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Abstract. Phase synchronization in nonidentical coupled chaotic systems appears for some
conditions in which weak coupling causes the systems evolution on time to lock in phase to
one another, while their amplitudes may remain chaotic and are, in general, uncorrelated. To
identify this phenomenon, given a signal it is necessary to measure properly its phase. If a sys-
tem has a dominant peak in the power spectrum, there are several methods to define the phase.
However, if the signal has a broad-band spectrum, which is typical for non-coherent signal, then
the measurement of the phase may be a challenge. Phase is defined as an increasing function of
time. The standard method for measuring phase does no complain with this requirement. In this
work we present an innovative method for measuring phase that complain with the increasing
function of time requirement. This method is based on Dual Tree Complex Wavelet Transform,
which is a form of discrete wavelet transform that generates complex coefficient by using a dual
tree wavelet filters to obtain their real and imaginary parts.The proposed approach is robust
and computationally efficient. Furthermore, this approachshows flexibility and in principle is
applicable to any experimental time series.
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1 INTRODUCTION

The phenomenon of synchronization has been observed in various natural systems, such as
in heart cells, applause, flashing of the Southeast Asian fireflies, chirping of crickets, and more
[1, 2, 3]. Basically, synchronization is understood as the mutual adjustment of the oscillations
of periodic oscillators due to some sort of interaction between them [4].

Over the last decade, considerable progress has been made toward generalizing the concept
of synchronization, allowing it to encompass chaotic oscillators [4, 5, 6, 7, 8, 9]. In this work our
interest is phase synchronization, which occurs mainly forweak coupling with the amplitudes
of the oscillators remaining uncorrelated while their phases evolve in step with each other over
time [8, 9].

Detecting phase synchronization of chaotic systems requires a clear and unambiguous def-
inition of phase for the oscillators in order to test the condition ∆φ(t) =| φ1(t) − φ2(t) |<
const < 2π, whereφ1(t) andφ2(t) are the phases of systems 1 and 2, respectively. As far as
obtaining the phase of the oscillators is concerned, one canuse direct measurements of the phase
angle on a projection of the attractor, to know: Hilbert transform, Poincaŕe surface of section
[7], curvature and recurrence plots [10, 11], localized sets [12], short-time Fourier transforms
and the continuous complex wavelet transform methodologies [13, 14, 15, 16]. In particular,
the methodologies that use continuous complex wavelet transform are based on the complex
Morlet wavelet to obtain the phase of a chaotic series yielding good results for coherent sys-
tems [14, 16]. In addition, it has a high computational cost and may produce some dificulties to
interprete the results, due to its redundancy framework, when applied to large time series.

To overcame these difficulties, we propose an approach to extract the phase of chaotic sys-
tems based on a efficient wavelet transform, the Dual-Tree Complex Wavelet Transform (DT-
CWT).

2 METHODOLOGY

The Wavelet Transform (WT) is a linear transform that can be used in the analysis of non-
stationary signals in order to extract information of the variations in this frequency signals and
to detect their structure temporally and/or spatially localized [17]. Therefore, the WT provides
a time-frequency representation of the signal using the multiresolution technique by which dif-
ferent frequencies are analyzed with different resolutions [18].

In theory there are two forms of WT, a continuous form and a discrete form. When the param-
eters of scale and translation are continuous we have the called Continuous Wavelet Transform
(CWT), which transforms a one-dimensional signal (time) in a two-dimensional representation
(time, scale) that is highly redundant.

The CWT has been used in previous work in order to calculate the phase of chaotic systems
and evaluate phase synchronization in coupled Rössler systems [13, 14, 15, 16].

In this paper we will use the dual-tree approach, described in [19], which is relatively recent
enhancement to the Discrete Wavelet Transfom (DWT), with important additional properties: it
is nearly shift invariant and directionally selective in two and higher dimensions.

2.1 Dual-Tree Complex Wavelet Transform

Mathematically, any finite energy signalx(t) can be decomposed in terms of basis func-
tions, this study multiscale are the scale functionsφj,n(t) and their respective wavelet functions
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associatedψj,n(t) via the equation

x(t) =
∑

n∈Z

c(j, n) φj,n(t) +
∑

j,n∈Z

d(j, n) ψj,n(t), (1)

whereinc(j, n) are scale coefficients andd(j, n) are wavelet coefficients

c(j, n) = 〈x, φj,n〉 =
∫

x(t) φj,n(t) dt (2)

d(j, n) = 〈x, ψj,n〉 =
∫

x(t) ψj,n(t) dt. (3)

The coefficientsc(j, n) andd(j, n) are calculated by using a very efficient, linear time com-
plexity algorithm based in convolutions in the analyzed signal x(n) with a discrete-time low-
pass filterh0(n), a high-pass filterh1(n) and downsampling operations. Two channels there are
in implementations by filter bank, one being associated withthe filterh0(n) and their scaling
functionsc(j, n) and other associated with filterh1(n) and their wavelet coefficientd(j, n). This
is called the Mallat algorithm or Mallat-tree decomposition [18].

Despite its applicability and its efficient computational algorithm, the DWT has four funda-
mental deficiencies and interlaced, which are: oscillations, shift variance, aliasing and lack of
directionality. In [19] a possible solution to resolve these deficiencies is presented by making
use of complex waveletsψc(t) = ψh(t) + ı ψg(t), whereinψh(t) denotes the real part andψg(t)
the imaginary part.

The DT-CWT employs two real DWT’s, the first DWT (upper filter bank or upper tree)
consists of low-pass filtersh0(n) and high-pass filtersh1(n) and the second DWT (lower filter
bank or lower tree) is composed by low-pass filtersg0(n) and high-pass filtersg1(n). Each DWT
is composed by two different filter sets, which satisfying the conditions of perfect reconstruction
and constructed jointly so that the overall transformed is approximately analytical.

Considering a real signalx(n), is obtained as output of the first DWT the real partψh(t)
anddh(j, n) of the complex wavelets and of the complex wavelets coefficients, respectively. In
the second DWT is obtained as output the imaginary partψg(t) anddg(j, n) of the complex
wavelets and of the complex wavelets coefficients, respectively (see Figure 1(a)). Thus, we
obtain the complex waveletsψc(t) = ψh(t) + ı ψg(t) and the complex wavelets coefficients
dc(j, n) = dh(j, n) + ı dg(j, n).

The Figure (1) shows a schematic representation of the decomposition of the real signalx(n)
using DT-CWT. In Figure (1)(a) the signal is decomposed in one scale (j = 1) and (b) in three
scales (j = 1, 2, 3).

In order to satisfy the conditions of perfect reconstruction, the filters are designed such that
the complex waveletsψc(t) := ψh(t) + ı ψg(t) are approximately analytic. To do this, they
are designed so thatψg(t) is approximately the Hilbert pair ofψh(t), in other wordsψg(t) ≈
H{ψh(t)}, whereH denotes the Hilbert transform [20, 21, 22].

2.2 Phase Computation

In order to calculate the phase of a chaotic system using the approach of DT-CWT, the series
in the variablex of the system 1, i.e,x1(n), is analyzed by DT-CWT multiscale. From this
analysis we obtain the complex wavelet coefficientsdc(j, n) at each scalej. After obtaining the
coefficients, the energyE(j, n) at each scalej is calculated as the square root of the modulus
of complex wavelet coefficients, i.e,E(j, n) =| dc(j, n) |2. After the calculate the energy in
each scale, the maximum energymaxjE(j, n) = E(J, n) is found in order to localize the scale
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(a)

(b)

Figure 1: Schematic representation of the decomposition ofthe signalx(n) in: (a) one scale (j = 1) and (b) three
scales (j = 1, 2, 3), using the DT-CWT.

J which has the maximum energy. The scaleJ associate to the maximum energy are used to
compute the phaseφ(J, n) = arctan

(

dg(J,n)
dh(J,n)

)

in a specific time (see Figure 2(a)). Subsequently,
the same procedure are used to the series in the variablex of the system 2, i.e,x2(n).

Then we calculated the phase of each system,φ1(J, n) andφ2(J, n). Next, the phase differ-
ence between the systems is calculated as∆φ(J, n) = φ1(J, n) − φ2(J, n) and phase synchro-
nization condition is evaluated (see Figure 2(b)).

The Figure 2(a) illustrates a schematic representation of the method for calculating the phase
of a chaotic system by using the approach of DT-CWT. In Figure 2(b) illustrates a schematic
representation of the application of the method in two series x1(n) andx2(n), which are the
series in the variablex of the system 1 and 2, respectively.

(a) (b)

Figure 2: Schematic representation in (a) of the proposed method for calculating the phase using thex variable of
a chaotic system and (b) of the application of the method in two seriesx1(n) andx2(n).
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3 APPLICATION AND RESULTS

In our applications, the time series data used are generatedby two non-identical R̈ossler
systems [23] in non-phase-coherent regime and coupled bidirectionally by variablex. We use
the Runge-Kutta 4th order method with integration time step equal to 0.01. The system is given
by equations (4) and the parameters considered were based inthe study in [4].

ẋ1,2 = −ω1,2 y1,2 − z1,2 + η (x2,1 − x1,2) (4)

ẏ1,2 = ω1,2 x1,2 + 0.2925 y1,2

ż1,2 = 0.4 + z1,2 (x1,2 − 8.5)

whereω1 = 0.98 andω2 = 1.02.
The number of points in the time series analyzed is223. For each system, using thex variable,

the DT-CWT method was applied considering 23 scales of decomposition. Then, the maximum
energy scale was localized and the phase was calculated on this scale. After the application
of the method at the two systems under study, we have the phaseof each system, so that,
phase difference between the systems is calculated in orderto check the condition of phase
synchronization.

The Fig. 3 illustrates in (a) the projection of the attractorin thexy plane; scale versus the
maximum energy in each scale considering a coupling strength of (b) 0.05, (c) 0.15, (d) 0.2;
phase att = [1000, 2000] in the scale of maximum energy considering a coupling strength
of (e) 0.05 and (f) 0.15 and (g) phase att = [1000, 1050] in the scale of maximum energy
considering a coupling strength of0.2.

The Fig 4 illustrates the phase difference using in (a) the wavelet method; (b) the traditional
method for calculate the phase [8] and (c) is shown a zoom,t = [0, 600] of the phase difference
between systems consideringη = 0.15 using the traditional method and the wavelet method
proposed. For small intensity of couplingη = 0.05, the phase difference increases with time
characterizing no phase synchronization. By increasing more the coupling (η = 0.15), some
plateaus of phase synchronization appear and whenη = 0.2 the phase synchronization occurs.
Note in Fig 4(c) that the traditional method can not find the plateaus of phase synchronization
rightly. It is worth mentioning that the plateaus of the phase synchronization were properly
verified on their associated series.
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