

Ministério da Ciência, Tecnologia e Inovação

CONSTELAÇÃO DE NANO SATÉLITES PARA COLETA DE DADOS AMBIENTAIS

CONASAT-0 PLANO DE VERIFICAÇÃO E TESTES TRANSPONDER DIGITAL DCS

Versão 1

CNS-PVT-PY-07-001-V1

Maio, 2014

Registro de Propriedade do Documento

Autores	Organização	Data	Assinatura
João Batista Sales Filho	INPE/CNPq	20/05/2014	

Revisão/Aprovação	Organização	Data	Assinatura
Manoel Jozeane Mafra de Carvalho	INPE	21/05/2014	

Histórico de Revisão

Edição	Revisão	Data	Modificações	Vista
1 ^a	00	20/05/14		

ÍNDICE

1 - INTRODUÇÃO	4
2 - DOCUMENTOS APLICÁVEIS E REFERENCIADOS	4
3 - DESCRIÇÃO DE TESTES FUNCIONAIS DO TRANSPONDER	5
3.1 - EQUIPAMENTO NECESSÁRIO	5
3.2 - TEMPO DE LIGAMENTO	6
3.3 - CORRENTE DE SURTO	7
3.4 - CONSUMO DE POTÊNCIA	7
3.5 - FREQUÊNCIA DE SAÍDA	8
3.6 - <i>JITTER</i> DE FASE	9
3.7 - POTÊNCIA DE SAÍDA	9
3.8 - BANDA DE SAÍDA	
3.9 - ÍNDICE DE MODULAÇÃO	
3.10 - PRESENÇA DE AM	15
3.11 - SUSCEPTIBILIDADE	16
3.12 - <i>RIPPLE</i>	
3.13 - LINEARIDADE	
3.14 - RUÍDO TÉRMICO	
3.15 - VSWR	24
3.16 - FIGURA DE RUÍDO	25
4 - DESCRIÇÃO DE TESTES DE TELEMETRIA	25
5 - DESCRIÇÃO DE TESTES DE TELECOMANDO	26
6 - DESCRIÇÃO DE TESTES MECÂNICOS	27
6.1 - TESTE DE VIBRAÇÃO	27
7 - DESCRIÇÃO DE TESTES AMBIENTAIS	
8 - DESCRIÇÃO DE TESTES ELETROMAGNÉTICOS	

1 - INTRODUÇÃO

Este documento descreve o procedimento de testes funcionais, mecânicos e ambientais do *transponder* digital DCS desenvolvido no INPE/CRN em Natal/RN.

2 - DOCUMENTOS APLICÁVEIS E REFERENCIADOS

	2.1 - Documentos aplicáveis	
[DA1]	Relatório de Testes – Transponder Digital DCS	CONASAT
[DA2]	Diagrama de Montagem – <i>Transponder</i> Digital DCS	CONASAT
[DA3]	CNS-DCI-PY-07-001-V02 Documento de interface – <i>Transponder</i> Digital DCS	CONASAT
	2.2 - Documentos referenciados	
[DR1]	CNS-SPC-PY-07-001-V1.1 Documento de Especificação – <i>Transponder</i> Digital DCS	CONASAT
[DR2]	CNS-DDD-PY-07-001-V1.1 Documento de Descrição – <i>Transponder</i> Digital DCS	CONASAT
[DR3]	80.39.0001_380 – DCS DCP TRANS ASSEMBLY – Test Procedure	OMNISYS

3 - DESCRIÇÃO DE TESTES FUNCIONAIS DO TRANSPONDER

Os seguintes testes funcionais devem ser realizados para a verificação da performance do *transponder* digital:

- Tempo de ligamento;
- Corrente de surto;
- Consumo de potência;
- Frequência de saída;
- Jitter de fase;
- Potência de saída;
- Banda de saída;
- Índice de modulação;
- Presença de AM;
- Susceptibilidade;
- Ripple;
- Linearidade;
- Ruído térmico;
- VSWR;
- Figura de ruído.

As perdas dos cabos DC devem ser compensadas medindo a tensão na entrada de alimentação DC do *transponder*.

Durante a execução de cada um dos testes descritos, preencha o Relatório de Testes correspondente com todas as medidas e salve todas as curvas relacionadas. Se algum dos testes não atingir a especificação requerida, informar o departamento de engenharia antes de prosseguir.

3.1 - Equipamento necessário

- Fontes de alimentação DC;
- Multímetros;
- Analisador de Rede Vetorial;
- Osciloscópio Digital;
- Sintetizador de Frequência;
- Contador de Frequência;
- Medidor de Potência RF;
- Sensor de Potência RF;
- Analisador de Espectro;
- Analisador de Modulação.

3.2 - Tempo de ligamento

O tempo de ligamento do *transponder* é definido como o intervalo de tempo entre o ligamento das fontes de alimentação e o instante em que a potência de saída RF alcança 90% de seu valor nominal. O tempo de ligamento é obtido da curva da potência de saída RF versus tempo gerado via osciloscópio.

3.2.1 - Tolerância

- Amplitude do sinal: $\pm 0,5V$;
- Tensão DC: ± 0,05V;
- Tempo: ± 1ms.

3.2.2 - Procedimento de teste

- 1) Realizar as conexões descritas na Figura 3.1.1;
- 2) Após energizar o transponder com as duas fontes de alimentação, medir com o osciloscópio, usando a função de trigger externo, o tempo em que a potência DC da saída RF chega a 90% de seu máximo. Se necessário, usar a função do osciloscópio de single sweep.
- 3) As curvas devem ser salvas e os resultados anotados no Relatório de Testes.

Figura 3.1.1 – diagrama de execução do teste de tempo de ligamento.

3.3 - Corrente de surto

Os pulsos de corrente requeridos pelo *transponder* durante a energização da fonte de alimentação são medidos nesse teste. A medição foi feita utilizando uma ponta de prova de corrente, com os pulsos de corrente sendo armazenados em um osciloscópio.

3.3.1 - Tolerância

- Amplitude do sinal: $\pm 0.5V$;
- Tensão DC: ± 0,05V;
- Tempo: ± 50us;
- Corrente: ± 0,5A.

3.3.2 - Procedimento de teste

- 1) Realizar as conexões descritas na Figura 3.2.1;
- Medir a corrente de pico e inclinação de crescimento da corrente para cada tensão de alimentação, 5V e 3,3V, utilizando o osciloscópio, com a função de single sweep.
- 3) As curvas devem ser salvas e os resultados anotados no Relatório de Testes.

3.4 - Consumo de potência

Este teste mede o consumo de potência DC do *transponder* medindo a corrente de alimentação.

3.4.1 - Tolerância

- Tensão DC: ± 0,05V;

3.4.2 - Procedimento de teste

- 1) Realizar as conexões descritas na Figura 3.3.1.
- Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s). Realizar a medição da corrente na entrada de cada fonte de alimentação, e calcular o consumo de potência utilizando a fórmula:

$$\mathbf{P}_{\mathbf{D}\mathbf{C}}[\mathbf{W}] = \mathbf{V}_{\mathbf{A}} \mathbf{x} \mathbf{I}_{\mathbf{D}\mathbf{C}},$$

onde I_{DC} é a corrente medida na fonte de alimentação e V_A é a tensão nominal de uma das fontes de alimentação. O consumo total é dado pela soma das duas medições.

3) Os resultados devem ser anotados no Relatório de Testes.

Figura 3.3.1 – diagrama de execução do teste de consumo de potência.

3.5 - Frequência de saída

Este teste mede a frequência de saída do *transponder* sem a presença do sinal RF de entrada.

3.5.1 - Tolerância

- Tensão DC: ± 0,05V.

3.5.2 - Procedimento de teste

- 1) Realizar as conexões descritas na Figura 3.4.1.
- Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s). Medir a frequência do sinal de saída utilizando um contador de frequência, com uma precisão de 100 Hz.
- 3) Realizar as medições sem a presença do sinal RF de entrada de 401.635 MHz.
- 4) Os resultados devem ser anotados do Relatório de Testes.

3.6 - Jitter de fase

TBD

3.7 - Potência de saída

Este teste mede a potência RF de saída do transponder.

3.7.1 - Tolerância

- Tensão DC: ± 0,05V;
- Potência RF: ± 0,5 dB.

3.7.2 - Procedimento de teste

- 1) Realizar as conexões descritas na Figura 3.6.1.
- Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s). Realizar a medição da potência do sinal de saída com o medidor de potência calibrado para a frequência de saída (2267,52 MHz).
- Realizar também a medição da perda de inserção dos conectores, para computar a potência de saída final. Eventuais atenuações dos equipamentos de medição também devem ser consideradas.
- 4) Os resultados devem ser anotados do Relatório de Testes.

3.8 - Banda de saída

Este teste mede a banda de potência de saída com e sem a presença do sinal RF de entrada. Espúrios e harmônicas são verificadas no intervalo de 10 MHz – 6500 MHz.

3.8.1 - Tolerância

- Tensão DC: ± 0,05V;
- Potência RF: ± 0,5 dB;
- Frequência: ± 100 Hz.

3.8.2 - Procedimento de teste

- 1) Realizar as conexões descritas na Figura 3.7.1.
- Realizar a medição da perda de inserção dos conectores, e considerar tais valores no cálculo dos valores de potência. Eventuais atenuações dos equipamentos de medição também devem ser consideradas.
- 3) Conectar o Sintetizador de Frequência à entrada RF e o Analisador de Espectro à saída RF.
- 4) Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s).
- 5) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência central: 2267.52 MHz;
 - ii. Video BW: 1 kHz;
 - iii. Resolution BW: 1 kHz;
 - iv. Span: 20 kHz.
- v. Nível de referência: +10 dBm
- 6) Medir a potência do sinal de saída (P_c) com o analisador de espectro.
- 7) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência central: 2267,52 MHz;
 - ii. Video BW: 10 kHz;
 - iii. Resolution BW: 10 kHz;
 - iv. Span: 2 MHz;
- v. Nível de referência: +10 dBm.
- 8) Ajustar o Sintetizador de Frequência com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);

- ii. Frequência: 401,605 MHz;
- iii. Potência RF: -98 dBm.
- 9) Medir a potência da linha lateral direita de espectro P_B , situada em 2268,175 MHz. Medir a diferença entre a potência da portadora P_C e linha lateral de espectro P_B ($P_C P_B$).
- 10)Repetir a medição supracitada substituindo os valores de frequência de sinal de entrada de 401,635 MHz e 401,665 MHz no Sintetizador de Frequência.
- 11) Ajustar o Sintetizador de Frequência com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401,605 MHz;
 - iii. Potência RF: -98 dBm.
- 12) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência inicial: 10 MHz;
 - ii. Frequência final: 2,5 GHz;
 - iii. Video BW: 3 MHz;
 - iv. Resolution BW: 3 MHz;
 - v. Nível de referência: +10 dBm.
- 13)Medir a potência do sinal de saída (P_c) com o Analisador de Espectro. Procurar eventuais espúrios no Analisador de Espectro, e computar sua frequência Fs e potência Ps. Calcular a diferença entre a potência da portadora de saída e a potência do espúrio (Pc – Ps).
- 14) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência inicial: 2 MHz;
 - ii. Frequência final: 6,5 GHz;
 - iii. Video BW: 3 MHz;
 - iv. Resolution BW: 3 MHz;
 - v. Nível de referência: +10 dBm.
- 15)Procurar eventuais espúrios no Analisador de Espectro, e computar sua frequência F_s e potência P_s . Calcular a diferença entre a potência da portadora de saída e a potência do espúrio ($P_c P_s$).
- 16) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência inicial: 10 MHz;
 - ii. Frequência final: 10 GHz;
 - iii. Video BW: 3 MHz;
 - iv. Resolution BW: 3 MHz;
 - v. Nível de referência: +10 dBm.
- 17)Procurar eventuais espúrios no Analisador de Espectro, e computar sua frequência Fs e potência Ps. Calcular a diferença entre a potência da portadora de saída e a potência do espúrio (Pc Ps).
- 18)Repetir as medições de espúrios substituindo os valores de frequência de sinal de entrada de 401,635 MHz e 401,665 MHz no Sintetizador de Frequência.
- 19) As curvas devem ser salvas e os resultados anotados no Relatório de Testes.

Figura 3.7.1 – diagrama de execução do teste de banda de saída.

3.9 - Índice de modulação

Este teste mede o índice de modulação em fase do sinal de saída, com ou sem a presença do sinal de entrada RF.

3.9.1 - Tolerância

- Tensão DC: ± 0,05V;
- Potência RF: ± 0,5 dB;
- Frequência: ± 100 Hz.

3.9.2 - Procedimento de teste

- 1) Realizar as conexões descritas na Figura 3.8.1.
- Realizar a medição da perda de inserção dos conectores, e considerar tais valores no cálculo dos valores de potência. Eventuais atenuações dos equipamentos de medição também devem ser consideradas.
- 3) Conectar o Sintetizador de Frequência à entrada RF e o Analisador de Espectro à saída RF.
- 4) Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s).
- 5) Ajustar o Sintetizador de Frequência com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401,605 MHz;
 - iii. Potência RF: -98 dBm.
- 6) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência central: 2267,52 MHz;
 - ii. Video BW: 10 kHz;
 - iii. Resolution BW: 10 kHz;
 - iv. Span: 2 MHz

- v. Nível de referência: +10 dBm.
- 7) Medir a potência da portadora (J0) e da próxima linha de espectro (J1). Calcular a diferença J0-J1 e verificar na Tabela 1 o índice de modulação correspondente.
- 8) Repetir a medição supracitada substituindo os valores de frequência de sinal de entrada de 401,635 MHz e 401,665 MHz no Sintetizador de Frequência.
- 9) Ajustar o Sintetizador de Frequência com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401,605 MHz;
 - iii. Potência RF: -123 dBm.
- 10) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência central: 2267,52 MHz;
 - ii. Video BW: 1 MHz;
 - iii. Resolution BW: 1 MHz;
 - iv. Span: 100 MHz
 - v. Nível de referência: +10 dBm.

11)Medir a potência da portadora (Ptot).

- 12) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência central: 2267,52 MHz;
 - ii. Video BW: 10 kHz;
 - iii. Resolution BW: 10 kHz;
 - iv. Span: 2 MHz
 - v. Nível de referência: +10 dBm.
- 13)Medir a portadora (J0). Calcular a diferença PTOT-J0 e verificar na Tabela 1 o índice de modulação correspondente.
- 14)Repetir a medição supracitada substituindo os valores de frequência de sinal de entrada de 401,635 MHz e 401,665 MHz no Sintetizador de Frequência.
- 15) As curvas devem ser salvas e os resultados anotados no Relatório de Testes.

Figura 3.8.1 – diagrama de execução do teste de índice de modulação.

Índice de modulação (rad)	Ptot-J0 (dB)	J0 - J1 (dB)	Índice de modulação (rad)	Ptot-J0 (dB)	J0 - J1 (dB)	Índice de modulação (rad)	Ptot-J0 (dB)	J0 - J1 (dB)
1,00	2,32	4,81	1,49	5,72	-0,63	1,98	12,56	-7,8
1,01	2,37	4,69	1,50	5,82	-0,75	1,99	12,78	-8
1,02	2,43	4,58	1,51	5,91	-0,87	2	13	-8,22
1,03	2,48	4,47	1,52	6,01	-0,98	2,01	13,22	-8,43
1,04	2,53	4,35	1,53	6,11	-1,1	2,02	13,46	-8,65
1,05	2,58	4,24	1,54	6,21	-1,22	2,03	13,69	-8,88
1,06	2,64	4,13	1,55	6,31	-1,34	2,04	13,94	-9,11
1,07	2,69	4,02	1,56	6,41	-1,46	2,05	14,19	-9,35
1,08	2,75	3,91	1,57	6,51	-1,58	2,06	14,45	-9,6
1,09	2,8	3,79	1,58	6,62	-1,7	2,07	14,71	-9,85
1,10	2,86	3,68	1,59	6,72	-1,82	2,08	14,99	-10,11
1,11	2,92	3,57	1,60	6,83	-1,95	2,09	15,27	-10,38
1,12	2,97	3,46	1,61	6,94	-2,07	2,1	15,56	-10,65
1,13	3,03	3,35	1,62	7,05	-2,2	2,11	15,86	-10,94
1,14	3,09	3,24	1,63	7,17	-2,32	2,12	16,17	-11,23
1,15	3,15	3,13	1,64	7,28	-2,45	2,13	16,49	-11,53
1,16	3,21	3,02	1,65	7,4	-2,58	2,14	16,83	-11,85
1,17	3,27	2,91	1,66	7,51	-2,71	2,15	17,17	-12,18
1,18	3,34	2,8	1,67	7,63	-2,84	2,16	17,53	-12,52
1,19	3,4	2,7	1,68	7,75	-2,97	2,17	17,91	-12,87
1,20	3,46	2,59	1,69	7,88	-3,1	2,18	18,3	-13,24
1,21	3,53	2,48	1,70	8	-3,24	2,19	18,7	-13,63
1,22	3,59	2,37	1,71	8,13	-3,37	2,2	19,13	-14,03
1,23	3,66	2,26	1,72	8,26	-3,51	2,21	19,58	-14,46
1,24	3,73	2,15	1,73	8,39	-3,65	2,22	20,05	-14,9
1,25	3,8	2,04	1,74	8,52	-3,79	2,23	20,54	-15,37
1,26	3,87	1,93	1,75	8,66	-3,93	2,24	21,07	-15,87
1,27	3,94	1,82	1,76	8,8	-4,07	2,25	21,62	-16,4
1,28	4,01	1,71	1,77	8,94	-4,22	2,26	22,21	-16,97
1,29	4,08	1,6	1,78	9,08	-4,36	2,27	22,85	-17,58
1,30	4,15	1,5	1,79	9,22	-4,51	2,28	23,53	-18,23
1,31	4,22	1,39	1,80	9,37	-4,66	2,29	24,26	-18,94
1,32	4,3	1,28	1,81	9,52	-4,81	2,3	25,07	-19,71
1,33	4,37	1,17	1,82	9,67	-4,97	2,31	25,95	-20,56
1,34	4,45	1,06	1,83	9,83	-5,12	2,32	26,92	-21,51
1,35	4,53	0,95	1,84	9,99	-5,28	2,33	28,02	-22,57
1,36	4,61	0,84	1,85	10,15	-5,44	2,34	29,274	-23,79
1,37	4,69	0,72	1,86	10,31	-5,61	2,35	30,72	-25,21
1,38	4,77	0,61	1,87	10,48	-5,77	2,36	32,46	-26,92
1,39	4,85	0,5	1,88	10,65	-5,94	2,37	34,62	-29,05
1,40	4,93	0,39	1,89	10,82	-6,11	2,38	37,5	-31,9
1,41	5,01	0,28	1,90	11	-6,27	2,39	41,81	-36,17
1,42	5,1	0,17	1,91	11,18	-6,46	2,4	50,69	-45,01
1,43	5,18	0,05	1,92	11,36	-6,64	2,41	52,95	-47,23
1,44	5,27	-0,06	1,93	11,55	-6,83	2,42	42,61	-36,86
1,45	5,36	-0,17	1,94	11,75	-7,01	2,43	38,04	-32,25
1,46	5,45	-0,29	1,95	11,94	-7,2	2,44	35,07	-29,25
1,47	5,54	-0,4	1,96	12,14	-7,4	2,45	32,87	-27,01
1,48	5,63	-0.52	1,97	12,35	-7,6	2,46	31,13	-25,22

Tabela 3.1 – índices de modulação (modulação PM).

3.10 - Presença de AM

Neste teste a presença de AM residual do sinal de saída é medida utilizando um Analisador de Modulação.

3.10.1 - Tolerância

- Tensão DC: ± 0,05V;
- Potência RF: ± 0,5 dB;
- Frequência: ± 100 Hz.

3.10.2 - Procedimento de teste

- 1) Realizar as conexões descritas na Figura 3.9.1.
- 2) Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s).
- 3) Ajustar o Analisador de Modulação com os seguintes parâmetros:
 - i. Calibração: AM;
 - ii. Fator de calibração: 16.1 SPCL;
 - iii. Modo: AM;
 - iv. Filtro: 300 Hz.
- 4) Utilizar o sintetizador como oscilador local para gerar a portadora a ser utilizada na entrada do analisador de demodulação.
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 2252,52 MHz;
 - iii. Potência RF: +13 dBm.
- 5) Ajustar o Sintetizador de Frequência com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401,605 MHz;
 - iii. Potência RF: -98 dBm.
- 6) Realizar a medição do AM residual em nos picos positivo e negativo no Analisador de Modulação.
- 7) As curvas devem ser salvas e os resultados anotados no Relatório de Testes.

Figura 3.9.1 – diagrama de execução do teste de presença de AM.

3.11 - Susceptibilidade

Neste teste a susceptibilidade do *transponder* é verificada aplicando um intervalo de frequências na entrada e medindo a banda de saída e o índice de modulação não pode alterar.

3.11.1 - Tolerância

- Tensão DC: ± 0,05V;
- Potência RF: ± 0,5 dB;
- Frequência: ± 100 Hz.

3.11.2 - Procedimento de teste

- 1) Realizar as conexões descritas na Figura 3.10.1.
- 2) Ajustar o Sintetizador de Frequência 1 com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 10 MHz;
 - iii. Potência RF: +10 dBm.
- Calibrar o Medidor de Potência para a frequência utilizada no Sintetizador de Frequência 1.
- Realizar a medição da perda de inserção da configuração supracitada (cabos + divisor). Anotar esse valor e considerar no cálculo final de potência.
- 5) Repetir os passos de 3 a 5 para as seguintes frequências no passo 3:
 - i. 50 MHz;
 - ii. 100 MHz;
 - iii. 200 MHz;
 - iv. 300 MHz;
 - v. 354 MHz;
 - vi. 462.5 MHz;
 - vii. 600 MHz;
 - viii. 800 MHz;
 - ix. 1600 MHz;
 - x. 2400 MHz.
- 6) Realizar as conexões descritas na Figura 3.10.2.
- 7) Ajustar o Sintetizador de Frequência 2 com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401.605 MHz;
 - iii. Potência RF: +10 dBm.
- 8) Calibrar o Medidor de Potência para a frequência utilizada no Sintetizador de Frequência 2.
- Realizar a medição da perda de inserção da configuração supracitada (cabos + divisor). Anotar esse valor e considerar no cálculo final de potência.
- 10)Repetir os passos de 9 a 11 para as demais frequências no passo 9:
 - i. 401.635 MHz;
 - ii. 401.665 MHz.
- 11)Realizar as conexões descritas na Figura 3.10.3.

- 12)Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s).
- 13) Ajustar o Sintetizador de Frequência 2 com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401.605 MHz;
 - iii. Potência RF: -100 dBm.
- 14) Ajustar o Sintetizador de Frequência 1 com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 10 MHz;
 - iii. Potência RF: -75 dBm.
- 15) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência central: 2267.52 MHz;
 - ii. Video BW: 10 kHz;
 - iii. Resolution BW: 10 kHz;
 - iv. Span: 2 MHz;
 - v. Nível de referência: +15 dBm.
 - vi. Atenuação: 25 dB.
- 16) Medir a potência da portadora (J0) e a próxima linha de potência espectral (J1).
- 17)Calcular a diferença J0 J1 e encontrar na tabela 1 o índice de modulação correspondente.
- 18) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência central: 2267.52 MHz;
 - ii. Video BW: 1 kHz;
 - iii. Resolution BW: 1 kHz;
 - iv. Span: 20 kHz;
 - v. Nível de referência: +15 dBm.
 - vi. Atenuação: 25 dB.

Medir a potência da portadora de saída (Pc) com os Geradores de Sinal desligados (sinal sem modulação).

- 19)Ligar os Geradores de Sinal e ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência central: 2267.52 MHz;
 - ii. Video BW: 10 kHz;
 - iii. Resolution BW: 10 kHz;
 - iv. Span: 2 MHz;
 - v. Nível de referência: +15 dBm.
 - vi. Atenuação: 25 dB.
- 20)Medir o pico próximo a 2268.175 MHz (Pb).
- 21)Calcular a diferença Pc Pb.
- 22)Repetir os passos 16 a 23 com os seguintes parâmetros ajustados no passo 16 (considerar as perdas de inserção medidas no passo 5):
 - i. Frequência: 50 MHz / Potência RF: -75 dBm;
 - ii. Frequência: 100 MHz / Potência RF: -75 dBm;
 - iii. Frequência: 200 MHz / Potência RF: -85 dBm;
 - iv. Frequência: 300 MHz / Potência RF: -98 dBm;
 - v. Frequência: 354 MHz / Potência RF: -112 dBm;

- vi. Frequência: 462.5 MHz / Potência RF: -45 dBm;
- vii. Frequência: 600 MHz / Potência RF: -85 dBm;
- viii. Frequência: 800 MHz / Potência RF: -75 dBm;
 - ix. Frequência: 1600 MHz / Potência RF: -75 dBm;
 - x. Frequência: 2400 MHz / Potência RF: -75 dBm.

23)Repetir os passos 15 a 24 com os seguintes parâmetros ajustados no passo 15 (considerar as perdas de inserção medidas no passo 11):

- i. Frequência: 401.635 MHz / Potência RF: -100 dBm;
- ii. Frequência: 401.635 MHz / Potência RF: -100 dBm.

24) As curvas devem ser salvas e os resultados anotados no Relatório de Testes.

Figura 3.10.1 – diagrama para medição de perda de inserção da porta 1.

Figura 3.10.3 – diagrama de execução do teste de susceptibilidade.

3.12 - *Ripple*

Neste teste é medida a variação de ganho do *transponder* versus a frequência de entrada.

3.12.1 - Tolerância

- Tensão DC: ± 0,05V;
- Potência RF: ± 0,5 dB;
- Frequência: ± 100 Hz.

3.12.2 - Procedimento de teste

- 1) Realizar as conexões mostradas na Figura 3.10.1.
- 2) Calibrar o medidor de potência em 401.635 MHz.
- 3) Ajustar o Sintetizador 1 com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401.635 MHz;
 - iii. Potência RF: +10 dBm.
- 4) Medir a perda de inserção dos cabos e do divisor de potência.
- 5) Realizar as conexões mostradas na Figura 3.10.2.
- 6) Calibrar o Medidor de Potência em 401.635 MHz.
- 7) Ajustar o Sintetizador 2 com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401.635 MHz;
 - iii. Potência RF: +10 dBm.
- 8) Medir a perda de inserção dos cabos e do divisor de potência.
- 9) Repetir os passos 7 a 8 para as seguintes frequências:
 - i. 401.605 MHz;
 - ii. 401.665 MHz.
- 10)Realizar as conexões mostradas na Figura 3.11.1.
- 11) Ajustar o Sintetizador 3 (oscilador local para o conversor de frequência) com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 2252,52 MHz;
 - iii. Potência RF: +13 dBm.
- 12) Ajustar o Analisador de Modulação com os seguintes parâmetros:
 - i. Operação: Automática;
 - ii. Modo: PM;
 - iii. Filtro: 300 Hz.
- 13) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequencia Central: 95 kHz;
 - ii. Video BW: 1 kHz;
 - iii. Resolution BW: 3 kHz;
 - iv. Span: 70 kHz;
 - v. Nível de referência: +15 dBm.

- 14)Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s).
- 15) Ajustar o Sintetizador 1 com os seguintes parâmetros (utilizar as perdas de inserção medidas no passo 4):
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401.635 MHz;
 - iii. Potência RF: -98 dBm.
- 16)Realizar uma varredura no sintetizador 2 com os seguintes parâmetros (utilizar as perdas de inserção medidas no passo 8):
 - i. Frequência inicial: 401.605 MHz;
 - ii. Frequência final: 401.665 MHz;
 - iii. Potência RF: -115 dBm.
- 17)Medir a potência máxima e mínima no intervalo de 65 kHz a 125 kHz com o objetivo de desprezar a linha espectral em 95 kHz.
- 18)Calcule o Ripple = Pmáx Pmin.

19) As curvas devem ser salvas e os resultados anotados no Relatório de Testes.

Figura 3.11.1 – diagrama de execução do teste de medição de *ripple*.

3.13 - Linearidade

Neste teste são medidos os produtos de intermodulação gerados no intervalo de frequência do *transponder* aplicando dois sinais na entrada e medindo o espectro de saída.

3.13.1 - Tolerância

- Tensão DC: ± 0,05V;
- Potência RF: \pm 0,5 dB;
- Frequência: ± 100 Hz.

3.13.2 - Procedimento de teste

- 1) Realizar as conexões mostradas na Figura 3.10.1.
- 2) Calibrar o Medidor de Potência em 401.630 MHz.
- 3) Ajustar o Sintetizador 1 com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401.635 MHz;
 - iii. Potência RF: +10 dBm.
- 4) Medir a perda de inserção dos cabos e do divisor de potência.
- 5) Realizar as conexões mostradas na Figura 3.10.2.
- 6) Calibrar o Medidor de Potência em 401.640 MHz.
- 7) Ajustar o Sintetizador 2 com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401.640 MHz;
 - iii. Potência RF: +10 dBm.
- 8) Medir a perda de inserção dos cabos e do divisor de potência.
- 9) Realizar as conexões mostradas na Figura 3.12.1.
- 10) Ajustar o Sintetizador 3 (oscilador local para o conversor de frequência) com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 2252,52 MHz;
 - iii. Potência RF: +13 dBm.
- 11) Ajustar o Analisador de Modulação com os seguintes parâmetros:
 - i. Operação: Automática;
 - ii. Modo: PM;
 - iii. Filtro: 300 Hz.
- 12) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência Central: 95 kHz;
 - ii. Video BW: 300 Hz;
 - iii. Resolution BW: 1 kHz;
 - iv. Span: 50 kHz;
 - v. Nível de referência: -30 dBm.
- 13)Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s).
- 14) Ajustar o Sintetizador 1 com os seguintes parâmetros (utilizar as perdas de inserção medidas no passo 4):
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401.635 MHz;
 - iii. Potência RF: -100 dBm.
- 15) Ajustar o Sintetizador 2 com os seguintes parâmetros (utilizar as perdas de inserção medidas no passo 8):
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 401.640 MHz;
 - iii. Potência RF: -100 dBm.

- 16)Medir o pico de potência em 100 kHz (P_A) e em 110 kHz (P_B) com o Analisador de Espectro.
- 17)Calcular a diferença P_A P_B.
- 18)Medir o pico de potência em 90 kHz (Pc) e em 80 kHz (PD) com o Analisador de Espectro.
- 19)Calcular a diferença P_C P_D.

20)As curvas devem ser salvas e os resultados anotados no Relatório de Testes.

Figura 3.12.1 – diagrama de execução do teste de linearidade.

3.14 - Ruído térmico

Neste teste o piso de ruído térmico gerado em 2.029,885 MHz ± 1 MHz é medido utilizando um filtro passa-banda nesta frequência.

3.14.1 - Tolerância

- Tensão DC: ± 0,05V;
- Potência RF: ± 0,5 dB;
- Frequência: ± 100 Hz.

3.14.2 - Procedimento de teste

- 1) Realizar as conexões mostradas na Figura 3.13.1.
- 2) Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s).
- 3) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência Central: 2029,885 MHz;
 - ii. Resolution BW: 300 MHz;
 - iii. Span: 2 MHz;
 - iv. Nível de referência: -40 dBm;

v. Atenuação: 0 dB.

- 4) Medir a potência PP com o Analisador de Espectro em 2029,885 MHz.
- 5) Desligar as fontes de alimentação.
- 6) Desconectar o cabo coaxial na saída RFour.
- 7) Ajustar o Analisador de Espectro com os seguintes parâmetros:
 - i. Frequência Central: 2029,885 MHz;
 - ii. Resolution BW: 300 MHz;
 - iii. Span: 2 MHz;
 - iv. Nível de referência: +10 dBm;
 - v. Atenuação: 15 dB.
- 8) Conectar o cabo coaxial desconectado no passo 6 a um Sintetizador. Ajustar o Sintetizador com os seguintes parâmetros:
 - i. Tipo: Continuous Wave (CW);
 - ii. Frequência: 2029,885 MHz;
 - iii. Potência RF: +10 dBm.
- 9) Medir a potência PQ no Analisador de Espectro em 2029,885 MHz.
- 10)Calcular a diferença PT=PP-PQ.
- 11)Calcular o piso de ruído com a seguinte equação:

$$PR = PP - PT + 10 \log(RBW) \left[\frac{dBm}{Hz} \right]$$

onde:

PR é o ruído calculado;

PP é a potência medida no passo 4;

PT é a perda de inserção calculada no passo 10;

RBW é a banda de resolução configurada no Analisador de Espectro.

21)As curvas devem ser salvas e os resultados anotados no Relatório de Testes.

Figura 3.13.1 – diagrama de execução do teste de ruído térmico.

3.15 - VSWR

Neste teste os valores de VSWR de entrada e saída são medidos.

3.15.1 - Tolerância

- Tensão DC: ± 0,05V;
- Potência RF: ± 0,5 dB;
- Frequência: ± 100 Hz.

3.15.2 - Procedimento de teste

- 1) Realizar as conexões mostradas na Figura 3.14.1.
- 2) Ajustar o Analisador de Rede com os seguintes parâmetros:
 - i. Frequência inicial: 401 MHz;
 - ii. Frequência final: 402 MHz;
 - iii. Porta 1 de saída RF: -50 dBm;
 - iv. Porta 2 de saírda RF: -50 dBm.
- 3) Calibrar o Analisador de Rede (calibração de porta única);
- 4) Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s).
- 5) Medir a perda de retorno na entrada (S11) e a VSWR em 401,635 MHz;
- 6) Desligar as fontes de alimentação;
- 7) Ajustar o Analisador de Rede com os seguintes parâmetros:
 - i. Frequência inicial: 2263 MHz;
 - ii. Frequência final: 2268 MHz;
 - iii. Porta 1 de saída RF: -4 dBm;
 - iv. Porta 2 de saírda RF: -4 dBm.
- 8) Calibrar o Analisador de Rede (calibração de porta única);
- 9) Conectar uma carga de 50 Ω a RFIN do *transponder*,
- 10) Conectar a porta 2 do Analisador de Rede a RFOUT do transponder,
- 11) Ligar as fontes de alimentação, 5V e 3,3V, e esperar o tempo de estabilização do *transponder* (10s).
- 12) Medir a perda de retorno na entrada (S₂₂) e a VSWR em 2265 MHz;
- 13) As curvas devem ser salvas e os resultados anotados no Relatório de Testes.

Figura 3.14.1 – diagrama de execução do teste de VSWR.

3.16 - Figura de ruído

TBD

4 - DESCRIÇÃO DE TESTES DE TELEMETRIA

A telemetria do nível de saída do ADC é um valor de 16 bits que indica o valor RMS do sinal na saída do ADC. O ponto de saturação do ADC (AD9874) é atingido por uma sinal senoidal com potência de 30,5 dBm na entrada do misturador do AD9874, segundo o *datasheet* do componente.

4.1 - Equipamento necessário

- dispositivo I2C mestre;
- fonte de alimentação;
- gerador de sinais.

4.2 - Procedimento

- 1) Conectar os equipamentos segundo o diagrama da Figura X;
- 2) Ligar o sistema, com o gerador de sinais com saída desligada;
- 3) Enviar o comando I₂C para leitura do valor RMS;
- 4) Anotar o RMS medido;
- 5) Configurar o gerador de sinais para gerar um sinal de -92 dBm em 401,635 MHz e ativar a saída;
- 6) Anotar o RMS medido;
- 7) Configurar o gerador de sinais para gerar um sinal de -86 dBm em 401,635 MHz;
- 8) Anotar o RMS medido.

4.3 - Valor Esperado

A primeira medição retorna o valor RMS do ruído, a segunda e a última retornam o RMS do sinal de entrada mais o ruído, sendo que a potência do último sinal é 4 vezes maior que a do sinal anterior. Assim, espera-se que:

$$4 M_2^2 - M_3^2 - 3M_1^2 \approx 0 ,$$

sendo M_1 , M_2 e M_3 , os valores obtidos na primeira, segunda e terceira medição, respectivamente. A diferença máxima deve ser de 36.

5 - DESCRIÇÃO DE TESTES DE TELECOMANDO

O *transponder* possui três modos de teste selecionados via telecomando. O primeiro envia um tom na saída, independente do sinal recebido. O segundo faz o sinal pular a etapa de AGC e modulação PM digital. O terceiro é semelhante ao anterior, mas sem pular o AGC.

5.1 - Equipamento necessário

- dispositivo I₂C mestre;
- fonte de alimentação;
- gerador de sinais;
- analisador de espectro.

5.2 - Procedimento

- 1) Conectar os equipamentos segundo o diagrama da Figura X;
- 2) Ligar o sistema e deixar o gerador de sinais com saída desligada;
- 3) Enviar o comando I₂C ativar o primeiro modo de teste, gerar um tom na saída;
- 4) Anotar a potência do tom na frequência de 2,267615 GHz. O esperado é um valor de 26 dBm;
- 5) Configurar o gerador de sinais para gerar um tom de -92 dBm em 401.635 MHz;
- Enviar o comando I₂C para por o sistema no segundo modo de teste, AGC e modulação PM desativados;
- 7) Verificar a presença de um tom em 2.26753 GHz, e anotar a potência desse sinal;
- 8) Configurar o gerador de sinais para gerar um sinal de -86 dBm em 401,635 MHz;
- 9) Verificar a presença de um tom em 2.26753 GHz, e anotar a potência desse sinal. O valor deve ser 6 dB mais alto que o anterior;
- 10)Enviar o comando I₂C para por o sistema no terceiro modo de teste, AGC e modulação PM desativados;
- 11) Variar a potência do sinal de entrada entre -77 e -92 dBm mantendo a frequência em 401,635 MHz, e verificar se o tom na saída permanece com potência constante.

6 - DESCRIÇÃO DE TESTES MECÂNICOS

6.1 - Teste de vibração

O teste de vibração sujeita o subsistema do transponder a cargas vibratórias de diferentes frequências e amplitudes. Este teste é necessário para verificar se o transponder atende às especificações após ser submetido aos estresses e impactos que ocorrem durante o lançamento. Como a orientação do satélite no veículo lançador de satélites não é conhecido a priori, as cargas máximas devem ser testadas em todos os três eixos espaciais.

As tabelas 6.1 e 6.2 mostram os testes de vibração que devem ser submetidos para os testes de qualificação do *transponder*.

Perfil de Teste de Direção	Intervalo de Frequência [Hz]	Amplitude X,Y,Z [g] Teste de Qualificação	Amplitude X,Y,Z[g] Teste de Aceitação
A	5–10	0,5	0,4
В	10–15	1,0	0,8
С	15–20	0,5	0,4
Taxa de Varredura		2 [oct/min]	4 [oct/min]

Tabela 6.1 – especificações de teste de vibração senoidal.

Perfil de Teste de Direção	Intervalo de Frequência [Hz]	Amplitude X,Y,Z [g²/Hz]	Amplitude X,Y,Z [g²/Hz] Teste de Aceitação
Δ	20_40		
	20 40	0,007	0,004
В	40-80	0,007	0,004
С	80–160	0,007 – 0,022	0,004 - 0,014
D	160–320	0,022 - 0,035	0,014 - 0,022
E	320–640	0,035	0,022
F	640–1280	0,035 – 0,017	0,022 – 0,011
G	1280–200	0,017 – 0,005	0,011 – 0,00
Aceleração RMS		6,5 [g]	5,2 [g]
Duração		35 [seg/eixo]	35 [seg/eixo]

Tabela 6.2 – especificações de teste de vibração randômica.

7 - DESCRIÇÃO DE TESTES AMBIENTAIS TBD

8 - DESCRIÇÃO DE TESTES ELETROMAGNÉTICOS

TBD