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Abstract. Phase synchronization in nonidentical coupled chaotidesys appears for some
conditions in which weak coupling causes the systems ewvolatictime to lock in phase to
one another, while their amplitudes may remain chaotic arej ar general, uncorrelated. To
identify this phenomenon, given a signal it is necessarydasure properly its phase. If a sys-
tem has a dominant peak in the power spectrum, there are dewethods to define the phase.
However, if the signal has a broad-band spectrum, which isglfor non-coherent signal, then
the measurement of the phase may be a challenge. Phase eddadian increasing function of
time. The standard method for measuring phase does no comyth this requirement. In this
work we present an innovative method for measuring phase tmaplkain with the increasing
function of time requirement. This method is based on Duzg¢ Tomplex Wavelet Transform,
which is a form of discrete wavelet transform that generatespiex coefficient by using a dual
tree wavelet filters to obtain their real and imaginary parfhe proposed approach is robust
and computationally efficient. Furthermore, this approatiows flexibility and in principle is
applicable to any experimental time series.
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1 INTRODUCTION

The phenomenon of synchronization has been observed imuganiatural systems, such as
in heart cells, applause, flashing of the Southeast Asidltiggechirping of crickets, and more
[1,12,[3]. Basically, synchronization is understood as théualuadjustment of the oscillations
of periodic oscillators due to some sort of interaction lestwthem([4].

Over the last decade, considerable progress has been meaatd eneralizing the concept
of synchronization, allowing it to encompass chaotic datats [4] 5| 6, 7, 8,19]. In this work our
interest is phase synchronization, which occurs mainlyveak coupling with the amplitudes
of the oscillators remaining uncorrelated while their @ssvolve in step with each other over
time [8,9].

Detecting phase synchronization of chaotic systems reguairclear and unambiguous def-
inition of phase for the oscillators in order to test the dbod A¢(t) =| ¢1(t) — ¢a(t) |<
const < 2w, whereg, (t) and¢.(t) are the phases of systems 1 and 2, respectively. As far as
obtaining the phase of the oscillators is concerned, onesadirect measurements of the phase
angle on a projection of the attractor, to know: Hilbert sfonm, Poinca& surface of section
[7], curvature and recurrence plots [10) 11], localized $&£], short-time Fourier transforms
and the continuous complex wavelet transform methodododi&, 14/ 15, 16]. In particular,
the methodologies that use continuous complex wavelesfwam are based on the complex
Morlet wavelet to obtain the phase of a chaotic series yieldjood results for coherent sys-
tems [14] 16]. In addition, it has a high computational cost may produce some dificulties to
interprete the results, due to its redundancy frameworlenspplied to large time series.

To overcame these difficulties, we propose an approach taaxhe phase of chaotic sys-
tems based on a efficient wavelet transform, the Dual-TreepBoanWavelet Transform (DT-
CWT).

2 METHODOLOGY

The Wavelet Transform (WT) is a linear transform that can lexlus the analysis of non-
stationary signals in order to extract information of theaions in this frequency signals and
to detect their structure temporally and/or spatially lzeal [17]. Therefore, the WT provides
a time-frequency representation of the signal using theirasblution technique by which dif-
ferent frequencies are analyzed with different resol&tidi&].

In theory there are two forms of WT, a continuous form and ardiedorm. When the param-
eters of scale and translation are continuous we have tleglcabntinuous Wavelet Transform
(CWT), which transforms a one-dimensional signal (time) iwa-tlimensional representation
(time, scale) that is highly redundant.

The CWT has been used in previous work in order to calculateltheegof chaotic systems
and evaluate phase synchronization in coupléddRer systems [13, 14,115,/16].

In this paper we will use the dual-tree approach, describ¢tid], which is relatively recent
enhancement to the Discrete Wavelet Transfom (DWT), withortgmt additional properties: it
is nearly shift invariant and directionally selective inoband higher dimensions.

2.1 Dual-Tree Complex Wavelet Transform

Mathematically, any finite energy signalt) can be decomposed in terms of basis func-
tions, this study multiscale are the scale functions(¢) and their respective wavelet functions
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associated; ,,(¢) via the equation

x<t):Z c(j,n ¢J” + Z d(j,n wjn t), (1)

nez J,neZ

whereinc(j, n) are scale coefficients amtd;j, n) are wavelet coefficients

eljin) = (@ 65) = [ 2(t) dsnlt) dt @
Aom) = (@) = [ 2(t) () dt. @)

The coefficients:(j, n) andd(j, n) are calculated by using a very efficient, linear time com-
plexity algorithm based in convolutions in the analyzechaig:(n) with a discrete-time low-
pass filterh(n), a high-pass filtek, (n) and downsampling operations. Two channels there are
in implementations by filter bank, one being associated thiénfilter 1o(n) and their scaling
functionsc(j, n) and other associated with filtef (n) and their wavelet coefficienl( j, n). This
is called the Mallat algorithm or Mallat-tree decomposit[da8].

Despite its applicability and its efficient computationejaithm, the DWT has four funda-
mental deficiencies and interlaced, which are: oscillatjahift variance, aliasing and lack of
directionality. In [19] a possible solution to resolve taateficiencies is presented by making
use of complex wavelets, (t) = 5 (t) + ¢ 1¥,(t), whereimy, (t) denotes the real part ang(t)
the imaginary part.

The DT-CWT employs two real DWT's, the first DWT (upper filter bankupper tree)
consists of low-pass filters (n) and high-pass filters; (n) and the second DWT (lower filter
bank or lower tree) is composed by low-pass filig(s:) and high-pass filterg (n). Each DWT
is composed by two different filter sets, which satisfying tonditions of perfect reconstruction
and constructed jointly so that the overall transformegzraximately analytical.

Considering a real signal(n), is obtained as output of the first DWT the real past)
anddy,(j,n) of the complex wavelets and of the complex wavelets coeffisieespectively. In
the second DWT is obtained as output the imaginary paft) andd,(j,n) of the complex
wavelets and of the complex wavelets coefficients, resgalgtisee Figuré]1(a)). Thus, we
obtain the complex wavelets.(t) = ¥5(t) + ¢ ¥,(t) and the complex wavelets coefficients
dc(j,m) = dp(j,n) +1dy(j,n).

The Figure[(ll) shows a schematic representation of the daasition of the real signal(n)
using DT-CWT. In Figurel(1)(a) the signal is decomposed in maes(j = 1) and (b) in three
scales{ =1,2,3).

In order to satisfy the conditions of perfect reconstruttithe filters are designed such that
the complex wavelets.(t) := ¢,(t) 4+ + ¢,(t) are approximately analytic. To do this, they
are designed so that,(¢) is approximately the Hilbert pair afy, (), in other wordsy,(t) ~
H{Yn(t)}, whereH denotes the Hilbert transform [20,/121, 22].

2.2 Phase Computation

In order to calculate the phase of a chaotic system usingaach of DT-CWT, the series
in the variabler of the system 1, i.ez;(n), is analyzed by DT-CWT multiscale. From this
analysis we obtain the complex wavelet coefficiefitg, n) at each scalg. After obtaining the
coefficients, the energif(j, n) at each scalg is calculated as the square root of the modulus
of complex wavelet coefficients, i.&(j,n) =| d.(j,n) |>. After the calculate the energy in
each scale, the maximum enengy.z; E(j,n) = E(J,n) is found in order to localize the scale
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Figure 1: Schematic representation of the decompositidheo§ignalz(n) in: (a) one scalej(= 1) and (b) three
scales{ = 1,2, 3), using the DT-CWT.

J which has the maximum energy. The scdlassociate to the maximum energy are used to

compute the phasg(J, n) = arctan (%) in a specific time (see Figule 2(a)). Subsequently,
the same procedure are used to the series in the vaniaiflthe system 2, i.exz(n).

Then we calculated the phase of each syster/, n) andg.(J, n). Next, the phase differ-
ence between the systems is calculatedhas/, n) = ¢,(J,n) — ¢2(J,n) and phase synchro-
nization condition is evaluated (see Figlte 2(b)).

The Figuré R(a) illustrates a schematic representatiomeofitethod for calculating the phase
of a chaotic system by using the approach of DT-CWT. In Figlitg Blustrates a schematic
representation of the application of the method in two seri€¢n) andz,(n), which are the

series in the variable of the system 1 and 2, respectively.
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Figure 2: Schematic representation in (a) of the proposdtaoddor calculating the phase using theariable of
a chaotic system and (b) of the application of the method mgeriesr; (n) andzz(n).
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3 APPLICATION AND RESULTS

In our applications, the time series data used are genebgtédo non-identical Rssler
systems[[23] in non-phase-coherent regime and coupletebtainally by variabler. We use
the Runge-Kutta 4th order method with integration time stgpaéto 0.01. The system is given
by equations.(4) and the parameters considered were batezlstudy in[[4].

T12 = —wioYi2— 212+ (221 — T19) 4)
Y12 = wi2 T12+ 0.2925 19
7;'1’2 = 04 + 2172 (ZELQ — 85)

wherew; = 0.98 andw, = 1.02.

The number of points in the time series analyzettis For each system, using thevariable,
the DT-CWT method was applied considering 23 scales of decsitipm@ Then, the maximum
energy scale was localized and the phase was calculatedsosctile. After the application
of the method at the two systems under study, we have the miass&ch system, so that,
phase difference between the systems is calculated in twdgreck the condition of phase
synchronization.

The Fig.[3 illustrates in (a) the projection of the attradtothe zy plane; scale versus the
maximum energy in each scale considering a coupling stineoig(b) 0.05, (c) 0.15, (d) 0.2;
phase at = [1000,2000] in the scale of maximum energy considering a coupling stteng
of (e) 0.05 and (f) 0.15 and (g) phase at = [1000, 1050] in the scale of maximum energy
considering a coupling strength @£.

The Figl4 illustrates the phase difference using in (a) theled method; (b) the traditional
method for calculate the phase [8] and (c) is shown a zaem|0, 600] of the phase difference
between systems considering= 0.15 using the traditional method and the wavelet method
proposed. For small intensity of couplimg= 0.05, the phase difference increases with time
characterizing no phase synchronization. By increasingertioe coupling{ = 0.15), some
plateaus of phase synchronization appear and wher).2 the phase synchronization occurs.
Note in Figl4(c) that the traditional method can not find thetgrus of phase synchronization
rightly. It is worth mentioning that the plateaus of the phagnchronization were properly
verified on their associated series.
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