheme is also very sensitive to pre-
cipitation relative erroiE and increasing: values improves

4 Results and discussion DA performance. However, i is larger than 50 %A rms in-
creases in validation sites causing worse results (see Fig. 1).

4.1 In situ discharge assimilation Possibly, larger precipitation errors cause larger model uncer-

tainty and consequently the DA scheme gives more weight to
We start our analysis evaluating the sensitivity of the DA gpservations, but it starts to degrade model results at different
scheme performance to some of its parameters, as presentgstations after some point. A moderate dependence teythe
in Fig. 1. The objective of such examination is to verify parameter was found and spatial correlation of precipitation
which parameters are the most important ones and if the DAerrors showed to be of importance, since the performance
performance is improved by using values of these paramedegrades for smaller decorrelation lengths. The best results
ters that are different from the first guess ones based on preyere obtained for 15for both the assimilation and valida-
vious studies (see Sect. 3.4.). The configuration of Exp. 1ajon samples. Finally, a weak sensitivity to theparameter
was used, where in situ discharge data were assimilated. Revas found, which indicates that considering temporal cor-
sults were evaluated in terms of mean changes in root-mearelation in precipitation errors is not as important as spatial
squared errorArms) between observed and simulated dis- cgorrelation.
charges, computed for two samples, the firstincluding stream Based on the sensitivity tests, we used the following new
gauges used for data assimilation and the latter Only the Valiparameter values for the further experimems;—_ 200 (un-
dation ones. Larger decreases in the rms error indicate bett@hanged) E =50 %, = 1.5 andz = 10 days (unchanged).
performance of the DA scheme. However, it is noteworthy that these parameter values related
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In situ discharge assimilation
Exp. 1b (c)
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Fig. 2. Evaluation of in situ discharge assimilation. Spatial distribution of change in root-mean-squareAems) (n stream gauges used
for data assimilation (circles) and validation (squares) considering the assimilatiahamost all gauges (Exp. 1a}) only 12 gauges
(Exp. 1b) andc) almost all gauges but without log transformation (Exp. 1c).

Table 1. Summary of the performance of in situ discharge data assimilation (Exp. 1): median Nash and Suttcliff&jpglex Gimulation
(Open-loop) and assimilation (EnKF) modes and mean change in root-mean-squaraensy. (

Exp. 1% Exp. 16 Exp. 1@

Sites Ens Arms (%) Ens Arms (%) Ens  Arms (%)
Al Open-loop 0.68 - 0.68 - 0.68 -

EnKF 0.93 —42 0.72 -8 0.85 —-25

Assimilati Open-loop 0.71 — 0.89 - 071 -

ssimiation gnig 0.94 —49 0.98 —51 0.88 —29

I Open-loop 0.60 — 0.65 — 0.60 -

Validation EnKF 0.73 ~16  0.67 ~3 067 ~10
L verd Open-loop 0.79 - 079 - 079 -

arge vers enkr 0.94 —34 087 23 095 —40

a Stream gauges located at rivers reaches with upstream drainage area large? traf. J".’CExp. la - data assimilation
using discharge from 80 % of the stream gau§eé&xp. 1b — data assimilation using discharge from 10 % of the stream
gauges‘.j Exp. 1c — equal Exp. 1a but without transforming discharge into the log space.

to precipitation errors, although providing better results for maier, 2006; Clark et al., 2008), we preferred to use the pa-
data assimilation, may not realistically represent errors inrameter values where the DA scheme performs better.
the TRMM Merge dataset. For example, Tian and Peters- We first evaluate results from the Exp. 1a. The DA scheme
Lidard (2010) developed a global map of errors in daily improves results by decreasing model errors in almost all
satellite-based precipitation estimates that show features natream gauges (blue sites in Fig. 2a), including both assimi-
represented here: errors that are spatially and seasonally vatiation and validation sites. On averadéys values increase
able and that decrease with precipitation rate (fred00%  from 0.71 to 0.94 and the rms error decreases by 49 % (Ta-
at1mmd!to~20% at 100mmd? in South America). On ble 1). For example, at an assimilation site located on the
the other hand, the DA scheme had better performance wittNegro River (Fig. 3a), when the EnKF is used, the discharge
E =50 %, which is only slightly larger than the values found estimates are much closer to observations if compared with
by Tian and Peters-Lidard (2010) for the Amazon region, thatthe open-loop simulation. Th&ns index increases from
ranges from~ 20 % to~ 70 %. A possible explanation is the 0.62 to 0.91 and the rms error decreases by 51 %. Simi-
consideration of that model uncertainty coming from precip- larly, results also improve at validation sites, although with
itation errors and neglecting other sources such as parametarsmaller degree, and thgys index increases from 0.60 to
and model structural errors (Liu and Gupta, 2007), making0.73, with a reduction in rms error 6f16 % (Table 1), as
E larger. Therefore, and since the first guess values were nallustrated at a validation site located at upper duRiver
fully justified in the previous studies (Andreadis and Letten- basin (Fig. 3b). Such results demonstrate that the DA scheme
improves model discharge estimates, not only at sites where
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(@) 10" Gauge 14420000, lon = -64.83° lat = -0.48° (b) Gauge 12370000, lon = -72.79° lat = -8.95°
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Fig. 3. Discharge derived from in situ observation (blue line), open-loop simulation (black line) and EnKF simulation (red(i)&)egro
River (assimilation site, Exp. 1a)h) upper Jura River (validation site, Exp. 1af¢) lower Juria River (validation site Exp. 1b) and upper
Jura River (assimilation site, Exp. 1c). Site are indicated Fig. 2.

data were assimilated but possibly at ungauged rivers reaches Finally, we compare the use (Exp. 1a) or not (Exp. 1c) of
as well. the transformation of discharge values into the log space be-
In Exp. 1b, results improve at assimilation sitesEns fore data assimilation. The performance of the DA scheme
increases from 0.89 to 0.98 and the rms error decreasedegrades if the log transformation is not used, and in this
by 50% (Table 1). However, since data from only a few caseArms increases t6-29 % and—10% for the assim-
gauges were assimilated, there is no important improvemenitation and validation samples respectively, instead of the
(Arms= —3 %) if all validation sites are examined together. —49 % and—16 % values obtained in the Exp. la. Clark et
As expected, according to Fig. 2b the DA scheme improvesal. (2008) argue that the EnKF with log transformation per-
discharge estimates mostly at large rivers (e.g. Fig. 3c)forms better because relationships between streamflow and
where Ens increases from 0.79 to 0.87 whikerms equals  model states are nonlinear and state updates are exception-
—23%. But at smaller rivers, in most cases the DA schemaeally large when differences between model and observed val-
has minor effect on simulated discharges (green squares ates are high. However, the worst performance was observed
Fig. 2b) or in some cases it degrades results. mostly at smaller river reaches (see Fig. 2c) as illustrated in
In previous studies conducted over smaller basins (e.g. irfFig. 3c. Also, DA performs better at gauging stations in large
Clark et al., 2008; and in others summarised by Lee et al.yivers andArms increases from-34 % (Exp. 1a) to-40%
2012), the attempt to transfer information to neighbour or(Exp. 1c). Apparently, when the log transformation is not
upstream ungauged river reaches was unsuccessful and carsed, the DA scheme gives more weight to large discharge
rupted model results, while in our case (Exp. 1b) the DA values ¢ 10°to ~ 10° m3s™1) at large rivers while observa-
scheme degraded model outputs mostly at smaller basins artibns at the smaller ones:(~ 10> m3s~1) are not fully taken
improved results at larger rivers. Such behaviour possiblyinto account. These results indicate the importance of using
happens because the state estimation in distributed hydrologhe log space transformation also to deal with very different
ical models is subject to overfitting due to the large dimen-discharge magnitudes, including the ones arising from dif-
sionality of the model state space, and consequently, wheferent spatial scales but also concerning to flood and drought
limited data is available, the data assimilation may updateflows.
state variables at some lumped fashion such as the sub-basin
scale, as explained by Lee et al. (2012).
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Radar altimetry water levels assimilation
(a) Radar altimetry (b) In situ stage (c) In situ discharge
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Fig. 4. Evaluation of ENVISAT radar altimetry data assimilation. Spatial distribution of change in root-mean-square\emsy at(a)
altimetry stations used for data assimilation and stream gaugeghyistage andc) discharge data used for verification.

4.2 Radar altimetry data assimilation try) in the DA scheme; (iv) assimilation of altimetry data
to first retrieve better river-floodplain geometry parameters
In this section, the assimilation of water levels derived from (Se\}\glyb_ll?udratnd Et al., goot& |2021(()) 1b()) ort(hv)tas?llmllatl_(()jn fu;Lér_e
ENVISAT altimetry is evaluated (Exp. 2). Stage and dis- téonal inf:raestic?r:zrljcﬁ a:\./\,/ater sﬁ?]lac:slvc\)/ ;)epmw € addl-
charge data observed at in situ gauging stations were use ) .

9 Serv N S gauging stations were us Furthermore, the DA scheme can degrade results in some

for validation purposes. reaches where no data were assimilated. Such a problem i
The DA scheme improves water level simulations at al- eaches where no data were assimiiated. Such a problem 15
possibly caused by spurious correlations in the model co-

timetry stations used for assimilation (Fig. 4a), as iIIustratedvariance matrix from the EnKF due to a poor sampling from
in Fig. 5a. On average, rms decreases by 56 %omgpgval- _ . . .
g 9 y > I;he ensemble. Aiming to avoid spurious correlations, meth-

ues increase from 0.66 to 0.96 (Table 2). Simulated wate d h variance localisation or local analvsis (Sakov
level accuracy also increases when compared to in situ stag% s such as covariance localisation or local analysis (Sako

data (Arms— —13%). However, the improvement is more and Bertino, 2010) could be used to constrain the influence
evident if o;Iy gaugi'ng stationé located at rivers where aI_of observations based on distance criteria as already used in

timetry data were examined (Figs. 4b and 5b). In this casea'[m(.)Spherlc or ocean a_lpp!lcatlons. However, in our view, a
mean Arms equals—43% andEns changes from 0.75 to particular localisation criteria should be developed for hydro-

0.94 (Table 2), similar to what was obtained at altimetry Sta_Ioglcal applications, since the correlation between the model

. - . n function of an Euclidean distance in som
tions. At other sites, the DA scheme has a minor effect onsgastgz (cea ggils:ngisfliroe) gr ir?othlefs d;aa d(ijs?;ic(;emeass%reij
simulated water levels or even degrades results in some case}% 9- '

Similar results were found for the in situ discharge val- Ollowing the rivers’ path (.g. river discharge and water lev-
idation sample (Fig. 4c). Assimilating water level data im- els). Its f hi . q hat th .
proves discharge estimateArms= —15 %) mostly at the | tResufts dromli' IS (;.-xpéerltmgr:t Iemonstrlat(:]t datlt e_assnc‘in_l—
same rivers in which altimetry data is available (e.g. Fig. 5c¢). ation o radaraftimetry data into ‘arge scale hydrologic mo

But it also degrades results at some of the other river reache%lust (;?QJTanZihS;TZI?EOQEmg;néilﬁézr?,gmﬁg IEVEE
The minor improvement of discharge estimates when wa- g gree. 9

ter levels are assimilated may related to the fact that WateylsATld?ta IS prgwded ata gslday tﬁmptora(; r$S(E)|Ut'p n, |t_s|
level errors are not only related to stream flow or precipita-aSSImI ation can improve modet results at a datly basis as 1-

tion errors, but also to river-floodplain geometry parameters{;g;a;ﬁ? Igf'fél\?ﬁ:zbo?ir;i (I; derZSIlri);y ﬁ:i;g :2: 1[3\(':\; Iﬁglpgliﬁl
as discussed by Paiva et al. (2013b). But this kind of mode ISAT myeasurements are%on?sinf)ultaneous

uncertainty was not considered by the DA scheme. Conse- '

quently, at river reaches where the model already provided

accurate discharge estimates but wrong water level resultsh-3  Assimilation of discharge series based on satellite
altimetry data assimilation corrects water levels but it can altimetry

degrade discharge results. Some possible alternatives to im-

prove model discharge results from radar altimetry assimiladn the last DA experiment (Exp. 3), we evaluate the assimi-
tion could be: (i) the simultaneous assimilation of dischargelation of discharge data derived from ENVISAT water level.
and water level data; (ii) the assimilation of altimetry-based Therefore, the data assimilated into the model has the same
discharge data (tested in Sect. 4.3); (iii) representing the unhigh spatial coverage and low temporal sampling as altime-
certainty of model parameters (e.g. river-floodplain geome-try water levels have, but it also contains discharge informa-
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Table 2. As Table 1 but for Exp. 2.

Sites Ens  Arms (%)

Open-loop 0.66

Radar altimetry — Assimilation -\ 0.96 _56.0

Open-loop 0.64 -

All In situ stage — Validation EnKE 074 _13

Open-loop 0.68 -

In situ discharge — Validation EnKE 0.68 1

In situ stage — Validation Open-loop  0.75 -

Inside ENVISAT EnKF 0.94 —44
domairf In situ discharge — Validation gﬁiglOOp Oc?.8769 _15_
a Upstream and downstream at least one altimetry station.
Table 3.As Table 1 but for Exp. 3.
Sites Ens Arms (%)

Open-loop 0.62 -

Altimetry discharge — Assimilation EnKE 0.79 _23

All

Open-loop 0.68 -

In situ discharge — Validation EnKE 0.72 _5

Open-loop 0.76 -
EnKF 0.80 —-15

Inside ENVISAT

. In situ discharge — Validation
domain

2 Upstream and downstream at least one altimetry station.

tion which is the most important hydrological variable of the the DA scheme has a minor effect on simulated discharge or
model. In situ discharge data were also used for validation. degrades results in some cases.

The DA scheme was able to assimilate altimetry-based Results from this section show the potential of assimilating
discharges increasing the agreement between these obsalischarge data derived from satellite altimetry into large scale
vations and model results in most of the altimetry stationshydrological models instead of in situ discharge or satellite
(Fig. 6a), as exemplified in Fig. 7a. In average, the rms er-water levels, even though such data has lower temporal res-
ror between altimetry-based discharges and model resultslution and accuracy if compared to data gathered at in situ
decreased 23% (Table 3), which represents a smaller imgauging stations.
provement if compared to the assimilation of in situ dis-
charge Arms=—49% in Exp. 1a). Since observation er- 4.4 Prospects of streamflow forecasting
rors are larger in the altimetry-based discharges, the DA ] )
scheme gives more weight to background model results an§/e now assess the potential of a large scale hydrologic-
updated discharge values are not so close to measurementy/drodynamic model coupled with a DA scheme to pro-
The comparison of model results with in situ discharge data?ide streamflow forecasts in the Amazon basin. Since hydro-
(Fig. 6b) shows that errors decrease mostly at gauging stgogical initial stateg governs discharge predlctablllty at the
tions located at rivers where altimetry data were assimi-la"ge Amazonian rivers (discussed by Paiva et al., 2012), we
lated (e.g. Fig. 7b). At these siteBns changes from 0.76 have chosen to generate forecasts starting with initial states
to 0.80 and the meanrms is —14 % (Table 3), which is gathered by the_ D_A scheme and then using the ensemble
comparable to the improvement obtained in the altimetryStréamflow prediction approach — ESP (Day, 1985), where
data assimilation (Exp. 2, Table 2) over discharge resultsh® model is run forced by an ensemble of observed meteo-
(Arms= —15 %), but smaller than the enhancement of waterrological data from past years. Since thls is a first attempt, we
level results Arms= —44 %). Moreover, similarly to Exp. 2, havg chos.en to evaluate forecasts using only .the DA scheme
at gauging stations located outside the assimilation domain¢onfiguration from Exp. 1b, where the model is updated us-

ing discharge data from 12 gauging stations located on the
Amazon and its main tributaries.
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(a) lon = -67.77° lat = -1.64° Radar altimetry discharge assimilation
(a) Radar altimetry discharge
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(b) Gauge 15630000, lon = -63.02° lat = -7.51°

(b) In situ discharge
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Fig. 6. Evaluation of ENVISAT radar altimetry discharge assim-
ilation. Spatial distribution of change in root-mean-square error
(Arms) at(a) altimetry stations used for data assimilation &by
stream gauges with discharge data used for validation.
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0
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observations decreases as function of lead time and, for
example, Sg; decreases from 0.90 to 0.49 for forecasts 10
Fig. 5. Observation (blue line), open-loop simulation (black line) and 90 days ahead &@bidos station. But it remains very
and EnKF simulation (red line) &) Japué River altimetry site(b) high, showing that it would be possible to produce accurate
Madeira River in situ stage sife) Solimbes River in situ discharge forecasts at the Amazon main river for even larger lead
site. Sites are indicated in Fig. 4. times. Model performance also increases from the upper to
the lower part of the SoliGes/Amazon River, and at the
same time, the spread of the ESP ensemble at large lead
We first evaluate hindcast forecasts at thetimes increases upstream and decreases downstream. Such
Solimdes/Amazon main stem, including upper Sdigs  behaviour is explained by the fact that in larger rivers, the
River at Tamishiyacu, Solives River at Manacapuru and hydrological predictability is much more influenced by the
Amazon River aObidos (Fig. 8). Notice that these gauges current volumes of water stored upstream than by future
were used by the DA scheme. The model was able tgprecipitation forcing, as discussed by Paiva et al. (2012).
forecast discharges with relatively high accuracy even for Analysis from Fig. 8 also demonstrates that the model
very large lead times (90 days). In all cases, forecasts arsuccessfully predicted the severe 2005 drought at the
markedly better than simply using discharge climatology, Solimbes/Amazon main stem. At this year, discharges
as shown by positive values of &Sskill score (Fig. 8).  dropped~ 1 month earlier than normal (Fig. 8) and river lev-
As expected, the agreement between model values andls fell to historically low levels causing navigation to be sus-

ENSass = 0.90, ENSsim = 0.55, Arms = -52.43 %
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Fig. 7. Observation (blue line), open-loop simulation (black line)
and EnKF simulation (red line) of discharge(a) Negro River al-
timetry site andb) Juria River in situ site. Sites are indicated in
Fig. 6.
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pended (Marengo et al., 2008). Even so, the model was able
to predict this low flows~ 90 days ahead.

We now evaluate forecasts at gauging stations located alll 2
over the Amazon basin. Forecasts for a smaller lead time of —.
5 days or even 15 days (Fig. 9a and b) were relatively ac-. | 51|
curate with positive S values at several gauging stations 5
located at both upstream and downstream rivers. However,
the quality of the forecasts decreased as a function of lead
time (30 and 90 days, Fig. 9c and d). It becomes very poor 05
at smaller rivers and remains meaningful with positive;SS Jan04 Apr04 Julo4 Oct04 Jan05 Apr05 Jul05 Oct0S
values mainly at gauging stations with large draining areas. 8519 = 090, 883 = 0.81. SS%° = 049
For 90 days lead time, $Sindex remains positive at almost e Tl Tl
all stations along the Soli@@s/Amazon main stem and in g g Evaluation of streamflow forecasts. Observed (blue), cli-
some of the main tributaries. This behaviour is also illus- matological (black) discharges, ensemble forecasts (grey) together
trated at Fig. 10. S§ values are usually higher at gauging with ensemble mean (red) @) Upper Solindes River at Tamishiy-
stations located in rivers draining large areas and decreasgu, (b) Solimbes River at Manacapuru and (c) Amazon river at
with lead time. For instance, if only stations gauging rivers Obidos. Presented forecasts started each 10 January, April, July and
with drainage area larger thanim? or 4x 10°km? are ~ October. Sites are indicated in Fig. 9.
considered, on average, forecasts remain better than clima-
tology (SSii > 0) up to~ 15 and~ 25 days lead time, re-
spectively. On the other hand, if only the largest rivers are
taken into account{ 10° km?), SS;; values are high and al-
ways positive, which demonstrates the good performance of

1 L L ! ' L !
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Stream flow forecast performance
(a) 5 days (b) 15 days

SScli @05-1.0 ®0.0-05 ®<0.0

Fig. 9. Evaluation of streamflow forecasts. Spatial distribution of the skill scogg 88 (a) 5, (b) 15, (¢) 30 and(d) 90 days lead time.

the model forecasts. $Sis also high at stream gauges used smaller basins (e.g. Clark et al., 2008; and others summarised
for data assimilation where forecasts are usually bettey, SS by Lee et al., 2012), also transfer information to ungauged
is close to one for small lead times, as expected, and become#vers by improving results at validation sites, although with
negative after- 55 days. a smaller degree. The assimilation of discharge data at a re-
duced number of gauging stations located at larger rivers im-
proves results mostly at the large reaches but it degrades re-
5 Summary and conclusions sults at some smaller basins. Also, the transformation of dis-

charge measurements into the log space proved to be impor-

We presented the development and evaluation of a data ag;n¢ 1o deal with very different discharge magnitudes arising
similation scheme for both gauged and satellite altimetry-go gifferent spatial scales or from contrasting flood and

based discharge and water levels into a large scalgscession flows.
hydrologic-hydrodynamic mo‘?‘e' of the Amazon Riverbasin e agsimilation of satellite altimetry data improved
using the Ensemble Kalman Filter — EnKF. We also evaluateqyqge| water levels, and also discharges to a minor degree,
hindcast forecasts based on this system using the ensemblgqgiiy at the same river reaches where altimetry stations
streamflow prediction approach, where the model was forced, ¢ |5cated. Assimilating altimetry-based discharge also im-
by an ensemble of past precipitation forcing from TRMM 4yeq model estimates, although to a minor degree if com-
mission. o pared to the in situ discharge assimilation, probably due
According to our results, the data assimilation scheme, the |arger errors in remotely sensed observations. How-
performed well in assimilating in situ and remotely sensedgye in hoth cases, even though radar altimetry data has low
discharge and water levels into the large scale hydrologlctempom resolution (35 days), its assimilation can improve

hydrodynamic model. The assimilation of in situ discharge o qe| resuits at a daily basis, possibly due to its higher spa-
showed that EnKF can improve discharge estimates at as-

similation gauges, but differently from previous studies at
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1 T . : missions as the existing ones, or the altimetry missions to
5 be launched in the coming years by the European Spatial
107 km Agency ESA, namely the Sentinel-3 constellation and the
= 4x10° km? forthcoming SWOT mission (Durand et al., 2010a). More-
e 6 o ] over, the altimetry-based discharge assimilation can improve

' =107 km | when better discharge estimates become available, such as
——%—— -2x10° km? the ones under development for the future SWOT mission
| (Durand et al., 2010b).

Finally, the model was able to provide relatively accurate
streamflow forecasts in the Amazon basin. For smaller lead
times (5 to 15 days), forecasts agreed with observations
in lots of gauging stations and for larger lead times30
days) they remained meaningful mostly at larger rivers. Fore-
casts were usually better at stream gauges used for data
assimilation, especially for smaller lead times. Along the
B Solimbes/Amazon main stem, forecast were highly accurate
) . even for very large lead times (90 days) and the model was

"\ capable to successfully predict the record 2005 drought at

0 : ' : T the Solinbes/Amazon River well in advance. These results
0 20 40 60 80 demonstrate the potential for developing stream flow fore-
lead time (days) casts with large lead times at the world’s large river basins,

such as the Amazon, founded on large scale hydrological

Fig. 10.Median skill score S&; of stream flow forecasts at gauging o .
stations as function of lead time. Different curves show results con-mOde'S based mostly on initial states gathered with proper

sidering gauges with different drainage areas (red and blue IinesPA schemes, and using past climate with the ESP approach.

and only gauges used for data assimilation (black line with dots). AISO, results point to the potentiality of providing hydrolog-
ical forecasts at poorly monitored regions by using mostly

remotely sensed information.

Assimilation

tial resolution and the low temporal variability of Amazonian
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