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São José dos Campos, 12227-010 São Paulo, Brazil

(Received 13 August 2013; published 25 October 2013)

In this work we study the evolution of matter-density perturbations for an arbitrary �ðtÞ model and

specialize our analysis to the particular phenomenological law � ¼ �0 þ 3�H2. We study the evolution

of the cosmic star formation rate in this particular dark energy scenario and, by constraining the �

parameter using both the age of the Universe and the cosmic star formation rate curve, we show that it

leads to a reasonable physical model for � & 0:1.
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I. INTRODUCTION

There is plenty of observational evidence that the
Universe is currently undergoing an accelerated expansion
[1]. According to the Friedmann model, ordinary matter
cannot bring about such cosmic acceleration; a possible
way out of this unsettling picture is provided by the in-
troduction of a fluid with negative pressure to the cosmic
inventory, the so-called dark energy (DE). The simplest DE
candidate is the cosmological constant � (CC for short),
added to the right-hand side of the Einstein field equations
to play the role of such a ‘‘fluid’’ with negative pressure.
Thus, the ‘‘traditional’’ cold dark matter-based cosmology
of the early 1990s, together with a CC (henceforth called
the �CDM cosmology), turned out to be the standard
model for describing the dynamics of the Universe, for it
fits the latest observational results with a very good accu-
racy. However, in spite of this success, the �CDM model
has some shortcomings (see [2] for a discussion), the most
severe being the so-called fine-tuning problem or the old
CC problem. This issue arises from the fact that the
present-time observed value for the vacuum energy den-
sity, �� ¼ �c2=ð8�GÞ � 10�47 GeV4, is more than 100
orders of magnitude smaller than the value found by using
the methods of quantum field theory (�1071 GeV4) [3].

In the last decades, many attempts have been made to
tackle these issues. In particular, models with time-
dependent vacuum energy density seem to be promising,
since the corresponding vacuum energy density could have
a high enough value to drive inflation at the very early
Universe, decaying along the expansion history to its small
value observed today. This process can be implemented
with the introduction of scalar fields, as in the case of
quintessence [4], for example; another way to achieve
this goal is through a phenomenological time-dependent
cosmological term �ðtÞ [5–10]. There has been lately a

strong interest in such a class of models, particularly on
those arising from the quantum field theory methods [see
[11] for a discussion and [12] for a review of �ðtÞ models
arising in the context of quantum field theory in curved
space-time]. In this approach, the time-dependent cosmo-
logical term implies a coupling with another cosmic com-
ponent, leading to either particle production or an increase
in the time-varying mass of the dark matter particles [13].
Models with varying � are essentially phenomenologi-

cal as well as their scalar field analogs (see [14] for the
canonical field description and [15] for its noncanonical
counterpart), so that free parameters emerge, which must
be constrained by observations. In this work we specialize
to the particular �ðtÞ model given by the law � ¼ �0 þ
3�H2 and use the cosmic star formation rate (CSFR) to
constrain the range of the � parameter.
Note that the CSFR makes the connection between the

processes associated with star formation and the growth
of density perturbations, of given mass, able to stand out
from the Universe’s expansion and collapse at a given time.
Thus, CSFR is intrinsically associatedwith the formation of
the first virialized structures (halos) in the Universe. It is
therefore an observable associated with several important
physical processes in the pregalactic Universe such as, for
example, the chemical enrichment, reionization, early evo-
lution of the Universe, growth of the supermassive black
holes, etc. Thereby, any modification of the dark sector of
theUniverse, more specifically the particular type of field or
fluid associated with dark energy, will produce changes in
the way the CSFR evolves with redshift. Currently, obser-
vations of high-z galaxies and gamma-ray bursts has
allowed estimating the CSFR up to redshift �10 [16].
Although the observational uncertainties associated with
the determination of the CSFR are large for z > 3, this is an
observable that has the potential to impose constraints on
the different models of dark energy in a range greater than
redshift is achieved by, for example, bright high-z SNIa.
The present paper is organized as follows: in Sec. II A,

we review the basics of cosmological models with vacuum
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decay, whereas in Sec. II B, we derive an equation for the
matter-density perturbations which holds for any �ðtÞ
model, generalizing the results found in Ref. [17]. In
Sec. III A, we discuss the Press-Schechter mass function
to prepare the ground to derive, and in Sec. III B, the basic
equations to study the time evolution of the CSFR rate.
With all these results in hand, we probe the � ¼ �0 þ
3�H2 model, narrowing down the range of values for � in
Sec. IV. In Sec. V, we make the final remarks.

II. COSMOLOGICAL MODELS
WITH VACUUM DECAY

A. The background equations

Throughout this paper, we consider a flat, homogeneous,
and isotropic universe described by the Friedmann-
Robertson-Walker (FRW) metric

ds2 ¼ dt2 � aðtÞ2ðdr2 þ r2d�2 þ r2sin 2�d�2Þ (1)

and filled with a perfect fluid with energy density �
and pressure P described by the stress energy-momentum
tensor

T��
m ¼ ð�þ PÞu�u� � Pg��; (2)

where u� is the fluid four-velocity. The quantities � and P
are connected via the equation of state

P ¼ w� ¼ ð�� 1Þ�; (3)

where � is the barotropic index.
By introducing a cosmological term � into the Einstein

field equations, one has

G�� ��g�� ¼ �2T��
m ; (4)

where �2 � M�2
P � 8�G, MP being the reduced

Planck mass. It is convenient to introduce the effective
energy-momentum tensor for the two fluids through the
expression

�T�� � T��
m þM2

P�g��; (5)

which naturally satisfies the energy and momentum con-
servation constraint

�T��
;� ¼ 0 (6)

as a consequence of the Bianchi identities. Hence, in this
description, we can interpret � as a second fluid, so that
there is no further reason to keep this term constant with
respect to time.

Next, substituting the metric (1) into (4), we get the
Friedmann equations

�2�þ� ¼ 3H2; (7)

�2P�� ¼ �2
€a

a
�H2; (8)

where H ¼ _a=a is the Hubble parameter; also, from the
energy conservation constraint (6) we get the continuity
equation

_�þ 3Hð�þ PÞ ¼ F; (9)

where we have defined the source term for the particle
creation process

F � �M2
P
_�: (10)

Equation (9) shows that a cosmological model with
varying � implies that the vacuum content of the model
decays into particles, so that this process might lead to a
nonequilibrium process; however, it is possible to find a
particular configuration of the system in which equilibrium
relations still hold, as pointed out in Ref. [18].
Next, we rewrite Friedmann equations (7) and (8) as

3
€a

a
¼ ��2

2
ð3wþ 1Þ�þ�; (11)

which holds for any time dependence of the cosmological
term �; in this work, we specialize to the phenomenologi-
cal model with a quadratic term in H [6,8]:

�ðHÞ � �0 þ 3�H2; (12)

where �0 is the present-day value for the cosmological
constant and � is a dimensionless constant. Substituting
Eqs. (3) and (12) into (7) and (8), we get the following
equation for the Hubble parameter:

_H ¼ ��0

2
� �H2; (13)

where we have defined

� � 3�

2
ð1� �Þ: (14)

It is convenient for our purposes to change the cosmic time
t into the scale factor a in Eq. (13), so that

H0 ¼ 1

aH

�
��0

2
� �H2

�
; (15)

where a prime 0 denotes a derivative with respect to the
scale factor a. The solution for the Hubble parameter is
given by

HðaÞ ¼
�
H2

0 �
��0

2�

��
a

a0

��2� þ ��0

2�
: (16)

In the equation above, all the quantities with a ‘‘0’’ sub-
script are evaluated in present time. It is convenient to
factor out the present-time Hubble constantH0 by defining
the expansion factor

EðaÞ � HðaÞ
H0

; (17)

then, specializing to the case of a dust- (with � ¼ 1) and
vacuum-dominated universe, Eqs. (7), (12), and (14) yield
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�m;0 þ�� ¼ 2

3
�; (18)

where

�� � �0

3H2
0

; �m � 8�G�m;0

3H2
0

; (19)

hence, it follows from expression (16) that

EðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2�
�m;0

�
a

a0

��2� þ 3

2�
��

s
: (20)

For a universe dominated by dust and the cosmological
constant, that is, � ¼ 3=2, Eq. (20) reduces to the
well-known formula for the �CDM model

EðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m0ð1þ zÞ3 þ��

q
; (21)

as expected.

B. The equation for matter-density perturbations

Following Ref. [19], the hydrodynamical equations that
describe the dynamics of the perfect fluid are given, re-
spectively, by the Euler, continuity, and Poisson equations:

@u

@t
þ ðu � rÞu ¼ �r�þ F

�m

ðV � uÞ; (22)

@

@t
�m þr � ð�muÞ ¼ F; (23)

r2� ¼ 4�G���; (24)

where u and V are, respectively, the velocity of a fluid
volume element and of the created particles, �m is the fluid
mass density, � is the Newtonian gravitational potential,
and F is the source term responsible for the matter creation
due to the vacuum decay, given in Eq. (10).

We introduce next a comoving coordinate related to the
proper coordinate r as

x � r

a
(25)

and expand the velocity u and the matter density �m to first
order:

u ¼ aHxþ vðx; tÞ; (26)

�m ¼ ��mðtÞ½1þ 	mðx; tÞ�; (27)

where 	m is the matter-density contrast; hence,
Eqs. (22)–(24) become

@

@t
vþHvþ €ax ¼ � 1

a
r�; (28)

r � v ¼ �a

�
@

@t
	m þQ	m

�
; (29)

r2� ¼ 4�Ga2 ��mð1þ 	mÞ ��2a2; (30)

where we have used Eq. (9) to zeroth order and defined

QðtÞ � F

�0

: (31)

Next, by expanding � as

�ðx; tÞ ¼ �ðx; tÞ þ 2�

3
G ��ma

2x2 � 1

6
�a2x2 (32)

and using the background equation (11) with w ¼ 0,
expressions (28) and (30) turn into

@v

@t
þHv ¼ � 1

a
r�; (33)

r2� ¼ 4�Ga2 ��m	m: (34)

Taking the divergence of (33) and using (29) and (34),
we find

€	m þ ð2HþQÞ _	m � ð4�G ��m � 2HQ� _QÞ	m ¼ 0:

(35)

Next we change the cosmic time variable t into the scale
factor, so that Eq. (35) becomes

	00
mþ

�
3

a
þE0

E
� a3�0

3H2
0�m;0

�
	0
m�

�
3

2

�m;0

a5E2
þ a3

3H2
0�m;0

�
�
6
�0

a
þE0

E
�0þ�00

��
	m¼0: (36)

It is important to stress that Eq. (36) is quite general,
holding for any cosmological model with �ðtÞ, thus
generalizing the approach developed in [17]. In particular,
it reduces to the �CDM matter-density contrast when
�0 ¼ 0:

	00
m þ

�
3

a
þ E0

E

�
	0
m � 3

2

�m;0

a5E2
	m ¼ 0 (37)

[see Eq. (19) in Ref. [17]].

III. THE HIERARCHICAL STRUCTURE
FORMATION SCENARIO

A. The halo mass function

Press and Schechter (hereafter PS) heuristically derived
a mass function for bounded virialized objects in 1974
[20]. The basic idea of the PS approach is to define halos
as concentrations of mass that have already left the linear
regime by crossing the threshold 	c for nonlinear collapse.
Thus, given a power spectrum and a window function, it
should then be relatively straightforward to calculate the
halo mass function as a function of the mass and redshift.
In particular, the scale differential mass function fð
; zÞ
[21], defined as a fraction of the total mass per ln
�1 that
belongs to halos, is
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fð
; zÞ � d�=�B

d ln
�1
¼ M

�BðzÞ
dnðM; zÞ

d ln ½
�1ðM; zÞ� ; (38)

where nðM; zÞ is the number density of halos with massM,
�BðzÞ is the background density at redshift z, and
ðM; zÞ is
the variance of the linear density field. As pointed out in
[21], this definition of the mass function has the advantage
that it does not explicitly depend on redshift, power spec-
trum, or cosmology; all of these are contained in 
ðM; zÞ.

In order to calculate 
ðM; zÞ, the power spectrum PðkÞ
is smoothed with a spherical top-hat filter function of

radius R, which on average encloses a mass M ðR ¼
½3M=4��BðzÞ�1=3Þ. As usual, PðkÞ is assumed to have a
power-law dependence on scale, that is, PðkÞ / kn (with
n � 1). Thus,


2ðM; zÞ ¼ D2ðzÞ
2�2

Z 1

0
k2PðkÞW2ðk;MÞdk; (39)

where Wðk;MÞ is the Fourier transform of the real-space
top-hat window function of radius R. Thus,

Wðk;MÞ ¼ 3

ðkRÞ3 ½sin ðkRÞ � kR cos ðkRÞ�; (40)

and the redshift dependence enters only through the linear
growth factor DðzÞ. That is, 
ðM; zÞ ¼ 
ðM; 0ÞDðzÞ.

On the other hand, the linear growth function is defined
as DðzÞ � 	mðzÞ=	mðz ¼ 0Þ, and it is obtained as a solu-
tion from Eq. (36) or (37) (see [17,22] for details).

Thus, the function fð
; zÞ is, in Eq. (39), the 
-weighted
distribution separating collapsed objects (that is, 	 > 	c,
with 	c � 1:69) from uncollapsed regions. Here, we con-
sider the function fð
; zÞ given by [23]

fSTð
Þ¼0:3222

ffiffiffiffiffiffi
2a

�

s
	c



exp

�
�a	2

c

2
2

��
1þ

�

2

a	2
c

�
p
�
; (41)

where a ¼ 0:707 and p ¼ 0:3. In particular, Eq. (41) is
known as the Sheth-Tormen mass function.

Simulations [21] show that the mass function of dark
matter halos in the mass range from galaxies to clusters is
reasonably well described by Eq. (41).

Once a halo is formed, baryonic matter falls towards
its center. Considering that the density of baryons is pro-
portional to the density of dark matter or, in other words,
considering that the baryon distribution traces the dark
matter, it is possible to write a equation describing the
fraction of baryons that are in structures as

fbðzÞ ¼
RMmax

Mmin
fSTð
ÞMdMR1

0 fSTð
ÞMdM
; (42)

where we have used Mmin ¼ 106M� and Mmin ¼ 1018M�
(see [24] for details).

From the above equation, we can obtain the baryon
accretion rate abðtÞ, which accounts for the increase in
the fraction of baryons in structures. It is given by

abðtÞ ¼ �b�c

�
dt

dz

��1
��������dfbðzÞdz

��������; (43)

where �c ¼ 3H2
0=8�G is the critical density of the

Universe.
The age of the Universe that appears in (43) is related to

the redshift by ��������dt

dz

�������� ¼ 9:78h�1 Gyr

ð1þ zÞEðzÞ : (44)

B. The cosmic star formation rate density

Since galaxies form in dark matter halos and their
evolution is influenced by the baryonic accretion rate
[see Eq. (43)], it is reasonable to assume that the physical
properties of galaxies should correlate to those of the host
halos. In this way, the CSFR density, which is an integral
constraint averaged over the volume of the Universe
observable at a given redshift, could be obtained by a
similar procedure as that used to study stellar populations
during the past 40 years, since the pioneering model
developed by [25].
The key point is to consider halos as reservoirs of neutral

gas that is converted into stars. In this way, the equation
governing the total gas mass (�g) in the halos is

_�g ¼ �d2M?

dVdt
þ d2Mej

dVdt
þ abðtÞ: (45)

The first term on the right-hand side of Eq. (45)
represents the stars which are formed by the gas contained
in the halos. Using a Schmidt law [26], we can write for the
star formation rate

d2M?

dVdt
¼ �ðtÞ ¼ k�gðtÞ; (46)

where k is the inverse of the time scale for star formation.
That is, k ¼ 1=�s.
The second term on the right-hand side of Eq. (45)

considers the mass ejected from stars through winds and
supernovae. Therefore, this term represents the gas which
is returned to the ‘‘interstellar medium of the system.’’
Thus, we can write (see, e.g., [25])

d2Mej

dVdt
¼

Z 120M�

mðtÞ
ðm�mrÞ�ðmÞ�ðt� �mÞdm; (47)

where the limit mðtÞ corresponds to the stellar mass whose
lifetime is equal to t. In the integrand, mr is the mass of
the remnant, which depends on the progenitor mass (see
[24,25] for details), and the star formation rate is taken at
the retarded time (t� �m), where �m is the lifetime of a star
of mass m.
Since the stars that are formed within the halos have

masses up to �120M�, we can use for �m the metallicity-
independent fit of Ref. [27]. Thus,
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log 10ð�mÞ ¼ 10:0� 3:6log 10

�
M

M�

�
þ

�
log 10

�
M

M�

��
2
;

(48)

where �m is the stellar lifetime given in years.
In Eq. (47), the term �ðmÞ represents the initial mass

function (IMF), which gives the distribution function of
stellar masses. Thus,

�ðmÞ ¼ Am�ð1þxÞ; (49)

where x is the slope of the IMF and A is a normalization
factor determined by

Z 120M�

0:1M�
m�ðmÞdm ¼ 1; (50)

where 0:1M� corresponds to the minimum stellar mass
capable of nuclear fusion which represents the stellar or
brown dwarf mass limit.

Numerical integration of (45) produces the function�gðtÞ
at each time t (or redshift z). Once we have obtained �gðtÞ,
we return to Eq. (46) in order to obtain the CSFR. Just by
replacing �ðtÞ by _�?ðtÞ, we have the CSFR as given by

_� ? ¼ k�g: (51)

IV. TESTING THE � ¼ �0 þ 3�H2 MODEL

Once we have established the basic ideas underlying
vacuum-decaying cosmological models and the DE con-
tribution to the CSFR, we now proceed to test the � ¼
�0 þ 3�H2 model using the CSFR. The main equation to
be solved is the one associated with the time evolution of
the matter-density contrast (36); the derivatives of� can be
read from (12) and (17):

�0

3H2
0

¼ 2�E0E; (52)

�00

3H2
0

¼ 2�ðE00Eþ E02Þ; (53)

so that Eq. (36) becomes

	00
m þ

�
3

a
þ E0

E
� 2�a3

�m;0

�
	0
m �

�
3

2

�m;0

a5E2
þ 2�a3

�m;0

�
�
6
E0E
a

þ 2E02 þ E00E
��

	m ¼ 0: (54)

The expansion function for this model is given by
Eq. (20), and taking its derivatives we get the other terms
appearing in (54):

E0

E
¼ 1

a

�
3

2

��

E2
��

�
; (55)

EE00 ¼ 1

a

�
3

2
��

�
� 1

a
� E0

E

�
��

�
E0E� E2

a

��
: (56)

From the mathematical formalism developed above, we
are able to obtain the CSFR in a self-consistent way. That
is, taking into account Eq. (56) in the hierarchical structure
formation scenario, described in the previous section, one
can obtain a consistent formalism to analyze cosmological
models with decaying vacuum from the point of view of
both the structure of the Universe and star formation at
high redshifts.
In Fig. 1, we present our results for the CSFR as a

function of the redshift. In particular, HP stands for the
observational data as those derived by Ref. [28]. We have
fixed the cosmological parameters for the following values:
�d ¼ 0:721, �m ¼ 0:279, �b ¼ 0:046, and Hubble con-
stant H0 ¼ 100h km s�1 Mpc�1 with h ¼ 0:700. For the
variance of the overdensity field smoothed on a scale of
size 8h�1 Mpc, we consider 
8 ¼ 0:821. These values
are consistent with nine-year Wilkinson Microwave
Anisotropy Probe observations [29].
For other model parameters associated with the

hierarchical scenario of structure formation, one uses
x ¼ 1:35 (IMF), and �s ¼ 2:0� 109 Gyr (we refer the
reader to Refs. [22,24,30], who have analyzed the influence
of these parameters on the CSFR).
In the present study, it is enough to fix the same input

parameters for both cases: cosmological constant and vac-
uum decay. We are interested in verifying whether these
two different cosmological models can produce a differ-
ence in the evolution of CSFR.
As can be seen from Fig. 1, the process of baryonic

matter infall from the halos is more efficient, for the same
set of parameters, if� � 0 (decaying-vacuum cosmology).
Note that � ¼ 0:10 produces 3 times more stars at redshift
�5 than the cosmological constant cosmology (� ¼ 0).
In Table I, we present two important characteristics of

the models: the redshift where the CSFR peaks and the age
of the Universe. Thus, the � model increases the redshift

 0.001

 0.01

 0.1

 1

 0  5  10  15  20

  • ρ
 (
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r−
1  M
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−

3 )
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β=0.050
β=0.075

β=0.10

FIG. 1 (color online). The CSFR derived in this work com-
pared to the observational points (HP) taken from Ref. [28]. The
case � ¼ 0 corresponds to cosmological constant model.
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where the CSFR peaks when compared to the cosmological
constant.

Moreover, the cosmological models with � � 0 are
older than in the case of the cosmological constant. In
particular, we can use the value inferred for the CSFR
at z ¼ 0, which is _�? � 0:016M� yr�1 Mpc�1, as a con-
straint for the maximum value of the � parameter.

Indeed, for �> 0:15 the CSFR at z ¼ 0 falls well below
this observational reference value. In this way, a cosmo-
logical model with a � ¼ �0 þ 3�H2 decaying vacuum
can produce a reasonable physical model only if � & 0:1.

V. CONCLUSIONS

In this paper, we generalize the evolution equation for
the matter-density contrast found in Ref. [17] to the case of
DE scenarios with an arbitrary time-varying cosmological

term �. We have studied the CSFR density for the particu-
lar vacuum-decaying model �ðtÞ ¼ �0 þ 3�H2 for a spa-
tially flat Friedmann-Robertson-Walker geometry and find
that the amplitude of the CSFR depends on the specific
value of the � parameter. We verify that in the case � � 0
the star formation is more efficient and the CSFR peaks at
high redshifts. As a result, the CSFR can become 3 times
higher (if � � 0:1) than the cosmological constant model
at z� 5.
However, using the best estimate for the CSFR at z ¼ 0,

which is _�? � 0:016M� yr�1 Mpc�1, produces an impor-
tant constraint on the vacuum decay scenario. That is,
models with �> 0:15 have _�?ðz ¼ 0Þ so far below this
observational limit. Thus, models with � * 0:10 can be
ruled out.
In general, a variety of cosmologically relevant obser-

vations has been used to constrain the vacuum decay
models. They are the baryonic acoustic oscillations, cos-
mic microwave background shift parameter, and SNIa
distance moduli [31]. However, another relevant observ-
able could be constructed to study the Universe at least up
to redshift z� 6–7. This new observable is the CSFR,
which could help to understand the physical character of
the dark energy.
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