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Abstract. Current methods for modelling burnt area in dy-
namic global vegetation models (DGVMs) involve complex
fire spread calculations, which rely on many inputs, includ-
ing fuel characteristics, wind speed and countless param-
eters. They are therefore susceptible to large uncertainties
through error propagation, but undeniably useful for mod-
elling specific, small-scale burns. Using observed fractal dis-
tributions of fire scars in Brazilian Amazonia in 2005, we
propose an alternative burnt area model for tropical forests,
with fire counts as sole input and few parameters. This model
is intended for predicting large-scale burnt area rather than
looking at individual fire events. A simple parameterization
of a tapered fractal distribution is calibrated at multiple spa-
tial resolutions using a satellite-derived burnt area map. The
model is capable of accurately reproducing the total area
burnt (16 387 km2) and its spatial distribution. When tested
pan-tropically using the MODIS MCD14ML active fire prod-
uct, the model accurately predicts temporal and spatial fire
trends, but the magnitude of the differences between these
estimates and the GFED3.1 burnt area products varies per
continent.

1 Introduction

Fires are a major component of the global carbon cycle.
Globally, they release an average of 2.0 PgCyr−1 into the at-
mosphere and over a third of this amount can be attributed to
tropical fires (van der Werf et al., 2010). A changing climate
is expected to increase the occurrence of droughts in tropi-
cal regions (e.g.Booth et al., 2012; Cox et al., 2008), which

in turn will make extreme tropical fire regimes more likely
(Aragão et al., 2007; van der Werf et al., 2008).

Despite their importance, representing fire dynamics
within dynamic global vegetation models (DGVMs) to
model their impacts upon the structure and functioning of
ecosystems and their potential feedbacks on the climate sys-
tem has been challenging. Their accuracy depends, in part,
on an accurate representation of fire dynamics, yet many
DGVMs do not contain a wildfire component (Piao et al.,
2013). For quantifying carbon emissions from fires, three
main steps are required: (i) predicting how many fires will
occur, (ii) modelling the spread of these fires in order to de-
termine burnt area, and (iii) calculating the expected quantity
of biomass that will be combusted as a result. In this study
we focus specifically on the second of these steps.

Within existing fire models, the spread of fire is one of
the more complex processes. Many fire models implemented
in DGVMs – including the most detailed fire models to
date, SPITFIRE (Thonicke et al., 2010) and its successor, the
fire component of LPX (Prentice et al., 2011) – use an ap-
proach based on the Rothermel equations (Rothermel, 1972)
to model the rate of fire spread. The area burnt in a given
grid cell is then calculated using the rate of spread, expected
number of ignitions and calculated fire danger index. This
estimate relies on the assumption that fires generate elliptical
burn scars. The Rothermel approach requires data about the
distribution, density and moisture content of fuel in the area,
the velocity of wind, and assumptions about when fires stop
spreading. Data about the fuel needed to sustain fire spread
are generally calculated by the DGVM itself, and therefore
prone to substantial uncertainties. Wind velocity is routinely
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measured at meteorological stations; however, the accuracy
of wind estimates from climate models that extend past the
time frame of available measurements is uncertain, further
limiting the potential of such an approach for palaeontolog-
ical or future projections of fires. Additionally, a large num-
ber of prescribed parameters are used to describe processes
such as the effect of damp fuel combustion on fire inten-
sity. These parameters are generally estimated, and therefore
likely to differ from their true values. Hence, each additional
parameter introduces a new level of uncertainty into the mod-
elled fire simulations. Because simulated area burnt is depen-
dent on several separate assumptions, expressed as paramet-
ric equations, its accuracy is highly susceptible to both pa-
rameterization and forcing data errors, especially for tropical
forest ecosystems.

It is undeniable that fire spread, as a physical process, must
be dependent on ecological and climatic conditions, and that
details of these conditions are essential for predicting the
spread of any individual fire. The traditional approach of
modelling the spread of individual fire events requires de-
tailed, localized data such as wind speed, fuel moisture and
fuel loading. However, if the aim is to estimate the total burnt
area resulting from all fires in a given region or biome over a
certain time period, we can greatly reduce the number of in-
put data sets required. For the model developed in this study,
by using the theory of a scale-invariant fire size distribution,
we need only ecological information about the dominant land
cover type of the study area.

Scale invariance manifests itself as a fractal distribution,
where the probability that an event of a certain size will oc-
cur decreases proportionally as the size increases. The exact
distribution that is appropriate for a given system is debat-
able, and a range of possibilities are suggested in the liter-
ature. It has been shown that a huge range of complex dy-
namical systems and extreme events are scale-invariant, from
earthquakes (Sornette and Sornette, 1989) and solar flares
(Bofetta et al., 1999), to the extinction of species (Solé and
Manrubia, 1996). More importantly for this work, numer-
ous studies have shown scale invariance in the distribution of
wildfire sizes, for certain regions and time frames (Cui and
Perera, 2008). Significant power-law distributions of fires
were found in regions of the US and Australia (Malamud
et al., 1998), Spain (Moreno et al., 2011) and Amazonia
(Pueyo et al., 2010). Some studies showed that either a trun-
cated, piecewise or tapered distribution might be more ap-
propriate for certain regions (Cumming, 2001; Holmes et al.,
2004; Ricotta et al., 1999; Schoenberg et al., 2003; Pueyo
et al., 2010) than an unbounded one.

The consensus among these studies is that variation in the
parameters of these distributions between ecosystems and re-
gions is associated with differences in land cover and local
climate, and as such there has been no previous attempt to
generalize the distributions over larger regions and time peri-
ods. In this study, we consider only tropical forests. Although
there is variability in land cover within tropical forests, we do

not investigate the effect of land cover on the distribution pa-
rameters in this study. Local climate affects both the number
of fires or fire fronts that occur as well as the spread of these
fires. However, in this study we hypothesize that the effects
of climate variations on active fires and fire spread are closely
correlated, and hence, if fire counts are known, then the dis-
tribution parameters can be estimated from this single input
variable, without the introduction of a weather variable.

To test this hypothesis, we proceed in three successive
steps. First, we identify a distribution that is a suitable ap-
proximation of the observed distribution of fire sizes in the
forests of Brazilian Amazonia. Second, we develop methods
for estimating the distribution parameters, and check the ac-
curacy of the model simulations of both the spatial distri-
bution and total accumulation of burnt area across the whole
region. Third, we test the suitability of the model for use with
all tropical forests, as well as its ability to capture both spatial
and temporal patterns of burnt area.

2 Model development

2.1 Data

In this work we used a burn scar data set for 2005 pro-
duced byLima et al.(2009), restricted to the forested areas
within the Brazilian Legal Amazonia limits, to calibrate the
model. The burn scars were mapped using a linear spectral
mixing model (LSMM;Shimabukuro and Smith, 1991) ap-
plied to the MOD09 daily reflectance product from Moderate
Resolution Imaging Spectroradiometer (MODIS) onboard of
NASA’s Terra satellite, using the red (band 1), near-infrared
(band 2) and short-wave infrared (band 6) bands at a 250 m
spatial resolution (Justice et al., 2002) (band 6 data were
regridded from its original 500 m resolution). The MODIS
images were chosen based on the following criteria: (1) im-
ages should be within the fire season period, identified by
analysing daily active fire information from MYD14 prod-
uct; (2) images should be free or partially free cloud images;
and (3) images should be acquired with a view angle close to
the nadir to minimize panoramic distortion.

The mapping was carried out in four steps, following the
methods ofShimabukuro et al.(2009): application of an
LSMM, segmentation of shade fraction image, unsupervised
classification by regions and visual interpretation.

The LSMM was applied to the composite bands 1, 2 and 6
to generate the shade fraction image, which highlights low-
reflectance targets – the case of burnt areas. Shade fraction
images were subsequently classified in two steps. The first
consisted in the application of a segmentation algorithm. The
second encompassed the use of an unsupervised classifica-
tion method (ISOSEG,Ball and Hall, 1965; Kawakubo et al.,
2013) applied to the segmented images.

For the segmentation procedure two thresholds were de-
fined: (a) the similarity threshold, a minimum threshold
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below which two regions are considered similar and grouped
into a single polygon, and (b) the threshold area, minimum
area value, given in pixels numbers, for a region to be in-
dividualized. A value of eight digital numbers and an area
equal to four pixels were used for the similarity and area
threshold, respectively. These thresholds were set based on
the complexity of shape and size as well as from the mean
deviations of digital number values of burn scars samples vi-
sually identified.

After segmentation, the ISOSEG algorithm was applied
to the three bands generated by the LSMM, shade, soil and
vegetation with a 75 % similarity limit (Shimabukuro et al.,
2009). From the resulting classes, those corresponding to
burnt areas were merged into a single “burn scar” class, and
the remaining classes were discarded.

All water bodies were masked out and editing based on
visual interpretation was performed to differentiate between
burn scars and terrain shadow. All maps produced for each
date were combined into a single yearly map depicting the
total area of burn scars in 2005.

Finally, to quantify the forest burnt area, the burn scars
map generated was overlapped by the 2005 forest mask pro-
vided by PRODES project (INPE, 2013). The final map used
for the model calibration was the result of the intersection
between the burn scars and PRODES forest area maps.

We compare the total area of burn scars mapped with a
higher resolution map (30 m spatial resolution) derived from
visual classification of Landsat 5/TM false-colour composite
scenes for three Amazonian states following a west-to-east
transect: (1) Acre (path 001/row 67), (2) Amazonas (path
230/row 65) and (3) Maranhao (path 221/ row 65). For the
classification of the total burnt area for 2005 based on Land-
sat 5/TM data we used seven, five and six cloud-free scenes
acquired during the fire season for Acre, Amazonas and
Maranhao, respectively. We also compare our results with
the MODIS burn scar product MCD45. Overall, using the
LSMM algorithm produces a total area of burn scars consis-
tent with the higher resolution map, apart from the state of
Amazonas, where an underestimation is clear. Surprisingly,
the MCD45 product well underestimates the burn scar area
for the regions analysed in comparison to both Landsat 5/TM
and our MODIS LSMM mapping procedure (Fig. S1, Sup-
plement).

For the purpose of our analysis we used point data cor-
responding to the LSMM image data, at a 500 m resolution.
We treated every group of adjacent 500 m× 500 m pixels as
a single fire event, and counted the number of fires of each
size,A, in every grid cell, repeating the procedure for four
different grid-cell resolutions: 0.5◦ × 0.5◦, 1◦

× 1◦, 2◦
× 2◦

and 4◦ × 4◦. Any fire event that crossed a boundary between
two or more grid cells was attributed to the grid cell in which
the majority of the burn scar could be found. In this way, we
obtained information about the number of fires of each size
in each grid cell. Due to the use of logarithms in the distribu-
tions, all calculations use the number of pixels as the fire size

measure, rather than an area value, to ensure that 0≤ log(A)

at all times.
All analyses presented below were performed for each of

these four grid-cell resolutions in order to assess the effect of
changing the resolution on the accuracy of the results. The
suitability of the distribution for estimating burnt area was
assessed at both a grid-cell level and over the whole Brazilian
Amazon domain. The exact use of this data set in the overall
work presented here is shown in Fig. 1.

2.2 Representing the fractal properties of fire size
distributions

A range of distributions have been used in the literature to de-
scribe fire size distributions. The most common is the Pareto
distribution, sometimes referred to as the power-law distribu-
tion. This states that the probability that fireX is of sizeA

or larger is proportional toA−b, for a constantb. Other stud-
ies use variations of this distribution to allow for the fact that
fires in many regions show scale invariance only for a par-
ticular range of sizes. One of these variations is truncation,
i.e. ignoring all fires smaller than a lower threshold and/or
larger than some upper threshold. Although this yields inter-
esting information about the behaviour of fires, it is not use-
ful in the context of this study, since all fires must be consid-
ered if an accurate prediction of burnt area is to be produced.
Small fires contribute greatly to total burnt area:Randerson
et al. (2012) found that accounting for small fires resulted
in a 35 % increase in total global burnt area estimates. An-
other variation prevalent in the literature is a piecewise dis-
tribution, where the parameters of the Pareto distribution are
distinct for two or more ranges of fire sizes. Although possi-
ble, this would require the estimation of many more param-
eters, and hence could have a large effect on the accuracy
of the model. The other commonly used option is to mod-
ify the Pareto distribution to include a tapering function (e.g.
Schoenberg et al., 2003). However, this generally only allows
for the distribution to tail off as the fires become extremely
large: it does not take into account the fact that there may be
a tail at the low end of the distribution as well.

Based on the burn scar data we are using to calibrate the
model, we use the following distribution:

nX≥A = αA−b exp

(
−

1

A
−

A

θ

)
, (1)

wherenX≥A is the number of fires of sizeA or larger, and
α, b andθ are grid-cell-dependent parameters.θ is known as
the tapering parameter. The−1/A term represents the small-
fire taper. Although an additional parameter could be intro-
duced into this term, this tapering is most likely a result of
limitations in the detection of small fires, and hence should
remain constant. The estimate of such a parameter for the
whole region is 0.99±0.075 (using least-squares regression,
as described below), so the use of the number 1 in this term
is reasonable. For ease of use, Eq. (1) can be rewritten by
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Fig. 1.Flow diagram detailing the data sets and parameters used in calibrating and evaluating the model.

taking the logarithm of both sides, resulting in Eq. (2):

log(nX≥A) = log(α) − b log(A) −
1

A
−

A

θ
. (2)

By setting A = 1 and solving Eq. (2) for α, we get
log(α) = log(nf )+1+

1
θ
. Substituting this back into Eqs. (1)

and (2), they can be rewritten as Eqs. (3) and (4), respec-
tively:

nX≥A = nf A−b exp

(
1−

1

A
+

(1− A)

θ

)
, (3)

log(nX≥A) = log(nf ) − b log(A) + 1−
1

A
+

(1− A)

θ
. (4)

We check that this distribution fits the data by estimating
parametersb andθ using least-squares regression on Eq. (4),
and comparing the resulting fitted cumulative frequencies to
the data points. This is not an optimal fitting method, since
a condition of least-squares optimization is that the errors
are independent of one another. This is obviously not the
case when cumulative frequencies are used. However, alter-
native methods such as maximum likelihood regression or
the method of moments are not suitable in this case. These
methods are commonly used for similar problems in the lit-
erature, using logarithmically binned data (e.g.Pueyo, 2007;
Pueyo et al., 2010; Moreno et al., 2011). Binning the data
results in the loss of information about extreme fire sizes,
hence our reluctance to use this technique in this instance.
If the data are used unbinned, we encounter the problem of
trying to fit a continuous, monotonically decreasing probabil-
ity density function to a set of data in which many sizes can
take the same frequency and some intermediate fire sizes do
not occur at all (this pattern can be seen in the top-right plot
of Fig. 2). Ultimately, this results in a large underestimation
of fire frequencies. Least-squares regression, although not a
perfect option, provides decent approximations of the param-
eters.

The estimated cumulative frequencies of each fire size are
close to the observed, with very small errors. This can be
seen in Fig. 2 in the left-hand plots. The frequencies of each

fire size can be calculated by differentiating Eq. (4) with re-
spect toA, and this should give the best estimates of burnt
area. Alternatively, burnt area can be calculated directly as
the area under the cumulative frequency curve. In order to
see whether the true distribution of fire size frequencies can
be recreated, however, we round the cumulative frequencies
to restrict the frequencies to integer values, and calculate the
difference between cumulative frequencies for each consec-
utive integer value ofA. This results in a similar frequency
distribution to that observed in the data (Fig. 2, top right)
but with increasing uncertainty as the frequencies decrease
(Fig. 2, bottom right). The resulting burnt area estimate is
only 5 % lower than the observed total, and overall there is
no evidence to suggest that this distribution does not fit the
data.

2.3 Estimating the distribution parameters

In order for this model to be of use, there needs to be a simple
way to estimate parametersb andθ , preferably without intro-
ducing other input variables. To do so, we first of all approx-
imate these parameters using least-squares regression for ev-
ery grid cell, as well as a range of resolutions: 0.5◦

× 0.5◦,
1◦

× 1◦, 2◦
× 2◦ and 4◦ × 4◦. This allows us to see patterns

in the parameters and determine whether either of them are
resolution-dependent.

2.3.1 Estimating gradientb

The parameterb in the distribution represents the underlying
rate at which the cumulative frequencies of each consecutive
fire size decrease. There is an extra adjustment to this in the
form of the exponential component of Eq. (3).

By plotting the fitted values ofb for each grid cell against a
range of other variables, such asnf , θ , or max(A) (the largest
observed burn scar in each cell), there is a consistent lack of
correlation. We have not included all of the plots mentioned
above, as this would be somewhat redundant, due to the simi-
lar patterns of each one: onlyb againstnf is shown in Fig. 3.
This suggests thatb is approximately constant, and can be
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Fig. 2. Plots of the observed (black) and fitted (blue) cumulative
frequency distribution (top left) and non-cumulative frequency dis-
tribution (top right), with the corresponding plots fitted against ob-
served values (with 1 : 1 lines, bottom row). Logarithmic axes are
used for all plots. The burnt area values given in the bottom-right
plot are the total observed and estimated burnt area over the whole
study region.

estimated by taking the mean value of the observations. Al-
though there is a large amount of variation inb whennf is
small, this can be attributed to the difficulties of parameter
estimation when the model is fitted to a small number of data
points.

There appears to be a slight effect of resolution on the
mean value ofb per grid cell. The coarser the resolution,
the larger the value of̄b is. This is further supported by the
significantly higher value ofb obtained when the distribu-
tion is fitted to the whole region. However, performing Stu-
dent t tests on the estimates ofb for each pair of resolu-
tions shows that there is not enough evidence at a 5 % sig-
nificance level to suggest that there is a difference between
the means calculated here. This is true even if a one-sidedt

test is used on the estimates ofb for 0.5◦
× 0.5◦ and 4◦ × 4◦,

which give the smallest and largest values ofb̄, respectively
(p value = 0.2487). The mean of theb̄ across these four res-
olutions is 1.27. The change in the total burnt area estimates
over the study region if a fixedb is used instead of the indi-
vidual b̄ per resolution is at most 4 %. Hence, it is best for
this study to keepb = 1.27.
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Fig. 3. Plots of estimated values of parameterb against fire counts,
nf , for all four resolutions. The solid lines horizontal lines are at
b = b̄ for the values of̄b shown on each plot.

2.3.2 Estimating tapering parameterθ

We assume that there is always one single largest fire in
each grid cell, sonX≥max(A) = 1. By settingA = max(A) in
Eq. (4) and rearranging, we get the following approximation
of θ :

θ̂ =
max(A) − 1

log(nf ) + 1−
1

max(A)
− b log(max(A))

. (5)

Sinceb̂ = 1.27 from Sect. 2.3.1 andnf is an input vari-
able, if a method of estimating max(A) is found, thenθ can
be calculated directly from Eq. (5).

The maximum size a fire can take in a grid cell is depen-
dent on many factors. From a purely statistical viewpoint,
the more fires in a cell, the larger max(A) is likely to be.
The value of max(A) also depends on local climatic and eco-
logical conditions. For example, fragmented fuel or a high
fuel moisture content can severely limit fire spread, while
high winds and a high litter load encourage fire propagation.
Additionally, the largest potential fire size is not necessarily
similar to the actual achieved max(A), which makes this a
difficult value to predict.

The estimate used in this model is simple: it is a log-linear
function of fire counts, as described by Eq. (6):

log(max(A)) ≈ q log(nf ). (6)

This obviously takes the statistical likelihood of large fires
given the sample size into account, and restricts max(A) to 1
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pixel if there is only one fire, which is a reasonable assump-
tion. Also, since fire occurrence is itself dependent on the
same climatological and ecological conditions as fire spread,
we would expect max(A) andnf to covary. We see a cor-
relation between the logarithms of the two variables of be-
tween 0.73 and 0.85 for the range of resolutions, and this
relationship can be observed in Fig. 4. While the introduc-
tion of additional input variables could potentially improve
the estimates of max(A), the added complexity of the model
and errors present in the input data sets may counteract any
potential improvement in the model performance.

The value ofq is estimated for each resolution:q̂ = 0.95,
0.87, 0.81 and 0.78 for 0.5◦

× 0.5◦, 1◦
× 1◦, 2◦

× 2◦ and
4◦

× 4◦, respectively. There is a sizeable amount of variation
in the data, and hence the errors are relatively large. This
may be due, in part, to the use of such a simple relation-
ship between the variables. Particularly for high resolutions,
there appears to be a slight decay in the linearity of the re-
lationship asnf becomes small: the values of max(A) seem
to flatten out rather than continue decaying (Fig. 4). How-
ever, the introduction of a more complex relationship is dif-
ficult, due to the need for additional prescribed parameters,
and hence is not attempted here. The value ofq̂ is clearly
resolution-dependent, decreasing from 0.94 at 0.5◦

× 0.5◦ to
0.81 at 4◦ × 4◦. This decrease can be generalized by

q̂ = 0.88− 0.04log(Ac), (7)

whereAc is the size of the grid cell in degrees squared.
By substituting Eq. (6) into Eq. (5), we obtain a final equa-

tion for estimatingθ :

θ̂ =
nf

q
− 1

log(nf ) + 1−
1

nf
q − b log(nf

q)
. (8)

Sinceq andb are fixed, asnf becomes large there comes a
point at whichθ becomes negative. Where this is the case,
we prescribeq = ∞, so that the tapering term disappears.

2.3.3 Correcting for data detection resolutions

The parameter estimation methods described above are cal-
ibrated to a data set detected at 500 m× 500 m resolution.
If another data set is used that has been detected at a dif-
ferent resolution, gradientb will remain the same, but the
1− 1/A + (1− A)/θ component of Eqs. (3) and (4) needs
to be scaled inversely proportional to the change in detec-
tion resolution: if the data driving the model are detected at
1 km2 (i.e. grid cells that are 4 times larger than those used to
calibrate the model), then this term must be divided by 4 to
compensate. The value of max(A) would also need to be di-
vided by 4 in this example. It is crucial to note thatθ should
be estimated from Eq. (8) rather than by estimating max(A)

first and substituting the corrected version of this into Eq. (5),
or otherwise the correction will be applied twice.
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Fig. 4. Plots of the largest fire per grid cell against fire counts, on
logarithmic axes, for four resolutions. The solid lines are straight
lines through the origin with gradientq̂, as given in the plots.

2.4 Predictions of burnt area

Once the distribution parametersb andθ have been estimated
using the above methods, they are substituted back into
Eq. (3) to obtain estimates of the cumulative frequencies of
the calibration data set. No parameter correction is needed in
this case. The area burnt can be predicted by summing these
cumulative frequencies over the rangeA = 1, . . .,max(A),
for the estimated value of max(A). Failing to restrict the pos-
sible fire sizes to this range negates the previous assumption
of there being a single, largest fire per grid cell. It is theoreti-
cally possible at this stage to integrate Eq. (3) over this range
for a more accurate result, but the complexity of the equation
makes it an unsuitable method in this case. Additionally, it
is necessary to impose an upper limit on burnt area estimate
per grid cell, equal to the area of that cell, in order to avoid
unrealistic estimates. The area of each grid cell is estimated
using the raster package in R (Hijmans, 2013; R Core Team,
2013).

The model is capable of predicting burnt area to a reason-
ably high degree of accuracy, although it is more prone to un-
derestimating burnt area in grid cells with little fire activity.
This slight skew can be seen in Fig. 5, and is most apparent at
finer resolutions. There is a strong link between this under-
estimation and the underestimation of max(A) when using
Eq. (6): for the range of resolutions studied, an underestima-
tion of max(A) resulted in an underestimation of burnt area
in between 87 and 92 % of grid cells. The coarse resolutions
generally produce smaller errors, and the root-mean-square
error (RMSE) values decrease as the grid cell size increases.
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Fig. 5. Estimates of burnt area in Brazilian Amazonian forested ar-
eas, in number of pixels (500 m× 500 m) for a range of resolutions,
on a logarithmic scale. The solid line in each plot is the 1: 1 line,
and the root-mean-square errors are given for each resolution.

The spatial distributions of the burnt area estimates closely
match those of the observations for all resolutions (Fig. 6).

The total burnt area observed over the study region is
65 535 pixels, which equates to just under 16 400 km2. The
total BA estimates for each resolution are presented in Ta-
ble 1, and highlight the effect of the resolution on the final
estimates: the larger the grid cells, the larger the overall esti-
mate will be, though none of the estimates are unrealistically
far from the observed value.

3 Model testing

3.1 Data

After calibration, the model was tested using the MODIS
collection 5 Global Monthly Fire Location Product
(MCD14ML) (Giglio, 2010) as input. This data set pro-
vides the geographic coordinates of each individual 1 km2

fire pixel detected by the TERRA and AQUA satellites across
the globe for every month between January 2001 and Decem-
ber 2010. For use with our model, only the TERRA observa-
tions were used to avoid fires being detected twice. The fire
pixels were summed over each 0.5◦

× 0.5◦ grid cell and each
year from 2001 to 2010. This data set is not an ideal input for
the model, since a single fire can be detected multiple times,
either spatially or temporally, if it is a large or long-lasting
fire. Hence, the true number of fires per grid cell will be lower
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Fig. 6. Maps of burnt area estimates (left) and observations (right),
in km2, for each resolution.

than the number given by this data set, and the model will
overpredict burnt area. However, this is the closest approxi-
mation to true fire counts that is currently available and based
on observations rather than model output.

The burnt area estimates produced by driving the model
with this fire count data were compared to the GFED3.1 burnt
area product (Giglio et al., 2010), in hectares, at its original
0.5◦

× 0.5◦ resolution, restricted to the same time frame. We
expect the estimates produced by the model to be consider-
ably higher than those given by this data set, since it is known
that it under-represents burning in dense forests.

We limited both of these data sets to tropical, forested re-
gions, since the model has been calibrated for this land cover
type. To do so, the GLC2000 land cover data set (Bartholomé
and Belward, 2005; Global Land Cover 2000 database, 2003)
was used to identify the grid cells between 25◦ N and 25◦ S
that were covered by at least 75 % forest (classes 1 to 8 in the
GLC2000 data set).

Again, a clear description of the exact use of these data
sets is shown in Fig. 1.

3.2 Spatial predictions

We ran the model using the MODIS fire count data for 2005,
and compared the resulting burnt area estimates directly to
the GFED3.1 burnt area product for the same year. The
model produces burnt area estimates that are generally much
larger than those given by the GFED3.1 data set for tropi-
cal South America. For Africa, Asia and Australia there are
patches of overestimation and of underestimation, but no ob-
vious spatial biases (Fig. 7, left and middle).
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Table 1. Total burnt area estimates over the study region, in pixels
and km2, for each resolution.

Total burnt area
Resolution Pixels km2

0.5◦ × 0.5◦ 59 039 14 760
1◦

× 1◦ 65 019 16 255
2◦

× 2◦ 67 794 16 949
4◦

× 4◦ 69 880 17 470

Observed 65 535 16 384

3.3 Temporal predictions

Annual burnt area predictions were calculated for every grid
cell, for 2001 to 2010. By looking at the mean annual grid-
cell burnt area for each continent, we can again see that the
model generally overestimates burnt area in South America
by quite a considerable amount (Fig. 7, top right, solid lines),
whereas the predictions for the other two continents are gen-
erally of the same orders of magnitude as the GFED3.1 burnt
area product (Fig. 7, middle- and bottom right) For all three
regions, the estimates capture the main features of the tem-
poral patterns as identified by the GFED3.1 data. This is
especially noticeable for South America, which experiences
much more interannual variability than the other two regions.
Africa, on the other hand, shows remarkably little interannual
variability, despite the mean burnt area per grid cell being
roughly 10 times as large as in the other two regions.

By considering the corresponding medians and ranges of
the data (Fig. 7, right, box plots), we can see that in Australia

and Asia, the majority of the model estimates are consider-
ably higher than the GFED3.1 burnt area values, despite the
means being very similar for most years. This suggests that
burning in this area is dominated by a few very large fires,
which our model is failing to identify. In the other study ar-
eas, the differences between the medians and ranges of the
model and GFED3.1 burnt area products are reflected by the
means.

4 Discussion

We have shown that the distribution chosen for our model is
capable of recreating the 2005 pattern of burnt area in the
Amazonian forests of Brazil, as given by the LSMM calibra-
tion data set, as well as producing accurate total burnt area
estimates, despite doubts in the literature about the suitabil-
ity of fractal distributions in describing fire spread.Reed and
McKelvey(2002) argue that fractal distributions are too sim-
ple and do not make physical sense unless fire growth and fire
extinguishing are independent of fire size. Their main reason-
ing is that small fires are more likely to be extinguished than
large fires, either by rain or as a result of a limited amount
of fuel, and therefore their spread is not size-independent.
Despite this, fractal distributions have proved useful in many
studies in the literature, and for this work. Additionally, the
added complexity introduced by the tapering terms of the
distribution overcome some of the perceived problems with
other possible distributions.

Testing the model with the MODIS active fire and
GFED3.1 burnt area products shows us several important
things. First, it demonstrates that the model is capable of
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producing the expected spatial patterns and temporal trends
of burning. For South America, the peaks in burning in 2005,
2007 and 2010 (Aragão et al., 2007; Chen et al., 2013; Zeng
et al., 2008) are correctly identified. Tropical Africa, Aus-
tralia and Asia show much less interannual variability, but
nonetheless, the model successfully recreates the temporal
patterns. This confirms the hypothesis that active fire is suffi-
cient as an input variable, and the introduction of other inputs
is not necessary, although it may be useful in future model
development, especially if the model were to be extrapolated
to different biomes with considerably different climates and
vegetation. It could be argued that, since burnt area and active
fire are strongly correlated, the intermediate steps of calculat-
ing model parameters and estimating the largest fire per grid
cell are unnecessary: while it is true that rough estimates of
burnt area can be produced as a simple linear or log-linear
function of active fire, there is a considerable amount of vari-
ation in the data which would not be captured, but is by
our model. A simple log-linear relationship can produce es-
timates with RMSEs that are approximately twice as large as
those predicted by the model. Our model may be of less ben-
efit in other regions, such as savannahs, where the correlation
between active fires and burnt area is larger (Randerson et al.,
2012).

The second interesting point of discussion resulting from
Sect. 3 is that of the magnitude of burnt area predictions. We
see in Fig. 7 that the model produces burnt area estimates that
are considerably higher than their GFED3.1 counterparts in
South America. This is expected because the burn scar data
set used to calibrate the model was specifically designed to
include understory fires, which are hard to detect in dense
forest. For these reasons we would expect a slight overesti-
mation in the other two regions tested as well, but the burnt
area predictions for Asia and Australia are very close to the
GFED3.1 values, and in Africa, the model actually under-
estimates burnt area with respect to GFED3.1, albeit only
slightly. Although this may be due in part to more accurate
predictions from the GFED3.1 product for these regions, it is
likely that the model parameters need to be recalibrated for
these regions, as some of the modelling assumptions may not
hold outside of Brazilian Amazonia.

Although it would be difficult to calibrate the model to
another region without extensive fire size data for the de-
sired region, there are three points at which the distribution
is likely to change. First, the underlying distribution gradient,
b, is assumed to vary based on land cover type, but may also
vary due to other local variables, such as mean local tempera-
ture or precipitation, or human activity. Second, the relation-
ship between fire counts and the largest fire per grid cell may
also vary from region to region, based on the same factors.
Third, the small-fire taper currently has a prescribed numer-
ator of 1, but there is no reason why this might not change.
If this tail is solely due to issues with the resolution at which
fires are detected, as currently presumed, then theoretically
this should not be difficult to account for.

The choice of parameter estimation methods was not with-
out its difficulties. We feel that the final options used are ca-
pable of producing decent burnt area estimates, and have rea-
sonable physical interpretations. Parameterb represents the
gradient of the distribution, i.e. the underlying rate of decay
of fire sizes. We are assuming that this is predominantly de-
pendent on land cover, and since we are only considering
tropical forests, there is no reason to allowb to vary. This
does not mean that the rate of decay is fixed across all grid
cells, since the value ofθ can have a large effect on the gra-
dient of the distribution at a given fire size. Hence, whereas
b represents the general land-cover-dependent decay of fire
size frequencies,θ represents the specific grid cell decay.

As mentioned in Sect. 2.3.2, it is possible that the method
for estimatingθ could be improved upon by including clima-
tological input variables in the estimation of max(A), such
as precipitation or temperature. This is something that would
be interesting to look into further at a later stage, but is be-
yond the scope of this study. As it stands,θ takes the effect of
climate into account implicitly, since fire counts are heavily
influenced by climate, andnf is used in the prediction ofθ .
Additionally, if Eq. (6) could be modified to be non-linear,
therefore removing the slight skew of the data for low values
of nf , the propensity of the model to underestimate small
burnt areas might also be reduced.

The purpose of this model is for it to be incorporated into
a DGVM. We will be able to use modelled fire counts in-
stead of active fire pixel data as an input, and as a result it
should be possible to identify how much of the difference
between modelled and observed burnt area seen in Sect. 3
is due to the under-representation of fires in the GFED3.1
product. The model will then also be comparable to existing,
process-based fire models: the effect of replacing the existing
rate-of-spread equations with this distribution on trace gas
emissions and vegetation structure will be easy to quantify.

5 Conclusions

We have shown the main hypothesis presented in the Intro-
duction to be true; it is possible to use the theory of scale in-
variance to calibrate a burnt area model with only fire counts
as input, as well as accurately reproduce the observed pat-
tern of burn scars in the forests of Brazilian Amazonia in
2005. The model can be extended, with a few modifications,
to forests across the tropical latitudes, and fully captures tem-
poral variability in burning. The total, annual burnt area pre-
dictions are difficult to compare, due to the lack of a com-
pletely suitable input data set. The accuracy and adaptability
of the model to other ecosystems and non-tropical regions is
something that remains to be tested further.

Supplementary material related to this article is
available online athttp://www.biogeosciences.net/11/
1449/2014/bg-11-1449-2014-supplement.pdf.
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