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ABSTRACT

Quantification of tropical forest biomass and characterization of forest structure at  fine 
scales is critical for a better understanding of the role of tropical ecosystems in the global 
carbon cycle. LiDAR remote sensing is a powerful tool for assessing 3D vegetation 
structure and estimating aboveground forest  biomass, provided that LiDAR measurements 
penetrate dense forest vegetation to generate accurate estimates of surface topography and 
canopy  heights. Dense tropical forest canopies present various challenges for LiDAR 
remote sensing, especially  in areas of steep topography where much of the remaining 
Atlantic Forest is concentrated. Airborne LiDAR data were acquired from a commercial 
provider for a region of the Serra do Mar State Park in the state of São Paulo, Brazil, a 
mountainous area with steep slopes covered by mature tropical dense forest. Digital terrain 
models (DTMs) derived from all LiDAR data were compared to 35 ground control points 
measured with survey  grade GNSS receivers, post-processed with differential correction. 
The two LiDAR-based terrain models were extremely accurate, with mean signed errors of 
0.19 m (± 0.97 m) and 0.18 m (± 0.95 m) compared to ground points. Random thinning of 
the original LiDAR point density (20 points/m2) decreased the accuracy of the terrain 
models, with signed errors rising to 0.38 m (± 1.32 m), 1.12 m (± 2.04 m), 1.59 m (± 3.13 
m) and 3.21 m (± 3.12 m) as point density was reduced to 8, 4, 2 and 1 points/m2, 
respectively. Offsets between LiDAR DTMs and ground data in submontane areas were 
consistently higher than those in montane areas, possibly  reflecting the varying complexity 
of the terrain and the effects of variable ranging distance. Canopy  heights calculated from 
the thinned LiDAR data also differed significantly  from canopy heights estimated with the 
full LiDAR density. Mean canopy surface height decreased by 3%, 8%, 16% and 25% as 
return density was reduced to 8, 4, 2 and 1 points/m2, respectively. The magnitude of 
change in canopy height was greater in submontane plots (range of 0.79-6.08 m) than in 
montane plots (range of 0.60-4.24 m) within all data density classes. Low variation in 
vegetation surface model elevations with reduced data density indicated that the decrease in 
canopy  heights was due to the difficulty to characterize topography precisely  and not the 
inability to capture the top heights of trees. Metrics of canopy structure and terrain 
characteristics derived from the full-density LiDAR data were significantly related to 
aboveground biomass components in 1-ha permanent plots at the study site. Canopy gap 
fraction showed close correspondence with aboveground biomass loss (R2 = 0.87) and net 
change (R2 = 0.91), while mean canopy surface height explained 43% of the variation in 
total aboveground biomass and 68% of the variation in total basal area. Both canopy gap 
fraction and rates of mortality were lower on steep terrain than on gentler slopes, 
suggesting that steeper slopes might provide more favorable conditions (nutrient, water and 
light availability) for tree growth and biomass accumulation than flat terrain. Given the 
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growing emphasis on the use of airborne LiDAR for forest management and conservation 
efforts (REDD+), the results of this study highlight the importance of careful survey 
planning and consistent sampling frames for accurate quantification of aboveground 
biomass stocks and dynamics. In mountainous terrain under closed-canopy tropical forest, 
such as the Atlantic Forest of the Serra do Mar, low-density  LiDAR coverage will 
underestimate biomass and might not characterize truthfully  the spatial heterogeneity of 
forest structure.
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ESTIMATIVAS DA ESTRUTURA DA FLORESTA TROPICAL E DA 
TOPOGRAFIA DO TERRENO EM UMA ÁREA MONTANHOSA DA MATA 
ATLÂNTICA BRASILEIRA UTILIZANDO LIDAR AEROTRANSPORTADO

RESUMO

Quantificar a biomassa florestal tropical e caracterizar a estrutura da floresta em escalas 
finas é fundamental para compreender melhor o papel dos ecossistemas tropicais no ciclo 
global de carbono. O sensoriamento remoto por LiDAR é uma ferramenta poderosa para 
avaliar a estrutura da vegetação em 3D e estimar a biomassa acima do solo, considerando 
que as medições do LiDAR penetram na vegetação densa da floresta gerando estimativas 
precisas da topografia e das alturas das árvores. Florestas tropicais com dossel denso 
apresentam vários desafios para o sensoriamento remoto por LiDAR, especialmente em 
áreas de topografia acidentada, onde grande parte das remanescentes da Mata Atlântica se 
encontra. Dados de LiDAR aerotransportado foram adquiridos sobre o Parque Estadual da 
Serra do Mar - SP, Brasil, em uma área montanhosa com declives íngremes cobertas por 
floresta tropical densa. Modelos digitais de terreno derivados do LiDAR foram comparados 
com 35 pontos de controle medidos com receptores GNSS de alta precisão, pós-
processados com correção diferencial. Os dois modelos de terreno obtidos do LiDAR 
mostraram-se extremamente precisos, com erros médios de 0,19 m (± 0,97 m) e 0,18 m (± 
0,95 m) em relação aos pontos de controle. Redução aleatória da densidade original de 
pontos de LiDAR (20 pontos/m2) resultou em diminuição da precisão dos modelos de 
terreno: os erros médios subiram para 0,38 m (± 1,32 m), 1,12 m (± 2,04 m), 1,59 m (± 3,13 
m) e 3,21 m (± 3,12 m) com as densidades de 8, 4, 2 e 1 pontos/m2, respectivamente. As 
diferenças de elevação entre o modelo de terreno e os pontos de controle em áreas 
submontanas foram consistentemente mais altas do que as diferenças em áreas montanas, 
possivelmente refletindo a complexidade variável do terreno e os efeitos da altura do vôo. 
A altura do dossel calculada a partir dos dados de LiDAR com densidade reduzida diferiu 
também significativamente da altura do dossel estimada a partir dos dados com densidade 
original. A altura média da superfície do dossel diminuiu de 3%, 8%, 16% e 25% com 
densidades de 8, 4, 2 e 1 pontos/m2, respectivamente. A magnitude da mudança na altura do 
dossel foi maior nas parcelas submontanas (entre 0,79-6,08 m) do que nas montanas (entre 
0,60-4,24 m) dentro de todas as classes de densidade de dados. A baixa variação das 
elevações do modelo da superfície da vegetação com dados reduzidos indicou que a 
diminuição da altura do dossel foi devido a dificuldade de caracterizar a topografia e não a 
incapacidade de capturar as alturas máximas das árvores. Métricas de estrutura do dossel e 
características do terreno derivadas dos dados de LiDAR (densidade original) foram bons 
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preditores de componentes da biomassa acima do solo em parcelas permanentes de 1 
hectare dentro da área de estudo. A fração de aberturas no dossel foi fortemente relacionada 
a perda de biomassa acima do solo (R2 = 0,87) e a variação líquida (R2 = 0,91), enquanto 
que a altura média da superfície do dossel explicou 43% da variação na biomassa total 
acima do solo e 68% da variação na área basal total. A fração de aberturas no dossel e as 
taxas de mortalidade foram menores em terrenos íngremes do que em encostas suaves, 
sugerindo que encostas mais íngremes podem proporcionar condições mais favoráveis (de 
nutrientes, de água e disponibilidade de luz) para o crescimento das árvores e acúmulo de 
biomassa. Dada a crescente ênfase sobre o uso de LiDAR aerotransportado para manejo 
florestal e esforços de conservação (REDD+), os resultados deste estudo destacam a 
importância do planejamento cuidadoso de levantamentos futuros com amostragem 
consistente para a quantificação precisa dos estoques e dinâmica da biomassa acima do 
solo. Em terreno montanhoso coberto com densa vegetacão tropical, como a Mata Atlântica 
da Serra do Mar, dados de LiDAR de baixa densidade vão subestimar a biomassa e podem 
não caracterizar verdadeiramente a heterogeneidade espacial da estrutura da floresta.
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1. INTRODUCTION

The Atlantic Forest is the second most widespread tropical rainforest in Brazil. It is 

considered a hotspot of biodiversity  and endemism, and it provides significant ecosystem 

services, such as maintenance of natural carbon stocks and water flow regulation (MYERS 

et al., 2000). As a result of extensive fragmentation and degradation under anthropogenic 

pressure over the course of the past centuries, almost 90% of the original Atlantic Forest 

vegetation has been lost (RIBEIRO et al., 2009). The remaining forest cover is currently 

distributed over approximately  245,000 fragments, the largest of which is located in the 

Serra do Mar along the coastal mountains of the state of São Paulo, Brazil, where only the 

steepest slope areas were left intact (VIEIRA et al., 2008). This single fragment contains 

about 1,110,000 ha of continuous forest, accounting for 7% of the total remaining extent of 

the Atlantic Forest today, and storing a substantial amount of carbon aboveground 

(RIBEIRO et al., 2009).

Mapping the extent and geographic distribution of the Atlantic Forest remnants has been 

the focus of various studies over the past decades, but detailed information on the three-

dimensional structure and related function of the vegetation in these areas still remains 

limited (VIEIRA et al., 2008). The effects of short, steep elevational gradients on tropical 

forest structure and growth patterns, for example, are not well known. Significant 

differences in forest size structure and biomass stocks have been found among sites over 

short distances along an elevational gradient in the Serra do Mar by Alves and 

collaborators (2010). Their results suggest that local topographic variation and associated 

differences in light environment and nutrient availability are likely to have a large effect on 

growth patterns and biomass accumulation in this coastal Atlantic Forest. For a deeper 

ecological understanding of the structure and function of this highly diverse and 

increasingly threatened ecosystem, further research using improved techniques is needed.
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One of the most difficult components to quantify in complex tropical forest ecosystems is 

overall forest structure. The vertical structure of the forest, defined as “the bottom to top 

configuration of aboveground vegetation within a forest stand” is particularly difficult to 

assess and quantify over large and remote areas or on complex terrain, although it is 

certainly important for a better understanding of forest functioning (ZIMBLE et al., 2003). 

Changes in vertical forest  structure affect  both microclimatic patterns and processes 

directly, and have been shown to impact the behavior and distribution of various species in 

forest ecosystems (BROKAW; LENT, 1999). Understanding how environmental factors 

constrain species distributions and affect growth and mortality  rates is fundamental to 

predicting the likely impacts of changes in land-use and global climatic conditions on 

tropical rainforests.

Evidence suggests that light limitation driven by canopy closure and gap distribution plays 

a strong role in ecosystem dynamics in tropical forests, controlling tree regeneration, forest 

dynamics and forest diversity  (UNGER et al., 2013). Of all environmental factors affecting 

tropical forest communities (e.g. temperature, light, water, nutrients), sunlight is considered 

one of the most limiting resources for plant  growth (PEARCY, 2007). Within species, 

higher light interception tends to lead to higher growth rates and enhanced survival 

(KRUGER; VOLIN, 2006), as well as greater canopy openness and larger branch extension 

(STERCK; BONGERS, 2001). The productivity and ecosystem role of individuals of 

different sizes may also depend on the varying levels of light penetration and shading 

within the forest canopy (STARK, 2012). Developing a detailed understanding of the role 

of light in forest dynamics requires precise information on the distribution of vegetation 

elements (leaves, branches, stems) in the forest canopy, as well as on the spatial variation of 

light itself.
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Traditional methods for assessing forest canopy structure are based either on field 

measurements or photographic and/or photogrammetric interpretations (WULDER, 1998). 

The drawback of field-based inventories is that they cannot provide spatially  continuous 

information over a large area, while the usefulness of photo interpretation in mountainous 

terrain is hampered by  different illumination and shading effects. The use of Light 

Detection and Ranging (LiDAR) instrumentation in its various forms for forestry 

applications is one of the most developed non-traditional capabilities of the technology. The 

ability  of small-footprint airborne LiDAR to penetrate gaps in forest canopies and reach the 

ground below allows deriving detailed digital terrain models (DTMs), as well as the 

characteristics of the overlaying vegetation (MAIER et al., 2008). This active optical 

remote sensing method, therefore, offers a novel way  of describing forest structure in three 

dimensions, and allows for measuring the variation in vegetation distribution at fine scales.

Research shows that various forest structural attributes can be directly retrieved from 3D 

LiDAR point cloud data, such as canopy height and thickness, subcanopy topography, and 

the vertical distribution of canopies (LEFSKY et al., 2002a; LOVELL et al., 2003; 

PARKER et al., 2004). LiDAR metrics derived from the raw point cloud can be 

subsequently  used in empirical models to predict biophysically  important forest attributes 

such as basal area, mean stem diameter and aboveground biomass (HOLMGREN et al., 

2003; NAESSET, 2002; LEFSKY et al., 1999a; NILSSON, 1996). Moreover, by examining 

the three-dimensional distribution of canopy elements and gaps, indices of spatial structure 

can be developed with direct relevance to important ecological parameters such as light 

transmittance, while the canopy  gap distribution itself is useful in predicting understory 

conditions (GAULTON; MALTHUS, 2010). It is important to emphasize that the extraction 

of vegetation characteristics from LiDAR data can be largely influenced by variable 

measurement conditions, such as laser point  density  or footprint size, therefore, models 

have to be calibrated and validated with field data to be able to produce accurate estimates 
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of forest parameters. This has been a challenging task in tropical forests given the 

complexity of the forest structure and the high spatial and temporal variability in vegetation 

density.

The primary goal of this study is to assess the potential of small-footprint airborne LiDAR 

to provide the necessary high-resolution information for an in-depth understanding of the 

structure of the forests on Atlantic coastal hillslopes and for accurate estimation of 

aboveground forest biomass dynamics in mountainous terrain. With its complex topography 

along a steep  elevational gradient and covered by dense multilayered forest canopy, the 

Serra do Mar is unlike most of the areas considered in previous LiDAR forestry studies. 

Additionally, this site is of particular interest from an ecological point  of view, given the 

existence of a permanent plot network of 1-ha forest inventory  plots within the Serra do 

Mar State Park that was installed in 2006 and monitored since then by the BIOTA Project. 

This valuable biometry  survey database from BIOTA in combination with the high-density 

airborne LiDAR data collected by the Sustainable Landscapes Project in a 1000-ha area 

overlapping the field plots allows for an in-depth study of canopy structure and biomass 

dynamics in the Atlantic Forest of the Serra do Mar. Based on the available data, this work 

specifically addresses three main objectives:

[1] The first objective is to evaluate the accuracy of two different DTMs derived from a set 

of airborne LiDAR data collected in the mountainous area of the Serra do Mar in the 

coastal Atlantic Rainforest in SE Brazil. Samples of the LiDAR DTM raster grids are 

compared with manually measured control points using survey-grade differential GPS. 

Statistical analysis of the measured and modeled elevations is performed, and the error 

sources are investigated.
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[2] The second objective of the study is to assess the changes in accuracy of the DTMs 

generated after synthetic thinning of the LiDAR data to four predefined return density 

levels, and how the changes in terrain accuracy affect the corresponding LiDAR-derived 

canopy  height metrics. The goal is to answer the question: what is the minimum LiDAR 

return density  required to generate a DTM at an acceptable accuracy level for derivation of 

forest structure metrics and biomass estimates at a mountainous site like the Serra do Mar?

[3] The third objective is to investigate the relationships between LiDAR-derived canopy 

structure (canopy height and gap fraction) and field-based estimates of aboveground 

biomass and biomass change (gain, loss and net change) in submontane and montane forest 

areas of the Serra do Mar and to examine how these relationships are influenced by terrain 

characteristics, such as elevation, slope and aspect, and related environmental factors (e.g. 

cloud cover, illumination).

The dissertation document is divided into seven sections and organized as follows: after the 

introduction in Chapter 1, the fundamentals of LiDAR remote sensing are presented in 

Chapter 2, followed by the description of the study  area in Chapter 3. Chapters 4, 5 and 6 

each address one of the specific objectives listed above, with each section including a brief 

introduction, materials and methods, results and discussion, and conclusions specific to the 

given topic. Finally, Chapter 7 summarizes the main findings of the previous three chapters 

and concludes the work as a whole, also giving recommendations for future research.
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2. LiDAR FUNDAMENTALS

2.1 Sensor characteristics and mode of operation

Light Detection and Ranging (LiDAR) is a commercially  available active remote sensing 

technology that, like aerial photography in the 1970s and 1980s, is rapidly expanding 

throughout the world for use across a range of environmental sectors (ASNER et al., 2010; 

HUDAK et al., 2009). The principal advantages of the technology over conventional 

surveying methods are the provision of precise x, y, z measurements, the high level of 

automation, rapidity of coverage, and fast  delivery time for often extremely  large datasets, 

whereas the main limitation for research utilizing this technology  remains the high cost of 

the instrument, operation, and associated software (HERITAGE; LARGE, 2009).

LiDAR sensors utilize the properties of scattered light to determine the range of distant 

objects. The working mechanism of the system consist in firing a narrow laser beam at a 

distant surface and recording the time required for the emitted pulse to travel from the laser 

source to the target object  and back to the detector (so-called time-of-flight). A highly 

accurate clock is used to measure this time, and the distance is calculated by the following 

relationship: Distance = (Speed of Light × Time of Flight) ÷ 2. The laser system can be 

operated either from the ground, pointing up, or from airborne or space-borne platforms, 

pointing down. Typical flying height for airborne LiDAR is 1 - 2 km, and the system is 

used in combination with GPS instruments and inertial navigation systems for locating the 

source of the return signal in three dimensions and correcting for the effects of pitch, roll 

and yaw introduced by the platform motion.

The type of information collected from the LiDAR return signals distinguishes two broad 

categories of sensors, (i) discrete-return devices that typically measure one, two or a small 
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number of heights, and have a footprint size of 0.2 m - 0.9 m (small-footprint LiDAR), and 

(ii) waveform-recording sensors that measure the amount of energy returned to the sensor 

for a series of equal time intervals, and have an average footprint size of 8 m - 70 m (large-

footprint LiDAR).

For terrestrial applications and vegetation studies, the pulse wavelength is usually  in the 

near infrared part of the electromagnetic spectrum (with the most common being 1064 nm), 

where vegetation reflectance is high, as this guarantees a relatively strong return signal. 

Also, atmospheric transmittance is high at these wavelengths, ensuring minimal loss of 

signal from atmospheric scattering and absorption. One drawback of working in this range 

of wavelength is absorption by clouds, which impedes the use of these devices during 

overcast conditions (LEFSKY, 2002a). Also, because the power of the laser diminishes as 

the square of the distance traveled, laser power determines the effective operating range of 

a LiDAR system, as well as the extent to which it will penetrate vegetation canopies.

The major operational specifications of a LiDAR system include:

(1) scanning frequency, the number of pulses emitted by the laser instrument in 1 second;

(2) scanning pattern, the spatial arrangement of pulse returns determined by the mechanism 

used to direct pulses across the flight line;

(3) beam divergence that  occurs as the distance between the laser instrument and a plane 

that intersects the beam axis increases;

(4) scanning angle, the angle by which the beam axis is directed away from the focal plane 

of the laser sensor;

(5) scanning swath determined by the aboveground flight height and the scanning angle;

(6) footprint diameter which is a function of both beam divergence and the above-target 

flight height;

(7) pulse length, which is the duration of the pulse;
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(8) number of returns per pulse;

(9) footprint spacing, which, along with the beam divergence, determines the spatial 

resolution of LiDAR data;

(10) various discretization settings that are specifications integral to the processing of the 

backscattered energy of a pulse to identify individual returns, control the minimum energy 

amplitude necessary  to produce a return and determine the minimal distance between 

consecutive returns from the same pulse (GATZIOLIS; ANDERSEN, 2008).

Figure 2.1 Illustration of the scanning attributes of LiDAR data acquisition (on left) 
 assuming seesaw scanning pattern and flightline parallel to the ground; and the 
 discretization process used to identify individual returns by processing the 
 backscattered energy of a laser pulse (on right).
 Source: Adapted from Gatziolis and Andersen (2008).
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2.2 Data attributes, processing and products

Small-footprint LiDAR data comprise a set  of return coordinates in three dimensions, 

commonly referred to as point cloud, with each return usually carrying attribute values that 

relate either to that return or to the pulse from which the return was generated:

(1) pulse density is a direct  function of the footprint  spacing over a hypothetical flat plane, 

and is the most consistent measure of the spatial resolution of a LiDAR data set;

(2) return density is the mean number of returns in the data set  present  in a unit square area 

in 2D, typically 1 m2;

(3) return intensity describes the strength of the beam backscattering pertaining to the 

return in question and depends on the reflectance properties of the target, hence, it can 

potentially be used in target discrimination;

(4) return number is the rank of a return among those generated from one beam.

Other attributes, which a return inherits from its parent beam, include the scan angle (º) and 

those sometimes assigned at the data post-processing phase such as indices to flight lines, 

or GPS time, which is an indication of the precise time that a pulse was emitted and can be 

used as a unique identifier for a pulse (GATZIOLIS; ANDERSEN, 2008).

LiDAR point cloud data are generally stored in LAS binary file format following the 

American Society  for Photogrammetry and Remote Sensing (ASPRS) format standards 

(RENSLOW, 2012), including x-coordinate, y-coordinate, elevation, return number, 

intensity and scan angle for each return, at a minimum. Additional information is usually 

organized in the form of metadata, and often contains spatial geographic information 

system (GIS) layers with the spatial extent of the data acquisition, flight lines, the date and 

time range, the model and characteristics of the LiDAR instrument, etc.
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The processing of raw LiDAR data involves the following basic steps and products:

(1) Classification of non-ground and ground returns through the application of a 

classification model or filtering algorithm to the point cloud data;

(2) Digital Terrain Model (DTM) generation through interpolation of the classified ground 

returns, representing the ground elevation surface;

(3) Above Ground Height (AGH) assigned to each classified non-ground point relative to 

the DTM surface by subtracting the interpolated ground surface elevation from the point’s 

elevation;

(4) Canopy Height Model (CHM) generation through interpolation of elevations using all or 

first LiDAR returns, representing the surface of the outer forest canopy in the landscape;

(5) Analysis through which various metrics are derived from the LiDAR point cloud 

representing the spatial distribution of points. These parameters fall into two groups: (i) 

metrics calculated on numeric values (i.e., intensity, elevation, canopy  height), and (ii) 

metrics representing density of points (i.e., canopy density, stratified canopy density, etc.) 

(EVANS et al., 2009).
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3. STUDY AREA

The study  area is located within the São Paulo State Park of Serra do Mar (PESM) 

(23º34‘S and 45º02‘W; 23º17‘S and 45º11‘W) in southeast Brazil (Figure 3.1). It is 

characterized by  complex terrain along an altitudinal gradient (0-1200 m a.s.l.) and is 

covered by the dense vegetation of the Atlantic Forest. The state park contains 47,500 ha of 

diverse tropical ecosystems, including mangroves, restinga (sandy coastal plain forests), 

and humid tropical forests subdivided into vegetation types by  altitude – lowland, 

submontane and montane forest – from sea level up to 1200 m elevation (SMA, 1998). The 

forest canopy  is irregular, with mean heights ranging from 17 to 22 m and rarely emergent 

trees reaching 35 m. Due to this irregularity of the canopy, the amount of light that gets 

through sets conditions for the development of hundreds of epiphytic species (JOLY et al., 

2012).

Mean annual rainfall in the area is approximately 2500 mm with no dry season, and from 

400 m above sea level up to the top  of slopes the mountains are covered by a dense fog 

almost daily (JOLY et al., 2012). Monthly  average temperature ranges from 17.6 °C to 24.7 

°C varying according to altitude (SCARANELLO et al., 2012). Soils in lowland, 

submontane and montane forest sites are classified as sandy-loam Inceptisols resting on a 

crystalline basement with predominance of gneiss, granite and migmatite (ALVES et al., 

2010).

Within the study  area, the proportion of trees and palms shows an inverse relationship, 

wherein the proportion of trees decreases and that of palms increases with altitude. Across 

the site, trees prevail (71 - 90%), followed by palms (10 - 25%) and tree ferns (0 - 4%), and 

results presented by Joly  and colleagues (2012) show an extraordinary  richness and 

diversity of tree species of the Atlantic Rainforest in this region (Shannon-Weiner index 
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ranging from 3.96 to 4.48 along the hillslope). The most rich families in these forests sites 

are: Myrtaceae, Rubiaceae, Fabaceae, and Lauraceae, while common canopy tree species 

include: Hieronyma alchorneoides Allemão, Virola bicuhyba (Schott  ex Spreng.) Warb, 

Eriotheca pentaphylla (Vell.) A. Robyns, Sloanea guianensis (Aubl.) Benth, Cryptocaria 

mandiocanna Meisn. and Ecclinusa ramiflora Mart. (SCARANELLO et al., 2012).

Figure 3.1 Geographical position of the Serra do Mar State Park (PESM) – solid green 
 line and shading – and the location of the study area within its bounds – 
 indicated in red.
 Source: Serra do Mar State Park Management Plan, Secretary of Environment 
 of the State of São Paulo, Forestry Institute, 2006.
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The approximately 1000-hectare area within the PESM where LiDAR data were collected 

for this study (Figure 3.2) contains nine permanent forest  inventory plots that belong to a 

14-plot network established along the altitudinal transect in the Serra do Mar (JOLY et al., 

2012) to evaluate forest diversity  and ecosystem function variation. Out of these nine plots 

within the LiDAR coverage, one plot is located in the lowland forest at an elevation of 100 

m (Plot F), four plots in the submontane forest at  an average elevation of 250 m (Plots G, 

H, I and J), and four plots in the montane forest at  about 1000 m a.s.l. (Plots K, L, M and 

N). The permanent plots were designed such that they  each have a projected area of one 

hectare, being rectangular in shape and with 100-meter-long edges.
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Figure 3.2 Location and extent of the LiDAR coverage – red rectangle – and the nine 
 permanent field plots – red points – within this area of the Atlantic Forest over 
 a section of Landsat-TM  scene 218/76 (path/row) to the north of the 
 municipality of Ubatuba.
 Source: INPE Catálogo de Imagens.
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4. DIGITAL TERRAIN MODEL ACCURACY ASSESSMENT

4.1 Background

Digital Terrain Models (DTMs) are a computational representation of the ground surface 

topography, commonly  obtained by remote sensing techniques such as stereo 

photogrammetry, interferometric synthetic aperture radar (SAR), and more recently, by 

airborne laser technology  or LiDAR. The most common forms of DTMs are raster grids, 

triangular irregular networks (TINs), and contour line models (LIU, 2008), and they  are 

used in various applications, ranging from research through education to resource 

management. For forestry studies in particular, LiDAR is capable of characterizing both 

terrain and vegetation structure effectively. However, as all LiDAR-derived vegetation 

metrics (e.g. tree height) are calculated relative to a DTM  surface, any error in the DTM 

will propagate to affect the accuracy of the derived vegetation metrics (TINKHAM et al., 

2012). It is necessary, therefore, to evaluate the errors associated with the LiDAR-derived 

DTM to then be able to characterize the overlying vegetation accurately.

The three basic types of error that should be taken into account for accurate DTM 

generation from LiDAR data are: (1) sensor-specific errors associated with the navigation, 

positioning and LiDAR systems that occur during data acquisition; (2) geometrical errors 

related to the flight altitude and scan angle or the local topography; and (3) errors arising 

during the post-processing steps, such as point classification or surface interpolation (SU; 

BORK, 2006). The quality  of the DTM is a measure of how accurate the elevation is at 

each pixel of a grid (absolute accuracy) and how accurately the morphology is represented 

(relative accuracy). DTM accuracy estimates based on airborne laser scanning data are 

typically provided by comparing LiDAR heights against a finite sample of check point 
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coordinates from an independent source of higher accuracy, supposing a normal distribution 

of the derived height differences or errors (AGUILAR; MILLS, 2008).

The accuracy of LiDAR-derived DTMs can differ significantly across the topographic 

spectrum as well as with different land cover types. Over open areas with relatively flat 

terrain, it  is common to achieve elevation accuracies below 0.15 m Root Mean Square Error 

(RMSE)  (COBBY et al., 2001; HODGSON et al., 2005; SPAETE et al., 2010). In a study 

evaluating DTM accuracy for six different land-cover types, Hodgson and Bresnahan 

(2004) observed RMSE values ranging from a low of 0.17 to 0.19 m in pavement and low 

grass classes to a high of 0.26 m in a deciduous forest. In areas covered by dense 

vegetation, DTM elevation errors tend to increase because fewer LiDAR beams reach the 

ground resulting in fewer ground points for DTM  surface interpolation (CLARK et al., 

2004). Several studies have assessed LiDAR-derived DTM  accuracy in temperate 

coniferous, deciduous and mixed forests, reporting RMSE values that range between 0.32 

m and 1.22 m (REUTEBUCH et al., 2003; KRAUS; PFEIFER, 1998; HODGSON et al., 

2003). However, there have been relatively few studies providing rigorous assessment of 

elevation accuracy under the complex multilayered canopy of tropical rain forests. One 

study by Clark et al. (2004) reported a DTM accuracy of 0.58 m RMSE in open-canopy flat 

areas of an old-growth Costa Rican rain forest, and overall RMSE of 2.29 m when steep 

slopes and multilayered dense vegetation areas were also considered.

4.2 Material and methods

4.2.1 LiDAR dataset

LiDAR data were collected by the GEOID Laser Mapping company (Belo Horizonte, MG) 

in April 2012 as part of the Sustainable Landscapes joint project of EMBRAPA, the Arthur 
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Bernardes Foundation (FUNARBE) and the United States Forest Service (USFS). The 

study area was overflown with an Optech ALTM  3100 laser scanner instrument at  an 

average flying altitude of 1600 m a.s.l., covering a rectangular strip of the surface (about 

1.5 km x 7 km) with a total area of approximately 1000 ha. The high-resolution discrete-

return LiDAR data were collected in the conditions detailed in Table 4.1 below. Average 

pulse density  was 12 pulses/m2, resulting in an average return density of 20 points/m2 and 

average return spacing of 0.22 m.

Table 4.1 Laser system parameters.

Parameter Specification

Positioning system POS AV™ 510 (OEM) - GPS/GNSS/L-Band receiver

Horizontal accuracy ≤ 50 cm (1:1000 scale; PEC “A”); 1σ
Vertical accuracy ≤ 15 cm; 1σ
System frequency (PRF) 50 kHz

Scan frequency 25 Hz

Scan angle (FOV) ≤ 20º

Data recording up to 4 returns/pulse

Average flight altitude 1600 m a.s.l.

Beam divergence 0.25 mrad (1/e)

Overlap between flight lines 30%

Raw LiDAR data were delivered by GEOID in standard LAS format with the following 

parameters for each registered return: point  number, x and y  location, elevation, intensity, 

pulse number, and return number. Because LiDAR datasets are large, the data points were 

resampled into smaller files (tiles) for more efficient handling and processing. The 

company also provided the navigation files of the aerial survey trajectory  in SBET 

(Smoothed Best Estimate of Trajectory) file format, from which the individual flight lines 

could be extracted.
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4.2.2 LiDAR processing

The LiDAR data for the study area were processed following two different methodologies 

(Figure 4.1): one by the data provider, GEOID, and one by  the G-LiHT research group at 

NASA Goddard Space Flight Center (COOK et al., 2013). Flight line calibration was 

performed first (PosPac software) to adjust parameters such as heading, roll, pitch and 

height. This is an important step, given that flight line misalignment is considered one of 

the major sources of error in LiDAR data (SHRESTHA et al., 2010). Next, height filtering 

was performed on the point cloud to select ground points from the data set – a critical step 

for DTM generation from LiDAR data (LIU, 2008). To accomplish this, GEOID used the 

Adaptive Triangulated Irregular Network (ATIN) filter of the TerraScan software, while G-

LiHT applied a progressive morphological (PM) filter. The Adaptive TIN filter is based on 

the relationship  between surface angles and elevation differences of a TIN surface (a so-

called slope-based filter) that is initiated with a set of seed points and applied iteratively to 

classify  ground points (see AXELSSON, 2000). The PM filter is used to identify objects in 

grayscale images based on spatial structure, and works with dilation and erosion in 

combination with opening and closing operators to separate ground points from non-ground 

ones (see ZHANG et al., 2003). Point classification was followed in both cases by 

Delaunay triangulation to create a TIN of the filtered ground returns. Finally, the TIN was 

used to interpolate the ground elevations onto a 1-meter raster grid, thus obtaining the DTM 

(denoted as “GEOID DTM” for the first and “G-LiHT DTM” for the second processing 

approach).
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(Axelsson)

Adaptive TIN filter 
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Figure 4.1 LiDAR data processing steps for DTM generation as performed in the two 
 methodologies, GEOID and G-LiHT.

4.2.3 Ground data acquisition

Ground survey data collected in June 2013 within the study area were treated as a reference 

dataset for LiDAR DTM validation. A total of 36 points were measured under closed forest 

canopy  in the predominantly  hilly terrain along the altitudinal transect, marking the corner 

points of the nine permanent forest inventory  plots located within the LiDAR coverage. The 

differential GPS equipment used for the measurements consisted of two Topcon HiPer (L1/

L2) receivers, one used as a base and the other as rover. These are surveying-grade dual-

frequency units capable of receiving both NAVSTAR and GLONASS signals. Raw data at 

the unknown points were collected for 20 - 35 minutes on average (60 minutes at locations 

where terrain or dense overstory  vegetation shaded satellite signal). Simultaneous 

measurements were made at a registered point of known position for subsequent differential 

correction – the survey marker (INCRA “ABE M0693” ) is located at the Santa Virginia 
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base station in the PESM, in an open area within less than 10 km of the forest plots. Post-

processing of the GPS data was performed to produce the estimated position of the 

unknown points. Out of the 36 control points, 35 were measured with success, and 30 of 

these met the required submeter accuracy (σ < 1 m) in all three coordinates x, y, z (UTM 

easting, northing and elevation). The remaining 5 points were less accurate (σ < 2.2 m). The 

GPS system parameters and measurement conditions during the survey are summarized in 

Table 4.2.

Table 4.2 GPS system parameters and survey conditions.

Parameter Specification

GPS system Topcon HiPer L1 / L2 receiver

Horizontal accuracy 3 mm + 0.5 PPM

Vertical accuracy 5 mm + 0.5 PPM

System frequency 20 Hz

Linear units meters

Angular units degrees

Datum WGS84

Projection UTM Zone 23 South

Geoid MAPGEO 2010

Base Reference Point INCRA “ABE M0693”

Number of points measured with success 35 (out of 36 total)

Points with σ < 1 m (x,y,z) 30

Points with 1 ≤ σ < 2.2 m (x/y/z) 5

Precision (RMSE) Easting range: 0.006 - 2.130 m; mean = 0.473 m

Precision (RMSE) Northing range: 0.006 - 1.876 m; mean = 0.225 m

Precision (RMSE) Elevation range: 0.019 - 2.195 m; mean = 0.469 m
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4.2.4 Statistical analysis of the datasets

In the following analysis, the differences between the LiDAR-derived elevation data and 

the GPS survey data are described and evaluated. For each one of the 35 valid control 

points i, the corresponding DTM  cell is found by spatial intersection, and the cell value 

extracted. Next, the difference in elevation (∆z) between the survey  point zGPS and the 

respective DTM cell zDTM is calculated by:

 ∆zi = zDTMi - zGPSi (4.1)

As described by Su and Bork (2006), Mean Signed Error (MSE) and Root Mean Square 

Error (RMSE) have been commonly used to assess the accuracy of LiDAR-derived DTMs. 

Mean signed error can be useful to identify the tendency for under- or over-estimation of 

elevations, and is calculated by the equation:

  (4.2)

where n is the number of reference points and ∆zi  is the elevation difference between DTM 

and survey data at each point. RMSE is generally calculated to determine the overall mean 

elevation accuracy of a DTM, and is expressed by the equation:

  (4.3)

where n is the number of reference points, yi is the predicted value calculated from the 

regression model (DTM elevation) and xi is the observed value (measured GPS elevation) 

at each checkpoint i.

To determine if the difference between the two sets of height points (DTM vs. GPS 

elevations) is statistically significant, a two-sided t-test  is performed assuming a normal 

distribution of the error. The t-test standardizes the values in the dataset and compares the 
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transformed data with a theoretical student t-distribution (STAL et al., 2011). A null 

hypothesis (H0) was set up stating that the height difference (∆z) between the LiDAR DTM 

and the control points is equal to zero

 H0 : µ∆z = 0 (4.4)

while the alternative hypothesis

 H1 : µ∆z ≠ 0 (4.5)

stated that the height  difference is not  equal to zero. The null hypothesis was evaluated with 

a confidence level of 95%.

Given the significant variation in terrain elevation across the study area (from about 100 m 

a.s.l. up  to 1100 m a.s.l.) and the relatively constant flying altitude during the LiDAR 

survey (~1600 m a.s.l.), the sensor height above the ground varied significantly between 

different regions of the 1000 ha study area (Figure 4.2). The mean ranging distance 

between the sensor and the ground surface was ~660 m for the montane region on top of 

the plateau, while it was about twice as large (~1320 m) for the submontane region. Since a 

larger LiDAR ranging distance results in a larger footprint on the ground (due to beam 

divergence), variation of sensor height above the ground can influence the measurement 

results, such as laser point density, penetration, ground detection, and calculated metrics 

(MORSDORF et al., 2008). In the present case, the LiDAR footprint  diameter increases to 

about twice its size between the montane and submontane regions, going from ~0.16 m to 

~0.33 m (0.25 mrad beam divergence).
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To assess the effect of different ranging distances (i.e. variable footprint size) on DTM error 

across the study area, the control points were grouped into two elevational classes, and the 

error distributions between the groups were compared. This allowed also for investigating 

the influence of DTM  accuracy on the LiDAR-derived canopy heights of different forest 

types (submontane and montane forest), as the type of vegetation is strongly  associated 

with elevation along this altitudinal gradient.

To test if the means of the errors associated with the specified elevation classes are 

statistically  different (with the assumption that canopy structure does not affect the 

detection of the ground surface), a two-sided t-test  was performed using the following 

hypotheses:

 H0 : µ1 - µ2 = 0 (4.6)

 H1 : µ1 - µ2 > 0 (4.7)

where µ1 is the mean in elevation error for the submontane class (lower elevation) and µ2 is 

the mean error for the montane class (higher elevation).

4.3 Results

The comparison between elevations measured in the field (GPS elevation) and those 

extracted from the LiDAR-derived DTMs (G-LiHT and GEOID DTM) indicated a good fit 

between these two sources of terrain data (Figure 4.3). The regression analysis resulted in 

very high R2 values (0.99 for both the G-LiHT and GEOID DTMs) when compared to the 

GPS survey  data. Calculated RMSE values were 0.97 m for the G-LiHT DTM  and 0.95 m 

for GEOID.
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y = 1x + 0.41;  r2 = 1;  RMSE = 0.97 m

    

y = 1x + 0.22;  r2 = 1;  RMSE = 0.95 m

Figure 4.3 Comparison of GPS elevations with DTM elevations for the two models,
 G-LiHT (on the left) and GEOID (on the right).

The error analysis of elevations using all 35 valid control points resulted in a mean signed 

error of 0.19 ± 0.97 m (µ ± σ) for the G-LiHT DTM and 0.18 ± 0.95 m for the GEOID 

DTM (Figure 4.4). The DTM elevations were higher on average than the GPS elevations in 

both cases, with the difference being quite consistent between the two DTMs. The slightly 

smaller standard deviation and the narrower error range associated with the GEOID DTM 

could be related to a more rigorous LiDAR point filtering when the terrain model was 

generated. Considering that there is uncertainty in calculating the LiDAR DTM (vertical 1σ 

= 0.15 m on flat terrain) as well as error in the GPS measurements, this 0.18 m elevation 

difference indicates a very good agreement between field data and terrain model.
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Figure 4.4 Distribution of the errors between GPS and DTM elevations for G-LiHT and 
 GEOID. Mean error and standard deviation values are consistent  between the 
 two models, with a slightly smaller range of errors in the GEOID case.

Using only  the 30 most accurate control points (σ < 1 m) for comparison, the mean signed 

error dropped to less than half, resulting in 0.072 ± 0.895 m and 0.074 ± 0.895 m difference 

of terrain elevations for G-LiHT and GEOID respectively. The error statistics for the 

complete point set (n = 35) and the set of best points (n = 30) are summarized in Table 4.3. 

Based on a one-sided t-test performed with the 30 most accurate control points, the null 

hypothesis that the mean of errors is not significantly  different from zero could not be 

rejected with a confidence level of 95% for both the GEOID (p-value = 0.6532) and the G-

LiHT DTM (p-value = 0.6624).
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Table 4.3 Summary  statistics from the error analysis comparing field-measured GPS 
 terrain elevations with LiDAR-derived DTM elevations for two different 
 models (G-LiHT and GEOID).

Data type

Error statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in meters

Data type range min max mean stdev rmse

G-LiHTG-LiHT

GEOIDGEOID

best 30 3.829 -1.651 2.178 0.072 0.895 0.883

ALL 35 3.829 -1.651 2.178 0.189 0.965 0.970

best 30 3.516 -1.951 1.565 0.074 0.895 0.884

ALL 35 3.663 -1.951 1.712 0.182 0.945 0.949

To examine whether there was significant difference between the elevation errors 

associated with points located at lower altitudes (submontane plots) as opposed to those 

associated with points located at  a higher altitude (montane plots), first the normality of 

errors was assessed using normal Q-Q (quantile) plots. Visual evaluation of the graphs 

(Figure 4.5) indicated that the elevation errors are normally distributed, since the majority 

of the data points fell on the 1:1 line with few points falling further from the line at the low 

and high ends of the distributions. The errors associated with the G-LiHT DTM showed  

better linearity than the error points from the GEOID DTM. In both models, the 

Kolmogorov-Smirnov test confirmed that error distributions were not significantly  different 

from the normal distribution (G-LiHT p-value = 0.923 and GEOID p-value = 0.261).
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Figure 4.5 Normal Q-Q plots evaluating the linearity of errors suggest that the data are 
 normally distributed for both the G-LiHT and the GEOID DTM.

Calculated mean signed errors for submontane vs. montane areas revealed a positive 

discrepancy between DTM and GPS elevation at a lower altitude (0.23 ± 0.88 m for G-

LiHT and 0.13 ± 0.94 m for GEOID) indicating that the LiDAR-derived data could slightly 

overestimate terrain elevation in this area; while there was a negative, though smaller, 

discrepancy observed at a higher altitude (-0.14 ± 0.90 m for G-LiHT and -0.004 ± 0.868  

m for GEOID) between DTM and GPS elevations indicating a potential underestimation of 

terrain elevation by the LiDAR. The relevant statistics are summarized in Table 4.4.
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Table 4.4 Summary  statistics from the error analysis of terrain elevations (G-LiHT and 
 GEOID DTMs vs. GPS) comparing error sign and magnitude between 
 submontane and montane areas.

Data type

Error statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in meters

Data type range min max mean stdev rmse

G-LiHTG-LiHT

GEOIDGEOID

submontane 3.403 -1.225 2.178 0.230 0.883 0.887

montane 2.995 -1.651 1.344 -0.135 0.904 0.879

submontane 3.516 -1.951 1.565 0.134 0.938 0.920

montane 3.164 -1.713 1.451 -0.004 0.868 0.834

Based on a two-sided t-test performed with the two sets of errors, submontane and 

montane, the null hypothesis that the true difference in means is not significantly greater 

than zero could not  be rejected with a confidence level of 95% (p-value = 0.139). This 

indicates that there was no statistically significant effect of flying height (i.e. variable 

footprint size) on DTM errors across our study area, while the different vegetation classes 

(submontane vs. montane) also didn’t seem to affect significantly  the accuracy  of the 

LiDAR-derived DTM. Additionally, these results reinforce the fact that canopy structure at 

this study site does not affect the acquisition of ground points.

4.4 Discussion

The overall DTM accuracy  of 0.18 m mean vertical error and 0.95 m RMSE observed in 

this study  is in agreement with previous findings of LiDAR forest studies (KRAUS; 

PFEIFER, 1998; HODGSON et al., 2003; REUTEBUCH et al., 2003; CLARK et al., 

2004), and demonstrates the ability of small-footprint systems to accurately characterize the 

ground surface in complex mountainous terrain covered by dense tropical vegetation. This 

ability  to generate a highly accurate terrain model despite such a challenging environment 

can be attributed to the high point  density with which the LiDAR data was sampled (20 
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points/m2 on average). Typical LiDAR data densities used for forest research and 

management purposes have been within the range of 0.5 - 4 points/m2 (ANDERSEN et al., 

2006; GONZALEZ et al., 2010; GATZIOLIS; ANDERSEN, 2008), occasionally reaching a 

higher value of 10 to 12 points/m2 (SÄYNÄJOKI et  al., 2008; HUDAK et al., 2012). The 

effect of LiDAR point  density  on the accuracy of the generated DTM has been evaluated by 

several studies, and most of them agree that the error increases exponentially  as the point 

spacing increases (JAKUBOWSKI et al., 2013). This observation was tested in a synthetic 

data thinning experiment using the LiDAR data from this study, and the results are 

presented in the next chapter (Chapter 5).

In addition to the effect of point density  on the accuracy  of LiDAR-derived DTMs, the 

impact of other factors such as flying altitude (i.e. sensor elevation) and terrain variability 

have also been investigated in a number of studies. It has been demonstrated that as flying 

altitude increases, the percentage of pulses that  penetrate the forest canopy decreases, 

reducing the chances of getting a return from the ground surface (TINKHAM  et al., 2012). 

The lower penetration power has been explained by  the broadening of the LiDAR footprint 

(as a result of beam divergence) which causes a weakening in the laser energy (HYYPPÄ et 

al., 2005). The present analysis comparing DTM accuracy in the submontane vs. montane 

regions of the study area showed better agreement of the model with the ground reference 

elevations at the higher altitudes, where the LiDAR system was closer to the ground surface 

than at the lower altitudes, where ranging distance was twice as large on average.

One possible explanation of the above observation can be the effect of the change in the 

pulse’s footprint size and laser energy with flying height, leading to loss of penetration 

power further from the LiDAR system. This hypothesis is consistent with the evidence that 

shows different proportions of ground returns in our data in the submontane and montane 

areas. The average percentage of points classified as ground returns in the original data set 
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was 3% in the montane area, while only 1% in the submontane area. With a larger number 

of ground points available for surface interpolation, it is possible to derive a DTM that 

represents the true ground surface with higher accuracy. Additionally, terrain complexity 

has also been mentioned as a potential cause for the variation in DTM  accuracy across 

landscapes (LIU, 2008). The steeper slopes and more variable topography  in the 

submontane region might be harder to capture by the LiDAR system than the generally 

more homogeneous montane terrain on top of the plateau. By optimizing flight line 

configuration at  the time of data collection (e.g. constant  flying height above ground, even 

point distribution), the observed difference between DTM accuracy in submontane vs. 

montane areas could potentially be minimized, and the variability of the terrain surface 

represented more faithfully. Future airborne LiDAR surveys in similarly complex 

mountainous terrain would benefit from such recommendations for mission planning to 

ensure high data quality for forestry applications.

4.5 Conclusions

Based on the major findings of this analysis, the following conclusions can be drawn:

[1] The strong agreement between differential GPS elevations and digital terrain model 

elevations suggests that  the LiDAR-derived DTM can be considered as a highly  accurate 

representation of the true terrain surface.

[2] The similarity  of the sign and magnitude of errors associated with the two DTMs 

(GEOID and G-LiHT) suggests that the two different processing methodologies resulted in 

equally valid digital terrain models.
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[3] Error magnitudes associated with DTM  elevations vary between areas of submontane 

and montane forest possibly caused by  the different ranging distances above these areas, as 

well as the varying degree of terrain complexity across the study area.

[4] The difference between DTM  accuracy  in the submontane vs. montane regions was not 

statistically  significant, suggesting that the variation in flying altitude or terrain complexity 

did not strongly affect the ability  of the LiDAR to accurately characterize the ground 

surface.

[5] The high accuracy of the LiDAR-derived DTM  shown in the present study provides 

reasonable confidence that  potential error propagation from DTM to the calculated 

vegetation metrics is minimal.
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5. LiDAR DATA THINNING EXPERIMENT

5.1 Motivation

Given that the LiDAR data used in this study had a higher average return density  (20 

points/m2) than is common for forest  research purposes and biomass evaluations (0.5 - 4 

points/m2), random thinning of the original LiDAR point cloud was performed to assess the 

changes in DTM accuracy with increased point spacing of the data and the corresponding 

effects on LiDAR-derived forest structure metrics. The main goal of this experiment was to 

answer the questions:

[1] Is exponential increase in LiDAR-derived DTM  error observed with increased point 

spacing, as has been described before in the literature? (JAKUBOWSKI et al., 2013)

[2] How does the density of ground points change with increased thinning of the LiDAR 

point cloud?

[3] What is the effect of increased point spacing on the variability  of LiDAR-derived 

vegetation metrics, specifically that of mean canopy height?

[4] What is the minimum LiDAR return density required for generating a DTM with 

acceptable accuracy for canopy height  models that contribute to aboveground biomass 

estimations?

5.2 Material and methods

5.2.1 LiDAR thinning

The original LiDAR point cloud data were reduced to the four pre-defined return densities 

of 8, 4, 2 and 1 points/m2 following a thinning algorithm applied by the G-LiHT group at 

NASA GSFC. These specific data densities were chosen to represent a range of values most 
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frequently quoted in LiDAR forestry studies. The basic processing steps for data thinning 

included:

 (1) assessing the point density in the original point cloud;

 (2) assessing the return numbers (1st, 2nd up to 4th) associated with each point in 

 the data set;

 (3) thinning of the original point cloud by random selection of the desired number 

 of returns while preserving the original return number ratios (i.e. relative number of 

 1st, 2nd, 3rd and 4th returns).

The resulting data sets were then processed to produce three different data products for 

each thinning density: DTM (Digital Terrain Model), CHM (Canopy  Height Model) and 

DSM (Digital Surface Model) raster layers with 1-meter grid resolution, representing the 

terrain surface, the canopy heights above ground, and the outer surface of the forest 

vegetation in absolute elevation (a.s.l.), respectively. The new DTM raster grids were 

created from the reduced data using the same G-LiHT methodology  described in the 

previous chapter. The CHM  rasters were also generated using the G-LiHT algorithm by 

selecting the highest LiDAR return in every  1-meter grid cell, building a TIN based on 

these points, and interpolating the canopy  heights on a 1-meter raster grid (COOK et al., 

2013). The DSMs of the outer canopy were produced from only the first-return points in the 

LiDAR point cloud that were processed using the BCAL LIDAR Tools open-source 

software package. The processing steps described here are summarized in form of a 

flowchart in Figure 5.1.
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Figure 5.1 LiDAR data processing steps for data thinning.
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5.2.2 Analysis of the thinned datasets

The accuracy of the DTMs generated after data thinning was evaluated using the same 

approach as with the full-density DTM. The elevation of the 35 ground control points 

measured with differential GPS was compared to the DTM elevations of thinned data at the 

same locations. The calculated differences were expressed in the form of Mean Signed 

Error and Root Mean Square Error (as of Equations 4.2 and 4.3 in the previous chapter). 

The error statistics corresponding to the four different thinning levels were compared both 

for the study area as a whole and for the montane and submontane forest regions separately. 

The variation in DTM elevation accuracy across variable terrain elements (i.e. steep slopes 

and flat plateaus) was examined and described.

The total number of LiDAR returns as well as the number of ground returns was assessed 

from the reduced-density  point clouds for each permanent field plot location separately. The 

ground point  density  (points/m2) and the fraction of ground returns out of all returns was 

calculated for each thinning level within the nine 1-ha plots to quantify  the change in 

commission errors resulting from the ground classification algorithm.

To examine the effect of data thinning on the canopy height estimates and to illustrate the 

potential impact on estimates of aboveground biomass (AGB), plot-level LiDAR metrics 

and field-based biomass data were analyzed. Samples (1 ha) were extracted from the 

whole-area full-density and thinned CHM raster grids corresponding to the permanent plot 

locations. The plot-level means of the CHM  raster samples were calculated, and these were 

compared for the different data density  levels to assess any changes in mean canopy height. 

Additionally, estimates of the outer canopy surface (DSM) and underlying DTM on the 1-

ha plot scale were examined to evaluate the source of elevation biases in the thinned 

LiDAR data.
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Forest inventory data were used from the Serra do Mar permanent plot network (BIOTA 

Project, see Joly et al., 2012) to calculate field-based AGB estimates in the nine plots 

following the methodology applied by Alves and colleagues (2010) (see detailed 

description of the field data and processing in Chapter 6). A linear model was developed to 

predict AGB based on plot-level mean canopy  surface heights derived from the full-density 

LiDAR data. This regression equation was then used to generate biomass estimates based 

on the thinned LiDAR datasets with mean canopy surface height as the predictor, and the 

resulting values were compared across the different data densities.

5.3 Results

The results observed in the data thinning analysis were consistent with the expected trend 

of decreasing DTM  elevation accuracy with increasing levels of data reduction. When 

compared with the set  of GPS control point elevations, mean signed errors of the thinned 

DTM elevations increased from a low of 0.19 (± 0.97) m to a high of 3.21 (± 3.12) m 

between the original data density  of 20 returns/m2 and the highest level of thinning of 1 

return/m2. Figure 5.2 shows a comparison of the error distributions associated with each of 

the five different data density levels analyzed: the original density of 20 returns/m2 (D20) 

and the thinned densities of 8, 4, 2 and 1 returns/m2 (denoted D8, D4, D2 and D1, 

respectively). DTM elevations were higher than the GPS elevations in all cases, with 

increasing error magnitudes as point spacing increased. This consistent overestimation of 

the true ground elevation results from the incorrect  classification of vegetation features as 

ground surface by the point filtering algorithm. Calculated RMSE values showed a similar 

increasing trend with decreasing data density, ranging from a low of 0.97 m for the highest 

density DTM to a high of 4.45 m for the lowest data density of 1 return/m2.
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Figure 5.2 Distribution of the errors between GPS and DTM elevations with data density 
 levels of 20, 8, 4, 2 and 1 returns/m2 (D20, D8, D4, D2 and D1, respectively).

A comparison between the elevation errors associated with montane and submontane sites 

in the thinned DTMs showed generally  larger error magnitudes in the submontane region 

than in the montane area for all the data densities tested. This observed difference between 

elevation classes became larger with increased levels of data thinning: with 20 returns/m2 

the mean signed error difference was 0.31 m between submontane and montane areas, 

while it increased to 2.64 m when data density dropped to 1 return/m2. Similarly to the 

trend observed in mean signed errors, RMSE values also followed an increasing pattern, 

with growing difference between submontane and montane DTM accuracy as data density 

was reduced. Figure 5.3 shows the RMSE values of elevation difference between the 

thinned DTMs and the reference GPS data calculated separately for the submontane vs. 

montane regions and also for the study area as a whole. With the highest data density, 

submontane and montane RMSE values are practically equal (< 0.1 m difference), while 

with lower data densities, montane RMSE stays relatively more stable and submontane 
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RMSE rises more quickly (0.76 to 3.08 m difference). The elevation error statistics based 

on thinned data are summarized in Table 5.1.

Figure 5.3 Comparison of RMSE values in the DTMs based on the five data density levels 
 of 20, 8, 4, 2 and 1 returns/m2 (D20, D8, D4, D2 and D1, respectively).

Table 5.1 Summary  statistics from the DTM error analysis after data thinning. Signed 
 error and RMSE values are shown for density levels of 20, 8, 4, 2 and 1
 returns/m2. Error statistics were calculated for the study area as a whole, and 
 separately for two elevation classes.

Data type

Error statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in meters

Data type min max mean stdev rmse

D20D20D20

D8D8D8

submontane -1.225 2.178 0.330 0.919 0.950

montane -1.651 1.862 0.020 1.020 0.988

ALL -1.651 2.178 0.188 0.965 0.970

submontane -2.876 4.510 0.538 1.597 1.645

montane -1.073 1.852 0.189 0.899 0.892

ALL -2.880 4.510 0.380 1.320 1.354
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Data type

Error statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in metersError statistics (Δz) in meters

Data type min max mean stdev rmse

D4D4D4

D2D2D2

D1D1D1

submontane -1.717 6.977 1.810 2.450 2.992

montane -0.940 2.253 0.300 0.969 0.987

ALL -1.720 6.980 1.120 2.040 2.303

submontane -1.955 14.620 2.359 3.963 4.523

montane -1.390 3.334 0.665 1.315 1.437

ALL -1.960 14.620 1.590 3.130 3.470

submontane 0.459 14.046 4.417 3.244 5.431

montane -0.721 7.492 1.775 2.322 2.866

ALL -0.720 14.050 3.210 3.120 4.445

To better understand the spatial variability  of the DTM elevation errors across the 

landscape, a transect line was drawn along the center of the study area and DTM elevations 

were sampled from the 1-meter raster grids for all data densities. The difference between 

the cell values of the full-density DTM  extracted along the transect  line and the 

corresponding cell values of each thinned DTM was calculated and the elevation errors 

plotted (Figure 5.4). In general, the elevation difference between full-density and thinned 

DTMs was larger at lower altitudes, along the hillslope and in the valley, and smaller on top 

of the plateau. The magnitude of the difference increased with increased data thinning 

throughout the whole area, and the spatial distribution of the errors was associated with the 

level of complexity  of the terrain in all DTMs examined. Where the terrain surface was 

more accentuated (i.e. greater rate of change of elevation), the corresponding difference in 

full-density vs. thinned DTM values was also larger, while with a smoother terrain surface, 

the associated DTM differences were smaller in magnitude.
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Figure 5.4 Elevation differences between the original DTM generated from the full-density 
 data (D20) and the thinned DTMs (D8, D4, D2, D1) extracted from a 1-m grid 
 along the central line of the study area. A vertical transect of the corresponding 
 terrain elevations extracted from the original DTM  along the same central line 
 is shown for reference, as well as the calculated rate of change of the terrain 
 elevation along the transect.
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As it  was expected, the density of ground points (expressed in points/m2) followed a 

decreasing trend with increased data thinning (Table 5.2). From a high of 0.43 (± 0.26) 

points/m2 in the full-density data, the density of ground returns dropped by an order of 

magnitude to 0.05 (± 0.01) points/m2 in the lowest-density data. On average, montane plots 

had a higher ground point density  than submontane plots, but this difference became less 

apparent with increased levels of thinning. When looking at the proportion of ground 

returns in relation to all returns in the thinned data sets within the whole study area, a 

fractional increase was observed from a low of 1.91 (± 1.04) % ground returns in the 

original data set up to a value of 4.79 (± 0.87) % in the highest level of data thinning. 

Comparing the percentage of ground points in montane vs. submontane plots showed an 

increase from 3% to 5.5% in montane plots and from 1% to 3% in submontane plots 

between the full data density and the thinnest data.

Table 5.2 Ground point density (points/m2) and fraction of ground returns out of all 
 returns in the submontane and montane forest areas, and in the study area as a 
 whole after various levels of data thinning.

Ground return density after data thinning

Data type

Ground return density after data thinningGround return density after data thinningGround return density after data thinningGround return density after data thinningGround return density after data thinningGround return density after data thinningGround return density after data thinning

Data type points / m2

mean ± stdev
points / m2

mean ± stdev
points / m2

mean ± stdev
% of all returns

mean ± stdev
% of all returns

mean ± stdev
% of all returns

mean ± stdev

D20D20D20

D8D8D8

D4D4D4

D2D2D2

submontane 0.228 ± 0.031 1.047 ± 0.079

montane 0.684 ± 0.177 2.985 ± 0.293

ALL 0.431 ± 0.264 1.908 ± 1.039

submontane 0.108 ± 0.006 1.354 ± 0.068

montane 0.262 ± 0.026 3.290 ± 0.333

ALL 0.177 ± 0.083 2.215 ± 1.042

submontane 0.067 ± 0.007 1.677 ± 0.173

montane 0.150 ± 0.015 3.752 ± 0.387

ALL 0.104 ± 0.045 2.599 ± 1.126

submontane 0.050 ± 0.005 2.489 ± 0.234

montane 0.091 ± 0.010 4.550 ± 0.517

ALL 0.068 ± 0.023 3.405 ± 1.143
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Ground return density after data thinning

Data type

Ground return density after data thinningGround return density after data thinningGround return density after data thinningGround return density after data thinningGround return density after data thinningGround return density after data thinningGround return density after data thinning

Data type points / m2

mean ± stdev
points / m2

mean ± stdev
points / m2

mean ± stdev
% of all returns

mean ± stdev
% of all returns

mean ± stdev
% of all returns

mean ± stdev

D1D1D1

submontane 0.043 ± 0.006 4.247 ± 0.639

montane 0.054 ± 0.006 5.459 ± 0.630

ALL 0.048 ± 0.009 4.786 ± 0.872

The comparison of mean canopy  surface height values derived from the original and 

thinned CHM  rasters showed that lower point density data increasingly  underestimate 

canopy  height within the 1-ha plot samples (Figure 5.5). With the original data density of 

20 returns/m2, mean canopy height ranged between 19.52 and 22.91 m across the nine 

locations (Plots F-N). With increasing levels of data thinning, the mean canopy height 

decreased on average by 0.70 m, 1.75 m, 3.40 m and 5.26 m for data densities of 8, 4, 2 and 

1 returns/m2, equivalent to a reduction of 3%, 8%, 16% and 25% in mean canopy height, 

respectively, for the increasing levels of thinning. The observed magnitude of canopy 

height change was generally larger for the submontane plots (F, G, H, I and J), resulting in 

mean decrease of 0.79 m, 1.99 m, 3.93 m and 6.08 m with the increasing thinning levels. In 

comparison, the mean canopy height  change in the montane plots (K, L, M  and N) was 

relatively smaller in magnitude with values of 0.60 m, 1.45 m, 2.73 m and 4.24 m for the 

data densities of 8, 4, 2 and 1 returns/m2, respectively.
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Figure 5.5 Mean canopy surface heights associated with the field plot locations (F - N) 
 based on CHMs generated from original and thinned LiDAR data (D20, D8, 
 D4, D2 and D1 indicate the different data density levels).

Examination of the Digital Surface Models (DSMs) at the permanent field plot locations 

showed little variation in the outer vegetation surface elevation with the different levels of 

data thinning. The associated change in the Digital Terrain Model elevations was much 

more apparent, indicating the increasing difficulty in detecting the ground surface as data 

density  was reduced. Figure 5.6 shows the DSM raster for the montane forest plot “N” 

generated from the five different  LiDAR data densities. It can be observed that the canopy 

surface became slightly more rugged with increased data thinning, but the overall canopy 

surface elevation and shape did not change significantly. In comparison, the terrain surface 

showed larger changes with increased levels of thinning. Specifically, because vegetation 

features are incorrectly classified as ground by the filtering algorithm in the thinned data 

sets, the overall effect was a positive bias in the ground elevation, which translated into 
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lower canopy heights with decreasing data density (see third column of tiles in Figure 5.6). 

The same effects were observed for the submontane Plot “H” in Figure 5.7. Here, the 

positive bias in ground elevations was even more apparent (as was generally  observed in 

the submontane area), resulting in more significant shrinkage in mean canopy height values 

as data density was reduced.
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Figure 5.6 Comparison of changes in Digital Surface Model heights, Digital Terrain Model 
 heights, and associated canopy height distributions with data thinning in the 
 montane forest Plot N.
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Figure 5.7 Comparison of changes in Digital Surface Model heights, Digital Terrain Model 
 heights, and associated canopy height distributions with data thinning in the 
 submontane forest Plot H.
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Using the simple regression model developed based on mean canopy surface height (mCH) 

to predict aboveground biomass (AGB = 24.13 × mCH - 204.76; R2= 0.43; RMSE = 30.0 

Mg ha-1), significant decreases were observed in modeled AGB values with data thinning 

(Figure 5.8). Aboveground biomass estimates (mean ± standard deviation across nine 

permanent plots) for the different thinning levels ranged from 295.3 (± 27.9) Mg ha-1 with 

full-density LiDAR data to 168.2 (± 31.5) Mg ha-1 with the lowest data density  of 1 return/

m2. This means that a 1 - 5 m bias in mean canopy height from incorrect ground detection 

may lead to errors in AGB estimates on the order of 15 - 125 Mg ha-1. For LiDAR data 

densities below 4 returns/m2, especially, the bias in height estimates translates into 

aboveground biomass errors significantly  higher than the model error of ~30 Mg ha-1. 

These results indicate that approaches relying on mean canopy height to estimate 

aboveground biomass may be particularly sensitive to DTM errors that  arise from 

variability in LiDAR sampling density.

Figure 5.8 Aboveground biomass estimates (mean ± standard deviation across nine 
 permanent plots) for the different data densities predicted with a linear 
 model using mean canopy surface height as input.
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5.4 Discussion

Accurate characterization of the ground surface is critical for LiDAR vegetation studies, 

since the estimation of vegetation heights is calculated relative to the associated bare earth 

surface. Consequently, any error present in the DTM  also introduces error in the canopy 

height calculations, ultimately  leading to erroneous estimation of related forest metrics, 

such as aboveground biomass. Previous work has demonstrated that over vegetated 

surfaces, there tends to be an upwards bias in LiDAR elevation data, which was also 

observed here. This consistent upwards error of the DTM elevations detected within the 

study area suggests that, as opposed to having an unbiased noise in the canopy  height 

distribution, there is a directional bias that leads to underestimation of canopy heights.

The analysis of the LiDAR-derived CHMs in nine permanent plots showed that the 

exponential increase in mean DTM error observed with increasing levels of data thinning 

was coupled with significant decrease in canopy heights. The DSMs were examined to 

investigate whether the main cause of this change in canopy heights is the inaccuracy of the 

ground elevations or the inability  of the LiDAR to capture the highest point of tree crowns, 

or a combination of both these factors. No significant change was observed in the DSM 

heights, which suggests that even with low point density, it  is possible to capture the 

highest points of tree crowns and generate a canopy  surface model representative of the true 

outer vegetation surface. The quick deterioration of ground elevation accuracy, on the other 

hand, points to the inability  to capture the complexity of the terrain when data density  is 

low.

Additionally, it was observed that the magnitude of the directional bias associated with the 

DTM (upward shift) as well as the CHM (downward shift) varied between the submontane 

and montane areas, being consistently larger in the submontane forest than in the montane 
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forest. Such difference would lead to varying degrees of underestimation of aboveground 

biomass across the study area, where the level of uncertainty is essentially linked to the 

accuracy  of the DTM  in any given location, as well as the capacity to accurately  calculate 

canopy  heights relative to the DTM. The results of this work suggest  that canopy height 

estimation is most sensitive to changes in DTM accuracy, therefore it is recommended that 

high density  data be used for terrain characterization, especially in mountainous areas with 

complex topography. Based on the analyses presented here, it  becomes evident that 

improved DTMs and CHMs can increase the accuracy and precision in the derived biomass 

estimates, benefiting forest research and management applications.

Knowing the amount and detailed spatial distribution of aboveground forest biomass is of 

primary importance for calculating carbon sources and sinks over time. Precise estimates of 

aboveground biomass pools are also required to support  efforts to mitigate climate change 

by Reduced Emissions from Deforestation and Forest Degradation (REDD+) (ZOLKOS et 

al, 2013). Airborne LiDAR has been successfully used to derive aboveground biomass 

estimates in a range of forest ecosystems (e.g. LEFSKY et al., 1999b; LEFSKY et al., 

2002b; DRAKE et al., 2003; NAESSET, 2002; NAESSET; GOBAKKEN, 2008; ASNER et 

al., 2009). Typical approaches to predict AGB with LiDAR data are based on regression 

models linking LiDAR metrics to field-based plot-level estimates of biomass and using the 

derived equations to scale up biomass to larger areas. The LiDAR-derived metrics most 

frequently used as proxy  for biomass include mean or maximum canopy height (e.g. 

CLARK et al., 2011; MASCARO et al., 2011a; ASNER et al., 2011); vertical canopy 

profile metrics, such as height percentiles and variance of heights (NI-MEISTER et al., 

2010; d’OLIVEIRA et al., 2012) and top-of-canopy height (ASNER; MASCARO, 2014).

Building on recent research efforts to develop generalized biomass allometries for tropical 

trees (CHAVE et  al., 2005; FELDPAUSCH et al., 2012), current work is aimed at 
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developing a universal model to relate LiDAR canopy height to field-measured 

aboveground carbon density, accounting for regional variations in climate regime and forest 

type. Asner and collaborators (2011b; 2014) use three variables to quantify the amount of 

carbon stored in aboveground biomass in all forests (height from LiDAR and basal area and 

wood density  based on forest inventory). Their work seeks to use simple LiDAR-derived 

metrics – mean canopy height (MCH) or top-of-canopy height (TCH) – combined with 

generalized basal area and wood density from limited field studies to produce economical 

estimates of forest carbon stocks with a minimum of site-specific calibration. A general 

LiDAR approach like this could greatly  improve mapping of aboveground carbon stocks 

and monitoring carbon emissions over large areas. However, certain limitations also exist. 

The results of the data thinning experiment presented in this study demonstrate how 

difficult it could be to apply  the same biomass model, relying on a single LiDAR metric 

(MCH or TCH), across a heterogeneous landscape with both flat and sloped terrain, like the 

Serra do Mar. The study also demonstrates how point density could enhance these issues if 

flying elevation or coverage differs between study  sites (e.g. submontane and montane 

areas). Multivariate regression models using several LiDAR metrics as input  variables 

might be more suitable in this case to explain variations of biomass across the landscape 

and among different forest types. Future research will aim at exploring and understanding 

these LiDAR-biomass relationships at the Serra do Mar site in greater detail.

5.5 Conclusions

Based on the major findings of this thinning experiment, the following conclusions can be 

drawn:
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[1] The observed accuracy  of the DTMs generated from thinned data decreased with 

increasing point spacing, but it remained relatively high until point densities as low as 4 

returns/m2.

[2] Point densities below 4 returns/m2 quickly  led to very high vertical error in the resulting 

DTM, rendering it inadequate for subsequent study of the vegetation.

[3] Canopy heights calculated from the LiDAR-derived CHM decreased significantly with 

decreasing return density. The magnitude of this change varied between submontane and 

montane forests, indicating a greater underestimation of canopy  height in the submontane 

area.

[4] DSM heights did not change significantly with data thinning, demonstrating the ability 

of small-footprint airborne LiDAR to accurately capture the top heights of trees.

[5] Consistent overestimation of ground elevation in LiDAR-derived DTMs can introduce 

directional bias in canopy height calculations, which can result in significant 

underestimation of biomass if LiDAR return density is too low.

[6] Single- and multivariate regression models need to be explored to investigate which 

method and what  metrics are most suitable for establishing LiDAR-biomass predictive 

relationships for tropical forests in complex terrain, such as the Serra do Mar site.
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6. ABOVEGROUND BIOMASS AND DYNAMICS

6.1 Background

One important question in tropical forest ecology  is how vegetation structure, composition 

and productivity are affected by the variation in local environmental conditions (LOSOS; 

LEIGH, 2004). Small-scale natural disturbances, for example tree falls, greatly  influence 

the light regime in the forest  canopy, and other abiotic factors, such as soil structure and 

moisture regime can also contribute to habitat or microhabitat differences. At least some 

plant species respond strongly to these environmental variations, such as gap-loving 

pioneer trees, while other plant species may respond more subtly by creating a shift in 

species composition between gap and shade or across soil boundaries (CONDIT, 2004). In 

the last few decades, extensive research has been conducted on gap phase dynamics, 

examining the mechanisms of forest regeneration and tree growth. As a result, the 

importance of tree fall gaps in creating habitat heterogeneity and affecting overall forest 

dynamics is generally accepted, especially for tropical ecosystems (DENSLOW, 1980; 

WHITMORE, 1984; MABBERLEY, 1992).

Less attention, however, has been paid to other factors such as topographic variation, soil 

type, and the efficiency of plants utilizing available resources (POULSEN, 1996; CLARK 

et al., 1998; PALMIOTTO, 1998). Tropical forest composition, structure and diversity 

characteristically undergo changes along elevational gradients (VÁZQUEZ; GIVNISH, 

1998; HOMEIER et al., 2008). General trends observed with increasing altitude include 

overall decline in forest height, tree species diversity and live aboveground biomass, while 

stem density tends to increase with elevation (e.g. AIBA; KITAYAMA, 1999; 

LEUSCHNER et al., 2007; LIEBERMAN et al., 1996). In addition to altitude, topography 

of the substrate underlying a forest is an important factor that can influence species 
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composition and vegetation structure by providing microhabitat heterogeneity (e.g. 

CLARK et al., 1999; HARMS et al., 2001; PHILLIPS et al., 2003). The slope of the forest 

floor, for example, affects water drainage and the leaching of nutrients (ASHTON; HALL, 

1992), and a sloping plane can also provide more light resources and greater access to space 

for trees to grow.

Many studies have used forest plots to investigate the structure of tropical forests, showing 

differences in tree density and basal area across slopes, plateaus, ridges and valleys. 

Manokaran and LaFrankie (1990) proposed that the impact of topographic variation may 

differ across size classes, though the form of this relationship is unclear. Additionally, the 

effects of horizontal gradients on vegetation in tropical mountains have not been studied 

extensively, and the mechanisms underlying elevational and topographical changes of 

forest structure and diversity  are also not well known (HOMEIER et al., 2008). To gain a 

better understanding of the effects of topography on vegetation pattern and dynamics it  is 

necessary  to formulate and test hypotheses and create predictive models for the topographic 

drivers of landscape dynamics (DORNER et al., 2002). Multivariate regression techniques 

can be employed to build predictive models of topographic influence and estimate the 

degree to which patterns are determined by topography, while spatial correlograms and 

Mantel tests offer alternatives to classical statistical methods when spatial scaling of 

associations between vegetation mosaic and physical landscape is of concern 

(LEGENDRE; FORTIN, 1989; LEDUC et al., 1992).

This analysis aims to evaluate whether LiDAR-derived metrics of canopy structure (gap 

fraction, mean canopy height) and topographic variation (elevation, slope, aspect) can serve 

as good predictors of different components of aboveground biomass dynamics (gain, loss, 

net change) as well as the overall biomass stock and basal area in the Atlantic Forest of the 

Serra do Mar. Specifically, the following research questions will be investigated:
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[1] What is the distribution of canopy heights in the permanent plots and how does it 

compare to canopy structure in the surrounding landscape?

[2] Is canopy height a good predictor of field-estimated aboveground biomass stocks and 

basal area?

[3] What is the distribution of gap size and gap area in the permanent plots and is it 

representative of the gap distribution in the surrounding landscape?

[4] How does gap fraction compare to field estimates of biomass gain, loss and net change 

in 1-ha permanent sample plots?

[5] Does terrain slope and/or aspect have a significant influence on biomass dynamics and/

or canopy structure?

6.2 Material and methods

6.2.1 Field surveys and biomass dynamics

Live aboveground biomass variation in the study area was assessed from tree diameter 

survey data collected in the Serra do Mar permanent plot network (Table 6.1) over a 6-year 

period starting in 2006/07. The survey  protocol followed standard tropical forest 

methodologies for tree growth measurements (ALVES et al., 2010): all trees ≥ 4.8 cm DBH 

(Diameter at  Breast Height, 1.30 m) were tagged and mapped to a horizontal distance of ± 

10 cm in each 1-ha permanent plot, and tree circumference was measured within ± 1 mm. 

Following the initial census in 2006/07, repeated forest inventories were carried out in these 

permanent plots in 2008/09 and 2011/12, the last of which coincided in time with the 

LiDAR data collection.
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Table 6.1 Summary  information about the permanent  plots along the Atlantic Rainforest 
 altitudinal gradient, Serra do Mar State Park – SP. (Adapted from JOLY et al., 
 2012)

Project/ Funding BIOTA Functional Gradient Project/ FAPESP Funding (proc. No. 
03/12595-7)

Location (State, Conservation 
Unit, Municipality and 
Geographical Coordinates)

Northeastern region of the State of São Paulo, Serra do Mar State 
Park – Picinguaba and Santa Virginia Centers, municipality of Ubatuba 
(Restinga, Lowland and Submontane) and São Luiz do Paraitinga 
(Montane) – 23º19’31” - 23º22’52” S and 44º49’55” - 45º05’02” O

Year of installation 2006/2007

Measurement periodicity Biennial

Biome/ Forest formation Restinga and Dense Atlantic Rainforest in the Lowland, Submontane 
and Montane areas

Form Square plots

Plot size (m2) – Dimensions 
(m x m)

1 ha (100 x 100 m), divided into 10 x 10 m subplots

Quantitative variables CBH (Circumference at Breast Height) of all trees, palms and 
treeferns with DBH (Diameter at Breast Height) ≥ 4.8 cm; total 
height; stem height; x-y position inside the plot

Qualitative variables Crown Illumination Index; Trunk decomposition grade (when dead); 
Crown quality; Presence of bamboo and liana in the crown; Trunk 
quality; Floristic identification

Number of plots installed 14

Sampled area (ha) 4 ha in each of the Lowland, Submontane and Montane areas + 1 ha 
Lowland disturbed forest + 1 ha Restinga

Additional Details All plots were georeferenced and individuals permanently marked 
with numbered aluminium plates located 30 cm above the point of 
measurement (Breast Height = 1.30 m)

Forest carbon stocks can be estimated using biomass allometric models that are developed 

by harvesting and weighing trees to determine their dry mass and allow for the calculation 

of aboveground biomass based on tree size. The simplest allometric models are of the form:

 AGB = a × D b (6.1)

where AGB is aboveground biomass (kg), D is stem diameter (cm), and a and b are 

parameters estimated empirically. In equations developed from field measurements at a 
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single site, diameter can usually explain the majority of variation in the aboveground 

biomass of individual trees. Yet, to obtain regionally comparable biomass estimates in 

highly  heterogeneous tropical forests, it  is necessary for the allometric model to incorporate 

additional parameters that account for evolutionary  and environmental variations of forest 

characteristics at regional scales. Recent research focusing on biomass allometric models in 

tropical forests has shown that the inclusion of tree height as an additional size covariate, as 

well as the inclusion of one environmental factor and one functional trait (annual 

precipitation and wood specific gravity) produced a highly  robust generic model leading to 

accurate estimates of tree biomass (CHAVE et al., 2005).

Given the significant variability  of the Atlantic Forest biome along the coast  of southeast 

Brazil (VIEIRA et al., 2008) and in lack of an allometric model developed specifically for 

the old-growth forest of the Serra do Mar site, this study applied Chave’s et al. (2005) pan-

tropical biomass allometry to estimate live aboveground biomass of all trees in the 1-ha 

permanent plots. This allometric model is based on the following relationship:

 AGBtree  = ( 0.0509 × ρ × DBH 2 × H ) (6.2)

where AGBtree is aboveground tree biomass (kg), ρ is species level wood density (g cm-3), 

DBH is tree diameter at breast  height measured in the field (cm), and H is total tree height 

(m) estimated from the DBH values based on stand-specific allometric equations that were 

developed in the study area by Scaranello and colleagues (2012). Live aboveground 

biomass estimates for palms were calculated using the allometric equation developed by 

Hughes (1997, cited in ALVES et al., 2010):

 AGBpalm = {exp[ 0.9285 ln(DBH 2) + 5.7236 ] × 1.050001} ÷ 103 (6.3)
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where AGBpalm  is aboveground palm biomass (kg), and the only  input variable is DBH, the 

diameter at breast height of the palm. The biomass of tree ferns was considered to have 

only negligible contribution to total aboveground biomass estimates (0.5% or less) in the 

area of interest, therefore tree ferns were not included in the present study (L. F. ALVES, 

2013 personal communication).

Plot-level aboveground biomass estimates were calculated by summing up  the individual 

tree and palm biomass values within each plot for the separate forest inventory dates 

(2008/09 and 2011/12) and converting these values to mass per unit area, expressed in Mg 

ha-1. Total basal area was also calculated on the plot level (m2 ha-1) from the DBH data of 

the third survey (2011/12). Estimated components of aboveground biomass dynamics over 

the 3.5-year time period between the second and third surveys included:

 (i)  AGB gain from growth and recruitment;

 (ii)  AGB loss to mortality; and 

 (iii)  AGB net change (growth + recruitment – mortality)

all expressed in the units Mg ha-1 year-1.

It is important to note that several different approaches exist for calculating changes in 

aboveground biomass, distinguished primarily  by the methods applied to quantify biomass 

gains due to recruitment and losses due to mortality (e.g. CLARK et al., 2001; CHAVE et 

al., 2003; MALHI et al., 2004). In this study, recruit biomass was estimated using the 

measured DBH of all recruits at the time of the forest survey and dividing the sum by the 

time elapsed between surveys. For quantifying mortality, an individual found dead at  the 

time of the forest survey was considered to have lost its total biomass during the time 

period since the last survey. Given that the time period considered in this study  was longer 

than one year and that the exact point in time when the individual died was unknown, it was 
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inevitable to introduce some uncertainties in the estimates of yearly mortality rates (L.F. 

ALVES, 2013 personal communication).

6.2.2 LiDAR-derived terrain and canopy metrics

The Canopy Height Model (CHM) generated from all vegetation returns in the full-density 

LiDAR point cloud following the G-LiHT methodology (COOK et al., 2013) described in 

section 5.2.1 was used in this part  of the study (Figure 6.1). The LiDAR data were 

associated with forest plots based on the differential GPS measurements previously 

described in Section 4.2.3. Samples corresponding to the 1-hectare permanent field plots 

were extracted from the whole-area CHM  raster dataset, and the distributions of canopy 

heights (1-m2 raster cells) within these plots were described and compared. To examine the 

broader landscape surrounding the 1-ha field plots, canopy height distributions were also 

generated for the greater submontane and montane forest areas. The two forest regions were 

distinguished based on elevation, with submontane forests occupying the lower-lying 

hillslopes between 100 - 500 m elevation and montane forests lying at 900 m or higher on 

top of the plateau (see Figure 6.1). In addition, descriptive statistics were generated from 

the LiDAR-derived DTM for the 1-ha permanent plot locations, including terrain elevation, 

slope and aspect – all with 1-m raster resolution.
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Figure 6.1 Canopy Height Model (CHM) from LiDAR in the 1000-ha study  area. The nine 
 permanent field plots are highlighted in red; thick grey boundary lines indicate 
 the submontane and montane regions used for landscape-scale comparisons.
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In order to investigate the disturbance regime of forest canopies in the permanent plots, gap 

size-frequency  distributions were generated from the LiDAR CHM. Canopy gaps were 

identified using a definition similar to that  of Brokaw (1982), where a gap is considered to 

be an opening in the forest  canopy that extends down to a defined height above the ground 

surface. Here, a range of height thresholds were tested (from 1m up to 20m in 1-m 

increments) for gap identification in the CHM raster image. Two height definitions that 

optimized the sensitivity  of gap fraction to components of biomass dynamics were selected 

for further analysis. The CHM  image was processed in a GIS environment following the 5-

step approach described in Asner et al. (2013) to distinguish canopy gaps:

 (1) Identify a pixel that is < the minimum-height threshold. Assign this pixel a unique 
 label.

 (2) Evaluate the 8 neighbors of the pixel identified in step 1. If they are < minimum-
 height threshold, and therefore part of the same canopy gap, assign them the same 
 label.

 (3) Repeat Step 2. until there are no neighbors < the minimum-height threshold. This 
 completes the identification of a single canopy gap.

 (4) Repeat Steps 1 - 3 until there are no remaining unlabeled pixels in the image.

 (5) Count the number of pixels within each uniquely-labeled canopy gap.

The gap  statistics derived from the CHM (i.e. number and size of gaps) were further 

analyzed and visualized in the R statistical environment (R Core Team, 2011) using the 

source code and detailed instructions provided by Asner et al. (2013). Gap size-frequency 

distributions were generated based on the Zeta distribution, which is a discrete power-law 

probability  density  used to describe the size-frequency of canopy gaps (ASNER et  al., 

2013). As stated by the authors, for the Zeta distribution with parameter λ, the probability 

that gap size takes the integer value k is:

 f(k) = k -λ / ζ(λ) (6.4)
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where ζ(λ) is the Riemann Zeta function, and is undefined for λ = 1. Maximum likelihood 

estimates (MLE) of the scaling exponent (λ) were calculated, and the resulting λ values 

were used to describe the disturbance regime of forest vegetation in the permanent plots. 

Values of λ typically  range from 1.0 - 3.0 in forests (ASNER et al., 2013), where λ lower 

than 2.0 is indicative of large-scale forest disturbance (predominance of large-sized gaps), 

while λ above the 2.0 threshold suggests that disturbance occurs on much smaller scales 

(FISHER et al., 2008).

Plot-level LiDAR metrics were merged with the field-based biomass data for regression 

modeling in order to analyze how LiDAR-derived terrain and canopy indices (slope, aspect, 

gap fraction and canopy height) are related to aboveground biomass and dynamics.

6.3 Results

6.3.1 Terrain characteristics

Figure 6.2 shows the 3D perspective view of the permanent field plots as well as 

histograms of the ground slope distributions at the 1-meter raster resolution extracted from 

the DTM. As it can be observed, the nine field plots are characterized by varying levels of 

steepness. The lower-lying submontane Plots F, G and H (elevation range: 99 - 217 m) as 

well as the montane Plot N have gentler slopes of 13.7º, 13.8º, 11.1º and 16.6º, respectively, 

while the rest of the plots (I and J, located between 300 - 400 m elevation, and K, L and M 

between 994 - 1064 m) are steeper in comparison with slopes ranging from 25.3º to 27.8º. 

In terms of the compass orientation of the downward slope (i.e. terrain aspect) there is also 

large variation both among plots and within plots (Figure 6.3). Overall, the submontane 

plots are oriented towards the southern directions, and montane plots are northward-facing.
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Figure 6.2 Terrain elevation from DTM (3D perspectives) and frequency distribution of 
 ground slopes (histograms) in the nine permanent field plots: F–J submontane 
 and K–N montane. Note that each plot is represented with its own color bar 
 (elevation in meters); color schemes are not inter-comparable among plots.
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Figure 6.3 Distribution of the compass directions of the terrain aspect (at 1-m raster 
 resolution) in the permanent plots: F–J submontane and K–N montane.
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6.3.2 Canopy heights and gap distributions

The 1-ha samples extracted from the 1-m resolution CHM  raster for the nine permanent 

plot locations are shown in Figure 6.4. The corresponding distribution of canopy heights 

(i.e. distribution of CHM raster cell values) in each plot is displayed in Figure 6.5, and 

associated descriptive statistics are summarized in Table 6.2 along with the summary of 

terrain characteristics. Canopy heights reach their maxima at 30.9 to 37.9 meters, and most 

plots have their mean around 20 meters, except for Plots I and J, where the means are 

higher (22.2 and 22.9 meters, respectively). Standard deviations of the canopy  heights 

range from 4.1 meters in Plot I to 5.4 meters in Plot N. Pairwise comparisons of the canopy 

height distributions in plots (using the TukeyHSD function in R with 95% confidence level) 

showed statistically  significant differences (p-value < 0.001) among most plots. The only 

pairs where the difference was not statistically  significant were: Plots F and N (p-value = 

0.998), Plots L and M (p-value = 0.999), Plots M  and G (p-value = 0.202) and L and G (p-

value = 0.124), indicating that the distributions of canopy heights in these plots follow 

similar patterns.
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Figure 6.4 Canopy height from CHM at 1-m spatial resolution within the nine permanent 
 Plots F–N. Light shades of green and yellow mark the tallest  tree crowns in 
 the canopy, while dark purple shades indicate the locations within the plots 
 where canopy openings were identified.
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Figure 6.5 Height frequency distributions from the 1-m resolution LiDAR Canopy Height 
 Model (CHM) for the nine permanent plots: F–J submontane and K–N 
 montane.
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Table 6.2 LiDAR-derived canopy height metrics and terrain characteristics in permanent 
 Plots F–N.

Canopy HeightCanopy HeightCanopy Height Terrain CharacteristicsTerrain CharacteristicsTerrain Characteristics

Plot IDPlot ID min – max
[m]

mean ± stdev
[m]

mode
[m]

Elevation [m]
min – max

Slope [º]
mean ± stdev

Aspect [º]
mode (dir)

SUB
MON
TANE

F 0.8 – 37.7 19.6 ± 4.9 20.1 99 – 126 13.7 ± 8.7 200 (S)

SUB
MON
TANE

G 0.2 – 34.3 20.6 ± 5.2 24.7 180 – 199 13.8 ± 6.8 128 (SE)
SUB

MON
TANE

H 1.4 – 32.5 19.9 ± 4.7 21.8 201 – 217 11.1 ± 6.2 170 (S)
SUB

MON
TANE

I 2.6 – 33.1 22.2 ± 4.1 23.7 302 – 350 27.8 ± 7.9 214 (SW)

SUB
MON
TANE

J 3.7 – 34.8 22.9 ± 4.7 23.7 324 – 372 26.9 ± 9.7 105 (E)

MON
TANE

K 0.0 – 35.2 20.8 ± 4.6 21.3 1015 – 1064 27.4 ± 8.6 18 (N)

MON
TANE

L 0.2 – 34.4 20.4 ± 4.9 21.7 994 – 1044 25.3 ± 6.7 308 (NW)MON
TANE M 0.0 – 35.6 20.4 ± 5.1 20.8 999 – 1047 27.0 ± 10.7 39 (NE)

MON
TANE

N 0.2 – 30.9 19.6 ± 5.4 21.9 1004 – 1038 16.6 ± 6.2 108 (E)

Height frequency distributions from the 1-m resolution CHM for the broader submontane 

and montane forest areas surrounding the permanent plots are shown in Figure 6.6. Canopy 

heights in the submontane landscape show a symmetrical distribution with values centered 

around a mean of 22.5 m (± 5.9 m standard deviation). In comparison, the distribution of 

canopy  heights in the montane region was significantly different (Kolmogorov-Smirnov 

test, p-value < 2.2e-16), with a mean value of 16.9 m (± 6.7 m standard deviation) and  

characterized by a heavy lower tail. Two-sample Kolmogorov-Smirnov tests were used to 

compare plot-level canopy height distributions to their surrounding landscapes. In almost 

all cases, the distribution of canopy heights in the 1-ha sample plot was significantly 

different from the canopy height distribution in the broader landscape (p-value < 2.2e-16). 

There was only one plot overall where canopy heights showed some correspondence to the 

distribution in the landscape: Plot I (p-value = 0.3094), located in the submontane area.
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Figure 6.6 Height frequency distributions for the montane and submontane forest areas 
 from the 1-m resolution LiDAR Canopy Height Model (CHM).

Canopy gap sizes and frequencies (Table 6.3) were quantified using two alternate gap 

definitions: (i) gaps extending down to 14 m above the forest  floor and having a contiguous 

area of at least  10 m2 – hereby  denoted as “mid-canopy gaps” – that showed greatest 

sensitivity to aboveground biomass loss and net  change, and (ii) gaps extending down to 5 

m above ground and having a minimum area of 1 m2 – denoted as “low-canopy gaps” – that 

were most sensitive to biomass gain. The maximum gap height thresholds tested for this 

optimization ranged from 1 m to 20 m in 1-meter increments, while the minimum gap area 

cutoff values tested were 1, 5, 10, 25, 50 and 100 m2. The selection criteria for finding the 

best fit  height and area thresholds to biomass components were largest R2 and smallest 

RMSE values.
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Table 6.3 Canopy gap  fraction and scaling exponent values in the 1-ha sample plots and 
 their surrounding landscapes calculated from the CHM raster using two 
 different gap definitions (low-canopy gap and mid-canopy gap).

Low-canopy Gaps (H < 5m;  A > 1m2)Low-canopy Gaps (H < 5m;  A > 1m2)Low-canopy Gaps (H < 5m;  A > 1m2)Low-canopy Gaps (H < 5m;  A > 1m2)Low-canopy Gaps (H < 5m;  A > 1m2) Mid-canopy Gaps (H < 14m;  A > 10m2)Mid-canopy Gaps (H < 14m;  A > 10m2)Mid-canopy Gaps (H < 14m;  A > 10m2)Mid-canopy Gaps (H < 14m;  A > 10m2)Mid-canopy Gaps (H < 14m;  A > 10m2)

PLOT
ID

Gap 
count

Mean 
size [m2]

Max. 
size [m2] % Gap

Scaling 
exp. (!)

Gap 
count

Mean 
size [m2]

Max. 
size [m2] % Gap

Scaling 
exp. (!)

F 2 5.0 8 0.10 2.53 19 48.8 260 9.27 1.49

G 6 4.3 13 0.62 1.66 16 66.1 254 10.57 1.44

H 7 3.0 5 0.21 1.92 10 109.2 367 10.92 1.50

I 2 2.0 2 0.04 2.14 9 24.1 83 2.17 1.61

J 3 2.7 3 0.08 1.86 9 26.8 69 2.41 1.66

K 8 7.9 43 0.63 1.99 20 28.0 73 5.60 1.55

L 12 4.8 25 0.69 1.93 17 49.1 213 8.34 1.53

M 11 6.9 24 0.76 1.72 11 87.6 522 9.64 1.53

N 25 5.3 52 1.71 1.71 19 67.7 380 12.86 1.54

SUBMON
TANE 7.9 /ha 15.8 1,492 1.25 1.72 12.2 /ha 68.5 6,786 8.37 1.55

MON-
TANE 15.7 /ha 19.9 42,865 3.13 1.69 10.6 /ha 281.3 521,308 29.82 1.57

Using the low-canopy gap definition, very  few canopy openings were found in the 

submontane plots (4 gaps on average) and slightly  more in the montane plots (14 gaps per 

plot on average). Mean gap size with this definition was 4.65 m2 overall, and the largest 

gap reached an area of 52 m2 in the montane Plot N. Gap fraction was highest in Plot N 

(1.71%), lowest in Plots I, J, F and H (0.04 - 0.21%), and intermediate in Plots G, K, L and 

M (0.62 - 0.76%). The calculated scaling exponent (λ) had an average value of 1.94 across 

all plots, with a low of 1.66 in Plot G and high of 2.53 in Plot  F. With the mid-canopy gap 

definition 15 gaps were found on average per plot, distributed evenly  across all plots. Mean 

gap size ranged from 24.1 to 109.2 m2 in Plots I an H, respectively, and the largest gap 

found was 522 m2 in area (Plot M). Plot  N still had the highest  gap  fraction (12.86%) with 
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this definition among all plots, but  Plot G, H, M and F had almost as high values (9.27 - 

10.92 %). The lowest gap fractions were observed in Plots I (2.17%) and J (2.41%). The 

scaling exponent with the 14-m gap definition was more uniform overall (mean of 1.54), 

ranging between 1.44 (Plot G) and 1.66 (Plot J).

When compared with the plot-scale gap  size, count and gap fraction values, the landscape-

scale gap  statistics showed variable correspondence. Mean and maximum gap sizes were  

significantly larger on the landscape scale than in the 1-ha plots, and gap fraction values 

also followed this trend (see Table 6.3 above). Additionally, low-canopy  gap statistics 

showed larger discrepancies between the plot and landscape scales than mid-canopy gap 

statistics. Scaling exponent values with the low-canopy gap definition were 1.72 and 1.69 

in submontane and montane regions, respectively, significantly lower than what was 

observed on the plot level. Using the mid-canopy gap definition, λ values were 1.55 and 

1.57 in the submontane and montane regions, respectively, which correspond strongly to 

the mean value observed on the plot level. When comparing the submontane with the 

montane landscape (Figure 6.7), more gaps were found in the latter region, and those gaps 

were also larger in size. Both low-canopy and mid-canopy gap fractions were significantly 

higher in the montane landscape than in the submontane one.
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Figure 6.7 Distribution of low-canopy gaps (left) and mid-canopy gaps (right) within the 
 1000-ha LiDAR coverage in the Serra do Mar. Permanent field plots are 
 highlighted in red; submontane and montane landscape boundaries are in grey.
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6.3.3 Aboveground biomass dynamics

Total live aboveground biomass (AGB) in 1-ha plots at the time of the third survey 

(2011/12) ranged from 214.2 Mg ha-1 to 348.6 Mg ha-1 across all nine locations considered. 

Submontane plots had an overall mean AGB value (286.4 ± 46.5 Mg ha-1) lower than 

montane plots (306.5 ± 39.9 Mg ha-1). Overall net biomass change calculated from a 3.5-

year period (2008/09 - 2011/12) was small and negative in Plots G, H and N, close to zero 

in Plot M, and positive in Plots F, I, J, K and L. Among the plots that had positive net 

change, I and J showed the largest increase in total AGB (3.1 Mg ha-1 y-1 and 2.7 Mg ha-1 

y-1). Mean annual AGB gain ranged from a low of 3.9 Mg ha-1 y-1 (Plot M) to a high of 5.7 

Mg ha-1 y-1 (Plot F); on average, submontane plots showed higher rates of biomass gain (5.1 

± 0.6 Mg ha-1 y-1) than montane plots (4.3 ± 0.6 Mg ha-1 y-1). Calculated rates of mortality 

in the same time period were more variable across the nine plots, ranging form a minimum 

loss of 1.8 Mg ha-1 y-1 (Plot J) to a maximum of 5.7 Mg ha-1 y-1 (Plot N), however, when 

averaged within submontane and montane forests, mortality rates were not significantly 

different between these two areas (3.8 ± 1.6 Mg ha-1 y-1 and 3.8 ± 1.4 Mg ha-1 y-1 in 

submontane and montane forests, respectively). Mean basal area in the submontane and 

montane areas showed little difference with overall values of 39.3 (± 6.3) m2 ha-1 in the 

submontane and 39.4 (± 4.0) m2 ha-1 in the montane forest. A comparison of individual 

plots showed more variation: Plot F had the lowest basal area with 31.7 m2 ha-1 , Plots G, H, 

L and N had intermediate values around 36 m2 ha-1 , while the highest basal areas were 

observed in Plots M, I and J, reaching 46.5 m2 ha-1. Live AGB statistics for the nine plots 

are summarized in Table 6.4 below.
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Table 6.4 Components of aboveground biomass and dynamics in the nine permanent plots 
 F–N between the time period 2008/09-2011/12 (2nd and 3rd forest inventories).

Submontane plotsSubmontane plotsSubmontane plotsSubmontane plotsSubmontane plots Montane plotsMontane plotsMontane plotsMontane plots

BIOMASS 
COMPONENTS F G H I J mean ± stdev K L M N mean ± stdev

Total Biomass2
(Mg ha-1)

214.2 289.5 268.4 308.5 328.1 281.7 ± 43.8 326.5 268.4 348.5 276.3 304.9 ± 38.8

Total Biomass3
(Mg ha-1)

219.8 286.5 267.1 319.9 338.7 286.4 ± 46.5 332.5 270.5 348.6 274.5 306.5 ± 39.9

Total Basal Area3
(m2 ha-1)

31.7 37.4 35.8 46.5 45.0 39.3 ± 6.3 41.7 36.1 43.8 35.8 39.4 ± 4.0

GAIN 2–3
(Mg ha-1 year-1)

5.73 4.22 5.20 5.51 4.57 5.1 ± 0.6 4.39 3.98 3.87 5.08 4.3 ± 0.5

LOSS 2–3
(Mg ha-1 year-1)

4.41 4.96 5.51 2.45 1.84 3.8 ± 1.6 2.38 3.27 3.83 5.71 3.8 ± 1.4

NET Change 2–3
(Mg ha-1 year-1)

1.32 -0.74 -0.31 3.06 2.74 1.2 ± 1.7 2.01 0.70 0.04 -0.63 0.5 ± 1.1

TIME elapsed 2–3
(years)

4.2 4.1 4.1 3.7 3.9 4.00 3.0 3.0 2.1 2.9 2.75

6.3.4 LiDAR metrics vs. biomass components

Figure 6.8 shows the relationship  between demographic components of AGB dynamics and 

canopy  gap fraction in the nine 1-ha permanent plots based on ordinary least squares (OLS) 

regression. The regression coefficients are summarized in Table 6.5 below. Mid-canopy gap 

fraction was very strongly related to net  aboveground biomass change in the 1-ha plots (R2 

= 0.91, p-value < 0.001): observed net positive change in biomass coincided with areas 

where mid-canopy gap fraction was low (Plots I, J, K, F and L) and net negative change 

was observed in plots where mid-canopy  gap fraction was high (Plots G, H and N). 

Mortality rates were also significantly related to mid-canopy  gap  fraction (R2 = 0.87, p-

value < 0.001), predicting large mid-canopy  gap fraction values where aboveground 

biomass loss was high. Variation in biomass gain did not explain well gap fraction (R2 = 

0.01, p-value = 0.85) when using the mid-canopy definition for comparison, and this 

relationship  improved only slightly  with the low-canopy definition (R2 = 0.1, p-value = 
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0.42). However, by removing one point from the analysis (Plot N with unusually high gap 

fraction compared to other plots), 76% of the variation in low-canopy gap fraction was 

explained by biomass gain (p-value < 0.005).

Figure 6.8 Demographic components of aboveground biomass dynamics in relation to 
 canopy  gap fraction in the nine 1-ha permanent Plots F–N. Regression lines 
 are plotted in purple, grey squares indicate submontane plots, while montane 
 plots appear in black. Note that biomass gain was compared to gap fraction 
 using both the mid-canopy (top right graph) and the low-canopy (bottom right 
 graph) gap definitions. (Dotted line in bottom right graph is the regression line 
 after removal of Plot N from the analysis.)
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Table 6.5 Regression coefficients between biomass components and canopy gap fraction.

BIOMASS COMPONENTS Intercept Slope R2 p-value Res. SE df

Net change 10.24 -2.49 0.91 <0.001 1.22 7

Gain (vs. “mid canopy gap”) 9.93 -0.41 0.01 0.85 4.03 7

Gain (vs. “low canopy gap”) 1.68 -0.24 0.10 0.42 0.54 7

Loss -1.45 2.47 0.87 <0.001 1.46 7

Mean canopy  height predicted 43% of the variation in total aboveground biomass (p-value 

= 0.054), with a positive relationship between these two variables (Figure 6.9). Basal area 

was also positively  and significantly related to mean canopy height (R2 = 0.68, p-value = 

0.006).

Figure 6.9 Total aboveground biomass and basal area in relation to LiDAR-derived 
 mean canopy height in the nine 1-ha permanent Plots F–N. Regression lines are 
 plotted in purple, grey squares indicate submontane plots, while montane plots 
 appear in black.
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To examine the effect of terrain slope on biomass dynamics and related metrics (see Figure 

6.10), the nine permanent plots were grouped into two distinct slope classes that emerged 

from the data. The first group, characterized by gentler slopes (range: 11-16º, mean: 13.8º), 

includes Plots F, G, H and N, and the second group is composed of Plots I, J, K, L and M, 

with steeper slopes ranging from 25 to 28º (mean: 26.9º). Mean aboveground biomass as 

well as mean basal area were both significantly  higher in the steeper plots than in the less 

steep  ones (322.0 Mg ha-1 and 42.6 m2 ha-1 in comparison with 261.9 Mg ha-1 and 35.2 m2 

ha-1). Biomass gain rates did not differ notably  between the two slope classes, on the other 

hand, yearly  biomass loss was much lower on average in steeper plots (2.75 Mg ha-1 y-1) 

than in the flatter ones (5.15 Mg ha-1 y-1). Net biomass change indicated increase in biomass 

on steep  slopes (+1.71 Mg ha-1 y-1), while there was an overall small decrease in biomass 

observed in the plots with gentler slopes (-0.09 Mg ha-1 y-1). Average gap fraction on gentler 

slopes was twice as large as the mean across the steeper plots (10.9 % vs. 5.6 %, 

respectively, using the mid-canopy gap definition). Finally, mean canopy height was similar 

in the two groups, with an average value of 19.9 m for the flatter plots and 21.4 for the 

steeper slopes, the difference being driven by Plots I and J that had the highest mean 

canopy  heights among all plots. A similar analysis of biomass components and canopy 

structure using terrain aspect  as the predictor variable as opposed to slope did not  show any 

significant relationships at the 1-ha plot scale.
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Figure 6.10 Variation of biomass components (total biomass, basal area, gain, loss) and 
 canopy  metrics (canopy height and gap fraction) as a function of ground slope 
 in two groups: Plots F, G, H and N with gentler slopes (< 20º) and Plots I, J, K, 
 L and M  with steeper slopes (> 20º). Horizontal colored lines indicate the 
 mean values within each slope class, error bars show 95% confidence intervals 
 around the group means and each bar is labeled with the respective plot ID.
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6.4 Discussion

LiDAR-derived canopy height distributions shown in this work were not validated directly 

by field observations. However, a recent study by Scaranello and collaborators (2012) in 

the Serra do Mar permanent plots documented tree heights that were measured using 

traditional field techniques for a random sample of trees stratified by DBH class. The range 

of field-measured tree heights was grouped into different altitude classes, and the reported 

values were 4.3 - 30.0 meters for the 400-m altitude class (i.e. Plots G, H, I and J or 

“submontane plots”) and 5.2 - 29.4 meters for the 1000-m altitude class (i.e. Plots K, L, M 

and N or “montane plots”). Though direct comparison between the field-measured and 

LiDAR-derived tree heights is not appropriate given that the two sets of data were sampled 

differently, the range of canopy heights captured by the LiDAR (2.0 - 33.6 m and 0.24 - 

34.0 m for the lower and higher altitude classes, respectively) corresponds well to those 

measured in the field.

There was considerable variation in the LiDAR-derived canopy height distributions among 

the 1-ha sample plots, and these plot-level samples also did not correspond closely with the 

canopy  height distributions in the surrounding broader landscape. Especially  in the montane 

region on top  of the plateau, the observed discrepancy between plot-level and landscape-

scale canopy structure was more pronounced: the four montane permanent plots capture 

only a limited area of the forest where the canopy  is taller on average than it is across the 

broader landscape. Similar observations can be made with regard to the distribution of 

canopy  gaps, where the plot-level gap statistics were not strongly representative of the 

distributions of gap sizes and frequencies in the broader montane and submontane areas. 

These effects might be explained, in part, by  the small size of the permanent plots, 

indicating that 1-ha samples are not adequate to capture the disturbance regimes present in 

the landscape. The small number of field plots and their non-random spatial distribution 
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across the landscape are additional limitations that have to be considered before 

conclusions can be drawn from the analyses presented in this study.

It is also important to emphasize that several different gap definitions exist in the literature 

and various measurement approaches have been applied for the characterization and 

quantification of canopy gaps. In this study, gaps were evaluated empirically, and the two 

different gap definitions adapted for the analysis were based on relationships established 

between canopy height and aboveground biomass components in 1-ha field plots. Such 

localized gap  definitions might not be appropriate when applied to the wider landscape or 

different forest sites. Additionally, since canopy gaps are defined in reference to a given 

height threshold above the ground surface, regional variations in canopy  heights might 

influence gap characterization in individual plots. Therefore, it might be necessary  to 

normalize canopy heights to plot-specific maximum height or upper quantile values before 

calculating gap fractions to obtain metrics that are inter-comparable across all plot samples.

Results from the regression analysis between aboveground biomass and LiDAR metrics 

showed that LiDAR-derived mean canopy surface height alone was a good predictor of 

biomass stocks in the 1-ha permanent plots at the Serra do Mar study site. This single 

LiDAR metric explained 43% of the variation in total aboveground biomass in plots and the 

associated RMSE value was low (30 Mg ha-1). The predictive relationship  might be further 

improved by  using a different LiDAR-derived canopy metric – such as canopy rugosity or 

the mean height of the vertical vegetation profile – that captures information about the 

internal structure of the forest canopy. Alternately, multivariate regression techniques could 

be explored to make use of a variety  of LiDAR metrics simultaneously  – stepwise variable 

selection approaches or decision-tree based regression (e.g. randomForest in R) might be 

useful for this purpose.
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This study found that field-estimated biomass was higher on steeper slopes and at greater 

altitudes than in lower-lying or flatter areas, and average canopy height  derived from 

LiDAR also followed the same trend. Although this is contrary to the expectations along 

altitudinal gradients, where biomass and tree height usually decline with increasing 

elevation, previous studies have reported similar findings. Recent work along this 

elevational gradient in the Serra do Mar by Alves and colleagues (2010) found that large 

individuals (≥ 50 cm DBH) were more abundant on steeper slopes, and average AGB was 

higher in steep  plots – consistent with the results of the present study. As another example, 

Mascaro and colleagues (2011b) also observed a strong positive effect of slope on biomass 

density  on Barro Colorado Island, in Panama. It has been suggested that higher biomass 

accumulation on steeper slopes could be driven by higher productivity resulting from the 

interaction between complex topography and light availability in these areas. Still another 

study, by Castilho and collaborators (2006), found an effect  of topography not on total 

biomass stocks but on tree size distributions, with more small individuals relative to very 

large individuals on the steeper slopes.

Components of aboveground biomass dynamics estimated from field inventory  data over a 

3.5-year period proved to be strong predictors of canopy gap fraction in the 1-ha plots. The 

LiDAR data used in this study for the characterization of canopy structure captured one 

point in time and therefore served only  for describing the static state of canopy gaps at the 

time of the LiDAR overflight. This one-time snapshot of the spatial distribution of static 

gaps is expected to reflect patterns of tree mortality  and related changes in aboveground 

biomass from the time period preceding the LiDAR survey. This was indeed observed in 

the data, where the yearly rates of biomass loss and net change were very good indicators 

of mid-canopy gap  fraction (R2 = 0.91 and 0.87, respectively), suggesting a cause and effect 

relation between mortality patterns and mid-canopy gaps. In comparison, the relationship 

between static canopy gaps and biomass gain by growth and recruitment was not so 
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apparent in the data (R2 = 0.1, though it rose to 0.76 when Plot N was removed from the 

regression – this one plot might have suffered some disturbance between the field inventory 

and the LiDAR survey  resulting in new gaps not accounted for in the biomass survey). 

Repeat LiDAR overflights of the study area would provide measurements of the observed 

canopy  openings over time and contribute to a better understanding of the gap formation 

and closure processes that are closely  related to regeneration and tree growth. Information 

about the spatio-temporal distribution of canopy gaps might also help us understand how 

environmental factors (e.g. topography, soil, climate) influence forest turnover and biomass 

dynamics.

An interesting observation of this analysis was the combination of lower rates of mortality 

and fewer canopy gaps on steeper slopes in comparison with gentler areas. Steeper slopes 

are generally thought to be characterized by unstable conditions (due to wind exposure, 

landslides) and increased chances of tree falls and canopy damage. Under such conditions, 

higher mortality and turnover rates are expected resulting in more canopy openings, which 

in turn allow for more light penetration into the deeper canopy thus elevating regeneration 

rates and productivity. The steeper plots examined in this study did not provide evidence for 

such an unstable dynamic environment. Alternately, the more stable conditions observed on 

the slopes at the Serra do Mar (i.e. low mortality, few gaps) suggest that steeper slopes 

might provide a more favorable environment than gently sloped areas in terms of nutrient 

supply and water availability as well as greater access to light resources and space to grow. 

A simple analysis of biomass components in function of the terrain aspect did not reveal 

any apparent pattern that would relate the orientation of the 1-ha plots (i.e. solar 

illumination) to the amount of biomass and/or biomass change.

To examine how fine-scale spatial patterns of topography (slope and aspect) and vegetation 

structure interactively mediate tree growth by controlling light availability, a radiative 
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transfer model (e.g. DART), parameterized with LiDAR and field data, could be used to 

simulate variations of the incident solar illumination as well as the diffuse light 

environment in the forest  canopy. The DART (Discrete Anisotropic Radiative Transfer) 

model simulates radiative transfer in the Earth-Atmosphere system for any wavelength in 

the optical domain with a combination of the ray tracing and the discrete ordinate methods 

(see GASTELLU-ETCHEGORRY et al., 2012). It simulates any  landscape, natural or 

urban, as a 3D matrix of cells that contain turbid material for simulating vegetation and the 

atmosphere and triangles for simulating translucent and opaque surfaces that make up 

topography, urban elements and 3D vegetation. DART can use structural and spectral data 

bases (e.g. atmosphere, vegetation, soil) as input, and direct products of the model include: 

(i) remote sensing images for any direction and altitude within the atmosphere; (ii) 

Bidirectional Reflectance Distribution Function; (iii) 3D radiative budget of absorbed, 

scattered, intercepted and emitted radiation; (iv) 3D scene description (3D LAI, 3D triangle 

description); and (v) LiDAR ground footprint and backscattered image. 

6.5 Conclusions

Based on the main findings of the present analysis, the following conclusions can be drawn:

[1] Plot-based canopy height and canopy gap distributions derived from LiDAR data were 

variable within submontane and montane forest classes and the small number of these 

sample plots might not provide a faithful representation of the landscape-scale 

characteristics of canopy structure.

[2] Canopy height alone was a good predictor of aboveground biomass in the 1-ha 

permanent plots at the Serra do Mar study site. The predictive relationship  might be 
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improved with multivariate regression techniques making use of a variety of LiDAR 

metrics not solely canopy height.

[3] Processes of aboveground biomass dynamics, principally mortality and net change, 

were reflected in the LiDAR-derived distribution of static canopy gaps. Multi-temporal 

LiDAR would allow for the examination of gap dynamics and canopy  height changes, 

possibly more closely related to biomass gain by growth and recruitment.

[4] Terrain slope showed close correspondence with total aboveground biomass, basal area, 

mortality, gap  fraction and net biomass change; while a similar comparison of biomass 

components with terrain aspect  did not reveal any significant relationships at the 1-ha plot 

scale.
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7. SUMMARY AND FINAL REMARKS

Dense tropical forest canopies present various challenges for LiDAR remote sensing, 

especially in areas of steep  topography where much of the remaining Atlantic Forest  is 

concentrated. The main objective of this work was to assess the potential of airborne 

LiDAR to accurately estimate tropical forest structure and the underlying ground 

topography  in steep  mountainous terrain. The study found that the small-footprint LiDAR 

sensor can be used to characterize the sub-canopy  terrain elevation with very high accuracy 

in the topographically complex Serra do Mar region. The accuracy  of the LiDAR-derived 

ground elevations was greatly  influenced by the ranging distance and the complexity  of the 

terrain features, and also by the sampling point density  of the LiDAR data. The results of 

the study suggest that in mountainous terrain under closed-canopy tropical forest, dense and 

uniform LiDAR coverage is essential to faithfully characterize the spatial heterogeneity of 

forest structure and accurately estimate canopy height. Such a consistent sampling frame 

allows for improved biomass estimates as well as closer examination of ecological 

processes related to forest growth, turnover and canopy light availability.

This study  integrated fine-scale LiDAR data of canopy structure with field-based 

measurements of aboveground biomass in order to gain a better understanding of the 

processes of forest dynamics in the submontane and montane forest areas of the Serra do 

Mar and to examine the influence of terrain characteristics on canopy structure and 

biomass. LiDAR-derived metrics of canopy surface height and ground topography  showed 

close correspondence with aboveground biomass components in the 1-ha permanent plots. 

The analyses presented here were essentially  based on plot-level samples of three different 

raster surfaces generated from the LiDAR data: the digital terrain model (DTM), the digital 

surface model (DSM) and the canopy height model (CHM). Future work will benefit  from 

exploring additional LiDAR metrics of vegetation density and distribution that capture the 
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internal structural variability of the forest  canopy, not just the height of the outer canopy 

surface. Further research is needed to evaluate whether the plot-scale findings of this study 

can be extended to the broader landscape (i.e. the entire 1000-ha area of LiDAR coverage) 

in the Serra do Mar. Repeat LiDAR overflights of the study area would also add valuable 

information about the landscape-scale patterns of gap phase processes and their role in the 

biomass dynamics of the Atlantic Forest.

Additionally, the fine-scale LiDAR data from this work could be used in combination with 

other types of remote sensing data for detailed carbon studies or serve as input for 

ecological models. The fusion of LiDAR structural data with multispectral optical imagery 

(e.g. Landsat  ETM+) or radar (SAR or InSAR), for example, can aid efforts to scale up 

biomass estimates from the plot level to the broader landscape or regional scales. Also, 

high-resolution canopy  structural information obtained with LiDAR remote sensing can be 

used for model simulations of the canopy light environment (e.g. DART) to examine how 

topography  affects the light regime by controlling forest structure in a mountainous 

environment. Continued research based on the present work at the Serra do Mar elevational 

gradient aims to investigate the spatial and temporal patterns of vegetation productivity and 

turnover rates, and the seasonal and diurnal variation of light availability in the forest 

canopy  by integrating ground-based, airborne and satellite data and spatial models of 

ecosystem processes and feedbacks.
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APPENDIX A. List of the 36 control points used for DTM validation (coordinates in UTM 
Z23S) measured with dGPS and their respective precision (RMSE).

UTM coordinate [m]UTM coordinate [m]UTM coordinate [m] Coordinate precision [m]Coordinate precision [m]Coordinate precision [m]

Point Easting Northing Elevation Easting Northing Elevation
BASE 485083.39 7419288.63 898.19 na na na
F_A0 491797.33 7414215.84 105.23 0.19 0.05 0.11

F_A10 491823.42 7414312.49 114.99 0.59 0.18 0.77

F_K0 491895.88 7414190.08 100.43 0.45 0.31 0.35

F_K10 491918.21 7414286.73 125.91 0.02 0.02 0.03

G_A0 491679.62 7414925.73 177.87 0.01 0.01 0.02

G_A10 491596.94 7414873.50 182.00 1.08 0.28 0.55

G_K0 491626.06 7415010.19 195.93 0.72 0.25 0.26

G_K10 491542.10 7414956.27 195.01 0.40 0.23 0.40

H_A0 491631.34 7415056.81 203.66 0.18 0.09 0.25

H_A10 491547.00 7415003.21 202.85 0.31 0.19 0.41

H_K0 491578.18 7415141.35 214.36 0.02 0.01 0.03

H_K10 491495.26 7415087.52 216.98 0.16 0.06 0.17

I_A0 491351.64 7415637.23 307.67 0.01 0.01 0.02

I_A10 491292.19 7415717.79 324.14 0.26 0.10 0.25

I_K0 491432.43 7415696.24 303.10 0.35 0.15 0.36

I_K10 491372.97 7415776.97 337.09 0.01 0.01 0.02

J_A0 491341.80 7415788.44 354.23 1.53 0.48 1.86

J_A10 491289.83 7415871.69 347.37 0.03 0.03 0.05

J_K0* 491428.64 7415842.64 na na na na

J_K10 491373.56 7415926.61 361.47 0.02 0.01 0.03

K_A0 492936.56 7420396.71 1039.60 0.34 0.19 0.62

K_A10 493012.72 7420459.56 1019.80 0.03 0.02 0.21

K_K0 492999.92 7420319.43 1039.80 1.11 0.48 2.21

K_K10 493077.62 7420382.08 1020.66 0.80 0.46 0.79

L_A0 492789.85 7420382.51 995.84 0.49 0.15 0.42

L_A10 492851.76 7420458.33 1019.96 0.61 0.28 0.47

L_K0 492866.54 7420318.45 1044.60 0.52 0.11 0.39

L_K10 492930.47 7420395.92 1039.56 0.35 0.18 0.53

M_A0 492486.56 7420233.11 1009.22 0.37 0.21 0.48

M_A10 492581.36 7420199.80 997.84 0.35 0.26 0.71

M_K0 492454.77 7420138.28 1038.99 2.13 0.84 1.54

M_K10 492549.30 7420105.76 1019.97 0.32 0.25 0.37

N_A0 492198.98 7420371.08 1013.53 0.30 0.05 0.19

N_A10 492281.08 7420313.21 1003.43 0.01 0.01 0.03

N_K0 492141.62 7420289.42 1036.79 0.41 0.08 0.19

N_K10 492223.29 7420231.12 1017.21 2.11 1.88 1.21

*Coordinates of the missing point “J_K0” were calculated by  triangulation using the three 
other measured corners of the rectangular plot J.

101



APPENDIX B. Schematic map of the nine field plots – montane (K-N) and submontane 
(F-J) – with the corner point markers (A0, A10, K0, K10) and corresponding subplot codes 
(1, 10, 91, 100).
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