

sid.inpe.br/mtc-m21b/2015/11.30.02.40-TDI

ESTUDO DE CASOS DE DESCARGAS ATMOSFÉRICAS UTILIZANDO ESPECTROSCOPIA SEM FENDA (SLITLESS)

Ellen Soraia Andrade Melo Luz

Dissertação de Mestrado do Curso de Pós-Graduação em Geofísica Espacial/Ciências Atmosféricas, orientada pelos Drs. Osmar Pinto Junior, e Kleber Pinheiro Naccarato, aprovada em 27 de outubro de 2015.

 $\label{eq:url do documento original:} $$ \end{ty:} / \end{ty:} / \end{ty:} $$ \end{ty:} WKD3MGP3W34P/3KMAELH} > $$ \end{ty:}$

INPE São José dos Campos 2015

PUBLICADO POR:

Instituto Nacional de Pesquisas Espaciais - INPE

Gabinete do Diretor (GB)

Serviço de Informação e Documentação (SID)

Caixa Postal 515 - CEP 12.245-970

São José dos Campos - SP - Brasil

Tel.:(012) 3208-6923/6921

Fax: (012) 3208-6919

E-mail: pubtc@sid.inpe.br

COMISSÃO DO CONSELHO DE EDITORAÇÃO E PRESERVAÇÃO DA PRODUÇÃO INTELECTUAL DO INPE (DE/DIR-544):

Presidente:

Marciana Leite Ribeiro - Serviço de Informação e Documentação (SID)

Membros:

Dr. Gerald Jean Francis Banon - Coordenação Observação da Terra (OBT)

Dr. Amauri Silva Montes - Coordenação Engenharia e Tecnologia Espaciais (ETE)

Dr. André de Castro Milone - Coordenação Ciências Espaciais e Atmosféricas (CEA)

Dr. Joaquim José Barroso de Castro - Centro de Tecnologias Espaciais (CTE)

Dr. Manoel Alonso Gan - Centro de Previsão de Tempo e Estudos Climáticos (CPT)

Dra Maria do Carmo de Andrade Nono - Conselho de Pós-Graduação

Dr. Plínio Carlos Alvalá - Centro de Ciência do Sistema Terrestre (CST)

BIBLIOTECA DIGITAL:

Dr. Gerald Jean Francis Banon - Coordenação de Observação da Terra (OBT)

Clayton Martins Pereira - Serviço de Informação e Documentação (SID)

REVISÃO E NORMALIZAÇÃO DOCUMENTÁRIA:

Simone Angélica Del Ducca Barbedo - Serviço de Informação e Documentação (SID)

Yolanda Ribeiro da Silva Souza - Serviço de Informação e Documentação (SID)

EDITORAÇÃO ELETRÔNICA:

Marcelo de Castro Pazos - Serviço de Informação e Documentação (SID)

André Luis Dias Fernandes - Serviço de Informação e Documentação (SID)

sid.inpe.br/mtc-m21b/2015/11.30.02.40-TDI

ESTUDO DE CASOS DE DESCARGAS ATMOSFÉRICAS UTILIZANDO ESPECTROSCOPIA SEM FENDA (SLITLESS)

Ellen Soraia Andrade Melo Luz

Dissertação de Mestrado do Curso de Pós-Graduação em Geofísica Espacial/Ciências Atmosféricas, orientada pelos Drs. Osmar Pinto Junior, e Kleber Pinheiro Naccarato, aprovada em 27 de outubro de 2015.

 $\label{eq:url do documento original:} $$ \end{ty:} / \end{ty:} / \end{ty:} $$ \end{ty:} WKD3MGP3W34P/3KMAELH} > $$ \end{ty:}$

INPE São José dos Campos 2015 Luz, Ellen Soraia Andrade Melo.

L979e

Estudo de casos de descargas atmosféricas utilizando espectroscopia sem fenda (slitless) / Ellen Soraia Andrade Melo Luz. – São José dos Campos : INPE, 2015.

xxviii + 170 p.; (sid.inpe.br/mtc-m21b/2015/11.30.02.40-TDI)

Dissertação (Mestrado em Geofísica Espacial/Ciências Atmosféricas) — Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2015.

Orientadores : Dr. Osmar Pinto Junior, e Kleber Pinheiro Naccarato.

1. Descargas atmosféricas. 2. Espectroscopia sem fenda. 3. Temperatura. 4. Densidade de elétrons. I.Título.

CDU 551.594.22

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

Aluno (a): Ellen Soraia Andrade Melo Luz

Título: "ESTUDO DE CASOS DE DESCARGAS ATMOSFÉRICAS UTILIZANDO ESPECTROSCOPIA SEM FENDA (SLITLESS)."

Aprovado (a) pela Banca Examinadora em cumprimento ao requisito exigido para obtenção do Título de **Mestre** em

Geofisica Espacial/Ciências Atmosféricas

2.2		2 0 1
Dr.	Marcelo Magalhães Fares Saba	llCareelX .
		Presidente / INPE / SJCampos - SP
Dr.	Osmar Pinto Junior	<u></u>
		Orientador(a) / NPE / SJCampos SP
Dr.	Kleber Pinheiro Naccarato	Maccalae
		Orientador(a) / INPE / São José dos Campos - SP
Dr.	Paulo Prado Batista	Mendin Bundary Julia
		Membro da Banca / INPE / SJCampos - SP
Ðr.	Alexandre Piantini	Mountinal
		Convidado(a) / USP/IEE / São Paulo - SP

Este trabalho foi aprovado por:

() maioria simples

M unanimidade

"Porque, assim como o relâmpago sai do oriente e se mostra até ao ocidente, assim será também a vinda do Filho do homem". Mateus 24:27 "Bíblia Almeida Corrigida e Revisada Fiel"

A meus pais Samuel e Ana, ao meu irmão Geovane e ao meu namorado Luis

AGRADECIMENTOS

Agradeço em primeiro lugar a Deus pelo amor infinito que tem por mim e por ter criado este mundo tão cheio de mistérios e desafios. Agradeço a meus pais, Samuel e Ana Luz por terem me educado com tanto amor e nos caminhos do Senhor. Agradeço ao meu irmão Geovane Luz, que sempre me compreende e que muito me ajuda, e quem eu amo muito. Agradeço a meu sobrinho Mateus Luz que é uma criança inspiradora e sempre nos dá muita alegria.

Agradeço a meu namorado Luis Alonso, que durante todo o meu mestrado tem sido companheiro, por ter cuidado muito bem de mim, por ter sido sempre tão compreensível e por dedicar seu tempo inclusive para me ajudar nesta pesquisa. Agradeço imensamente à Ana Cristina P. Alonso e Manoel Alonso Gan por sempre me acolherem e terem cuidado muito bem de mim.

Agradeço aos meus orientadores Dr. Osmar Pinto e Dr. Kleber Naccarato pela dedicação e paciência no ensino que tiveram comigo. Por aceitarem o meu pedido desta pesquisa e por me ensinarem a sempre buscar conhecimento.

Agradeço de forma muito especial ao Dr. Richard Orville, que com muita disposição e bom grado cedeu o *grism* e veio até ao INPE para explicar sobre espectroscopia aplicada às descargas atmosféricas, e também por sempre ter tirado as minhas dúvidas. Sem esta grade não teria pesquisa.

Agradeço ao Dr. Takahashi por sempre ter me instruído com relação à espectrometria, pois foi durante a aula dele que o interesse pelo tema foi despertado, agradeço a ele também por sempre estar disposto a responder às minhas perguntas. Agradeço ao Dr. Antonio Saraiva, que sempre esteve disposto a ajudar com relação à utilização da câmera de alta velocidade e a fazer a correção espectral da resposta da câmera Phantom V9.1.

Agradeço de forma muito carinhosa à Malu e à Simone que sempre me enviaram os artigos que precisei em tempo hábil. Agradeço também ao Dr.Pimentel e ao Eng. Fernando pelo imenso apoio na utilização da sala escura do laser no INPE.

Agradeço a todos os colegas do ELAT, André Moraes, Anelize, Giselle Zepka, Marcelo Saba, Leandro Zanella, Jeferson Alves, Larissa Antunes, Carina Schumann, Amanda Romão, Rodrigo Azambuja, Tiago Buzato e Luis Alonso.

Agradeço ao imenso apoio que sempre tive dos colegas Arian Ojeda, Manuel Ale-

jandro, German, Siomel, Fabíola e Anna Karina. Agradeço também pelas conversas e sugestões e imensa ajuda de Tiago Moreira, Angélica Moreira (com suas comidas deliciosas)e Cosme Alexandre. Agradeço ao Dr. Earle e ao Dr. Rakov por sempre me ajudarem tirando minhas dúvidas.

Agradeço ao Dr. Bogos do ITA, que me recebeu e me deu esclarecimentos sobre espectroscopia. Ao Dr. Ferro pelo imenso apoio ao viabilizar a utilização da torre de observações de raios localizada no DCTA.

Agradeço de forma muito especial também aos meus colegas de trabalho da Eletronorte no Sistema HVDC, Jonir, Edgar, Weverton, Marcos Silva, Marcos Moreira, Rodrigo, Adriano, Magdiel, Marcio, Abner, Jayme, Jader, Jânio, André, Fábio, Alípio, Henrique, Raimunda e Regildo pela compreensão, apoio e sugestões. Agradeço aos meus colegas da ABB, Felipe Cassarotti, Jairo Tavares e Raimundo Santana por sempre me ajudarem e por darem suas valiosas contribuições para esta dissertação.

RESUMO

Este trabalho consiste na análise de características das descargas atmosféricas nuvem-solo com polaridade negativa através de observações pioneiras no Brasil com câmeras de alta velocidade (modelo Phanton V9.1) acopladas a um grism (grade de difração mais prisma). Através dos dados obtidos com este sistema (câmera de alta velocidade e grism) é possível obter o espectro do raio, podendo assim verificar a radiação emitida pela descarga atmosférica numa faixa de 600 a 1050 nm. A partir destas observações e de considerações teóricas é possível estimar variações de temperatura e densidade eletrônica do canal da descarga para a etapa da corrente contínua e para a descarga de retorno (DR). Estes dados são complementados por dados de descarga atmosférica das redes BrasilDAT e RINDAT com o intuito de verificar os valores da intensidade de corrente das descargas atmosféricas estimados por estas redes. As observações foram realizadas nos meses de fevereiro e março de 2014 na Torre do DCTA (Departamento de Ciência e Tecnologia Aeroespacial) localizada na cidade de São José dos Campos, São Paulo, Brasil.

CASE STUDY OF ATMOSPHERIC DISCHARGES BY SLITLESS SPECTROSCOPY

ABSTRACT

The proposal for this work is the analysis of characteristics of atmospheric negative cloud -to-ground discharges through pioneering observations in Brazil with high-speed camera (Phantom V9.1 model) coupled to a grism (prism diffraction grid more) . Using data obtained with this system (high-speed camera and grism) was be possible to obtain the spectrum of the lightning , and thus verify the radiation emitted by lightning in a range 600-1050 nm . From these observations and theoretical considerations was possible to estimate changes in temperature and electron density of the discharge channel to the stage of direct current and the return stroke (RS). These data was supplemented by data from the lightning BrasilDAT network in order to check the values of the current intensity of lightning estimated by Brasil-DAT . The observations was conducted in the months of February and March 2014 in the Tower of DCTA (Department of Aerospace Science and Technology) located in São José dos Campos , São Paulo , Brazil .

LISTA DE FIGURAS

	\mathbf{P} á	ıg.
1.1	Diagrama esquemático de um espectrômetro sem fenda capaz de mostrar o espectro em uma resolução temporal de microssegundos e uma seção de 10 m ou menor do canal do relâmpago. Este espectrômetro, em princípio, é semelhante ao que mostrado na Figura 2.6 exceto pela ranhura do canal do isolador ser de uma ordem de magnitude menor e a velocidade de	
1.2	tambor ser duas ordens de magnitude maior	2
1.3 1.4	trado esquematicamente na Figura 1.1	3 3 4
2.1 2.2	Os perfis de concentração representativos de espécies neutras na atmosfera. Quatro tipos de descargas, onde em (a) raio descendente negativo, (b) raio descendente positivo, (c) raio ascendente negativo e (d) raio ascen-	9
2.3 2.4	dente positivo	10 11
2.5	Representação esquemática da corrente versus altura, perfis para três modos de transferência de carga para a terra em um raio negativo <i>strokes</i> subsequentes : (a) sequência líder contínuo e descarga de retorno, (b)	13
2.6	Diagrama esquemático de um um espectrômetro sem fenda capaz de observar um relâmpago com deslocamento temporal em seus traços de componentes. A mudança de direção da luz incidente produzido pelo prisma é ajustado para ser aproximadamente o necessário para se obter um espectro de grade de primeira ordem que está paralelo à direção da luz incidente. Assim, o espectrômetro pode ser voltado diretamente para	15
	a descarga do relâmpago sob observação. (Adaptado de Orville (1966))	21

2.7	Uma descarga integrada no espectro do raio próximo do infravermelho, obtido por Salanave (1966) usando um espectrômetro sem fenda, mostrado de forma esquemática na Figura 2.6	21
3.1	Camera de alta velocidade, Phanton v9.1	24
3.2	Parâmetros da opção da câmera Phanton v9.1	24
3.3	Sistema câmera- $grism$	25 26
3.5	Localização dos sensores da BrasilDAT instalados e operacionais (em verde) e expansão para o Nordeste (em vermelho)	29
3.6	Mapa de raios detectados pela rede de sensores da BrasilDAT.//	
3.7	FONTE:site http://www.inpe.br/webelat/homepage/	30
0.0	http://www.rindat.com.br/	30
3.8	Mapa de raios detectados pelos sensores da RINDAT	31
3.9 3.10	Torre DCTA	32
	torre do DCTA	33
4.1	Espectro sem fenda linearizado na região do infravermelho do DR1 da descarga atmosférica NS- (bifurcada) observada em 24 de Fevereiro e	
4.2	2014 às 21 : 55 : 06.7880192 UT	36
4.3	2014 às 21 : 55 : 06.8180517 UT	
	analisados	44
4.4	Sistema câmera, <i>grism</i> e tubo de Neônio para verificação de erro percentual da medida	45
4.5	Experimento 1 com o tubo de Neônio (imagem do vídeo 1) e suas linhas espectrais	46
4.6	Experimento 2 com o tubo de Neônio (imagem do vídeo 2) e suas linhas espectrais.	47
5.1	Espectro próximo do infravermelho para o primeiro <i>frame</i> da CC, da descarga atmosférica ocorrida em 24 de Fevereiro de 2014, às 21 : 53 :	
	07 004 482 HT	53

5.2	Emissoes das linhas espectrais, em nm, para o 11 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.094.482 UT. $\ \ldots$.	55
5.3	Emissões das linhas, em nm, espectrais para o f3 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.095.148 UT. $\ \ldots$.	56
5.4	Emissões das linhas espectrais, em nm, para o f4 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.095.481 UT. $\ \ldots \ \ldots$	57
5.5	Emissões das linhas espectrais, em nm, para o f8 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.096.814 UT. $\ \ldots$	58
5.6	Emissões das linhas espectrais, em nm, para o f9 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.097.148 UT. $\ \ldots$.	59
5.7	Emissões das linhas espectrais, em nm, para o f16 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.099.480 UT. $\ \ldots$	60
5.8	Emissões das linhas espectrais, em nm, para o f17 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.099.814 UT. $\ \ldots$	61
5.9	Emissões das linhas espectrais, em nm, para o f26 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.102.814 UT. $\ \ldots$.	62
5.10	Emissões das linhas espectrais, em nm, para o f53 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.111.813 UT. $$	63
5.11	Emissões das linhas espectrais, em nm, para o f54 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.112.146 UT. $\ \ldots$.	64
5.12	Emissões das linhas espectrais, em nm, para o f55 da CC, da descarga	
	ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.112.480 UT. $\ \ldots$.	65
5.13	Espectro próximo do infravermelho referente à DR1 da descarga at-	
	mosférica NS- (bifurcada) observada em 24 de Fevereiro e 2014 às	
	21:55:06.7880192 UT	76
5.14	Espectro próximo do infravermelho referente à DR2 da descarga at-	
	mosférica NS- (bifurcada) observada em 24 de Fevereiro e 2014 às	
	21:55:06.8180517 UT	77
5.15	Emissões das linhas espectrais da DR1 (caso 02) da descarga atmosfé-	
	rica NS- (bifurcada) observada em 24 de Fevereiro e 2014 às 21 : 55 :	
	06.7880192 UT	79
5.16	Emissões das linhas espectrais da DR2 (caso 02) da descarga atmosfé-	
	rica NS- (bifurcada) observada em 24 de Fevereiro e 2014 às 21 : 55 :	
	06.8180517 UT	80
5.17	Espectro próximo do infravermelho referente à descarga atmosférica NS-	
	observada em 24 de Fevereiro de 2014 às 21 : 57 : 43.511214 UT. Caso 03.	85
5.18	Emissões das linhas espectrais observadas por espectroscopia sem fenda	
	na região do infravermelho para o caso 03	87

5.19	Espectro próximo do infravermelho referente à descarga atmosférica NS-	
	observada em 24 de Fevereiro de 2014 às 22 : 02 : 56.980403 U.T. $ \dots $	90
5.20	Emissões das linhas espectrais observadas por espectroscopia sem fenda	
	na região do infravermelho para o caso 04	92
6.1	Gráfico comparativo para todos os casos relacionando a densidade de	
	elétrons com a temperatura	98
6.2	Gráfico comparativo para todos os casos relacionando a densidade de	
	elétrons com a corrente	99
6.3	Gráfico comparativo para todos os casos relacionando a corrente com a	
	temperatura	100
A.1	Gráfico que mostra a resposta espectral da Câmera Phantom V9.1	163

LISTA DE TABELAS

	$\underline{\mathbf{P}}$	ág.
2.1	Principais constituintes do ar seco ao nível do mar	8
4.1	Emissões das linhas espectrais para dois experimentos observando um	
	tubo de Neônio e o valor teórico dado pela tabela NIST	48
4.2	Erro percentual, média e desvio padrão para o Neônio	49
5.1	Dados da localização, polaridade e pico de corrente do raio NS ocorrido	
	em 24 de fevereiro de 2014 às 21 : 53 : 07 U.T	51
5.2	Identificação das linhas espectrais para o primeiro $\mathit{frame}\ 1$ (- $1274)$ da CC.	66
5.3	Identificação das linhas espectrais para o frame 3 (- 1272) da CC	67
5.4	Identificação das linhas espectrais para o frame 4 (- 1271) da CC. $$	68
5.5	Identificação das linhas espectrais para o frame 8 (- 1267) da CC. $$	68
5.6	Identificação das linhas espectrais para o frame 9 (- 1266) da CC. $$	69
5.7	Identificação das linhas espectrais para o frame 16 (- 1259) da CC. $$	69
5.8	Identificação das linhas espectrais para o frame 17 (- 1258) da CC. $$	70
5.9	Identificação das linhas espectrais para o frame 26 (- 1249) da CC. $$	71
5.10	Identificação das linhas espectrais para o frame 53 (-1222) da CC	71
5.11	Identificação das linhas espectrais para o frame 54 (-1221) da CC	72
5.12	Identificação das linhas espectrais para o frame 55 (-1220) da CC	73
5.13	Dados da localização, polaridade e pico de corrente do raio NS ocorrido	
	em 24 de fevereiro de 2014 às 21 : 55 : 06.7880192 U.T. DR1, caso 02. $$	75
5.14	Dados da localização, polaridade e pico de corrente do raio NS ocorrido	
	em 24 de fevereiro de 2014 às 21 : 55 : 06.8180517 U.T. DR2, caso 02. $$	75
5.15	Identificação das linhas espectrais para o DR1 - caso 02	81
5.16	Identificação das linhas espectrais para o DR2 - caso 02	82
5.17	Temperatura calculada e a média do pico de corrente calculado pelas	
	duas redes de sensores, para o raio ocorrido em 24 de fevereiro de 2014	
	às 21:55:06.7880192 U.T. DR1, caso 02	83
5.18	Temperatura calculada e a média do pico de corrente calculado pelas	
	duas redes de sensores, para o raio ocorrido em 24 de fevereiro de 2014	
	às 21 : 55 : 06.8180517 U.T. DR2, caso 02	83
5.19	Dados da localização, polaridade e pico de corrente do raio NS ocorrido	
	em 24 de fevereiro de 2014 às 21 : 57 : 43.511214 U.T. Caso 03	84
5.20	Identificação das emissões de todas as linhas espectrais para o caso 03.	

	Dados da localização, polaridade e pico de corrente do raio NS ocorrido em 24 de fevereiro de 2014 às 22 : 02 : 56.980403 U.T. Caso 04	
6.1 6.2	Temperatura, densidade de elétrons e pico de corrente para todos os casos Relação da densidade e pico de corrente com a temperatura de menor	. 96
6.3	para maior valor	96
6.4	de menor para maior valor	
B.1	Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 1 - frame (1) -1274, caso 01 CC	116
B.2	Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 2 - frame (3) -1272, caso 01 CC	
B.3	Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 3 - frame (4) -1271, caso 01 CC	
B.4	Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 4 - frame (8) -1267, caso 01 CC	
B.5	Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 5 - frame (9) -1266, caso 01 CC	
B.6	Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 6 - frame (16) -1259, caso 01 CC	
B.7	Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 7 - frame (17) -1258, caso 01 CC	
B.8	Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 8 - frame (26) -1249, caso 01 CC	
B.9	Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 9 - frame (53) -1222, caso 01 CC	
B.10	Correção do brilho com relação à Resposta Espectral da Câmera Phan-	
B.11	tom V9.1 para: 10 - frame (54) -1221, caso 01 CC	
B.12	tom V9.1 para: 11 - frame (55) -1220, caso 01 CC	
B.13	tom V9.1 para: 1 - frame -1081, caso 02 RS1	
	tom V9.1 para: 2 - frame -990, caso 02 RS2	122

В.14	Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: frame -1012, caso 03	. 122
B.15	Correção do brilho com relação à Resposta Espectral da Câmera Phan-	
	tom V9.1 para: frame -1208, caso 04	123
C.1	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 1 - frame (1) -1274, caso 01 CC	125
C.2	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 2 - frame (3) -1272, caso 01 CC	126
C.3	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 3 - frame (4) -1271, caso 01 CC	126
C.4	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 4 - frame (8) -1267, caso 01 CC	127
C.5	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 5 - frame (9) -1266, caso 01 CC	127
C.6	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 6 - frame (16) -1259, caso 01 CC	128
C.7	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 7 - frame (17) -1258, caso 01 CC	128
C.8	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 8 - frame (26) -1249, caso 01 CC	129
C.9	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 9 - frame (53) -1222, caso 01 CC	129
C.10	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 10 - frame (54) -1221, caso 01 CC	130
C.11	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 11 - frame (55) -1220, caso 01 CC	130
	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 1 - frame -1081, caso 02 DR1	131
C.13	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: 2 - frame -990, caso 02 DR2	132
C.14	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: frame -1012, caso 03	133
C.15	Identificação, valores experimentais, valores teóricos e erro percentual	
	para: frame -1208, caso 04	134
	Dados e cálculo da temperatura para: 1-frame (1) -1274, caso 01 (CC).	
.2	Dados e cálculo da temperatura para: 2-frame (3) -1272, caso 01 (CC).	
.3	Dados e cálculo da temperatura para: 3-frame (4) -1271, caso 01 (CC).	138

.4	Dados e cálculo da temperatura para: 4-frame (8) -1267, caso 01 (CC)	139
.5	Dados e cálculo da temperatura para: 5-frame (9) -1266, caso 01 (CC). $$.	140
.6	Dados e cálculo da temperatura para: 6-frame (16) -1259, caso 01 (CC)	141
.7	Dados e cálculo da temperatura para: 7-frame (17) -1258, caso 01 (CC)	142
.8	Dados e cálculo da temperatura para: 8-frame (26) -1249, caso 01 (CC)	143
.9	Dados e cálculo da temperatura para: 9-frame (53) -1222, caso 01 (CC)	144
.10	Dados e cálculo da temperatura para: 10-frame (54) -1221, caso 01 (CC).	145
.11	Dados e cálculo da temperatura para: 11-frame (55) -1220, caso 01 (CC).	146
.12	Dados e cálculo da temperatura para DR1 do caso 02	147
.13	Dados e cálculo da temperatura para DR2 do caso 02	148
.14	Dados e cálculo da temperatura para o caso 03	149
.15	Dados e cálculo da temperatura para o caso 04	150
E.1	Dados e cálculo da densidade de elétrons para: 1-frame (1) -1274, caso	
	01 (CC)	151
E.2	Dados e cálculo da densidade de elétrons para: 2-frame (3) -1272, caso	
	01 (CC)	152
E.3	Dados e cálculo da densidade de elétrons para: 3-frame (4) -1271, caso	
	01 (CC)	152
E.15	Dados e cálculo da densidade de elétrons para o caso 04	153
E.4	Dados e cálculo da densidade de elétrons para: 4-frame (8) -1271, caso	
	01 (CC)	155
E.5	Dados e cálculo da densidade de elétrons para: 5-frame (9) -1226, caso	
	01 (CC)	155
E.6	Dados e cálculo da densidade de elétrons para: 6-frame (16) -1259, caso	
	01 (CC)	156
$\mathrm{E.7}$		
	01 (CC)	156
E.8		
	01 (CC)	157
E 9	Dados e cálculo da densidade de elétrons para: 9-frame (53) -1222, caso	10.
1.0	01 (CC)	157
E 10	Dados e cálculo da densidade de elétrons para: 10-frame (54) -1221, caso	101
1.10	01 (CC)	150
T 11	Dados e cálculo da densidade de elétrons para: 11-frame (55) -1220, caso	100
11.11		150
T 10	01 (CC)	198
L.12	Dados e cálculo da densidade de elétrons para: 1-frame -1081, caso 02	150
D 40	(DR1)	
E.13	Dados e cálculo da densidade de elétrons para: 2-frame -990, caso 02 (DR2).	160

E.14	Dados e cálculo da densidade de elétrons para o caso 03 161
A.1	Resposta Espectral para a Phantom V9.1
B.1	Tabela com os dados de w para cada temperatura e linha espectral. Caso
	01 (obtida de (??))
B.2	Tabela com os dados de w para cada temperatura e linha espectral. Caso
	02 (obtida de (??))
B.3	Tabela com os dados de w para cada temperatura e linha espectral. Caso
	03 (obtida de (??))
B.4	Tabela com os dados de w para cada temperatura e linha espectral. Caso
	04 (obtida de (??))

SUMÁRIO

	Pág.
1 INTRODUÇÃO	. 1
1.1 Objetivos e motivação da pesquisa	. 4
2 REVISÃO DA LITERATURA	. 7
2.1 Introdução	
2.2 A atmosfera	
2.2.1 Composição, temperatura e altura de escala	. 8
2.3 Fundamentos e definições básicas sobre descargas atmosféricas	
2.4 Raios descendentes negativos, passo a passo	. 11
2.5 Espectroscopia de relâmpagos	. 15
2.5.1 Breve Histórico	. 15
2.5.2 Espectrômetros com fenda (Slit Spectrometers)	. 17
2.5.3 Espectrômetros Sem fenda (slitless)	. 18
3 INSTRUMENTAÇÃO E LOCALIZAÇÃO	23
3.1 Introdução	. 23
3.2 Câmera de Alta Velocidade Phantom v9.1	. 23
3.2.1 Software PCC 1.3	. 23
3.3 Lente utilizada	. 25
3.4 <i>Grism</i>	. 25
3.5 Redes de sensores Brasil DAT e RINDAT	. 27
3.5.1 BrasilDAT	. 27
3.5.2 RINDAT	. 28
3.6 Torre de observação das descargas atmosféricas	. 29
4 METODOLOGIA	35
4.1 Introdução	. 35
4.2 Identificação das linhas espectrais	. 35
4.3 Cálculo da temperatura	. 36
4.4 Cálculo da densidade de elétrons	. 42
4.5 Experimento com tubo de Neônio	. 45
5 ESTUDO DE CASOS	51

5.1	Introdução	51
5.2	Caso 01	51
5.2.1	Identificação das linhas espectrais para o Caso 01	52
5.2.2	Cálculo da temperatura para o Caso 01	73
5.2.3	Cálculo da densidade de elétrons para o Caso 01	74
5.3	Caso 02	74
5.3.1	Identificação das linhas espectrais para o Caso 02	74
5.3.2	Cálculo da temperatura do canal do raio para o Caso 02	81
5.3.3	Cálculo da densidade de elétrons para o Caso 02	83
5.4	Caso 03	84
5.4.1	Identificação das linhas espectrais para o Caso 03	84
5.4.2	Cálculo da temperatura do canal do raio para o Caso 03	88
5.4.3	Cálculo da densidade de elétrons para o Caso 03	88
5.5	Caso 04	89
5.5.1	Identificação das linhas espectrais para o Caso 04	89
5.5.2	Cálculo da temperatura do canal do raio para o Caso 04	93
5.5.3	Cálculo da densidade de elétrons para o Caso 04	93
6 I	DISCUSSÕES E CONCLUSÕES	95
7 F	PESQUISAS FUTURAS	101

REFERENCIAS BIBLIOGRAFICAS	ا05
APÊNDICE A - GERAR GRÁFICO COM AS LINHAS ESPECTRAIS	110
TRAIS	.13
APÊNDICE B - CORREÇÃO DA RESPOSTA ESPECTRAL 1	115
APÊNDICE C - ERRO PERCENTUAL PARA CADA CASO 1	L 25
APÊNDICE D - DADOS PARA CALCULO DA TEMPERATURA 1	L 35
APÊNDICE E - DADOS PARA CALCULO DA DENSIDADE DE ELÉTRONS	151
ANEXO A - TABELAS E DADOS PARA CORREÇÃO DA RES- POSTA ESPECTRAL DA CÂMERA V9.1	169
	.03
ANEXO B - TABELA COM OS VALORES DE W (LARGURA)	
PARA CADA TEMPERATURA PARA CERTA LINHA ESPEC-	
TRAL	169

1 INTRODUÇÃO

Descargas atmosféricas são descargas elétricas de alta intensidade e curta duração, podem atingir quilômetros de distância e causam diversos prejuízos incluindo mortes de seres humanos e animais. Além disto, ainda é uma das principais causas de interrupções do sistema de potência de energia elétrica, tanto na transmissão como na distribuição.

A descarga atmosférica é um fenômeno natural extraordinário e tem despertado o interesse e a curiosidade de muitos pesquisadores. Existem várias formas de se estudar uma descarga atmosférica, e uma delas é através da espectroscopia.

Há mais de um século a espectroscopia tem sido aplicada como uma técnica de diagnostico para estudo de raios (SALANAVE, 1980, p. 3). Estudos com espectroscopia existiram antes mesmo do uso da fotografia, do campo elétrico, do campo magnético e medições de corrente, segundo Uman (1969).

Salanave (1980) é um dos pioneiros nesta área, e mesmo com os recursos da época, obteve muitos avanços. Salanave (1980) também relacionou uma lista das emissões das linhas espectrais observadas numa descarga atmosférica e observou que na sua maioria apresenta assinaturas das linhas do nitrogênio e do oxigênio.

Uman (1966) apresenta informações importantes sobre propriedades do relâmpago como a temperatura e a densidade de elétrons, que também são calculados nesta pesquisa.

(ORVILLE, 1968d) também realizou estudos pioneiros de raios com espectrometria, onde ele foi o primeiro a estudar o descarga de retorno (DR) dos raios com câmera de alta velocidade com deslocamento temporal.

Conforme McNaught (2014), Espectroscopia vem a ser o estudo de sistemas físicos através da radiação eletromagnética com as quais interagem ou que produzem tais. Espectrometria é a medição de radiações tais como um meio de obter informação sobre os sistemas e os seus componentes. Em certos tipos de espectroscopia óptica, a radiação origina a partir de uma fonte externa e é modificada pelo sistema, ao passo que em outros tipos, a radiação origina dentro do próprio sistema. Ou seja, através da espectroscopia, que seria todo o conjunto para a obervação da radiação eletromagnética, obtêm-se medidas, que esta por sua vez vem a ser designada espectrometria.

Com espectroscopia, é possível analisar os raios através da emissão de linhas espectrais. Espectroscopia de raios pode ser de duas formas: de fenda (termo em inglês slit) e sem fenda (slitless). O de fenda produz dispersão de comprimento de onda da imagem de uma fenda fina, que é posta na frente de um elemento de dispersão e que é iluminada pelo raio observado. Já o espectrômetro sem fenda produz dispersão de comprimento de onda da imagem do próprio canal do relâmpago (que é como se fosse a própria fenda) permitindo que a luz a partir do canal caia diretamente sobre o elemento de dispersão. O resultado do espectro é uma série de imagens monocromáticas do canal do relâmpago sobreposta a um contínuo (UMAN, 1969).

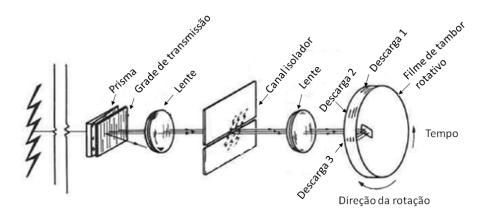


Figura 1.1 - Diagrama esquemático de um espectrômetro sem fenda capaz de mostrar o espectro em uma resolução temporal de microssegundos e uma seção de 10 m ou menor do canal do relâmpago. Este espectrômetro, em princípio, é semelhante ao que mostrado na Figura 2.6 exceto pela ranhura do canal do isolador ser de uma ordem de magnitude menor e a velocidade de tambor ser duas ordens de magnitude maior

Fonte: Uman (1969) Adaptado de Orville (1966)

Na Figura 1.3 tem-se o sistema câmera/grism, que vem a ser o espectrômetro sem fenda para os casos observados nesta pesquisa. E um dos resultados a partir da observação com este sistema pode ser verificado na Figura 1.4, onde tem-se as emissões da linhas espectrais para uma descarga de retorno (DR) de uma descarga atmosférica nuvem-solo com polaridade negativa .

A fim de responder perguntas como: "Qual o real valor da corrente de um raio?" e "Como proteger sistemas, desde os mais robustos até os de menor porte?", é que a busca por uma ferramenta foi feita. Estudo com espectroscopia não é novidade como relatado pela literatura, pois o primeiro espectro de raio gravado foi feito por

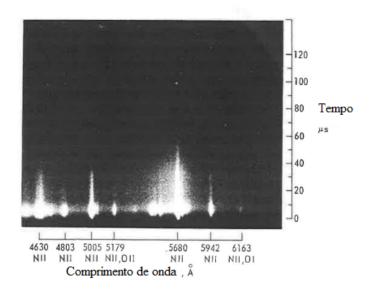


Figura 1.2 - O espectro visível em resolução temporal de uma descarga atmosférica observada por Orville (1968e) usando o espectrômetro sem fenda mostrado esquematicamente na Figura 1.1.

Fonte: Uman (1969)

Figura 1.3 - Sistema câmera/grism (espectrômetro sem fenda).

Meyer em 1894 (UMAN, 1969). Todavia no Brasil é a primeira vez que se obtém dados de raios observados por espectroscopia sem fenda. A utilização de câmeras de alta velocidade (Phanton v9.1) é essencial neste estudo, pois ela é capaz de observar as etapas mais rápidas de todo o fenômeno. Para que seja possível a observação de detalhes, são necessárias tais câmeras, que podem observar até 10000 fps (frames por segundo, em português quadros por segundo), 100000 fps ou mais. Existem câmeras com maior capacidade e que por sua vez podem mostrar mais informações.

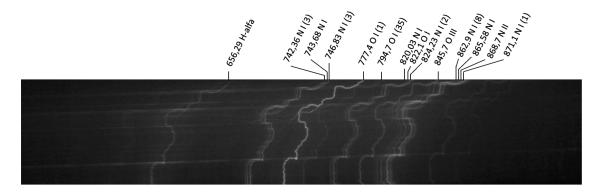


Figura 1.4 - Emissões das linhas espectrais observadas por espectroscopia sem fenda (Sistema câmera/grism) na região do infravermelho para uma descarga de retorno no dia 24 de fevereiro de 2014 em São José dos Campos, São Paulo, Brasil.

É importante lembrar que a quantidade de frames também está relacionada com a resolução da imagem. Portanto é essencial ter boa relação de frames por segundo com a resolução desejada e tempo de exposição necessário para a observação da descarga atmosférica. A combinação de câmeras de alta velocidade com grism, aliada a dados de descarga atmosférica da rede BrasilDAT e RINDAT foram utilizados para a realização desta pesquisa. Com os dados obtidos por espectroscopia é possível calcular a temperatura e a densidade de elétrons do canal de descargas atmosféricas.

1.1 Objetivos e motivação da pesquisa

O objetivo desta pesquisa consiste em: Calcular a temperatura e a densidade de elétrons do canal para as descargas atmosféricas observadas no Brasil.

A busca destas medidas através de espectroscopia deu-se em função da observação de métodos utilizados para estudos com os fenômenos fluorescentes da atmosfera. A partir de então, pesquisou-se trabalhos realizados através de espectroscopia aplicados a descargas atmosféricas, onde nesta pesquisa presente é realizado o estudo principalmente da temperatura do canal do raio e o cálculo da densidade de elétrons.

É possível introduzir uma nova técnica que permitirá estimar a corrente de descargas atmosféricas por uma forma diferente dos sistemas de detecção, que é calculada a corrente através da medição de campo elétrico.

Estudos com espectroscopia estão sendo realizados pela primeira vez no Brasil e por isto levanta-se a necessidade de haver mais estudos futuros para continuidade.

A busca por uma relação da temperatura com a intensidade da corrente demanda

muito mais tempo e experimentos, o que será proposto como um trabalho futuro. Todavia, a busca de uma segunda opção para estimativa da corrente (que é a espectrometria) já pode ser levantada com tais observações relacionadas com a temperatura.

A obtenção de maior quantidade de dados é essencial para haver comparação entre as medidas existentes e com isto observar os resultados obtidos por diferentes formas de calcular ou medir a corrente do raio.

2 REVISÃO DA LITERATURA

2.1 Introdução

Neste capítulo serão abordados conceitos básicos sobre a atmosfera, descargas atmosféricas e detalhes sobre o tipo de raio em foco, que são as descargas nuvem-solo negativos (-NS), também conhecidos como raios descendentes negativos, e por fim uma abordagem sobre a relação da espectroscopia com as pesquisas das descargas atmosféricas.

2.2 A atmosfera

A atmosfera trata-se de um envolvente gasoso que circunda um corpo celesta. Ela é mantida em equilíbrio hidrostático através da ação da força da gravidade e do gradiente de pressão.

Conforme a variação da temperatura, a atmosfera é dividida em camadas. Onde a camada mais próxima da superfície é a **troposfera**, esta é a a região mais importante para a meteorologia. Estende-se até aproximadamente 15 km de altura, sendo que nesta região, a temperatura decresce com a altura. Já mais acima, de 15 a 50 km, a temperatura aumenta com a altura, é a região chamada **estratosfera**. Em seguida tem-se a **mesosfera**, onde a temperatura decresce com a altura. A camada mais externa é a **termosfera**, onde a temperatura cresce com a altura até atingir o limite máximo que é a temperatura exosférica. Os limites entre uma camada e outra são chamadas de **pausas**, estão localizadas nos pontos de inflexão em que o gradiente térmico é nulo, que são a **tropopausa**, a **estratopausa** e a **mesopausa** (KIRCHHOFF, 1991).

A atmosfera é composta principalmente por nitrogênio molecular (N_2) , oxigênio molecular (O_2) , água (H_2O) , argônio (Ar) e dióxido de carbono (CO_2) (BRASSEUR et al., 2003).

Uma característica particular e interessante da atmosfera terrestre é que muitos dos compostos químicos dela, incluindo os gases mais abundantes, N_2 e O_2 são constantemente absorvidos e regenerados por processos biológicos (como por exemplo, atividade microbiana em solos, a fotossíntese e respiração, etc.). Compostos químicos reduzidos que são liberados para a atmosfera através dos ecossistemas terrestres e oceânicos, assim como pelas emissões antropogênicas dessas espécies são frequentemente oxidado da atmosfera e os produtos resultantes são removidos por deposição à superfície da terra. E por sua vez a subsequente assimilação e redução da biosfera

fecha o ciclo atmosfera-biosfera (BRASSEUR et al., 2003).

A distribuição global dos compostos químicos na atmosfera depende de processos químicos, biológicos e físicos. O transporte é um processo físico, pelo qual os movimentos transportam propriedades físicas ou químicas de uma dada região da atmosfera para outra. Este processo permite que compostos químicos diferentes e com fontes diferentes possam interagir. Determina quais regiões são fontes e quais são sumidouros líquidos para substâncias químicas. Movimentos atmosféricos são classificados conforme suas escalas espaciais, como: planetário, global, sinótica (1000km), mesoescala (10-500km), e pequena escala (abaixo de 10km) (BRASSEUR et al., 2003).

2.2.1 Composição, temperatura e altura de escala

Os principais componentes do ar ao nível do solo, assim como suas respectivas proporções podem ser verificados na Tabela 2.1, (MCEWAN; PHILLIPS, 1975).

Concentração (cm^{-3}) Espécie Peso molecular Porcentagem a CNTP $2,098.10^{\overline{19}}$ N_2 28,02 78,08 $5,629.10^{18}$ O_2 32,00 20,95 $2,510.10^{17}$ Ar39,95 0,934 $8,87.10^{15}$ CO_2 44,010,33

Tabela 2.1 - Principais constituintes do ar seco ao nível do mar

Fonte: McEwan e Phillips (1975).

A Figura 2.1 mostra os perfis de concentração dos constituintes neutros mais importantes, nesta figura vê-se o que se espera de uma atmosfera normal. Todavia estes valores não podem ser tomados demasiado literalmente, pois na prática estes valores de concentração dos constituintes reagentes podem variar de uma forma previsível com a latitude, hora do dia, estação e posição no ciclo de onze anos de atividade solar, conforme McEwan e Phillips (1975). Interessante notar que na Figura 2.1 a concentração do nitrogênio molecular (N_2) decai exponencialmente de forma constante, enquanto que o oxigênio molecular (O_2) mostra uma leve mudança na sua inclinação em aproximadamente 100 km de altitude, na qual a dissociação de átomos de oxigênio (O) torna-se importante e onde verifica-se que o pico da concentração do ozônio (O_3) ocorre na baixa estratosfera, e a presença de espécies reativas

como o óxido nítrico (NO) , o hidrogênio atômico (H), o oxigênio atômico (O), e o nitrogênio atômico (N) em concentrações significativas na vizinhança da mesopausa.

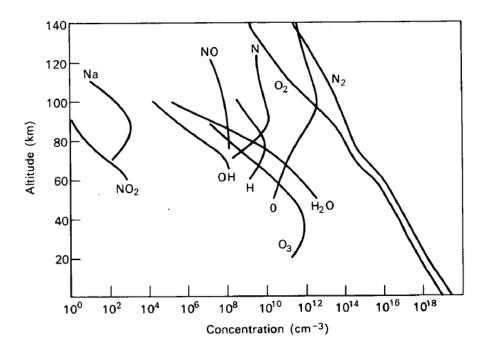


Figura 2.1 - Os perfis de concentração representativos de espécies neutras na atmosfera. Fonte: McEwan e Phillips (1975)

2.3 Fundamentos e definições básicas sobre descargas atmosféricas

Descargas atmosféricas, como o próprio nome sugere, são descargas elétricas que ocorrem na atmosfera. Estas descargas possuem a duração de milissegundos (geralmente menos que um segundo, aproximadamente meio segundo), e possuem pico de corrente na ordem de dezenas a centenas de quiloampères, a extensão dessas descargas pode alcançar dezenas de quilômetros de comprimento na baixa atmosfera (RAKOV; UMAN, 2003). Estas descargas elétricas, em sua maioria, estão diretamente relacionadas com a presença de nuvens *Cumulonimbus* (Cb), exceto as tempestade de areia, vulcões e explosões nucleares (onde também ocorre descargas atmosféricas), tais nuvens possuem grande extensão em altura. Ocorre nelas vários processos, o principal deles é o de convecção, que é o responsável pela dinâmica das cargas na nuvem, fazendo assim com que ajam colisões de partículas produzindo assim um choque entre as mesmas e a estrutura observada ao longo de vários anos de estudo tem sido a estrutura elétrica tripolar (WILLIAMS, 1988). Mais detalhes sobre a microfísica da nuvem pode-se obter em (WILLIAMS et al., 1991). Existem vários tipos

de raios, mas os principais são: os intranuvens (IN), nuvem-ar (NA), nuvem-solo (NS) ou descendentes e solo-nuvem (SN) ou ascendentes. Os raios que vão para o solo recebem também duas classificações, que são os positivos (+NS) e os negativos (-NS), onde os positivos são os que transferem carga líquida positiva para o solo e os negativos são os que transferem carga líquida negativa para o solo. De forma semelhante ocorre com os ascendentes, que são originados geralmente por estruturas altas como torres e possuem cargas positivas no seu canal principal (mas mesmo assim, podem transferir carga líquida negativa para o solo), a Figura 2.2 ilustra estes processos. Nesta pesquisa, o tipo de descarga de interesse são as do tipo NS negativo (-NS). Os raios nuvem-solo negativos foram escolhidos para estudar por ocorrer com maior frequência do que os raios nuvem-solo positivo, por exemplo. Todavia os que possuem maior ocorrência mesmo são os intranuvens, conforme Rakov e Uman (2003).

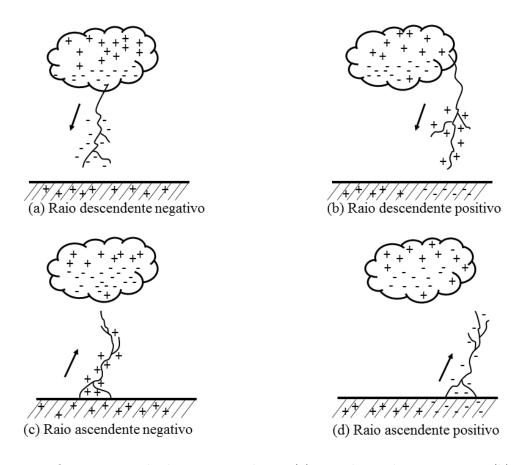


Figura 2.2 - Quatro tipos de descargas, onde em (a) raio descendente negativo, (b) raio descendente positivo , (c) raio ascendente negativo e (d) raio ascendente positivo .

Fonte: Rakov e Uman (2003)

2.4 Raios descendentes negativos, passo a passo.

As descargas atmosféricas nuvem-solo são as que mais causam danos diretos e indiretos às pessoas e instalações, e por este motivo é um dos mais estudados. A Figura 2.3 mostra um raio nuvem-solo.

Figura 2.3 - Fotografia de um raio nuvem-solo. Por Ellen Luz

A descarga que ocorre entre a nuvem e o solo inicia na nuvem e eventualmente leva para a terra dezenas de *coulombs* de carga negativa da nuvem, no caso do raio descendente negativo. No Brasil tem-se uma separação de termos, onde relâmpago se aplica para as descargas intranuvens (IN) e entre-nuvens (EN), já as descargas que tocam no solo são chamadas de fato de raio. As descargas descendentes negativas possuem um tempo de duração típica de algumas centenas de milissegundos, um raio é composto por vários componentes da descarga, dentre os quais estão geralmente um, dois, três, quatro pulsos ou mais de alta corrente, chamadas descargas de retorno (DR). Onde cada DR tem a duração de cerca de um milésimo de segundo, o tempo de separação entre DR's é de várias dezenas de milissegundos (UMAN, 2001).

Os raios negativos descendentes, de forma resumida possuem os seguintes passos,

sendo que alguns processos podem ou não ocorrer: (a) Distribuição inicial das cargas na nuvem; (b)a quebra da rigidez dielétrica;(c)a propagação de um steped leader (termo usado para expressar os passos que o canal líder faz ao desenvolver-se), em português é Líder escalonado (d)a descarga conectiva;(e) primeiro return stroke (descarga de retorno em português); (f) processos K e J; (g) o desenvolvimento de um líder contínuo ou mais conhecido como dart leader (este termo em inglês significa que o líder possui uma característica semelhante ao movimento de uma flecha, de forma contínua. Como se estivesse brincando de tiro ao alvo com uma flecha, o comportamento desta etapa do raio lembra isso, por isto o termo dart), e (h) subsequente descarga de retorno.

A ocorrência de descargas atmosféricas descendentes negativas geralmente ocorrem com a presença de nuvens *Cumulunimbus*, onde de forma mais detalhada destas etapas do raio negativo descendente tem-se:

- (a) em t=0 da Figura 2.4, a ilustração da distribuição de cargas na nuvem , e a estrutura idealizada das cargas é ilustrada através de três regiões verticalmente emplilhadas, onde P indica uma região de maior concentração de cargas elétricas positivas e LP (*Low Positive*) indica uma concentração de cargas elétricas positivas na parte inferior nuvem e N para uma região principal de cargas negativas na nuvem (UMAN, 2001; RAKOV; UMAN, 2003). A estrutura elétrica da nuvem de tempestade inicia a condição necessária para
- (b) a ruptura inicial das cargas nas nuvens (t=1,00 ms da Figura 2.4), que é um processo intranuvem chamado quebra preliminar, que vem a ser a quebra da rigidez dielétrica. A origem da descarga elétrica na nuvem ainda é desconhecida, mas estudos recentes como os de (STOLZENBURG et al., 2013; CAMPOS; SABA, 2013) , mostram evidências visuais que há um desenvolvimento rápido de canais ($106\ ms^{-1}$) de forma simultânea com a emissão dos pulsos característicos de campo desta ruptura inicial. Outros trabalhos como de (GUREVICH; KARASHTIN, 2013) , por exemplo, sugerem que a composição é realmente causada por avalanches de elétrons livres induzidos por raios cósmicos.
- (c) O stepped leader ou Líder escalonado (entre t=1,10 ms e t=19,00 ms da Figura 2.4),são os passos que o raio dá para o desenvolvimento do canal líder. A tradução de step é passo, então este termo indica os passos desde canal. A composição inicial ou preliminar prepara as condições para que a carga negativa desça para o solo através do líder escalonado, onde os comprimentos destes passos podem variar entre cerca de 3 a 200 m (possui um valor típico de 50 m), possuem uma velocidade

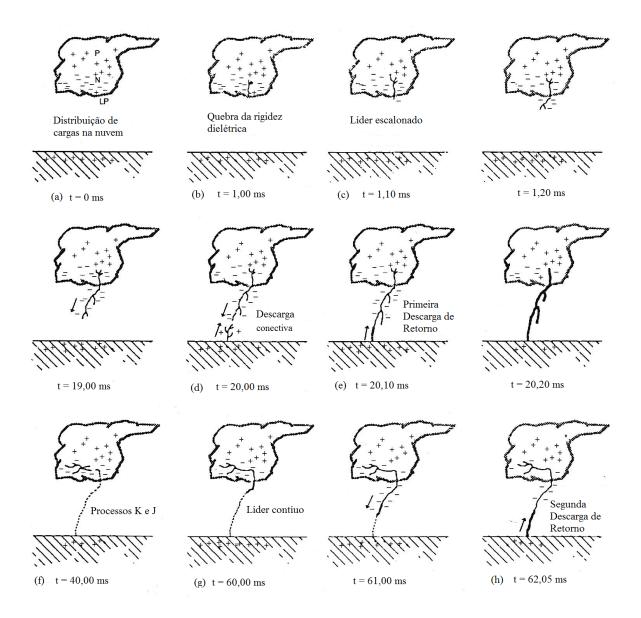


Figura 2.4 - Vários processos que compõem uma descarga atmosférica nuvem-solo negativa.

Fonte: Uman (2001)

média de propagação da ordem de 105 ms^{-1} (SCHONLAND, 1938; ORVILLE; IDONE, 1982; CAMPOS et al., jan.2014).

(d) Em t=20.00 ms da Figura 2.4 tem-se a descarga conectiva, que é o início de uma descarga para cima para que ocorra a conexão do canal principal do raio, esta descarga conectiva é possível devido ao líder escalonado;

Após a descarga conectiva tem-se a

(e) primeira Descarga de Retorno, logo após a conexão do canal, ou seja,em t=20.10 da Figura 2.4 observa-se a descarga retornando para a a nuvem (por isto recebe este nome, descarga de retorno). A primeira DR produz perto do solo uma intensidade tipicamente de 30 kA, atingindo seu pico em questões de microssegundos. Segundo Uman (2001), as correntes medidas no solo caem para a metade do valor de pico em cerca de 50 μs e correntes da ordem de centenas de ampères pode fluir em poucos milissegundos até várias centenas de milissegundos. Tal etapa do processo pode ser observada em t=20,10 ms e t=20,20 ms da Figura 2.4. Esta rápida liberação de energia da DR aquece o canal condutor com uma temperatura de aproximadamente 30000 k e gera um canal de alta pressão que por sua vez se expande e cria as ondas de choque que produzem um efeito sonoro conhecido como trovão (JORDAN et al., 1997).

Conforme Saba et al. (2006), a média de DR em -NSs é de 3,8, todavia trabalhos recentes como(ANTUNES et al., 2013) mostra registros de vídeo de alta velocidade que confirmam raios com até 20 DR's e onde foi observado que a multiplicidade (é quantas vezes o mesmo raio toca no solo, seria o mesmo que as DR's) média pode variar para diferentes dias de tempestades, entre 2,6 a 5,0. Após um determinado tempo de corte de corrente (entre t=20,20 ms e t=40,00 ms),ocorre uma interrupção da transferência de carga para o solo. Se o raio termina desta forma, se diz que ele teve apenas um *stroke*, e este fato corresponde a 20% dos casos (SABA et al., 2006). Todavia, na maior parte dos casos, os processos K e J (para junção) são detectados através de sensores de campo elétrico, como os que Rakov et al. (1992) utilizaram.

- (f) Em t=40.00 ms da Figura 2.4 tem-se os processos K e J, onde tanto o processo J como os processos K em descargas nuvem-solo servem para transportar carga negativa adicional para dentro e ao longo do canal existente (ou seus restos). Após dezenas de milissegundos dos processos K e J, ocorre o
- (g) líder contínuo (t=60,00 ms da Figura 2.4), que propaga normalmente de forma contínua através da região de condutividade criado inicialmente pelo líder escalonado. O líder contínuo avança para baixo numa velocidade típica de $107~ms^{-1}$, estimativas feitas por (SCHONLAND, 1938; SCHONLAND B F J; COLLENS, 1935; ORVILLE; IDONE, 1982; JORDAN et al., 1997; CAMPOS et al., jan.2014). E por fim, quando o líder contínuo atinge o solo, o canal remanescente é completamente reionizado, dando condições então para a ocorrência de
- (h) subsequentes descargas de retorno.

Uma etapa muito importante que ocorre nas descargas -NS, mas que não se mostra na Figura 2.4, é a etapa da corrente contínua, que apesar de possuir relativamente baixa intensidade, possui alta duração (dezenas a centenas de milissegundos) comparada com a descarga de retorno. Conforme estudos realizado por Medeiros (2011), cerca de 55% das descargas de retorno são seguidas por uma corrente contínua, mas em apenas 7% das -NSs elas duram mais do que 40 milissegundos (tempo longo, conforme Kitagawa et al. (1962)). A Figura 2.5 mostra um esquema da corrente contínua no processo do raio (RAKOV; UMAN, 2003).

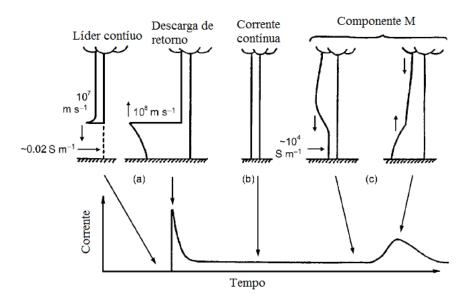


Figura 2.5 - Representação esquemática da corrente versus altura, perfis para três modos de transferência de carga para a terra em um raio negativo *strokes* subsequentes : (a) sequência líder contínuo e descarga de retorno, (b) corrente contínua , e (c) componente-M. A corrente correspondente versus tempo de onda representa a corrente no solo.

Fonte: Rakov e Uman (2003)

2.5 Espectroscopia de relâmpagos

2.5.1 Breve Histórico

Por pouco mais de um século o processo físico das descargas atmosféricas tem sido objetivo de estudo. Das técnicas existentes para o estudo de relâmpagos, tais como a medição de corrente, o campo elétrico e magnético, o sinal acústico, as emissões de luz e as emissões espectrais do canal, foram através da observação deste último ítem que se obteve as primeiras pistas para identificar as características físicas do raio.

Dentre os primeiros observadores estão Herschel (1868), Holden (1872), onde Herschel foi quem identificou a primeira linha de nitrogênio como a mais brilhante no espectro visível e notou que as intensidades relativas das linhas mudam de espectro para espectro. Holdem foi um dos primeiros a gravar suas observações visuais notando as posições relativas para as sete linhas do espectro que hoje podem ser identificadas como seis linhas devido ao átomo de nitrogênio ionizado uma só vez e uma linha de hidrogênio, H-alfa.

Ao decorrer da metade do século seguinte os pesquisadores construíram uma tabela das linhas espectrais produzidas pelas descargas atmosféricas. J. H. Freese Pickering (1901) gravou um espectro onde o filme mostrava aproximadamente trinta linhas brilhantes, incluindo várias da série de hidrogênio de Balmer. Nesta observação ele utilizou um telescópio de oito polegadas equipado com um prisma objetivo. Como este não obtém um valor linear (devido à dispersão), ficou difícil de obter linhas precisas. Mas este problema foi corrigido por Slipher (1917) quem obteve contribuições significativas obtendo o primeiro espectro fotográfico usando a espectrometria com fenda. Foram identificadas as linhas de nitrogênio e oxigênio na região entre 3830 a 5000 Å com boa exatidão e foi comparado com o espectro de faísca no ar feito em laboratório.

Jose (1950) foi o primeiro a obter resultados para estudo de descarga atmosférica na região do infra-vermelho, que era de 7400 a 8800 Å. As principais linhas observadas eram em função do nitrogênio e oxigênio neutro (NI, OI).Petrie e Small (1951) estenderam para 9100 Å a observação do infra-vermelho através da observação da aurora com espectrógrafo com fenda onde foi filmado o espectro de muitos raios em uma hora.

Um detalhe muito importante a destacar é que os primeiros estudos de raios com espectrometria na década de 1870 a tarefa principal era a identificação das características de emissão do espectro. Já na década 1950 os estudos inclinavam-se para considerar o espectro de luz como fonte de informação quantitativa sobre as condições físicas e em em torno do canal de descarga. Onde Petrie (1949) foi um dos primeiros a considerar o espectro do raio como uma fonte para informações quantitativas sobre suas condições físicas e em torno do canal da descarga . Um dos últimos especialistas mais notados foi Salanave (1961) que sentiu a necessidade de se obter o espectro das descargar individuais dos raios, e foi nessa época que ocorreu uma mudança grandemente significativa com a análise de descargas atmosféricas por espectroscopia sem fenda.

Em seguida veio Orville (1968a) com estudos de raios através de espectrometria também, o qual seus trabalhos serão abordados na sessão seguinte. Orville realizou várias pesquisas com espectroscopia de relâmpagos, dentre os quais pode-se citar (ORVILLE, 1966; ORVILLE, 1968e; ORVILLE, 1975; ORVILLE, 1980; ORVILLE; HENDERSON, 1984) dentre muitos outros trabalhos.

As pesquisas atuais que utilizam a espectroscopia como ferramenta de estudo são estudos como de Warner et al. (2011) que observou um raio ao cair num veículo, e a etapa do raio observada foi a do líder escalonado, e a região espectral observada foi de 600 a 1050 nm, e eles identificaram que nas emissões próximas do infravermelho predominam as emissões de nitrogênio e oxigênio neutro e de H-alfa, com apenas poucas linhas de emissão para o nitrogênio ionizado uma vez. Zhao et al. (2013) analisou raios na região próxima do infra-vermelho através de espectroscopia sem fenda, onde este observou alterações do campo elétrico com a presença de OI, 777,4 nm. E mais recente ainda, publicado no ano passado, está o trabalho de Walker e Christian (2014) que observou raios artificiais e mediu a corrente para a etapa da corrente contínua deste raio artificial e também calculou a temperatura deste canal.

2.5.2 Espectrômetros com fenda (Slit Spectrometers)

O espectrômetro mais comum envolve o uso de uma fenda de entrada, um espelho de colimação, uma grade de difração, um espelho de focagem e um detector, que antigamente era normalmente o filme fotográfico, mas hoje em dia geralmente é a câmera. Então, cada linha espectral é de fato uma imagem da fenda.

Conforme,Uman (2001) pag. 140, "o espectrômetro de fenda produz dispersão de comprimentos de onda da imagem de uma fenda fina, que é colocado na frente do elemento de dispersão e que é iluminado por um raio em estudo."

Na espectrometria com fenda, deve-se existir uma parametrização para o feixe de luz utilizado com relação à fenda do espectro. Desta forma, utiliza-se um comprimento de onda de luz conhecido e compara-se os resultados observados.

Orville (1980) observou raios através de espectrometria com fenda durante o dia (o que é mais complicado de observar devido a claridade da luz do sol, que pode ser confundida com a luz do raio) na região de 370 a 690 nm, realizada pela primeira vez com êxito.

Orville e Henderson (1984) fizeram verificação para a irradiância espectral do raio na faixa de 375 a 880 nm, onde Orville e Herderson obtêm dados dos raios observados

por espectrometria com fenda como a irradiância e a temperatura.

O melhor exemplo de dados obtidos por espectroscopia com fenda foram feitos por Wallace (1964), que obteve espectro principalmente de reflexões dos raios nas nuvens. A região do espectro do raio foi de 3150 Å a 9800 Å. Ele identificou uma série de espécies moleculares e atribuiu-as à segunda banda positiva N_2 e a primeira banda negativa N_2^+ , bandas violeta CN e banda NH. Espécies atômicas neutras foram observadas e identificadas como N I (nitrogênio neutro), O I (oxigênio neutro), H (hidrogênio), Ar I (Argônio neutro) e C I (carbono neutro). As únicas linhas de hidrogênio observadas foram as linhas da série de Balmer, H-alfa e H-beta. Muitas linhas ionizadas apenas uma vez foram identificadas, mas todas eram atribuídas às emissões de N II (nitrogênio ionizado uma vez). Já as emissões atribuídas à O II (oxigênio ionizado uma vez) não foram observadas. Características de absorção foram evidentes e pode ser associado com o vapor de água usual e características de oxigênio molecular.

Infelizmente as desvantagens, de modo geral, da espectrometria com fenda é o fato de ter a necessidade de se obter muitas descargas observadas antes que o raio obtenha uma imagem gravada aceitável. O fato é que as eventuais diferenças físicas entre os relâmpagos são obscurecidos durante o tempo de integração. Mas felizmente este problema pode ser resolvido adaptando às observações de raios a espectrometria sem fenda.

2.5.3 Espectrômetros Sem fenda (slitless)

Em espectroscopia sem fenda, o próprio canal da descarga do relâmpago atua como fonte de iluminação fina, ou seja, como uma fenda eficaz. O espectro obtido como resultado da observação de um raio é uma série de imagens monocromáticas (linhas espectrais) do canal do relâmpago sobrepostos de forma contínua (UMAN, 1969).

Segundo Uman (1969), o espectrômetro sem fenda possui as seguintes vantagens sobre o espectrômetro com fenda: (1) com o espectrômetro sem fenda, pode-se ver um único canal, pois há muito menos perdas de luz do que com o instrumento de fenda e, (2) é possível estudar as propriedades espectrais do canal como uma função da posição ao longo do canal. Todavia, o espectrômetro sem fenda possui as seguintes desvantagens: (1) Não tem como identificar o comprimento de onda de forma precisa, e (2) para perto da descarga de retorno a resolução do comprimento de onda é comprometido por ser limitado pelo diâmetro do canal luminoso.

O primeiro bom espectro de raio fotografado foi publicado por Pickering (1901) que observou consideráveis variações entre os raios nas principais características do raio. Quem registrou o raio publicado neste trabalho foi J. H. Freese (UMAN, 1969), que usou um prisma objetivo na frente de um telescópio.

As características mais importantes que devem ser observadas do espectro das descargas atmosféricas são as linhas espectrais provocadas pelo nitrogênio neutro (N I), oxigênio neutro (O I), nitrogênio ionizado apenas uma vez(N II) e o oxigênio ionizado apenas uma vez (O II). Esta observação foi feita por Wallace (1960) com espectroscopia com fenda, onde as principais características de emissão no espectro de raios foram listadas (UMAN, 1969) (p.143-146).

O primeiro espectro com boa resolução temporal de uma descarga de retorno entre a nuvem e o solo foi obtido por Orville (1968a) no verão de 1965-1966. Orville (1968b) faz uma análise quantitativa também com relação às descargas de retorno com boa resolução temporal, ali ele faz cálculos de temperatura do canal do raio, onde o maior valor de pico de temperatura calculado foi de 36000 K, além da temperatura, Orville (1968b), calcula a densidade de elétrons e a intensidade relativa da linha espectral. E Orville (1968b) ainda relata que "o potencial de excitação efetiva da radiação contínua, que se encontra entre os íons e os neutrons, podem ser devido à recombinação radioativa ou ligação radioativa". Já em Orville (1968c), um modelo de descarga de retorno do relâmpago é desenvolvido utilizando os dados experimentais apresentados em (ORVILLE, 1968a; ORVILLE, 1968b) e as tabelas de Gilmore para a composição do ar seco em equilíbrio termodinâmico. A temperatura, densidade eletrônica, pressão, densidade de massa relativa, porcentagem de ionização, e concentração da espécie em uma seção de 10 m de um modelo de DR são dados com resolução de 5 μs de 0-30 μs . Durante este período, a temperatura diminui de 30000 para 16000 k e a densidade eletrônica diminui de 10^{18} para $1,5*10^{17}cm^{-3}$. O canal é caracterizado por uma pressão de 8 atm medido nos primeiros 5 μs e atinge a pressão atmosférica a cerca de 20 μs . Já a densidade relativa mínima de massa 3*10⁻³ é alcançada ao mesmo tempo. A maior concentração de espécie de nitrogênio no período de 0-15 μs é N II, seguido por N III, que por sua vez é seguido por N I. Todas estas três concentrações no período de tempo 0-15 μs . No período de 15-30 μs o aumento da concentração de N I, a concentração atinge um N II quase equilibrado, e a concentração N III continua a diminuir rapidamente. As características salientes do modelo da DR são discutidas e relacionadas com observações espectrais.

Espectros de raios também foram analisados para a etapa do Líder Escalonado

também feito por Orville (1968e), onde ele observa as emissões na região de 560 a 660 nm e são caracterizadas pelo nitrogênio ionizado uma só vez (N II) e emissões na região que vai de 568 a 594,2 nm e emissões do H α em 656,3 nm.

Estudos de raios feitos com câmeras de alta velocidade e espectrometria sem fenda também foi feito para o Líder Contínuo por Orville (1975), onde observa as emissões na região de 398-510 nm e são caracterizadas pelas emissões de nitrogênio ionizado uma vez (N II). Já Weidman et al. (1989) também observa raios com espectrometria sem fenda, mas para a região de 850-1400 nm (próximo do infravermelho) com resolução temporal de 200 a 300 ms.

A Figura 2.6 e a Figura 2.7 mostram respectivamente um exemplo de um diagrama esquemático de um espectrômetro sem fenda e um espectro de uma descarga atmosférica próximo ao infravermelho observado por Salanave em 1966, onde neste espectro da Figura 2.7 nota-se a presença de $H\alpha$ (H-alfa), O I (oxigênio neutro), N I (nitrogênio neutro) e Ar I (Argônio neutro). Neste espectrômetro da Figura 2.6, a solução temporal é obtida ao mover o filme de gravação. Neste exemplo, a velocidade do tambor era de cerca de 1 rps (rotações por segundo), o filme movia-se de forma imperceptível durante o tempo de uma descarga (duração de centenas de microssegundos na alta luminosidade), todavia movia-se com uma considerável distância durante o tempo entre as descargas (dezenas de milissegundos). O espectrômetro usado por Salanave tinha uma ranhura no canal do isolador de 1 cm, que com a luz aplicada, produziu uma imagem espectral sobre o filme de cerca de 100 m do canal de uma descarga atmosférica num raio de uma distância de seis quilômetros. Este prisma mostrado na Figura 2.6 não foi necessário para a dispersão do comprimento de onda, mas sim por conveniência na medida em que torna possível a visualização direta do espectro da luz. Ou seja, o prisma desvia o incidente e os raios de luz essencialmente em paralelo emitido pela descarga atmosférica, de forma que o espectro de primeira ordem difratada da grade de transmissão é dirigido paralelamente à luz incidente (UMAN, 1969).

Já neste espectrômetro da Figura 1.1 o diagrama esquemático mostra que o canal do isolador é menor e o tambor duas vezes maior que o da Figura 2.6. E na Figura 1.2 pode-se ver o espectro observado por este espectrômetro (UMAN, 1969).

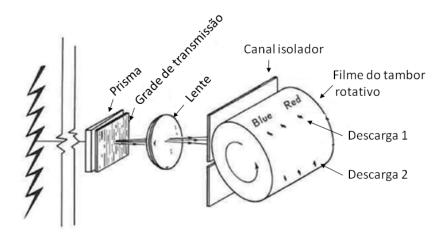


Figura 2.6 - Diagrama esquemático de um um espectrômetro sem fenda capaz de observar um relâmpago com deslocamento temporal em seus traços de componentes. A mudança de direção da luz incidente produzido pelo prisma é ajustado para ser aproximadamente o necessário para se obter um espectro de grade de primeira ordem que está paralelo à direção da luz incidente. Assim, o espectrômetro pode ser voltado diretamente para a descarga do relâmpago sob observação. (Adaptado de Orville (1966))

Fonte: Uman (1969)

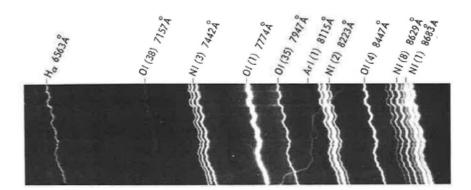


Figura 2.7 - Uma descarga integrada no espectro do raio próximo do infravermelho, obtido por Salanave (1966) usando um espectrômetro sem fenda, mostrado de forma esquemática na Figura 2.6.

Fonte: Uman (1969)

pinto2011brasildat

3 INSTRUMENTAÇÃO E LOCALIZAÇÃO

3.1 Introdução

Neste capítulo apresenta-se a instrumentação utilização na observação de raios através de espectrometria sem fenda.

3.2 Câmera de Alta Velocidade Phantom v9.1

Uma das instrumentações essenciais utilizadas para a aquisição dos dados em estudo é uma câmera de alta velocidade (modelo Phantom V 9.1 Figura 3.1). Esta câmera é de alta resolução, alta velocidade e alta sensibilidade. Com o seu sensor CMOS (semicondutor de óxido metálico complementar), que converte luz em elétrons, a Phantom v9.1 possui capacidade para fornecer uma profundidade de imagem (image depth) de 14 bits, 1000 frames por segundo em uma resolução completa de 1632 x 1200 pixels ativos. A v9.1 possui características como Gigabit Ethernet para controle de câmera e transferência de arquivos, e a capacidade de segmento de uma imagem DRAM (Dynamic Random Acess Memory) significativamente maior memória para gravação cine múltipla. Este modelo de câmera possui uma interface HD-SDI (tecnologia para transmitir imagem HD digital por meio de cabo coaxial sem compressão) e a capacidade de fluxo contínuo de dados de 8 bits ou 12 bits por imagem.

Neste trabalho para se obter uma maior quantidade de imagens por segundo, a melhor opção foi a de 3000 fps com uma resolução de 1632 x 400, e com o tempo de exposição de 330,5 μ s. A Figura 3.1 ilustra o modelo de uma câmera de alta velocidade v9.1. Vários trabalhos como (ANTUNES et al., 2013; CAMPOS et al., jan.2014; CAMPOS et al., 2012; PINTO JR et al., 2009), por exemplo, são desenvolvidos com a utilização de câmeras de alta velocidade. Os dados visuais obtidos pelas câmeras de alta velocidade em complemento com outras ferramentas tem sido de suma importância para observar as características das descargas atmosféricas.

Com o auxílio da tecnologia atual, pode-se obter uma resolução tal qual seja capaz de observar fenômenos tão rápidos como os processos das descargas atmosféricas. E a cada ano, pesquisas têm sido intensificadas com esta ferramenta visual.

3.2.1 Software PCC 1.3

O Software que acompanha a câmera é o PCC 1.3, que opera em Windows 7, ambientes Pro ou Vista. A Figura 3.2 mostra os parâmetros da opção da câmera para

Figura 3.1 - Camera de alta velocidade, Phanton v9.1.

o caso em estudo, a observação do tempo que o *software* levou para salvar o vídeo em teste foi de aproximadamente 1 minuto e 45 segundos. Este tempo pode variar de acordo com a opção dos parâmetros para gravar o vídeo e a capacidade de processamento do computador .

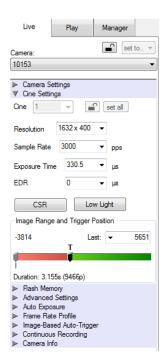


Figura 3.2 - Parâmetros da opção da câmera Phanton v9.1.

3.3 Lente utilizada

A lente utilizada para esta observação será a AF-S DX Zoom-Nikkor 18-55 mm f/3.5-5.6G EDII DX for DIGITAL da Nikon. FILTER ATTACHMENT SIZE = diâmetro 52 mm. HOOD HB-45. E o foco utilizado foi o de 35 mm de zoom.

3.4 Grism

Um grism é uma combinação de grades de difração com um prisma. Com o grism é possível obter o espectro da luz emitida pelo raio, por exemplo. O grism tem a vantagem de poder apenas colocá-lo na frente de uma câmera, de alta velocidade, por exemplo, registrando assim o espectro de fenômenos que possuem alta velocidade como as descargas atmosféricas. O grism utilizado é uma grade que possui 600 linhas/mm, com esta grade é possível obter um espectro na faixa de 600 a 1050 nm. Esta grade é colocada em frente à câmera com uma inclinação de aproximadamente 30° para a direita ou esquerda com relação à câmera, ou também pode inclinar a câmera, o importante é que entre a câmera e o grism haja uma inclinação horizontal. A Figura 3.3 mostra a posição utilizada para obter as linhas espectrais que foram capturadas através do grism. A distância entre o grism e a câmera é muito pequena, deve ficar muito próximo da lente. Pois testes em campo mostraram que esta distância deve ser a menor possível, ficando assim o grismmuito encostado da lente.

Figura 3.3 - Sistema câmera-grism.

O princípio básico de funcionamento de um *grism* consiste basicamente em ser um elemento de dispersão. Os *grisms* são utilizados em espectrógrafos que exigem a apresentação da linha do espectro. O desvio da luz causada pela difração da grade é

compensado pelo efeito de refração do prisma. Porque os efeitos dispersivos da grade e do prisma são sobrepostos, a dispersão de um *grism* não é linear. A Figura 3.4 mostra a opção habitual, um prisma de ângulo reto tem a grade da face da hipotenusa. A luz é incidente, normalmente na face posterior do prisma conforme pode ser visualizado através da Figura 3.4, é refratada na interface prisma/grade e difratada na interface grade/ar.

Figura 3.4 - Grade-prisma ou grism. Onde GN é a grade normal; Z é de ordem zero do prisma, A é o vértice do ângulo do prisma; D é o ângulo de desvio entre Z e a difração em linha de difração; e θ é o ângulo que brilha da grade. Fonte: KILKENNY (2012)

A Equação 3.1 é a equação da grade para o grism :

$$m\lambda = d(n\sin\alpha + \sin\beta) \tag{3.1}$$

onde o n é o índice de refração do vidro. A partir da Figura 3.4 pode-se notar que por difração de in-line, ou seja, em linha deve-se ter: $\alpha = -\beta$ (sinais opostos devido os ângulos estarem em lados opostos da grade normal) e, portanto, deve ter:

$$\alpha = -\beta = \theta = A \tag{3.2}$$

Então,

$$m\lambda = d(n-1)\sin\theta\tag{3.3}$$

Assim, o ângulo do ápice, $A(=\theta)$, que fornece a difração da linha para o comprimento de onda λ , de forma que m é dado por:

$$sinA = \frac{m\lambda}{d(n-1)} \tag{3.4}$$

O grism é utilizado para observar raios através de espectroscopia sem fenda por ser um sistema relativamente simples comparado à outros métodos de espectroscopia tradicionais. Portanto a facilidade e praticidade do grism propicia a utilização do mesmo. E como o raio atua como sendo a própria fenda, não há a necessidade de construir um espectrômetro com uma fenda fisicamente.

3.5 Redes de sensores BrasilDAT e RINDAT

No Brasil há duas redes de sensores de descargas atmosféricas: A BrasilDAT e a RINDAT. E optou-se a utilização de dados das duas redes para maior eficiência e comparação entre os sensores.

3.5.1 BrasilDAT

A rede de sensores BrasilDAT é uma rede nacional, a qual utiliza equipamentos fabricados pela *Earth Network*, atualmente (março de 2014) possui 56 sensores de raios (ENLS- *Earth Network Lightning Sensors*) instalados no Brasil, mais precisamente nas regiões Sul, Sudeste, Centro Oeste e uma parte do Nordeste (Bahia), com projetos futuros para cobertura de todo o Nordeste. Faz a cobertura de onze estados do Brasil.

Os sensores desta rede possuem circuito de tempo baseado em GPS, processador de sinal digital (DSP)e equipamentos de comunicação e internet junto. O ENLS tratase de um sistema de banda larga, possui frequência de detecção que varia na faixa de 1 Hz a 12 MHz. Esta ampla faixa de frequência destes sensores permite que os mesmos detectem descargas atmosféricas tanto nuvem-solo (NS) como intranuvens

(IN). O sensor registra ondas inteiras de cada evento e envía-los de volta em pacotes de dados comprimidos para o processador central. As formas de onda são utilizadas por completo, ao invés de somente os picos, para localizar os eventos e obter a diferenciação entre NS e IN (NACCARATO; PINTO, 2012).

A Earth Network Total Lightning Sysytem (ENTLS) é a rede desses sensores detecção de raios NS e IN, e o método de detecção utilizado por este sistema é o time-of-arrival(TOA). Vários sensores fazem parte desta rede, no mínimo 3 sensores para uma região pequena, e em média 6 sensores para se obter uma cobertura melhor numa região de 650 km para cada sensor e eficiência de detecção de 80-90%, este grupo de sensores detectam a mesma descarga e com isto obtém-se a localização e a polaridade da descarga, se é positiva ou negativa. O método TOA torna-se cada vez mais precisa do que a de cobertura do campo magnético à medida que aumenta a precisão de sincronismo do GPS. Em 2010 iniciou-se a implantação da ENTLS que no Brasil veio a ser chamada de BrasilDAT (Brazilian Total Lightning Network) (NACCARATO; PINTO JR, 2011; NACCARATO et al., 2012).

A Figura 3.5 ilustra a localização dos sensores instalados atualmente no Brasil. E a Figura 3.6 mostra o número de raios detectados pela rede de sensores da BrasilDAT.

3.5.2 RINDAT

A Rede Integrada Nacional de Detecção de Descargas Atmosféricas (RINDAT) possui 35 sensores de tecnologia Vaisala e estão instalados em 08 Estados do Brasil. Esta rede é híbrida, composta por diferentes tipos de sensores como os de baixa frequência (LF - low-frequency), sensores LPATS, IMPACT, LS7000, que operam numa frequencia que varia entre 100 a 400kHz, detectando principalmente raios NS e extra alta frequência (VHF - very high frequency), sensors LS8000, que operam numa faixa de 100 MHz, detectando os raios IN. Estes sensores utilizam a tecnologia do método time-of-arrival - TOA, "Tempo de Chegada"e direction magnetic finder - MDF, "Localização da Direção Magnética"para detecção de raios NS. O sistema é operado também através de GPS, fornecendo informação de temporização dos raios com uma resolução de até 300 nanossegundos. Este sistema fornece principalmente a localização geográfica e temporal dos raios NS, localização de temporais e valores estimados do pico da corrente de retorno, polaridade e multiplicidade, se houver.

Após a aquisição dos dados pelos sensores, os mesmos são direcionados para uma central de processamento e depois são separados conforme a sua faixa de frequência, posteriormente encaminhados para um banco de dados e aplicativos de visualização

Figura 3.5 - Localização dos sensores da BrasilDAT instalados e operacionais (em verde) e expansão para o Nordeste (em vermelho).

Fonte: Naccarato, 2014. (Comunicação pessoal)

e análise. A Figura 3.7 mostra um orgonograma que ilustra este processo:

Sinais eletromagnéticos na faixa de LF propagam próximo do solo e estão sujeitos aos mais variados efeitos de propagação, dependendo das características da superfície.

A Figura 3.8 mostra os número de raios detectados pela RINDAT.

3.6 Torre de observação das descargas atmosféricas

A torre de observação dos raios (ver Figura 3.9) é a torre do DCTA (Departamento de Ciência e Tecnologia Aeroespacial), possui 27 metros de altura e ótima localização.

A mesma está localizada na cidade de São José dos Campos (latitude: 23°11′25.15″S, longitude:45°53′3.44″0), no estado de São Paulo, Brasil. Esta torre esteve equipada com câmeras de alta velocidade, computadores, medidores de campo elétrico rápido (mas que houve ruídos no sinal e por isto não foi utilizado os dados), field mill e

Figura 3.6 - Mapa de raios detectados pela rede de sensores da Brasil
DAT.// FONTE:site ${\rm http://www.inpe.br/webelat/homepage/}$

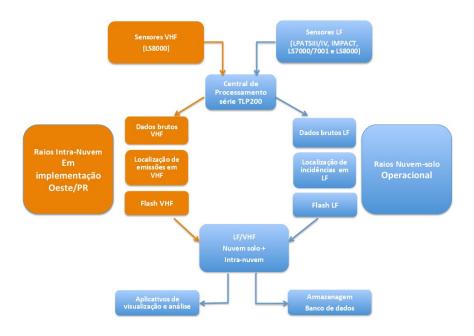


Figura 3.7 - Orgonograma do processamento dos dados da RINDAT.// FONTE: http://www.rindat.com.br/.

sensor de descarga atmosférica da rede BrasilDAT.

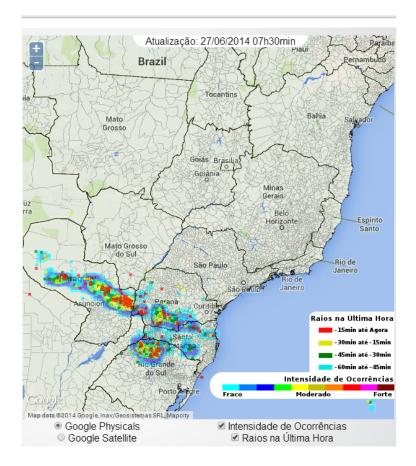


Figura 3.8 - Mapa de raios detectados pelos sensores da RINDAT. Fonte: :

http://www.rindat.com.br/.

A Figura 3.10 mostra, através do NetRaios (*software* que registra e mostra a ocorrência de descargas atmosféricas). Para o dia 10 de dezembro de 2013, às 20:00h local (horário de verão) foi registrado pela rede, descargas muito próximas a esta torre, como se pode ver.



Figura 3.9 - Torre DCTA

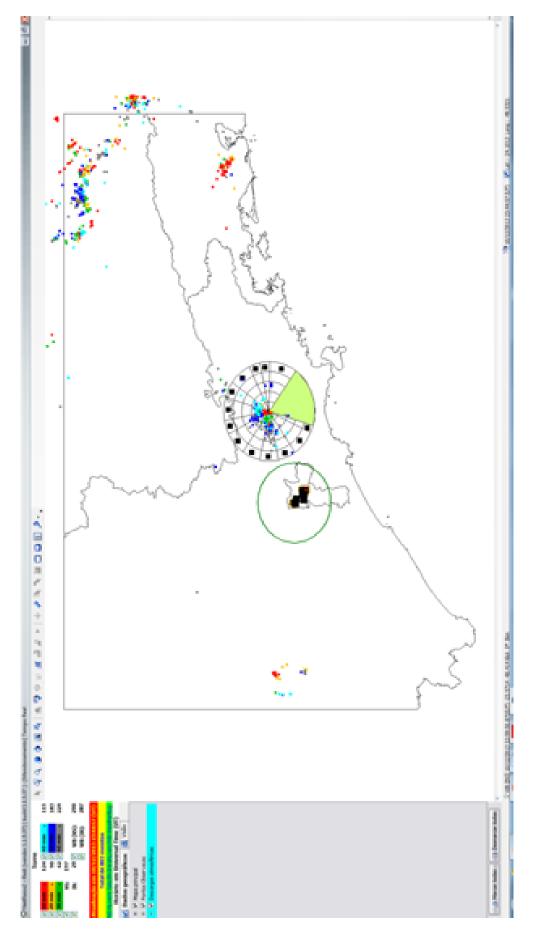


Figura 3.10 - Densidade de raios no dia 10 de dezembro de 2013, nas proximidades da torre do DCTA

A utilização desta torre foi possível graças ao apoio do Dr. Marco Ferro que também é pesquisador em descargas atmosféricas e trabalha no DCTA. Este convênio do DCTA com o INPE ocorre a alguns anos e tem sido de muita relevância para a pesquisa de descargas atmosféricas em São José dos Campos, São Paulo, Brasil.

4 METODOLOGIA

4.1 Introdução

Este capítulo apresenta a metodologia utilizada neste trabalho. Começando pelo tratamento da imagem, que é a linearização das linhas em virtude da característica tortuosa do raio, para que se possa fazer uma média mais confiável entre os pixeis para identificar a linha espectral corretamente. Mostra como obter a temperatura do raio a partir de suas linhas espectrais, onde usa a intensidade de duas linhas espetrais para o mesmo elemento para obter esta grandeza. Tem-se também o método utilizado para calcular a densidade de elétrons, que foi através do Alargamento Satrk e por fim uma breve abordagem de prováveis possibilidades de se obter a estimativa da corrente, que ficará para trabalhos futuros. E por fim, um experimento com tubo de Neônio que foi realizado a fim de se observar o erro percentual na identificação das linhas espectrais para uma fonte luminosa (gás de Neônio) em laboratório, sem interferência de chuvas e outros fatores atmosféricos.

4.2 Identificação das linhas espectrais

Para que ocorra a identificação das linhas espectrais observadas na descarga atmosférica, uma linearização de tais linhas foram realizadas e podem ser verificadas na Figura 4.1 e Figura 4.2 para o DR1 e o DR2, respectivamente. Este procedimento foi realizado para todos os casos e para o caso 01, onde é analisada a CC também. Ilustra-se somente o caso 02 por conta da facilidade da demonstração apenas para dois *frames*. Para se obter a linearização e por consequência a média de tais pontos para se tornar possível a identificação das linhas espectrais, um *script* foi feito para obter tais linhas com melhor precisão, tal *scritp* pode ver verificado no Apêndice A.

O maior valor de erro percentual na identificação das linhas espectrais foi de 0.52% para a linha do H_{α} . Sendo que a temperatura e a densidade de elétrons foram calculadas apenas para nitrogênio e oxigênio. No Apêndice verifica-se o erro percentual para todos os casos. O maior erro percentual na identificação das linhas espectrais para o oxigênio foi de -0.35% (para O I (4), no caso 03) e para o nitrogênio foi de -0.20% (para N I (2), no caso 02).

Para se fazer uma relação entre pixel e comprimento de onda, identifica-se visualmente duas linhas mais intensas para servirem como referência e assim obter a identificação correta conforme verificado em Salanave (1980).

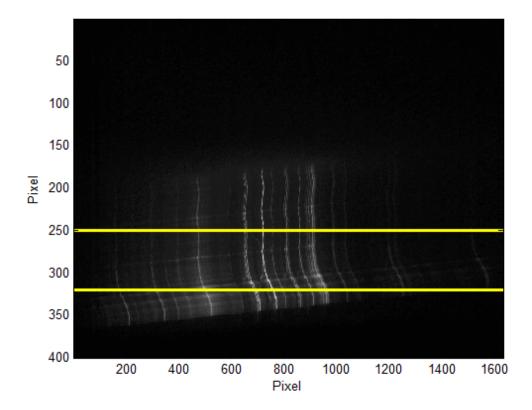


Figura 4.1 - Espectro sem fenda linearizado na região do infravermelho do DR1 da descarga atmosférica NS- (bifurcada) observada em 24 de Fevereiro e 2014 às $21:55:06.7880192~\mathrm{UT}$.

4.3 Cálculo da temperatura

Na análise de um espectro de raios, o primeiro passo é que o canal de estudo seja bem visível, não pode ter uma imagem saturada e nem um espectro com as linhas muito fracas.

O estado de equilíbrio é regido pela função de distribuição de velocidades de Maxwell-Boltzmann. De forma mais simples, pode-se considerar um gás composto por apenas uma espécie de partículas. Assume-se que não existem forças externas que atuam sobre o sistema e que as partículas estão uniformemente distribuídas no espaço (BITTENCOURT, 2004; ??). Portanto "um gás clássico é dito estar em equilíbrio termodinâmico à temperatura T, se todos os estados de energia, contínuos e discretos, são preenchidos conforme a estatística de Boltzmann. De forma particular, a distribuição de energia cinética de cada grupo das partículas é descrita por uma função de distribuição de Maxwell-Boltzman, a população dos níveis de energia discretos atômicos é descrita pela distribuição de Boltzmann, e a relação entre as populações

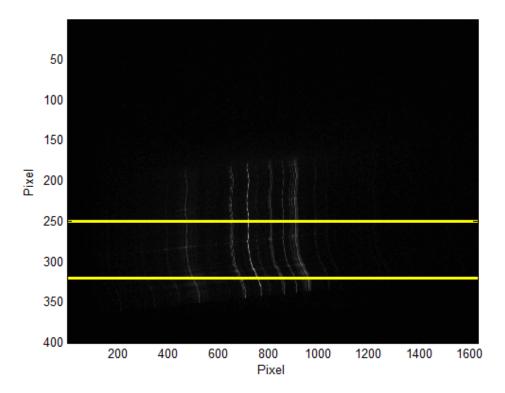


Figura 4.2 - Espectro sem fenda linearizado na região do infravermelho do DR2 da descarga atmosférica NS- (bifurcada) observada em 24 de Fevereiro e 2014 às $21:55:06.8180517~\mathrm{UT}$.

dos níveis de energia atômica discreta e níveis contínuos é descrita pela equação de Saha" (UMAN, 1969; ??) . Um gás é dito estar em LTE (Equilíbrio Termodinâmico Local) quando uma função da posição e do tempo que cada pequeno volume de gás a uma temperatura T local (r, t) satisfaça as condições para o equilíbrio termodinâmico. Existindo LTE ou não, a densidade de elétrons no canal pode ser determinada a partir de uma medição do alargamento *Stark* de certas linhas espectrais (UMAN, 1969).

Weidman et al. (1989) em seu estudo também calculou a temperatura do canal do raio. Onde Prueitt (1963) embasa toda essa teoria para o cálculo da temperatura.

Em LTE os níveis de energia atômica dentro de um estado de ionização são preenchidos de acordo com a estatística de Boltzmann, Equação 4.1:

$$N_n = \frac{Ng_n}{B(T)} exp(-\epsilon_n/kT)$$
(4.1)

Onde N_n é o número de densidade de átomos no nível de energia n, N é o número de densidade total de átomos, ϵ_n é o potencial de excitação do nível de ordem n, k é a constante de Boltzmann, T é a temperatura absoluta, g_n é o peso estatístico do nível n, e B(T) é a função de partição, dada por

$$B(T) = \sum_{j} g_{j} exp(-\epsilon_{j}/kT)$$
(4.2)

A seguinte relação, a equação de Saha, é válida para um sistema de partículas em LTE (UMAN, 1969; BITTENCOURT, 2004; MAECKER, 1962; ??) e é utilizada para cálculo da densidade de elétrons.

$$n_e = \frac{N^i}{N^{i+1}} \frac{2}{h^3} (2\pi mkT)^{3/2} \frac{B^{i+1}}{B^i} exp(-X/kT)$$
(4.3)

Onde n_e é a densidade de elétrons, os sobrescritos indicam o estado de ionização $(N^0$ é a densidade do número de átomos neutros de um determinado tipo, N^1 é a densidade do número de átomos ionizados apenas uma vez, formado por ionização desses neutros, etc), X é o potencial de ionização a partir de iézimo até o estado de ionização (i+1) ézimo , h é a constante de Planck, e m é a massa do elétron.

A medida da potência radiada em uma linha de emissão (ás vezes chamado de intensidade da linha) de um gás opticamente fino por unidade de volume de gás a temperatura uniforme e densidade devido a transições de nível n para o nível r é

$$I_{nr} = CN_n A_{nr} h \nu_{nr} \tag{4.4}$$

Onde A_{nr} é a probabilidade de transição de Einstein, ν_{nr} é a frequência do fóton emitido, e C é um fator geométrico. Assumindo que LTE existe, através da Equação 4.1, pode-se escrever a energia irradiada da seguinte forma:

Ainda para encontrar a potência irradiada por unidade de volume, I_{nr} , a partir da linha espectral de emissão, pode-se usar Equação 4.5, conforme Orville (1968e):

$$I_{nr} = N_n A_{nr} h \nu_{nr} \tag{4.5}$$

onde a transição atômica é do nível n para o nível r, N_n é a densidade de número de

átomos no estado enésimo inicial, A_{nr} é o coeficiente de Einstein para emissão espontânea, h é a constante de Planck, e ν_{nr} é a frequência da linha emitida. Uma vez que $A_{nr}h\nu_{nr}$ são constantes para uma determinada linha, é apenas necessário determinar a variação de N_n com a temperatura para determinar a variação da I_{nr} com a temperatura. Se o volume do emissor permanece constante, a linha de mudança de intensidade observada pode ser relacionada com uma alteração de temperatura.

O valor de N_n é determinado da seguinte forma. N_n pode ser escrita como $(N_n/N_o)N_o$, onde N_n/N_o é apenas a fração populacional de ocupação eletrônica para uma determinada espécie e N_o é a densidade da população de uma espécie. (N_n/N_o) é uma função apenas da temperatura e N_o é uma função da temperatura e da pressão. Para ar seco um valor de N_n/N_o é obtido a partir de Gilmore 1967, e é obtida a partir de N_o Maecker (1951) para a pressão atmosférica ou a partir de Armostrong a Sheibe (1964) para as pressões que variam ao longo de várias atmosferas. É então possível calcular a variação da intensidade de uma determinada linha de ar seco, limitada apenas pela gama de pressão e temperatura de tabelas disponíveis.

Agora substituindo Equação 4.1 em Equação 4.4, obtêm-se:

$$I_{nr} = \frac{CNg_n A_{nr} h \nu_{nr}}{B(T)} exp(-\epsilon_n/kT)$$
(4.6)

A relação entre a potência irradiada devido a transições de nível n para nível r à potência radiada devido transições de nível m para o nível p é dada por

$$\frac{I_{nr}}{I_{mp}} = \frac{g_n A_{nr} \nu_{nr}}{g_m A_{mp} \nu_{mp}} exp\left[\frac{-(\epsilon_n - \epsilon_m)}{kT}\right]$$
(4.7)

Resolvendo para temperatura, tem-se:

$$T = \frac{\epsilon_m - \epsilon_n}{k \ln(I_{nr}g_m A_{mp}\nu_{mp}/I_{mp}g_n A_{nr}\nu_{nr})}$$
(4.8)

Portanto a relação de energia medida (ou relação de intensidade medida) de duas linhas espectrais emitidas pelo mesmo tipo de átomo de um gás opticamente fino com o auxílio de parâmetros atômicos tabelados é suficiente para determinar a temperatura do gás em estudo. A fim de se obter uma determinação de forma precisa da temperatura através da Equação 4.8 na prática, $(\epsilon_m - \epsilon_n)$ deve ser selecionado

para ser maior que kT. Para utilizar as Equação 4.7 e Equação 4.8 não é necessário exigir que exista LTE, mas apenas exigir que os níveis de energia envolvidos nas transições pertinentes sejam ocupados de acordo com as estatísticas de Boltzmann. Caso apenas este último item seja verdade, a temperatura sob consideração será na verdade a temperatura dos elétrons, uma vez que é excitação de elétron de desexcitação por colisão de elétrons que são responsáveis para a manutenção da distribuição de Boltzmann.

Pelo método das duas linhas conforme ??SISMANOGLU (2010), pode-se considerar duas linhas espectrais λ_1 e λ_2 sendo emitidas por átomos de mesma espécie, sendo assim a razão de suas intensidade será dada pela Equação 4.9:

Lembrando que $v=\lambda \cdot f$, que é equivalente a $C=\lambda \cdot \nu$, portanto temos que $\nu=\frac{C}{\lambda}$, como $C=3.10^8$, que é a velocidade da luz, é uma constante, então $\nu \propto \frac{1}{\lambda}$.

Com isto pode-se escrever:

$$\frac{I_1}{I_2} = \frac{g_1 A_1}{\lambda_1} \cdot \frac{\lambda_2}{g_2 A_2} \cdot exp[\frac{E_2 - E_1}{kT}]$$
 (4.9)

Isolando T tem-se:

$$T = \frac{E_2 - E_1}{k \ln\left[\frac{I_1 \lambda_1 g_2 A_2}{I_2 \lambda_2 g_1 A_1}\right]} \tag{4.10}$$

onde E_1 é o nível máximo de energia da linha de menor comprimento de onda; E_2 é o nível máximo de energia da linha de maior comprimento de onda; I_1 é a intensidade da linha do menor comprimento de onda de um mesmo elemento, o qual é um dado medido e obtido através do espectro, ou seja, é o eixo y da matriz x, y do espectro observado, onde x é o comprimento de onda em nm e y é o valor utilizado para relacionar a intensidade de luz do espectro; I_2 é a intensidade de linha do maior comprimento de onda do mesmo elemento, encontrado da mesma forma que I_1 ; λ_1 é o menor comprimento de onda (Lower Wavelength); λ_2 é o maior comprimento de onda (Upper Wavelength) sempre para o mesmo elemento; g_1 é o peso estatístico, o nível superior, da linha de menor comprimento de onda; A_1 é a transição de Einsten da linha de menor comprimento de onda e A_2 é a transição de Einsten para a linha de maior comprimento de onda, onde todos os dados com exceção da intensidade, que é obtida

através do dado (do vídeo ou imagem do espectro observado), são encontrados na tabela NIST (KRAMIDA et al.,) e $k = 8,6173324 * 10^{-5} eVK^{-1}$ (KRAMIDA et al.,).

Para o caso onde o gás é opticamente grosso em vários comprimentos de onda e em LTE, pode-se determinar a temperatura do corpo negro para que o gás através da comparação das intensidades medidas com a Lei da Radiação de Planck Equação 4.11:

$$I(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1} \tag{4.11}$$

A temperatura foi determinada através da Equação 4.10 e a densidade de elétrons pode ser calculada por alargamento *Stark* (??).

Os valores obtidos de temperatura foram desde valores negativos a valores positivos muito elevados. Como a média da temperatura para uma descarga de retorno, por exemplo, já é conhecida, tem-se com isso a possibilidade de escolher os valores da amostra total de forma a se obter um valor próximo da média conhecida.

A teoria de estimadores de máxima verossimilhança justifica esta escolha, que para estes casos, foram de 1000 a 114000 K para se realizar a média.

Lembrando que: 1-A inferência estatística é processo onde se utiliza as informações colhidas de uma observação de uma certa amostra, para então se estimar características da população da qual se extraiu a amostra; 2-Uma estatística é um valor calculado baseado nos valores de uma amostra que foram observados; 3-Um estimador é uma estatística utilizada para estimar o valor de uma grandeza desconhecida de uma população (CLARK, 2010).

Sabe-se que o valor da média populacional μ pode afetar as probabilidades associadas à média amostral \bar{x} . Então quanto tem-se valores muito dispersos na média populacional, faz-se uma escolha para que a média amostral seja coerente com o valor da média conhecida na literatura, que para este caso trata-se da temperatura do raio.

Tem-se um exemplo simples: se $\mu=10000$, é extremamente improvável que $\bar{x}=7$. Assim, se o valor real de μ não é conhecido, mas obtemos uma média amostral $\bar{x}=7$, pode-se eliminar a hipótese $\mu=10000$. Se está procurando utilizar \bar{x} como instrumento para avaliar o real valor de μ , deve-se então escolher para μ o valor que tem maior chance de obter o \bar{x} que obteve-se na amostra (CLARK, 2010).

4.4 Cálculo da densidade de elétrons

A densidade de elétrons também pode ser determinada sem o recurso de supor LTE. A largura de uma linha espectral que é alargada predominantemente pelo efeito Stark é principalmente dependente do número de densidade carregado de partículas e apenas ligeiramente dependente da energia de partícula. Em (??) obtém-se mais detalhes sobre alargamento Stark, as larguras e os perfis de várias linhas espectrais. Conforme Uman (1969), o hidrogênio está presente na descarga do relâmpago devido a decomposição do vapor de água, e a linha $H\alpha$ da série de Balmer é consideravelmente alargamento Stark (que consiste no deslocamento e na divisão de linhas espectrais de átomos e moléculas existentes num campo elétrico) de forma que a densidade de elétrons pode ser calculada a partir da medição da sua largura.

Com relação à opacidade do canal: Conforme a Equação 4.7, se duas linhas espectrais são originadas de um gás opticamente fino a partir do mesmo ou quase mesmo nível de energia atômicos superior, a relação da intensidade irá ser independente de temperatura (o fator exponencial será essencialmente unitário) e dependerá somente das constantes atômicas. Portanto, pode ser previsto através da proporção de intensidade de certos pares de linhas que o canal é opticamente fino. E como a Equação 4.7 é uma relação de equilíbrio, esta com o termo exponencial definido igual a unidade pode também valer para as linhas espectrais provenientes de níveis de energia superiores espaçados, mesmo na ausência de LTE. Isto será possível se (1) os níveis de energia superiores em consideração são somente distribuição de Boltzmann ou (2) as seções transversais de colisão para a excitação do átomo sob estudo de energia superior em questão são proporcionais aos pesos estatísticos dos níveis de energia (UMAN, 1969).

No que se refere a LTE para fins práticos, a maioria dos espectros de um raio pode simplesmente ser analisado se assumirmos que num momento determinado, as condições físicas são constantes ao longo de uma secção transversal do canal. Segundo Uman (1969) "O perfil de temperatura real do canal é determinado principalmente pelos meios disponíveis para o transporte de calor para fora do canal. Se, por exemplo, a condução térmica é o mecanismo dominante, deve haver um gradiente de temperatura ao longo do canal, isto é, a temperatura diminui com o aumento do raio. Se a radiação que escapa do canal é o mecanismo de perda de energia dominante, o perfil de temperatura do canal, como se presume, é relativamente plano. É de se esperar que o perfil de temperaturas irá mudar com o tempo."

Para o cálculo da densidade de elétrons foi utilizado o dado da largura à meia

altura w ou conhecido também como FWHM (Full-Width Half-Maximum), que é a largura total da imagem à metade do valor máximo da largura total da linha. É um número simples e bem definido, que pode ser utilizado para comparar a qualidade das imagens obtidas sob diferentes condições de observação. Então, uma forma que reflete melhor a identificação do tamanho aproximado de uma imagem de uma luz observada é a largura através do perfil quando ele cai para a metade do seu pico. A Figura 4.3 mostra o calculo do w para os picos das emissões para a DR1 do caso 02, que também é aplicado para todos os casos.

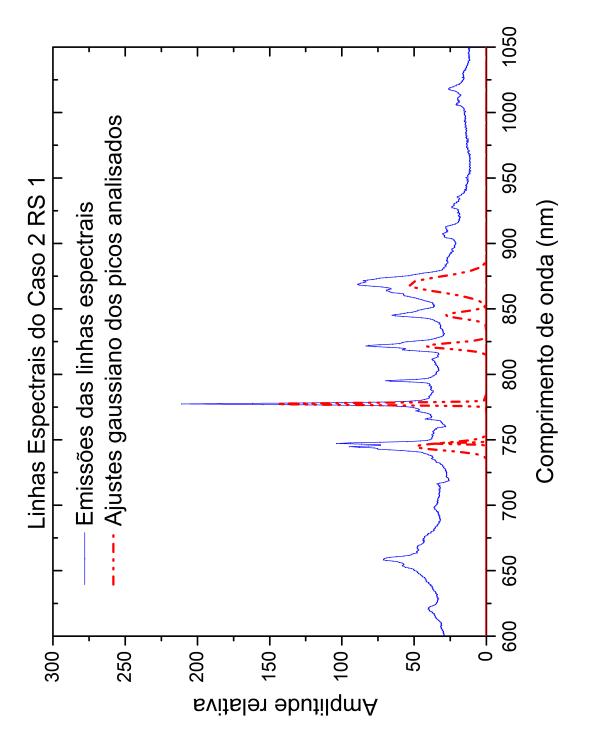


Figura 4.3 - Ajuste gaussiano (pontilhado e deslocado em vermelho) para os picos analisados.

Por fim, para se obter a densidade de elétrons, faz-se uma regra de três (Equação 4.12) para se obter o valor da densidade de elétrons em cm^{-3} .

$$Ne = \frac{w_{medido} * 10^{16}}{w_{calculado}} \tag{4.12}$$

Após fazer este procedimento para todas as linhas de cada *frame*, faz-se a média aritmética entre estes resultados para se obter um valor apenas que represente o valor da densidade de elétrons para cada canal de cada caso de descargas atmosféricas NS observados nesta pesquisa.

4.5 Experimento com tubo de Neônio

Para verificação do erro percentual dos valores medidos foi utilizado um tubo de Neônio analisado em sala escura com a distância de 3,20 m entre o *grism* e a fonte luminosa (tubo de Neônio).

Figura 4.4 - Sistema câmera, *grism* e tubo de Neônio para verificação de erro percentual da medida.

Foram realizados vídeos mais próximos e mais distantes, mas os vídeos que foram gravados com a fonte luminosa longe (com 3,20 m)mostraram linhas mais definidas para a identificação das mesmas. Na Figura 4.4 pode observar esta distância entre a fonte luminosa e o *grism*.

Para os dois experimentos mostrados na Figura 4.5 e na Figura 4.5 foi utilizado a mesma distância. A diferença de um para outro foi que no primeiro experimento bloqueou-se a metade da emissão da luz emitida pelo tubo de Neônio e introduziu-se um *laser* para que fosse uma referência, mas não foi utilizado como referencia para identificar as linhas, visto que a posição dele com relação à emissão das linhas do Neônio não estavam sincronizadas. O segundo experimento, o ilustrado na Figura 4.5 não teve a inserção da luz do *laser* e nem o bloquei da metade da luz, o vídeo gravado foi para toda a fonte luminosa. Para ambos os casos, tem-se as mesmas linhas espectrais, conforme esperado e pode ser observado também na Figura 4.5 e na Figura 4.5.

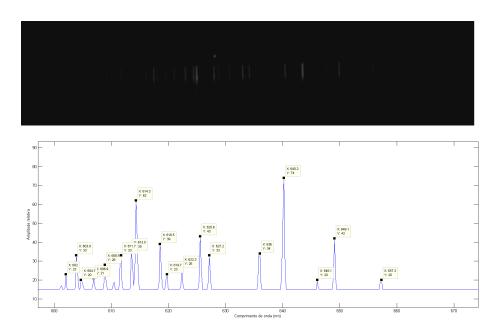


Figura 4.5 - Experimento 1 com o tubo de Neônio (imagem do vídeo 1) e suas linhas espectrais.

Na Tabela 4.1 encontra-se todas as linhas identificadas para 20 imagens com o experimento com o tubo de Neônio. Observou-se que para todas as imagens obteve-se os mesmos valores de comprimento de onda. Em seguida, nesta mesma tabela tem-se os valores teóricos obtidos em (KRAMIDA et al.,). Já na Tabela 4.2 tem-se o erro

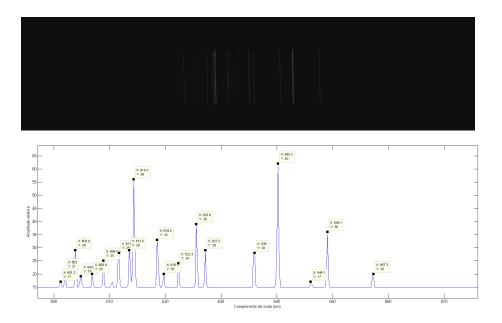


Figura 4.6 - Experimento 2 com o tubo de Neônio (imagem do vídeo 2) e suas linhas espectrais.

percentual, a média aritmética e o desvio padrão para as linhas identificadas com o tubo de Neônio. Considerando que as condições climáticas de um experimento realizado em laboratório são bem diferentes das observações do fenômeno de descargas atmosféricas na natureza, obteve-se um erro percentual máximo de 0.39~%.

Tabela 4.1 - Emissões das linhas espectrais para dois experimentos observando um tubo de Neônio e o valor teórico dado pela tabela NIST.

				_	Vídeo 1									Vi	Vídeo 2					
								Valores	experimentais do Neônio (nm	s do Neôn	io (nm)									$V_T(\mathrm{nm})$
1- f20	2 - f40	3 - f60	4 - f206	5 - f212	6 - f224	7 - f227	8 - f516	9 - f915	10 - f935	1 - f12	2 - f13	3 - f16	4 - f80	5 - f100	6 - f494	009J-2	8 - f700	808J - 6	10 - f933	
601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	601,2	60,009
602	602	602	602	602	602	602	602	602	602	602	602	602	602	602	602	602	602	602	602	603,00
603,9	603,9	603,9	603,9	603,9	603,9	603,9	603,9	603,9	603,9	603,9	6,809	6,809	6,809	603,9	603,9	603,9	603,9	603,9	6,809	604,20
604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,9	604,61
6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	6,909	606,45
6,809	6,809	6,809	6,809	6,809	6,809	6,809	6,809	608,9	6,809	6,809	6,809	6,809	6,809	6,809	6,809	6,809	6,809	6,809	6,809	609,62
611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,7	611,80
613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	613,5	612,84
614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,3	614,31
618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,5	618,32
619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,7	619,31
622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,3	622,57
625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,6	625,88
627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,2	627,30
636	636	989	636	636	989	636	636	989	989	636	636	636	636	636	636	989	636	636	636	636,50
640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,2	640,22
646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	646,1	644,47
649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	649,1	650,65
657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	657,3	659,90

Tabela 4.2- Erro percentual, média e desvio padrão para o Neônio.

Linha	Erro (%)	Média aritmética	Desvio padrão
Linha 1	-0,18	601,2	1,13687E-13
Linha 2	0,17	602	0
Linha 3	0,05	603,9	1,13687E-13
Linha 4	-0,05	604,9	1,13687E-13
Linha 5	-0,07	606,9	1,13687E-13
Linha 6	0,12	608,9	1,13687E-13
Linha 7	0,02	611,7	1,13687E-13
Linha 8	-0,11	613,5	0
Linha 9	0,00	614,3	1,13687E-13
Linha 10	-0,03	618,5	0
Linha 11	-0,06	619,7	1,13687E-13
Linha 12	0,04	622,3	1,13687E-13
Linha 13	0,04	625,6	1,13687E-13
Linha 14	0,02	627,2	1,13687E-13
Linha 15	0,08	636	0
Linha 16	0,00	640,2	1,13687E-13
Linha 17	-0,25	646,1	1,13687E-13
Linha 18	0,24	649,1	1,13687E-13
Linha 19	0,39	657,3	1,13687E-13

5 ESTUDO DE CASOS

5.1 Introdução

Quatro casos foram observados, a análise destes dados consiste primeiramente no tratamento da imagem (ver Apêndice A) para se obter os gráficos com os comprimentos de onda das linhas espectrais identificadas nos vídeos observados. Após identificar as linhas espectrais calcula-se a temperatura e a densidade de elétrons para cada caso observado. A localização e o pico de corrente das descargas atmosféricas observadas são dados pelas redes de sensores da BrasilDAT e da RINDAT

5.2 Caso 01

O primeiro caso de espectrometria no Brasil foi observado no dia 24 de fevereiro de 2014 às 21:53:07 UT. Neste caso obteve-se 7 DR's. Todavia, foi para a etapa da corrente contínua (CC) que foram calculadas a temperatura e a densidade de elétrons. Esta corrente contínua foi seguida de componente M, onde os *frames* desta etapa também foram utilizados para tais cálculos. A fase da corrente contínua que foi seguida de componente M durou 17,664 ms e a duração total para esta descarga foi de aproximadamente 527 ms. A Tabela 5.1 mostra os dados da localização, tipo, polaridade e pico de corrente para a primeira e a sexta DR.

Tabela 5.1 - Dados da localização, polaridade e pico de corrente do raio NS ocorrido em 24 de fevereiro de 2014 às 21 : 53 : 07 U.T.

Data	RINDAT	BrasilDAT
Latitude	-23.0807	-23.0920
Longitude	-45.7949	-45.8006
Tipo	NS	NS
Ip (kA)	-26	-26
Tempo (U.T.)	21:53:07.027	21:53:07.380
DR	1^a	6^a

Neste primeiro caso, foi observada a etapa da CC da descarga atmosférica, pois foi nesta etapa do raio que os *frames* apresentaram melhores condições de análise, ou seja, as imagens não saturaram e apresentaram linhas espectrais suficientemente visíveis para a realização dos cálculos.

A distância entre o local de observação (Figura 3.9) e a descarga atmosférica foi de 14,8 km registrado pela rede BrasilDAT e de 15,2 km registrado pela RINDAT.

5.2.1 Identificação das linhas espectrais para o Caso 01

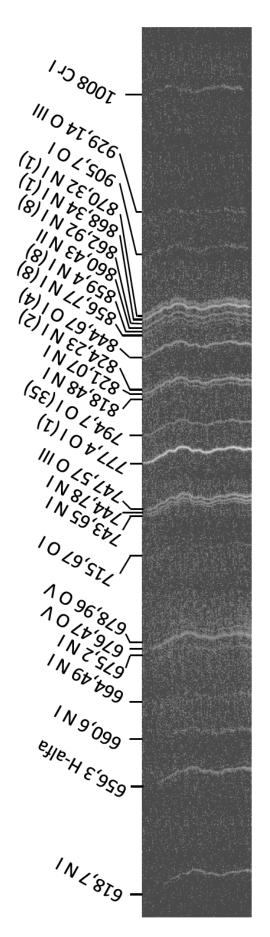

A partir do *script* verificado no Apêndice A, obtém-se as linhas espectrais para cada *frame* que anteriormente foi identificada se houve saturação da imagem ou não. A Figura 5.1 mostra o espectro para o primeiro *frame* da CC.

Figura 5.1 - Espectro próximo do infravermelho para o primeiro frame da CC, da descarga atmosférica ocorrida em 24 de Fevereiro de 2014, às 21:53:07.094.482 UT.

Na Figura 5.1 tem-se as principais linhas espectrais observadas no primeiro frame da CC, onde nota-se claramente a predominância das emissões de O I (átomo de oxigênio neutro) e N I (átomo de nitrogênio neutro). Verifica-se maior intensidade para a linha do O I, 777,4 nm. Observou-se que nos demais frames as linhas espectrais aparecem constantes, obtendo apenas algumas pequenas variações na intensidade da linha espectral.

A Figura 5.2, Figura 5.3, Figura 5.4, Figura 5.5, Figura 5.6, Figura 5.7, Figura 5.8, Figura 5.9, Figura 5.10, Figura 5.11 e Figura 5.12, mostram as emissões da linhas espectrais para cada *frame* da CC que foi utilizado para os cálculos, ou seja, são os quadros que não saturaram.

21:53:07.094.482Figura 5.2 - Emissões das linhas espectrais, em nm, para o f1 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às UT.

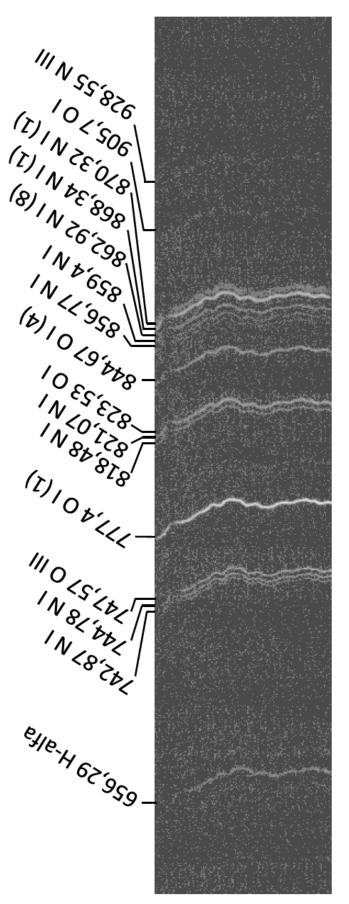


Figura 5.3 - Emissões das linhas, em nm, espectrais para o f3 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.095.148

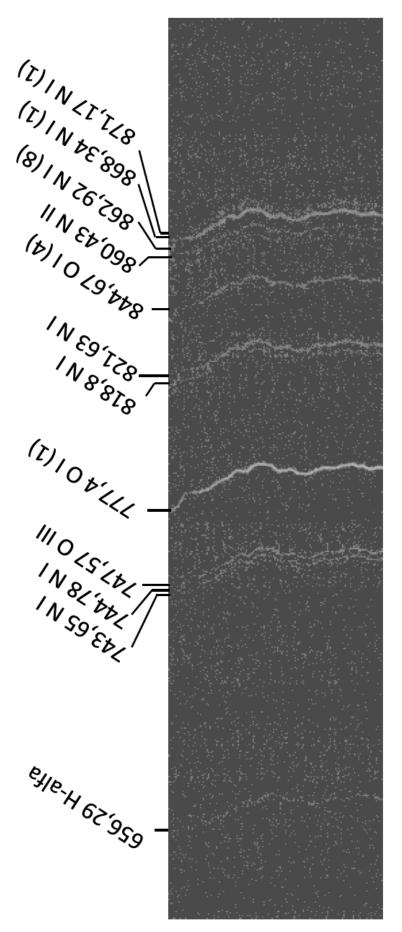


Figura 5.4 - Emissões das linhas espectrais, em nm, para o f4 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.095.481

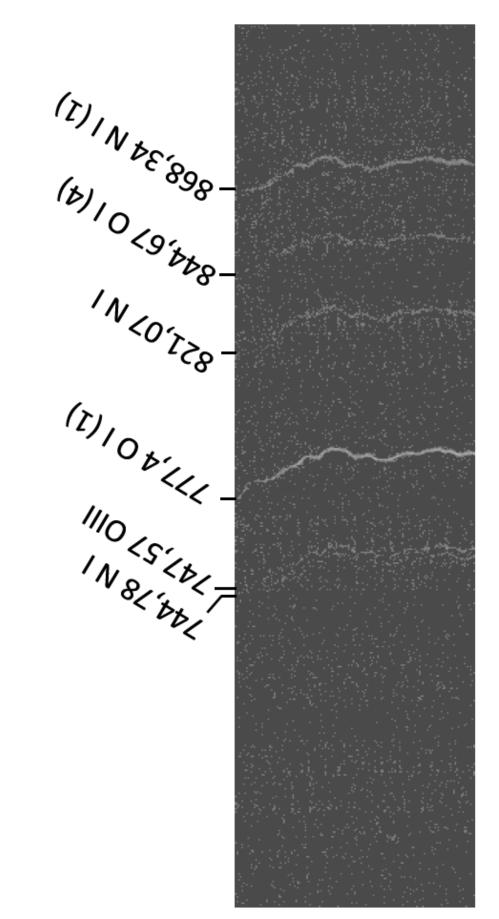


Figura 5.5 - Emissões das linhas espectrais, em nm, para o f8 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.096.814

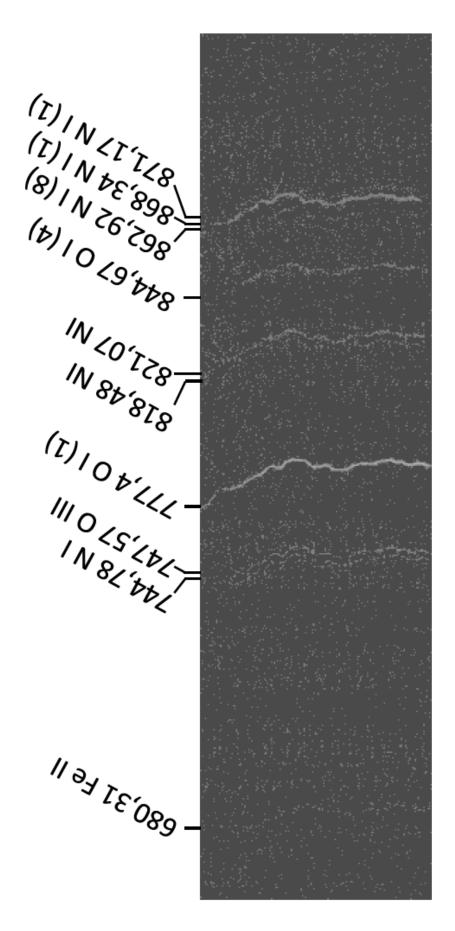


Figura 5.6 - Emissões das linhas espectrais, em nm, para o f9 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às 21:53:07.097.148

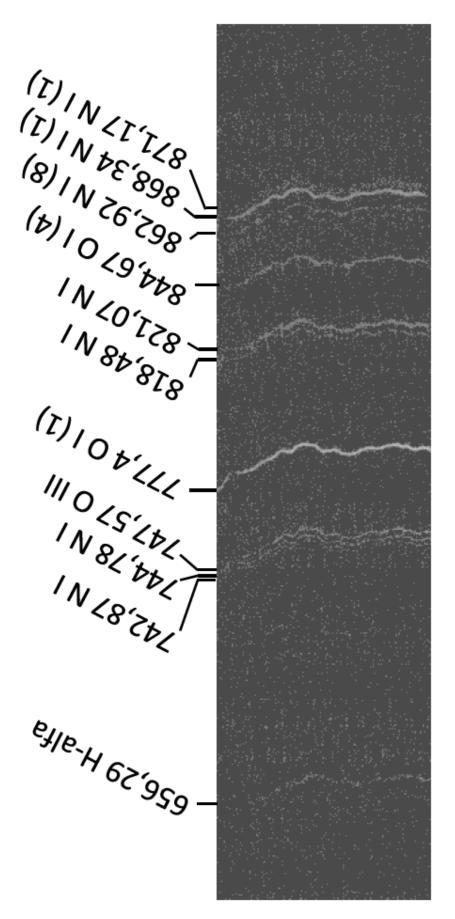


Figura 5.7 - Emissões das linhas espectrais, em nm, para o f16 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.099.480

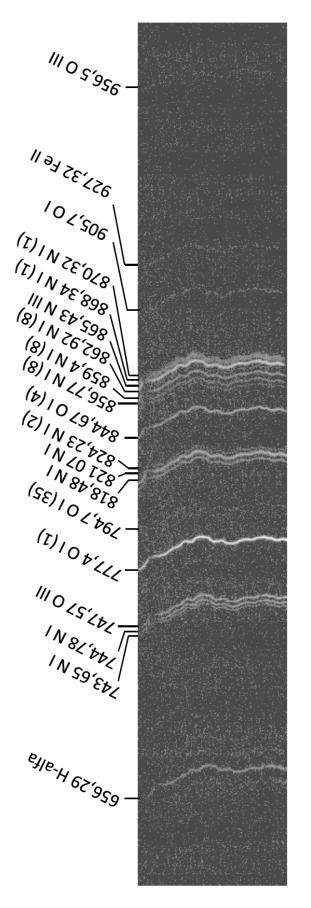


Figura 5.8 - Emissões das linhas espectrais, em nm, para o f17 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.099.814

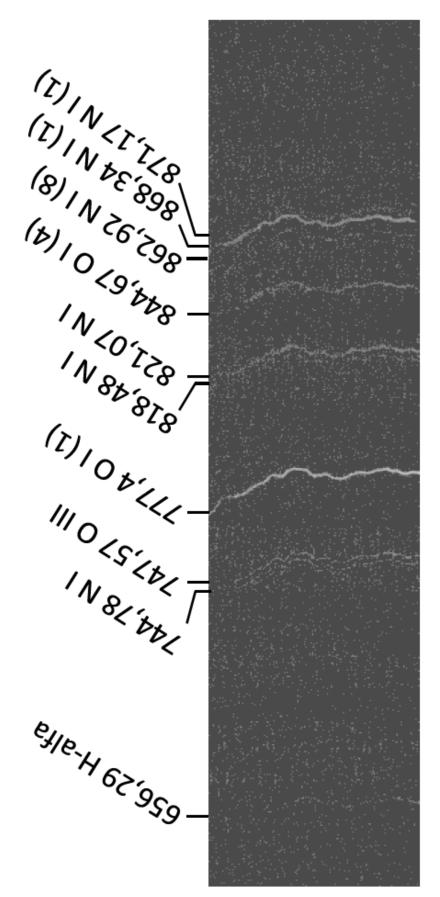


Figura 5.9 - Emissões das linhas espectrais, em nm, para o f26 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.102.814

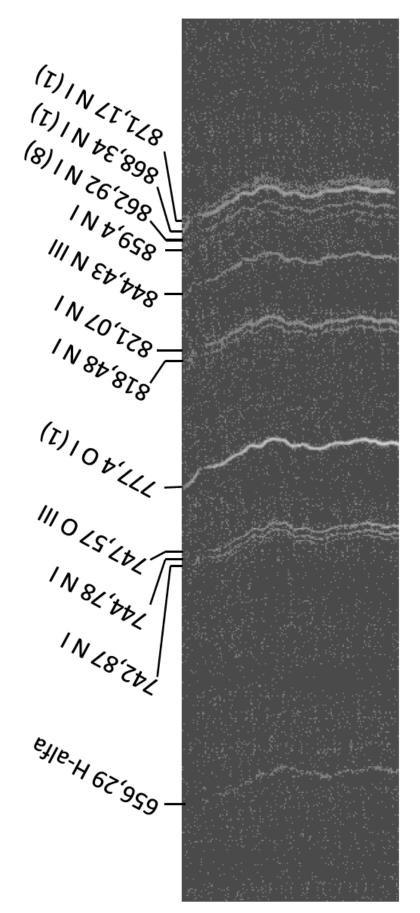


Figura 5.10 - Emissões das linhas espectrais, em nm, para o f53 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às 21:53:07.111.813

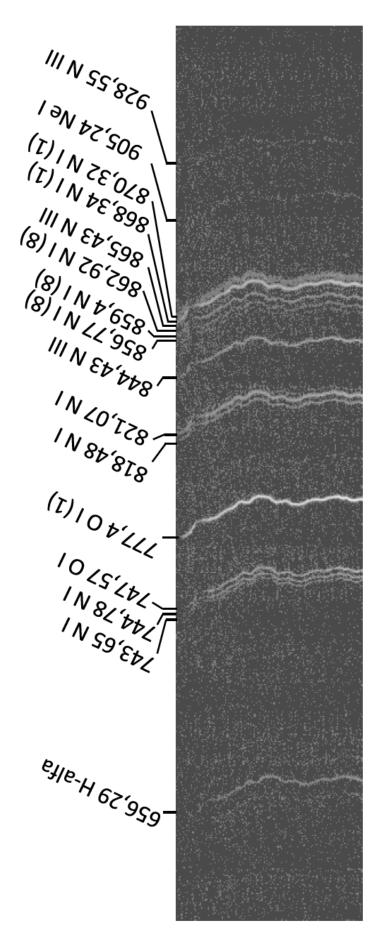


Figura 5.11 - Emissões das linhas espectrais, em nm, para o f54 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.112.146

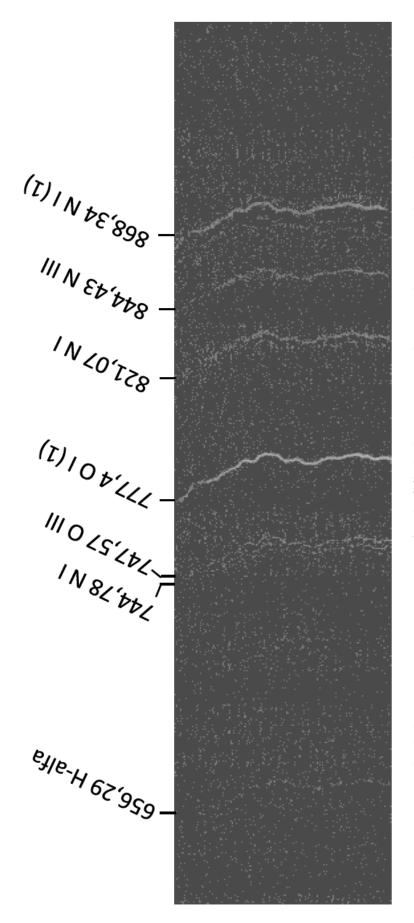


Figura 5.12 - Emissões das linhas espectrais, em nm, para o f55 da CC, da descarga ocorrida em 24 de Fevereiro de 2014, às 21 : 53 : 07.112.480

Os frames que foram analisados não apresentaram saturação das imagens, ou seja, o valor de RGB (Red, Geen and Blue) não foram iguais ou maiores que 255, que é o limite de RGB para esta câmera, e apresentou linhas espectrais suficientemente visíveis para a realização dos cálculos de temperaturas e densidade de elétrons. Este valor de RGB é parâmetro para a verificação da saturação da imagem, todavia o vídeo é monocromático. Na Tabela 5.2 pode-se observar a identificação para cada linha espectral observada no primeiro frame da CC.

Tabela 5.2 - Identificação das linhas espectrais para o primeiro frame 1 (- 1274) da CC.

T.10 ~	
Identificação	$\lambda_{raio} (nm)$
NΙ	618,7
$H\alpha$	656,3
NΙ	660,61
NΙ	664,49
NΙ	675,2
O V	676,47
O V	678,96
ΟI	715,67
NΙ	743,65
NΙ	744,78
O III	747,57
O I (1)	777,4
O I (35)	794,7
ΝΙ	818,48
NΙ	821,072
N I (2)	824,23
O I (4)	844,67
N I (8)	856,77
N I (8)	859,4
N II	860,43
N I (8)	862,92
N I (1)	868,34
N I (1)	870,32
O I	905,7
O III	929,14
Cr I	1008

O segundo *frame* que não apresentou saturação foi o *frame* 3, onde as emissões que foram identificadas constam na Tabela 5.3.

Tabela 5.3 - Identificação das linhas espectrais para o frame 3 (- 1272) da CC.

Identificação	$\lambda_{raio} (\mathrm{nm})$
$H\alpha$	656,29
NI	742,87
ΝΙ	744,78
O III	747,57
O I (1)	777,4
O I (35)	794,7
ΝΙ	818,48
ΝΙ	821,072
ΟI	823,53
O I (4)	844,67
ΝΙ	856,774
NΙ	859,4
N I (8)	862,92
N I (1)	868,34
N I (1)	870,32
ΟI	905,7
N III	928,55

As emissões para o frame 4 podem ser verificadas na Tabela 5.4, onde nota-se que além das principais emissões, que são O I, N I e H α , tem-se as emissões de O III (oxigênio ionizado duas vezes) e N I (nitrogênio ionizado uma vez).

Da mesma forma para o *frame* 8, tem-se na Tabela 5.5 a identificação das emissões espectrais para este *frame*.

Ainda no frame 9, na Tabela 5.6 verifica-se a permanência das principais emissões que são as de O I e N I. Além destas, para este frame 9 tem-se a presença de Fe II (ferro ionizado uma vez), que é um elemento químico presente no solo e por este motivo é verificado neste espectro desta descarga atmosférica NS.

Para o frame 16, que foi o próximo frame sem saturação e com boa visualização, a

Tabela 5.4 - Identificação das linhas espectrais para o frame 4 (- 1271) da CC.

Identificação	$\lambda_{raio} (\mathrm{nm})$
$\overline{H\alpha}$	656,29
NI	743,65
NI	744,78
O III	747,57
O I (1)	777,4
NI	818,8
NI	821,63
O I (4)	844,67
N II	860,43
N I (8)	862,92
N I (1)	868,34
N I (1)	871,17

Tabela 5.5 - Identificação das linhas espectrais para o frame 8 (- 1267) da CC.

Identificação	$\lambda_{raio} (\mathrm{nm})$
NI	744,78
O III	747,57
O I (1)	777,4
ΝΙ	818,48
NI	821,072
N I (2)	824,23
O I (4)	844,67
N I (8)	862,92
NI	866,43
N I (1)	868,34
N I (1)	871,17

Tabela 5.7 mostra a identificação para as linhas observadas neste.

Nas emissões verificadas no *frame* 17 na Tabela 5.8 tem-se, além da emissões de oxigênio e nitrogênio, as emissão da linha espectral referente ao ferro , que é uma emissão característica do solo.

A Tabela 5.9 mostra a identificação para as emissões verificadas no frame 26, onde

Tabela 5.6 - Identificação das linhas espectrais para o frame 9 (- 1266) da CC.

Identificação	$\lambda_{raio} (\mathrm{nm})$
Fe II	680,31
NI	744,78
O III	747,57
O I (1)	777,4
ΝΙ	818,48
NI	821,07
O I (4)	844,67
N I (8)	862,92
N I (1)	868,34
N I (1)	871,17

Tabela 5.7 - Identificação das linhas espectrais para o frame 16 (- 1259) da CC.

Identificação	$\lambda_{raio} (\mathrm{nm})$
$H\alpha$	656,29
NI	736,61
NI	742,87
NI	744,78
O III	747,57
O I (1)	777,4
NI	818,48
NI	821,07
O I (4)	844,67
N I (8)	862,92
N I (1)	868,34
N I (1)	871,17

já é uma das últimas imagens da etapa da CC do raio observado neste primeiro caso.

Na Tabela 5.10 tem-se as emissões para o *frame* 53, que repete as emissões identificadas nas imagens (*frames*) anteriores, porém para estes últimos, com menor intensidade (a intensidade do brilho para cada *frame* pode ser verificada no Apêndice).

No frame 54, tem-se as linhas espectrais que podem ser observadas na Tabela 5.11, onde nota-se também a presença de Ne I (neon neutro), que está dentro da faixa de visada do grism, que é de 600-1050 nm.

E por fim, o frame 55 verificado na Tabela 5.12, mostrando assim as emissões desta última imagem da etapa da CC (seguida de componente M) com melhor visualização.

Tabela 5.8 - Identificação das linhas espectrais para o frame 17 (- 1258) da CC.

Identificação	$\lambda_{raio} (\mathrm{nm})$
$H\alpha$	656,29
ΝΙ	743,65
ΝΙ	744,78
O III	747,57
O I (1)	777,4
O I (35)	794,7
NΙ	818,48
ΝΙ	821,07
N I (2)	824,23
O I (4)	844,67
N I (8)	856,77
N I (8)	859,4
N I (8)	862,92
N III	865,43
N I (1)	868,34
N I (1)	870,32
ΟΙ	905,7
Fe II	927,325
O III	956,5

Tabela 5.9- Identificação das linhas espectrais para o frame 26 (- 1249) da CC.

Identificação	$\lambda_{raio} (\mathrm{nm})$
$H\alpha$	656,29
NI	744,78
O III	747,57
O I (1)	777,4
ΝΙ	818,48
NI	821,072
O I (4)	844,67
N I (8)	862,92
N I (1)	868,34
N I (1)	871,17

Tabela 5.10 - Identificação das linhas espectrais para o frame $53\ (\mbox{-}1222)$ da CC.

Identificação	$\lambda_{raio} (\mathrm{nm})$
$H\alpha$	656,29
NI	742,87
NI	744,78
O III	747,57
O I (1)	777,4
NI	818,48
NI	821,07
N III	844,43
ΝΙ	859,4
N I (8)	862,92
N I (1)	868,34
N I (1)	871,17

Tabela 5.11 - Identificação das linhas espectrais para o frame 54 (-1221) da CC.

Identificação	$\lambda_{raio} \ (\mathrm{nm})$
N I	652,11
$H\alpha$	656,29
O II	667,78
NI	743,65
N I	744,78
O III	747,57
N I	754,62
O II	765,67
O I (1)	777,4
O I (35)	794,7
N I	818,48
N I	821,07
N I (2)	824,23
N III	844,43
N I (8)	856,77
N I (8)	859,4
N I (8)	862,92
N III	865,43
N I (1)	868,34
N I (1)	870,32
Ne I	905,24
N III	928,55

Tabela 5.12 - Identificação das linhas espectrais para o frame 55 (-1220) da CC.

Identificação	$\lambda_{raio} \ (\mathrm{nm})$
$H\alpha$	656,29
NI	743,65
ΝΙ	744,78
O III	747,57
O I (1)	777,4
ΝΙ	818,48
NI	821,07
N III	844,43
N I (8)	862,92
N I (1)	868,34
N I (1)	871,17

5.2.2 Cálculo da temperatura para o Caso 01

Para se calcular a temperatura do canal do raio deve-se obter o comprimento de onda de duas linhas espectrais visíveis e de igual elemento químico, e existir os parâmetros tabelados, que podem ser encontrados em (KRAMIDA et al.,).

Os principais elementos químicos e mais frequentes em toda a etapa da CC foram as emissões de O I e N I e portanto o cálculo para a temperatura foi realizado com estes elementos, considerando as condições citadas acima. No Apêndice tem-se os valores utilizados para os cálculos e os resultados para cada interação de duas linhas espectrais de mesmo elemento químico. Onde na Tabela .1, Tabela .2, Tabela .3, Tabela .5, Tabela .6, Tabela .7, Tabela .9, Tabela .10 mostram os dados utilizados para os cálculos da temperatura para cada *frame* da etapa da CC e alguns *frames* da componente M que ocorreu seguido a CC. No Capítulo 4 explica-se a forma que foram realizados estes cálculos.

O resultado para o cálculo da média das médias das temperaturas de cada frame para a CC foi de 13104 K. O cálculo foi realizado a partir da Equação 4.8. Este valor de temperatura encontrado para a CC é consistente, conforme verificado por (WALKER,), que também calculou a temperatura para a etapa da CC, porém para um raio artificial. E neste caso trata-se de um raio natural NS.

5.2.3 Cálculo da densidade de elétrons para o Caso 01

A densidade de elétrons no canal do relâmpago obteve o valor de $3, 3 * 10^{19} cm^{-3}$ para a etapa da corrente contínua (ver Apêndice). Este resultado foi obtido através do cálculo para cada frame com um valor de temperatura entre 2500 e 80000 k, que é a faixa de temperatura que dá o valor da largura da linha e com isto, encontra-se a densidade de elétrons através do alargamento Stark. Os dados para o cálculos podem ser encontrados em tabelas em Griem (1964). E este cálculo foi possível através da utilização da técnica de alargamento Stark, que consiste basicamente em encontrar a densidade de elétrons em função da largura e temperatura de cada multipleto (linha) encontrado.

Na Tabela E.1, Tabela E.2, Tabela E.3, Tabela E.5, Tabela E.6, Tabela E.7, Tabela E.10 tem-se os valores utilizados para os cálculos da densidade de elétrons para cada *frame* que se obteve dados suficientes para realização dos cálculos. A forma como estes cálculos foram realizados pode ser verificado no Capítulo 4.

Cálculos de densidade de elétrons para a etapa da corrente contínua não foram encontrados na literatura até o presente momento, portanto este valor de $3,3*10^{19}cm^{-3}$ demonstra aceitável visto que para a etapa da corrente contínua a temperatura calculada foi baixa comparada com a etapa da Descarga de Retorno por exemplo, que já possui temperaturas mais elevadas.

5.3 Caso 02

O segundo caso foi observado ainda no dia 24 de fevereiro de 2014 às 21:55:06 UT apresentando um caso de um raio bifurcado (SARAIVA et al., 2014), o qual possui duas pontas que tocam no solo. Para este caso obteve-se dois DR's. A primeira DR às 21:55:06.7880192 U.T e a segunda DR às 21:55:06.8180517 U.T. (observados pela câmera de alta velocidade). Dados de longitude e latitude, assim como o valor da corrente de pico para estes DR's podem ser conhecidos através da Tabela 5.13 e Tabela 5.14. Onde calculando-se e média entre os valores de corrente de pico para cada rede de sensores, tem-se para a DR1 o valor de 17,5 kA e para a DR2 tem-se 11 kA.

5.3.1 Identificação das linhas espectrais para o Caso 02

O gráfico com as linhas espectrais observadas na descarga atmosférica ocorrida às 21:55:06 U.T. no dia 24 de Fevereiro de 2014 pode ser observada naFigura 5.13 para o RS1 e na Figura 5.14 para o DR2. Onde em ambos nota-se a maior intensidade

Tabela 5.13 - Dados da localização, polaridade e pico de corrente do raio NS ocorrido em 24 de fevereiro de 2014 às 21 : 55 : 06.7880192 U.T. DR1, caso 02.

Data	BrasilDAT	RINDAT
Latitude	-23,0607	-23,0565
Longitude	-45,7949	-45,7944
Tipo	NS	NS
Ip (kA)	-20	-15

Tabela 5.14 - Dados da localização, polaridade e pico de corrente do raio NS ocorrido em 24 de fevereiro de 2014 às 21 : 55 : 06.8180517 U.T. DR2, caso 02.

Data	BrasilDAT	RINDAT
Latitude	-23,1051	-23,092
Longitude	-45,79	-45,7833
Tipo	NS	NS
Ip (kA)	-10	-12

da emissão de OI (1) 777,4 nm.

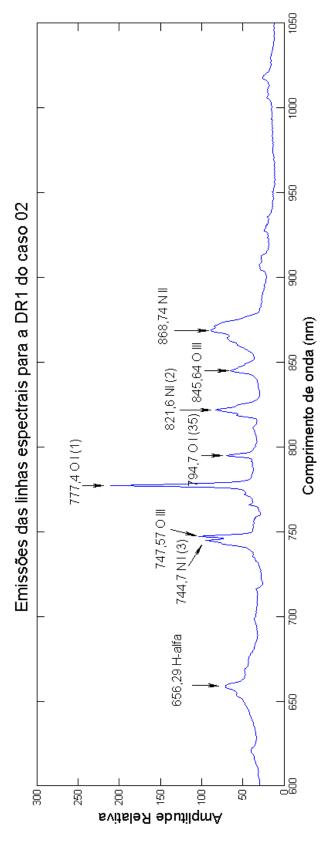


Figura 5.13 - Espectro próximo do infravermelho referente à DR1 da descarga atmosférica NS- (bifurcada) observada em 24 de Fevereiro e às $21:55:06.7880192~\mathrm{UT}$.

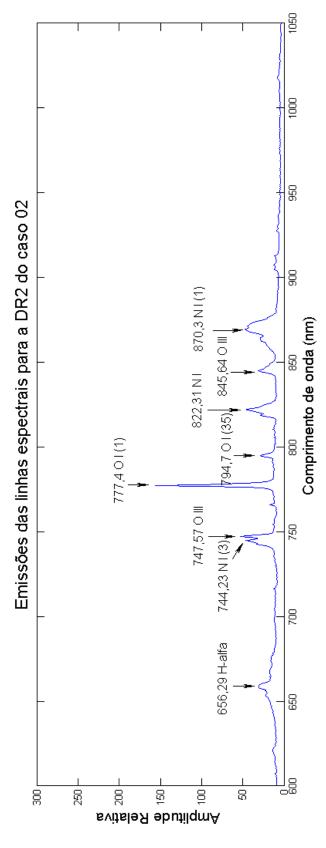


Figura 5.14 - Espectro próximo do infravermelho referente à DR2 da descarga atmosférica NS- (bifurcada) observada em 24 de Fevereiro e 2014 às 21:55:06.8180517 UT.

Na Figura 5.15 tem-se a identificação das emissões das linhas espectrais para a DR1 , e na Figura 5.16 tem-se a identificação das emissões das linhas espectrais para a DR2 do caso 02, o qual foi bifurcado.

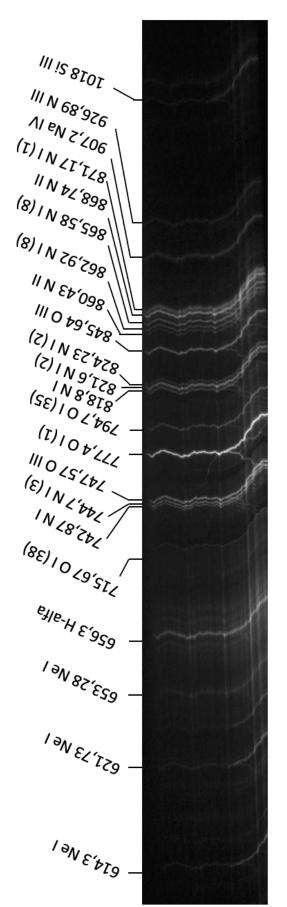


Figura 5.15 - Emissões das linhas espectrais da DR1 (caso 02) da descarga atmosférica NS- (bifurcada) observada em 24 de Fevereiro e 2014 às 21:55:06.7880192 UT

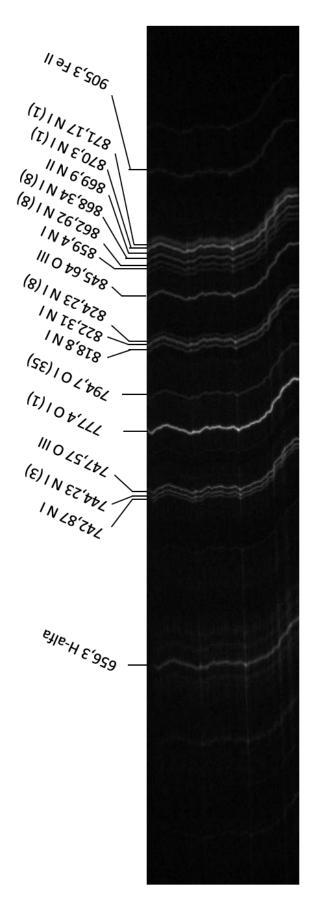


Figura 5.16 - Emissões das linhas espectrais da DR2 (caso 02) da descarga atmosférica NS- (bifurcada) observada em 24 de Fevereiro e 2014 às 21:55:06.8180517 UT.

Na Tabela 5.15 e 5.16 mostram todas as linhas identificadas na DR1 e DR2, respectivamente.

Tabela 5.15 - Identificação das linhas espectrais para o DR1 - caso 02.

Identificação	$\lambda_{raio} \ (\mathrm{nm})$
Ne I	614,3
Ne I	621,73
Ne I	653,28
$H\alpha$	656,3
O I (38)	715,67
NI	742,87
N I (3)	744,7
O III	747,57
O II	759,33
Mg I	765,9
OI (1)	777,4
O I(35)	794,7
ΝΙ	818,8
N I (2)	821,6
N I (2)	824,23
O III	845,64
N II	860,43
N I (8)	862,92
N I (8)	865,58
N II	868,74
N I (1)	871,17
Na IV	907,2
N III	926,89
Si III	1018

5.3.2 Cálculo da temperatura do canal do raio para o Caso 02

A temperatura calculada para o caso 02 foram para a DR1 e DR2, onde para DR1 a temperatura foi de 26032 K e para a DR2 a temperatura foi 9742 K (Apêndice). Calculando a média entre estas duas temperaturas tem-se 17887 K.

Tabela 5.16 - Identificação das linhas espectrais para o DR2 - caso 02.

Identificação	$\lambda_{raio} (\mathrm{nm})$
N IV	621,23
Ne II	650,65
$H\alpha$	656,29
O I (38)	715,67
NI	742,87
N I (3)	744,23
O III	747,57
Mg I	765,91
O I (1)	777,4
O I (35)	794,7
NI	818,8
NI	822,31
N I (8)	824,23
O III	845,64
NI	859,4
N I (8)	862,92
N I (1)	868,34
N II	869,9
N I (1)	870,3
N I (1)	871,17
Fe II	905,3

Os dados utilizados para tais cálculos podem ser verificados na Tabela .12 para a DR1 e Tabela .13 para a DR2.

Na Tabela 5.17 e na Tabela 5.18 mostra-se o valor de temperatura calculado por espectrometria e os valores de corrente calculados pela rede de sensores de campo elétrico. E nota-se uma relação de proporção da temperatura com a corrente, onde vê-se que para maiores valores de pico de corrente, obtêm-se maiores valores de temperatura também. Para se descobrir a função que rege esta relação seria necessário mais amostras, mais casos para se observar e a partir de então obter tal relação, mas a grosso modo nota-se que quanto maior o pico de corrente, maior a temperatura calculada para o raio.

Tabela 5.17 - Temperatura calculada e a média do pico de corrente calculado pelas duas redes de sensores, para o raio ocorrido em 24 de fevereiro de 2014 às 21 : 55 : 06.7880192 U.T. DR1, caso 02.

Temperatura	Média do pico de corrente (kA)
26032,2 K	17,5

Tabela 5.18 - Temperatura calculada e a média do pico de corrente calculado pelas duas redes de sensores, para o raio ocorrido em 24 de fevereiro de 2014 às 21 : 55 : 06.8180517 U.T. DR2, caso 02.

Temperatura	Média do pico de corrente (kA)
9741,7 K	11

5.3.3 Cálculo da densidade de elétrons para o Caso 02

A densidade de elétrons foi calculada para cada DR, neste caso, DR1 e DR2, onde a média da densidade de elétrons para todas as linhas espectrais calculadas para a DR1 foi de $5,5*10^{19}cm^{-3}$ e para a DR2 foi de $5*10^{19}cm^{-3}$, e a média entre as duas DR's foi de $5,2*10^{19}cm^{-3}$. Os detalhes para o calculo da densidade de elétrons da DR1 pode ser verificado na Tabela E.12 e da DR2 na Tabela E.13 no Apêndice .

Estes valores demonstram relativamente altos quando comparados aos valores de densidade de elétrons encontrados na literatura para a etapa da DR (na ordem de $10^{17}a10^{18}cm^{-3}$), conforme Orville (1968d) por exemplo.

5.4 Caso 03

Para o caso 03 tem-se uma descarga atmosférica NS que ocorreu às 21:57:43.511 214 U.T., também no dia 24 de fevereiro de 2014. A Tabela 5.19 mostra dados de localização e pico de corrente desta descarga, onde a média para o pico de corrente detectado através das duas redes de sensores é de 21,5 kA.

Tabela 5.19 - Dados da localização, polaridade e pico de corrente do raio NS ocorrido em 24 de fevereiro de 2014 às 21 : 57 : 43.511214 U.T. Caso 03

Data	BrasilDAT	RINDAT
Latitude	-23,0668	-23,0337
Longitude	-45,8026	-45,7979
Tipo	NS	NS
Ip (kA)	-21	-22

5.4.1 Identificação das linhas espectrais para o Caso 03

A Figura 5.17 mostra o gráfico gerado para identificação das emissões espectrais para o caso 03. Nela pode-se observar a identificação das principais linhas, que é detalhada posteriormente na Tabela 5.20.

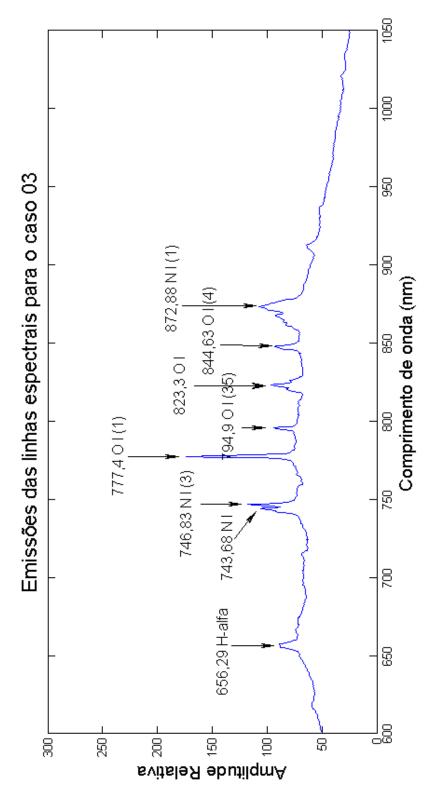


Figura 5.17 - Espectro próximo do infravermelho referente à descarga atmosférica NS- observada em 24 de Fevereiro de 2014 às 21 : 57 : 43.511214 UT. Caso 03.

Através da Figura 5.18 pode-se verificar a identificação das principais emissões das linhas espectrais na imagem do raio observado neste caso.

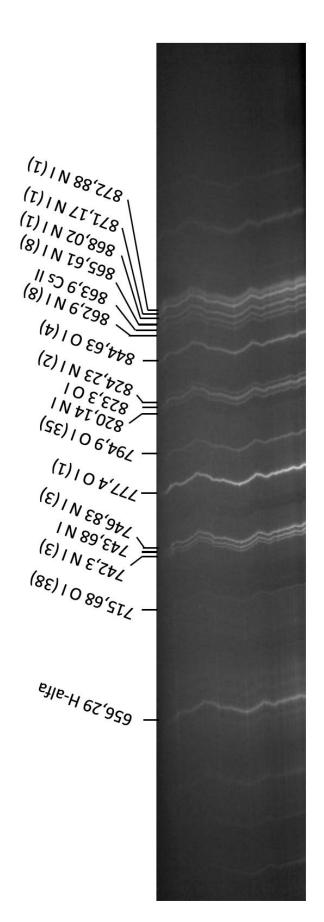


Figura 5.18 - Emissões das linhas espectrais observadas por espectroscopia sem fenda na região do infravermelho para o caso 03.

Tabela 5.20 - Identificação das emissões de todas as linhas espectrais para o caso 03.

Identificação	$\lambda_{raio} (\mathrm{nm})$
H_{alpha}	656,29
O I (38)	715,68
N I (3)	742,36
ΝΙ	743,68
N I (3)	746,83
O I (1)	777,4
O I (35)	794,9
ΝΙ	820,14
ΟI	823,3
N I (2)	824,23
O I (4)	844,63
N I (8)	862,92
Cs II	863,9
N I (8)	865,61
N I (1)	868,02
N I (1)	871,17
N I (1)	872,88
Cr I	912,4

5.4.2 Cálculo da temperatura do canal do raio para o Caso 03

A média da temperatura calculada para todos os *frames* para o caso 03, que obteve apenas um RS, foi de 21802 K. Dados e o cálculo para encontrar a temperatura para o caso 03 pode ser analisado na Tabela .14 (Apêndice). Segundo Orville (1968d), este valor de temperatura está dentro da média de valor esperado para uma DR.

5.4.3 Cálculo da densidade de elétrons para o Caso 03

A média para todas as densidades de elétrons para caso 03 foi de $2*10^{19}cm^{-3}$. Os detalhes para o calculo da densidade de elétrons para cada emissão de linha espectral para o caso 03 pode ser verificado na Tabela E.14.

5.5 Caso 04

A descarga para o caso 04 ocorreu em 24 de Fevereiro de 2014, às 22 02 56.980 403 U.T. Neste raio teve apenas uma DR, e o pico de corrente calculado pelas redes de sensores obteve a média de 25,5 kA. A Tabela 5.21 mostra detalhes da localização e pico de corrente de cada rede de sensores.

Tabela 5.21 - Dados da localização, polaridade e pico de corrente do raio NS ocorrido em 24 de fevereiro de 2014 às 22 : 02 : 56.980403 U.T. Caso 04

Data	BrasilDAT	RINDAT
Latitude	-22,958	-22,965
Longitude	-45,8203	-45,8177
Tipo	NS	NS
Ip (kA)	-28	-23

5.5.1 Identificação das linhas espectrais para o Caso 04

O gráfico da Figura 5.19 foi gerado para a identificação das emissões para o caso 04. Mostrando apenas as principais linhas nesta imagem, enquanto na Tabela 5.22 tem-se todas as linhas espectrais identificadas para este caso.

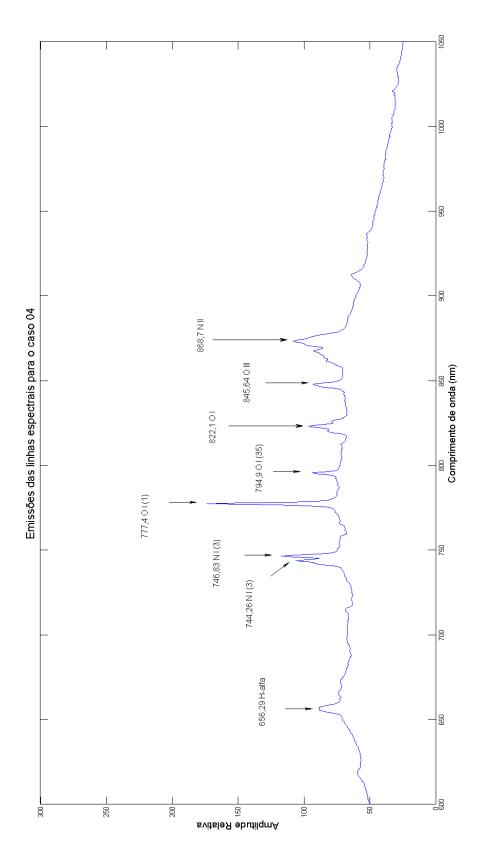


Figura 5.19 - Espectro próximo do infravermelho referente à descarga atmosférica NS- observada em 24 de Fevereiro de 2014 às $22:02:56.980403~\mathrm{U.T.}$

Na Figura 5.20 mostra-se as emissões das principais linhas espectrais para o caso 04, onde na sua maioria tem-se a presença das emissões de oxigênio e nitrogênio.

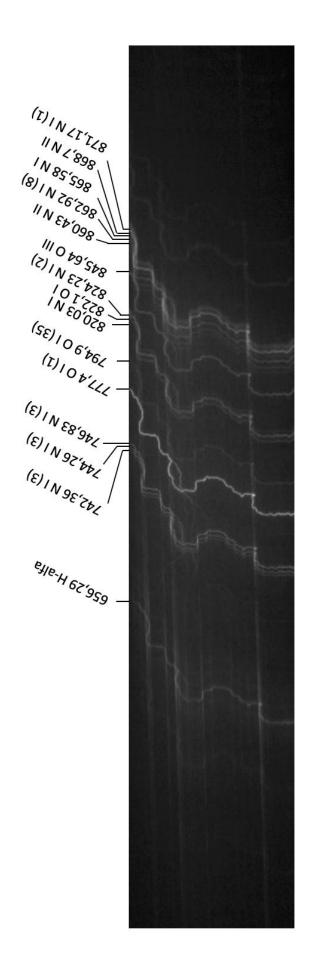


Figura 5.20 - Emissões das linhas espectrais observadas por espectroscopia sem fenda na região do infravermelho para o caso 04.

Tabela 5.22 - Identificação das emissões de todas as linhas espectrais para o caso 04.

Identificação	$\lambda_{raio} (\mathrm{nm})$
Ne I	609,61
Ne I	614,3
N II	617,43
N I (21)	648,27
H_{alpha}	656,3
N II(31)	661,05
O I (38)	715,67
N I(3)	742,3
N I (3)	744,26
N I (3)	746,83
O I (1)	777,4
O I (35)	794,7
NΙ	820,03
ΟI	822,1
N I (2)	824,23
O III	845,642
N I (8)	859,4
N II	860,43
N I (8)	862,94
NI	865,58
N II	868,7
N I (1)	871,1
60,6 NI(15)	906,7

5.5.2 Cálculo da temperatura do canal do raio para o Caso 04

O valor para a temperatura para o caso 04 foi de 30949 K. Detalhes para a verificação de como este valor foi calculado pode ser verificado na Tabela .15 (Apêndice). Este valor de temperatura é esperado para uma DR conforme Orville (1968d).

5.5.3 Cálculo da densidade de elétrons para o Caso 04

O resultado para a densidade de elétrons para o caso 04 foi de $3,6*10^{20}cm^{-3}$ (ver Apêndice). Calculada a média entre as densidades calculadas para temperaturas e

linhas espectrais que foram encontradas na Tabela em (GRIEM, 1964). Este valor de densidade também é esperado conforme Orville (1968d).

6 DISCUSSÕES E CONCLUSÕES

Através da análise das descargas atmosféricas utilizando um *grism* acoplado à uma câmera de alta velocidade e, juntamente com os dados das redes BrasilDAT e RIN-DAT, foi possível obter informações das descargas atmosféricas para o dia 24 de fevereiro de 2014 como as emissões das linhas espectrais de cada caso analisado, com isto os valores de temperatura e densidade de elétrons e valores de pico de corrente dados pelas redes de sensores.

Com o sistema câmera/ grism foi possível aplicar a técnica conhecida como espectrometria sem fenda, a partir da qual identificou-se as emissões das linhas espectrais para cada descarga atmosférica que ocorreu nesta data.

Quatro casos de descargas atmosféricas nuvem-solo com polaridade negativa foram observados, onde o primeiro trata-se da análise para a etapa da Corrente Contínua, o segundo caso é um raio NS- bifurcado que apresentou duas DR's, o terceiro e quarto caso foram NS- com apenas uma DR cada.

A temperatura calculada foi dada através da combinação entre duas linhas espectrais de um mesmo elemento químico, que para praticamente todos os casos foram as emissões de nitrogênio e de oxigênio.

Através da Tabela 6.1 pode-se visualizar a temperatura, a densidade de elétrons (que foi calculada através da técnica conhecida como Alargamento Stark) e o pico de corrente (I_p) para cada caso analisado. Nota-se que para o caso 01, que foi o da observação durante a etapa da Corrente Contínua, tem-se um valor de temperatura e densidade de elétrons menor comparando com o caso 02 e 04 (exceto para a temperatura e densidade de elétrons da DR2 do caso 02 e caso 03). O valor do pico de corrente calculado pelas redes de sensores foram para a 1 $^{\circ}$ e para a 6 $^{\circ}$ DR (caso 01), sendo que a ocorrência da CC foi subsequente à 4 ° DR, com isto não é possível fazer uma boa relação com o valor calculado do pico de corrente para temperatura e densidade de elétrons para o caso 01. Para estes casos analisados nesta pesquisa, verifica-se que para a DR2 do caso 02 apresenta menor valor de temperatura e de pico de corrente também. Nota-se que com exceção do caso 01, que o valor de pico da corrente não é equivalente à DR que foi seguido da CC, que os valores de temperatura para os casos 02, 03 e 04 demostraram uma relação de aumento da temperatura conforme cresce a intensidade da corrente. A Tabela 6.2 mostra os casos em ordem crescente de temperatura.

Tabela 6.1 - Temperatura, densidade de elétrons e pico de corrente para todos os casos.

Casos	Temperatura (K)	Densidade de elétrons (cm^{-3})	$I_p(kA)$
Caso 01 (CC)	13104	$3,3*10^{19}$	-
Caso 02 (DR1)	26032	$5,5*10^{19}$	17,5
Caso 02 (DR2)	9742	$5*10^{19}$	11
Caso 03 (DR1)	21802	$2*10^{19}$	21,5
Caso 04 (DR1)	30949	$3,6*10^{20}$	25,5

Tabela 6.2 - Relação da densidade e pico de corrente com a temperatura de menor para maior valor.

Casos	Temperatura (K)	Densidade de elétrons (cm^{-3})	$I_p(kA)$
Caso 02 (DR2)	9742	$5*10^{19}$	11
Caso 01 (CC)	13104	$3,3*10^{19}$	-
Caso 03 (DR1)	21802	$2*10^{19}$	21,5
Caso 02 (DR1)	26032	$5,5*10^{19}$	17,5
Caso 04 (DR1)	30949	$3,6*10^{20}$	25,5

Verificando uma relação quando colocando o valor da densidade de elétrons em ordem crescente, vê-se através da Tabela 6.3 que o caso 03 apresenta menor valor de densidade mesmo não tendo os menores valores de temperatura e de pico de corrente. Já para o maior valor de densidade de elétrons, que é para o caso 04, tem-se o maior valor de temperatura e de pico de corrente também.

Tabela 6.3 - Relação da temperatura e pico de corrente com a densidade de elétrons de menor para maior valor.

Casos	Temperatura (K)	Densidade de elétrons (cm^{-3})	$I_p(kA)$
Caso 03 (DR1)	21802	$2*10^{19}$	21,5
Caso 01 (CC)	13104	$3,3*10^{19}$	-
Caso 02 (DR2)	9742	$5*10^{19}$	11
Caso 02 (DR1)	26032	$5,5*10^{19}$	17,5
Caso 04 (DR1)	30949	$3,6*10^{20}$	25,5

Quando se observa os valores de pico de corrente de menor para o de maior valor,

nota-se através da Tabela 6.4 que a DR2 do caso 02 apresenta menor valor de pico de corrente e também menor temperatura, já a densidade é a terceira de menor valor. Com relação ao maior valor de pico de corrente é considerado o caso 04, visto que o valor do pico de corrente para o caso 01 não se aplica à realidade da CC, mas para à 1 $^{\circ}$ e à 6 $^{\circ}$ DR deste caso.

Tabela 6.4 - Relação da temperatura e densidade de elétrons com o pico de corrente de menor para maior valor.

Casos	Temperatura (K)	Densidade de elétrons (cm^{-3})	$I_p(kA)$
Caso 02 (DR2)	9742	$5*10^{19}$	11
Caso 02 (DR1)	26032	$5,5*10^{19}$	17,5
Caso 03 (DR1)	21802	$2*10^{19}$	21,5
Caso 04 (DR1)	30949	$3,6*10^{20}$	25,5
Caso 01 (CC)	13104	$3,3*10^{19}$	-


Através da Figura 6.1 pode-se observar a relação entre a densidade de elétrons e a temperatura para todos os casos, e nota-se que há um crescimento exponencial destas duas grandezas.

No gráfico da Figura 6.2 tem-se a relação entre a densidade de elétrons e o pico da corrente para as primeiras descargas de retorno, ou seja, os casos 02, 03 e 04 (no caso 02 que possuiu duas descargas de retorno, está sendo comparado apenas a primeira descarga de retorno, pois a segunda descarga de retorno possui intensidade de corrente menores que a primeira, não sendo adequado incluir na comparação).

E por fim, a Figura 6.3 mostra uma boa relação entre a corrente e a temperatura para os casos observados, mostrando assim um crescimento linear da corrente com a temperatura.

Com isto pode-se notar que para os casos 02 e 04 existe uma relação de proporção do aumento da temperatura com o aumento do pico da corrente. E o aumento do valor da densidade de elétrons também está proporcional ao aumento tanto da temperatura quanto do pico de corrente, que pode ser verificado nos casos 02 (exceto DR2) e 04.

Com isto vê-se a importância de se obter mais casos para analisar estas relações e vir a criar uma função que rege esta relação entre a temperatura e a intensidade da

 $\mbox{Figura 6.1 - Gráfico comparativo para todos os casos relacionando a densidade de elétrons com a temperatura. } \\$

corrente do raio, e entre a densidade de elétrons e a intensidade da corrente também.

Encontrar valores de temperatura e densidade de elétrons do canal de descargas atmosféricas têm contribuído para obtenção de dados inéditos no Brasil.

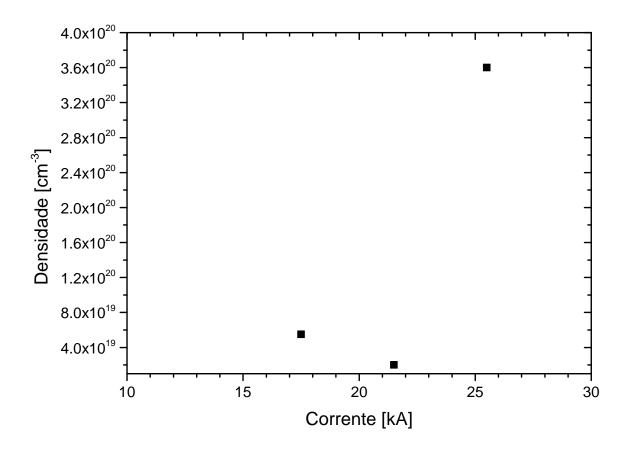


Figura 6.2 - Gráfico comparativo para todos os casos relacionando a densidade de elétrons com a corrente.

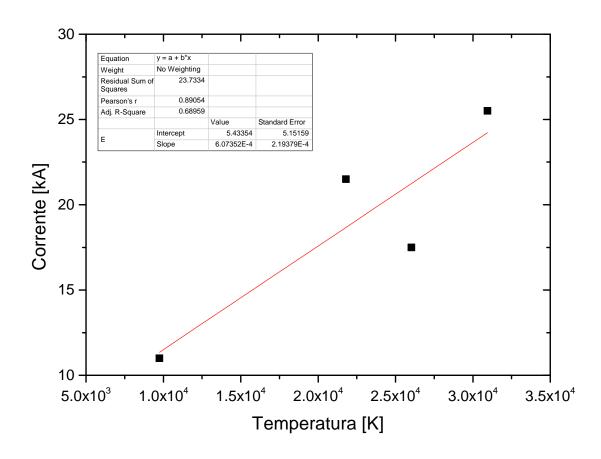


Figura 6.3 - Gráfico comparativo para todos os casos relacionando a corrente com a temperatura.

7 PESQUISAS FUTURAS

Sugere-se que pesquisas futuras sejam realizadas a partir de observação de descargas atmosféricas ascendentes ou trigadas, que facilitam a observação por espectroscopia sem fenda, pois é conhecido a localização e pode-se aguardar a ocorrência da descarga através de espectroscopia sem fenda. Com isto será possível calcular a temperatura e a densidade de elétrons para um maior número possível de casos, e com isto será possível obter uma relação ente a temperatura e a intensidade da corrente. Além da observação através de espectroscopia sem fenda, sugere-se a instalação de medidores de corrente na torre de observação para os raios ascendentes e na base para raios trigados que podem ser comparados e analisados juntamente com os valores de temperatura e densidade de elétrons encontrados. Com os valores medidos da intensidade da corrente e a temperatura calculada poderá buscar uma relação entre a temperatura e a densidade de elétrons, além disto, cálculos da intensidade de corrente podem ser realizados a partir de Alargamento Stark, que deve ser pesquisado o procedimento para este cálculo que é de extrema complexidade. Câmeras com maior resolução também devem ser utilizadas para visualização de maior número de amostras do raio. Análise de outras etapas do raio também devem ser verificadas com mais detalhes. Inserir dados de campo elétrico na análise e realizar observações tridimensionais.

Sugestões para estimação do valor da intensidade da corrente para descargas atmosféricas:

Para se estimar o valor da intensidade de corrente de uma descarga atmosférica pode-se utilizar uma relação linear entre a intensidade luminosa da imagem gravada com a intensidade de corrente (ZHOU et al., 2013; DIENDORFER et al., 2003; IDONE; ORVILLE, 1985). Walker e Christian (2014) mostram em seu trabalho uma boa relação entre a corrente medida num raio artificial com a sua respectiva luminosidade e ainda observado por espectrometria, mas tal corrente foi medida e não calculada, e como trata-se de um raio artificial esta tarefa fica mais simples de se realizar. As relações de luminosidade com a corrente para estudos com espectrometria ainda não constam na literatura. Mas deve-se considerar inicialmente que a luz do canal principal da descarga atmosférica foi difratada e com isto não se tem a luz por completo, a não ser que integre. Além disso verificou-se que há uma possibilidade de estudar a relação da temperatura com a corrente, mas para isto é necessário a observação de vários casos e com uma medição de corrente para que esta relação seja confiável.

Pode-se utilizar a Equação 4.10 que dá a temperatura do canal. O termo temperatura

é utilizado apenas para simplificar as coisas, pois na realidade tudo se trata de intensidade de energia.

Com a temperatura do canal da descarga atmosférica em observação pode-se obter as intensidades através da Lei da Radiação de Planck Equação 4.11. Portanto através desta intensidade calculada através da Equação 4.11 poderá ser feito uma relação também linear com a intensidade de corrente do raio.

A diferença entre as duas formas de se obter a corrente estimada do canal consiste no fato da primeira forma se fazer um tratamento da imagem em si e fazer a relação de luminosidade versus corrente. E já na segunda forma, obtém-se o valor da corrente estimada através de cálculos citados na Seção 4.3, onde com o cálculo de temperatura, densidade de elétrons e utilizando os conceitos de alargamento *Stark*, pode-se obter a corrente do canal.

Estimativa da Intensidade de Corrente para o Caso 01:

A estimativa para a intensidade da corrente para a corrente contínua é possível de ser encontrada através de uma relação que deve ser criada entre a temperatura e a corrente, todavia esta relação ainda não foi criada, ela pode ser obtida observando raios trigados onde com a inserção de medidores de corrente podem medir a corrente e a temperatura ser calculada por espectrometria, este mesmo procedimento pode ser realizado para raios ascendentes, onde para ambos os casos é possível se colocar um medidor de corrente e esperar que um raio ocorra neste mesmo local de instalação do equipamento, então em conjunto com observação através de espectrômetros sem fenda, pode-se obter a temperatura, e para criar a relação entre temperatura e corrente deve-se obter vários casos observados, o maios número possível, e com as mesmas parametrizações dos equipamentos, pois o raio trata-se de um processo estocástico, ou seja, ele é muito aleatório, então por isso a necessidade para a obtenção do maior numero de casos possíveis, tanto para raios trigados como para raios ascendentes.

Estimativa do valor da corrente para o Caso 02:

Verificou-se que para estimar-se a o valor da intensidade da corrente de um raio, por outro meio, diferente dos cálculos realizados pelos sensores de campo elétrico, seria necessário um tempo de observação maior, para se obter maior número de amostras (casos) para se observar a relação entre a temperatura e a intensidade de corrente. Considerando que a temperatura nada mais é do que o termo utilizado

para expressar a intensidade de energia dos elétrons, pode-se a partir deste princípio observar a relação da temperatura com a intensidade de corrente elétrica do raio, que vem a ser o fluxo de elétrons, ou seja, a carga presente nesta descarga. Sabendo que carga é a propriedade elétrica das partículas atômicas que compõem a matéria, que é medida em coulombs (C), pode-se obter a corrente elétrica, pois a corrente elétrica é a taxa de variação de corrente da carga em relação ao tempo (ALEXANDER et al., 2006). E relações podem ser feitas com a termodinâmica.

Estimativa do valor da corrente para o Caso 03:

A proposta futura para se estimar o valor da corrente para casos como este (apenas uma DR) e também para casos onde se quer estimar a corrente para a etapa da corrente contínua é criando uma relação entre a corrente e a temperatura. Isto é possível através de várias observações experimentais, calculando-se a temperatura e realizando cálculos através de Alargamento *Stark* e ainda através das leis de termodinâmica e outras relações entre química e física.

Estimativa do valor da corrente para o Caso 04:

Deverá ser realizada várias observações de campo, com medidores de corrente instalados em torre verificando os raios ascendentes ou medindo a corrente em raios trigados, criando assim uma relação entre a corrente e a temperatura. Com isto deverá ser obtido uma fórmula que rege a função da temperatura do raio com a corrente. Isto é possível também através de várias observações experimentais, calculando-se a temperatura e realizando cálculos através de Alargamento Stark e ainda através das leis de termodinâmica e outras relações entre química e física.

REFERÊNCIAS BIBLIOGRÁFICAS

ALEXANDER, C. K.; SADIKU, M. N.; BERMÚDEZ, A. V.; PEDRAZA, C. R. C. Fundamentos de circuitos eléctricos. [S.l.]: McGraw-Hill, 2006. 103

ANTUNES, L.; SARAIVA, A. C. V.; PINTO JR, O.; ALVES, J.; CAMPOS, L. Z. S.; LUZ, E. S. A. M.; MEDEIROS, C.; BUZATO, T. S. Characterization of lightning observed by multiple high-speed cameras. In: INTERNATIONAL SYMPOSIUM ON LIGHTNING PROTECTION, 12., 2013, Belo Horizonte. **Proceedings...** Belo Horizonte: IEEE, 2013. SIPDA. 14, 23

BITTENCOURT, J. A. Fundamentals of plasma physics. New York: Springer, 2004. 36, 38

BRASSEUR, G. P.; PRINN, R. G.; PSZENNY, A. A. Atmospheric Chemistry in a Changing World: An integration and synthesis of a decade of tropospheric chemistry research; the international global atmospheric chemistry project of the international geosphere-biosphere programme; with 22 tables. [S.l.]: Springer Science & Business Media, 2003. 7, 8

CAMPOS, L. Z.; SABA, M. M. Visible channel development during the initial breakdown of a natural negative cloud-to-ground flash. **Geophysical Research Letters**, Wiley Online Library, v. 40, n. 17, p. 4756–4761, 2013. 12

CAMPOS, L. Z.; SABA, M. M.; WARNER, T. A.; PINTO JR, O.; KRIDER, E. P.; ORVILLE, R. E. High-speed video observations of natural cloud-to-ground lightning leaders—a statistical analysis. **Atmospheric Research**, v. 135-136, p. 285–305, jan.2014. Disponível em:

<http://urlib.net/sid.inpe.br/mtc-m21b/2013/11.26.16.47.08>. 13, 14, 23

CAMPOS, L. Z. d. S.; SABA, M. M. F.; KRIDER, E. P. High-speed video and electric field observations of type beta-2 leaders in negative lightning: A manifestation of recoil leaders initiated inside the cloud? In: INTERNATIONAL LIGHTNING DETECTION CONFERENCE, 22., 2-3 Apr. 2012, Broomfield Tucson. **Proceedings...** Vaisala, 2012. v. 1. Disponível em: http://urlib.net/dpi.inpe.br/plutao/2012/06.21.19.05.10. Acesso em: 05 fev. 2014. 23

CLARK, D. D. e J. Estatística aplicada. [S.l.]: Editora Saraiva, 2010. 41

DIENDORFER, G.; VIEHBERGER, M.; MAIR, M.; SCHULZ, W. An attempt to determine currents in lightning channels branches from optical data of a high speed video system. In: INT. CONF. ON LIGHTNING AND STATIC ELECTRICITY, 2003, Blackpool, UK. **Proceedings...** Blackpool, UK: Royal Aeronautical Society, 2003. CD-ROM, I03-8 PMY. 101

GRIEM, H. R. Plasma spectroscopy. New York: McGraw-Hill, 1964. 74, 94

GUREVICH, A.; KARASHTIN, A. Runaway breakdown and hydrometeors in lightning initiation. **Physical review letters**, APS, v. 110, n. 18, p. 185005, 2013.

HERSCHEL, J. On the lightning spectrum. **Proceedings of the Royal Society of London**, JSTOR, p. 61–62, 1868. 16

HOLDEN, E. S. Spectrum of lightning. **American Journal of Science**, American Journal of Science, n. 24, p. 474–475, 1872. 16

IDONE, V. P.; ORVILLE, R. E. Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes. **Journal of Geophysical Research: Atmospheres (1984–2012)**, Wiley Online Library, v. 90, n. D4, p. 6159–6164, 1985. 101

JORDAN, D. M.; RAKOV, V. A.; BEASLEY, W. H.; UMAN, M. A. Luminosity characteristics of dart leaders and return strokes in natural lightning. **Journal of geophysical research**, American Geophysical Union, v. 102, n. D18, p. 22025–22, 1997. 14

JOSE, P. The infrared spectrum of lightning. **Journal of Geophysical Research**, Wiley Online Library, v. 55, n. 1, p. 39–41, 1950. 16

KILKENNY, D. Spectroscopy - I. Gratings and Prisms. 2012. Access date: 1 oct. 2012. Disponível em: http::

//www.star.ac.za/course-resources/local/david-buckley/spec1.pdf>. 26

KIRCHHOFF, V. W. **Introdução à geofísica espacial**. São Paulo: Nova Stella/EDUSP/FAPESP, 1991. 7

KITAGAWA, N.; BROOK, M.; WORKMAN, E. Continuing currents in cloud-to-ground lightning discharges. **Journal of Geophysical Research**, Wiley Online Library, v. 67, n. 2, p. 637–647, 1962. 15

KRAMIDA, A.; YU.RALCHENKO; J.READER. **NIST Atomic spectra** database lines data. Disponível em:

http://http://physics.nist.gov/asd. 41, 46, 73

MAECKER, H. Der elektrische lichtbogen. [S.l.]: Springer, 1951. 39

_____. Experimental and theoretical studies of the properties L of NZ and air at hight temperature. [S.l.]: MIT Libraries Document, 1962. 38

MCEWAN, M. J.; PHILLIPS, L. F. Chemistry of the Atmosphere. New York: Wiley, 1975. 8, 9

MCNAUGHT, A. D. **IUPAC Compendium of chemical terminology**: The gold book. [S.l.]: International Union of Pure and Applied Chemistry, 2014. 1

MEDEIROS, C. Estudo da ocorrência de corrente contínua em relâmpagos nuvem-solo negativos. 2011.108 p. Dissertação (Mestrado em Geofísica Espacial/Ciências Atmosféricas) — Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2011. Disponível em:

<http://urlib.net/sid.inpe.br/mtc-m19/2011/08.02.04.04>. 15

NACCARATO, K.; SARAIVA, A.; SABA, M.; SCHUMANN, C.; PINTO JR, O. First performance analysis of brasildat total lightning network in southeastern Brazil. In: INTERNATIONAL CONFERENCE ON GROUNDING AND EARTHING, 5., 2012, Bonito. **Proceedings...** Bonito: UFMS, 2012. Ground 2012. 28

NACCARATO, K. P.; PINTO JR, O. Cloud-to-ground lightning characteristics in southern and southeastern Brazil: spatial analysis. In: INTERNATIONAL CONFERENCE ON ATMOSPHERIC ELECTRICITY, 14., 2011, Rio de Janeiro. **Proceedings...** São José dos Campos, 2011. ICAE. 28

NACCARATO, K. P.; PINTO, O. Lightning detection in southeastern Brazil from the new Brazilian Total Lightning Network (brasildat). In: INTERNATIONAL CONFERENCE ON, IEEE LIGHTNING PROTECTION ICLP, 2012, Vienna. **Proceedings...** Vienna: IEEE, 2012. p. 1–9. 28

ORVILLE, R. E. A spectral study of lightning strokes. Phd thesis in meteorology — University of Arizona, Tucson, Ariz, 1966. xv, 2, 17, 21

ORVILLE, R. E. A high-speed time-resolved spectroscopic study of the lightning return stroke: Part i. a qualitative analysis. **Journal of the Atmospheric Sciences**, v. 25, n. 5, p. 827–838, 1968. 17, 19

______. A high-speed time-resolved spectroscopic study of the lightning return stroke: Part ii. a quantitative analysis. Journal of the Atmospheric Sciences, v. 25, n. 5, p. 839–851, 1968. 19

______. A high-speed time-resolved spectroscopic study of the lightning return stroke. part iii. a time-dependent model. Journal of the Atmospheric Sciences, v. 25, n. 5, p. 852–856, 1968. 19

_____. A high-speed time-resolved spectroscopic study of the lightning return stroke, parts 1,2,3. Journal of the Atmospheric Sciences, v. 25, p. 827–856, 1968. 1, 83, 88, 93, 94

_____. Spectrum of the lightning stepped leader. Journal of Geophysical Research, Wiley Online Library, v. 73, n. 22, p. 6999–7008, 1968. xv, 3, 17, 20, 38

_____. Spectrum of the lightning dart leader. Journal of the Atmospheric Sciences, v. 32, n. 9, p. 1829–1837, 1975. 17, 20

____. Daylight spectra of individual lightning flashes in the 370-690 nm region. Journal of Applied Meteorology, v. 19, n. 4, p. 470–473, 1980. 17

ORVILLE, R. E.; HENDERSON, R. W. Absolute spectral irradiance measurements of lightning from 375 to 880 nm. **Journal of the Atmospheric Sciences**, v. 41, n. 21, p. 3180–3187, 1984. 17

ORVILLE, R. E.; IDONE, V. P. Lightning leader characteristics in the thunderstorm research international program (trip). **Journal of Geophysical Research: Oceans (1978–2012)**, Wiley Online Library, v. 87, n. C13, p. 11177–11192, 1982. 13, 14

PETRIE, W. Recherches sur les spectres des éclairs, deuxième partie: Étude du spectre dans les régions viollete et ultraviolette. **Annls Géophys**, v. 5, p. 255–263, 1949. 16

PETRIE, W.; SMALL, R. The near infrared spectrum of lightning. **Physical Review**, APS, v. 84, n. 6, p. 1263, 1951. 16

PICKERING, E. C. Spectrum of lightning. **Astronomische Nachrichten**, Wiley Online Library, v. 157, n. 12, p. 207–210, 1901. 16, 19

PINTO JR, O.; PINTO, I. R.; SABA, M. M.; NACCARATO, K. P. Cloud-to-ground lightning observations in Brazil. In: LAROCHE, H. D. B. U. S. P.

- (Ed.). Lightning: Principles, instruments and applications. [S.l.]: Springer, 2009. p. 209–229. 23
- PRUEITT, M. L. The excitation temperature of lightning. **Journal of Geophysical Research**, Wiley Online Library, v. 68, n. 3, p. 803–811, 1963. 37
- RAKOV, V. A.; THOTTAPPILLIL, R.; UMAN, M. A. Electric field pulses in k and m changes of lightning ground flashes. **Journal of Geophysical Research: Atmospheres (1984–2012)**, Wiley Online Library, v. 97, n. D9, p. 9935–9950, 1992. 14
- RAKOV, V. V. A.; UMAN, M. A. **Lightning**: physics and effects. [S.l.]: Cambridge University Press, 2003. 9, 10, 12, 15
- SABA, M.; BALLAROTTI, M.; PINTO, O. Negative cloud-to-ground lightning properties from high-speed video observations. **Journal of Geophysical Research: Atmospheres (1984–2012)**, Wiley Online Library, v. 111, n. D3, 2006. 14
- SALANAVE, L. E. The optical spectrum of lightning a revival of the spectrographic study of lightning may help solve some outstanding puzzles in could physics. **Science**, American Association for the Advancement of Science, v. 134, n. 3488, p. 1395–1399, 1961. 16
- _____. The infrared spectrum of lightning. In: IEEE REGION SIX CONFERENCE RECORD, 6., 1966, Tucson Ariz. **Proceedings...** Tucson Ariz: IEEE, 1966. xvi, 21
- _____. Lightning and its spectrum: An atlas of photographs. [S.l.]: University of Arizona Press, 1980. 1, 35
- SARAIVA, A. C.; CAMPOS, L. Z.; ANTUNES, L.; PINTO JR, O.; CUMMINS, K. L. Analysis of forked strokes characteristics over southeastern brasil during the summer season of 2013. In: 23RD INTERNATIONAL LIGHTNING DETECTION CONFERENCE, 2014, Tucson, Arizona, USA. **Proceedings...** Tucson, Ariz, 2014. 74
- SCHONLAND, B. Progressive lightning. iv. the discharge mechanism. **Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences**, The Royal Society, v. 164, n. 916, p. 132–150, 1938. 13, 14

SCHONLAND B F J, M. D. J.; COLLENS, H. Progressive lightning. ii. **Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences**, The Royal Society, v. 152, n. 10.1098, p. 595–625, 1935. 14

SISMANOGLU, B. Estudo e caracterização de microplasmas luminescentes através da espectroscopia óptica de emissão. 2010 p. Tese (Doutorado em Física Atômica e Molecular) — ITA, São José dos Campos, 2010. 40

SLIPHER, V. M. The spectrum of lightning. Lowell Observatory Bulletin, v. 3, p. 55–58, 1917. 16

STOLZENBURG, M.; MARSHALL, T.; KARUNARATHNE, S.; KARUNARATHNA, N.; VICKERS, L.; WARNER, T.; ORVILLE, R.; BETZ, H.-D. Luminosity of initial breakdown in lightning. **Journal of Geophysical Research: Atmospheres**, Wiley Online Library, p. 1–20, 2013. 12

UMAN, M. A. Quantitative lightning spectroscopy. **Spectrum, IEEE**, IEEE, v. 3, n. 8, p. 102–110, 1966. 1

_____. Lightning. [S.l.]: McGraw-Hill Book Company, 1969. 1, 2, 3, 18, 19, 20, 21, 37, 38, 42

_____. **The lightning discharge**. [S.l.]: DoverPublications. com, 2001. 11, 12, 13, 14, 17

WALKER, T. D. Novel observations in lightning spectroscopy. [S.l.: s.n.]. Mensagem pessoal por e-mail: thomas.walker@uah.edu, em 7 jul. 2015. 73

WALKER, T. D.; CHRISTIAN, H. J. Novel observations in lightning spectroscopy. In: XV INTERNATIONAL CONFERENCE ON ATMOSPHERIC ELECTRICITY, 15., 2014, Norman, Oklahoma, U.S.A. **Proceedings...** [S.l.]: IUGG/IAMAS, 2014. ICAE 2014. 17, 101

WALLACE, L. Note on the spectrum of lightning in the region 3670 to 4280 a. **Journal of Geophysical Research**, Wiley Online Library, v. 65, n. 4, p. 1211–1214, 1960. 19

_____. The spectrum of lightning. **The Astrophysical Journal**, v. 139, p. 994–998, 1964. 18

WARNER, T. A.; ORVILLE, R. E.; MARSHALL, J.; HUGGINS, K. Spectral (600-1050 nm) time exposures $(99.6 \mu \text{s})$ of a lightning stepped leader. **Journal of**

Geophysical Research: Atmospheres (1984–2012), Wiley Online Library, v. 116, n. D12, 2011. 17

WEIDMAN, C.; BOYE, A.; CROWELL, L. Lightning spectra in the 850-to 1400-nm near-infrared region. **Journal of Geophysical Research: Atmospheres (1984–2012)**, Wiley Online Library, v. 94, n. D11, p. 13249–13257, 1989. 20, 37

WILLIAMS, E.; ZHANG, R.; RYDOCK, J. Mixed-phase microphysics and cloud electrification. **Journal of the atmospheric sciences**, v. 48, n. 19, p. 2195–2203, 1991. 9

WILLIAMS, E. R. The electrification of thunderstorms. **Scientific American**, ERIC, v. 259, n. 5, p. 88–99, 1988. 9

ZHAO, J.; YUAN, P.; CEN, J.; LIU, J.; WANG, J.; ZHANG, G. Characteristics and applications of near-infrared emissions from lightning. **Journal of Applied Physics**, AIP Publishing, v. 114, n. 16, p. 163303, 2013. 17

ZHOU, E.; LU, W.; ZHANG, Y.; ZHU, B.; ZHENG, D.; ZHANG, Y. Correlation analysis between the channel current and luminosity of initial continuous and continuing current processes in an artificially triggered lightning flash.

Atmospheric Research, Elsevier, v. 129, p. 79–89, 2013. 101

APÊNDICE A - GERAR GRÁFICO COM AS LINHAS ESPECTRAIS

Script que faz o calculo da média das linhas espectrais observadas em cada caso para cada frame. Está média é feita entre duas linhas de marcação para este cálculo.

function MS=mediaspectro(data,lim1,lim2) % esta função calcula a média espectral entre 2 limites % % data = dados da figura % lim1 = pixel limite inferior da seleção % lim2 = pixel limite superior da seleção

% desenhar selecao x=1:1632; y=1:400; dataflip=flipdim(data,2);% inverte o eixo X image(x,y,dataflip);% desenha raios hold on % mantém a figura plot(x,lim1,'y')% desenha limite 1 sobre a figura plot(x,lim2,'y')% desenha limite 2 sobre a figura hold off % xlabel('Pixel')% nome eixo x ylabel('Pixel')% nome eixo y

% separar seleção S=double(dataflip(lim1:lim2,:,1));%seleção da primeira camada

% plota em 3D a seleção figure mesh(x,lim1:lim2,S); xlabel('Wavelength (nm)')% nome eixo x ylabel('Pixel')% nome eixo y zlabel('Relative Amplitude')

n1=length(S(1,:));% numero de colunas n2=length(S(:,1));% numero de linhas

M=zeros(n2,2000);% cria matriz de zeros nova só para defasar os demais

%ordenamento dos máximos for i=1:n2 clear a r a=find(S(i,:)==max(S(i,:)));%acha os máximos r=777-a; M(i,1+r:r+n1)=S(i,:);%posiciona todos os máximos na posição 777. end

%calculo da média for j=1:2000 b=find(M(:,j)==0);% como a matriz tem zeros preciso apagá-los, para isto os acho M(b,j)=NaN; % e os transformo em NaN (Not a Number) MS(j)=nanmean(M(:,j)); % calcula a média sem considerar os NaN (NaNmean) end

des=777.4-373.9; x2=1+des:17.3/36:962+des; %criação de novo eixo x, com correção de 0.1022 que se corre

figure plot(x2,MS) %plota a média axis([600 1050 0 300]) ylabel('Relative Amplitude')% nome eixo x xlabel('Wavelength (nm)')% nome eixo y

E a rotina abaixo executa o carregamento da imagm e chama a função que calcula a média do espectro

%06/04/2014

 $\% \ \mathrm{carregar} \ \mathrm{a} \ \mathrm{imagem} \ \mathrm{data} = \mathrm{imread}(\texttt{`feb242014_21_53_07_518_862_R1.png'});$

MS=mediaspectro(data,250,320);

Estas rotinas foram desenvolvidas em conjunto com o Doutorando Manuel Alejandro Bravo Sepulveda.

APÊNDICE B - CORREÇÃO DA RESPOSTA ESPECTRAL

Para que fosse possível a correção do brilho para a resposta espectral da câmera V9.1, os cálculos abaixo foram realizados:

A Equação B.1 foi utilizada para encontrar o valor da resposta espectral para cada linha específica do espectro observado em cada caso desta pesquisa.

$$y = y_1 + \frac{x - x_1}{x_2 - x_1} \cdot (y_2 - y_1)$$
(B.1)

Onde:

- y é o valor da reposta espetral procurado para a linha desejada
- y_1 é o valor da porcentagem (em número) da linha inferior dado na terceira coluna da Tabela A.1 no Anexo A;
- x é a linha espectral observada
- x_1 é a linha espectral inferior à observada (primeira coluna da Tabela A.1 no Anexo A);
- x_2 é a linha espectral superior à observada (primeira coluna da Tabela A.1 no Anexo A);
- y_2 é o valor da porcentagem (em número) da linha superior dado na terceira coluna da Tabela A.1 no Anexo A;

Para a correção do brilho foi utilizada a seguinte fórmula em Excel:

Para o frame 1, tem-se a Eq.B.2:

$$Brilhocorrigido = B3 + \$B\$8 * (ABS(1-C3))$$
(B.2)

Onde:

- B3 fornece o valor do brilho observado (sem unidade);
- \$B\$8 é o valor do brilho para a linha 777,4 nm do *frame* 1 (pois é a linha que está presente em todos os *frames* e possui maior brilho);

• C3 fornece o valor calculado para a resposta espectral (em número) para cada linha.

E assim foi feito para cada *frame* com o valor de brilho da linha 777,4 do seu respectivo *frame*. Este procedimento foi realizado todos os casos analisados.

Tabela B.1 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 1 - frame (1) -1274, caso 01 CC.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
618,7	96,27	0,989145274	98,53103946
660,61	122	0,924066487	137,8169508
664,49	105,2	0,963509171	112,8010396
675,2	98	0,917523044	115,1799499
676,47	100,2	0,898435332	121,3559203
678,96	91,96	0,861011393	120,9113269
715,67	93,39	0,790672281	136,992964
743,65	116,4	0,883050204	140,7606426
744,78	138,3	0,869366488	165,5109606
747,57	151,3	0,843399159	183,9199551
777,4	208,3	0,882649277	232,7441557
818,48	117,6	0,795467067	160,20421
821,072	140,3	0,778990897	186,3361962
824,23	104,2	0,757223742	154,7702945
844,67	131,9	0,701114282	194,157895
856,774	98,42	0,662027809	168,8196075
859,4	105,2	0,643131592	179,5356894
860,43	110	0,635106546	186,0073065
862,92	122,2	0,613637212	202,6793686
868,34	151	0,569029237	240,77121
870,32	127,5	0,553907647	220,421037
929,14	84,77	0,300918421	230,388693

Tabela B.2 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 2 - frame (3) -1272, caso 01 CC.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
742,87	108,4	0,8924956	131,8897113
744,78	129	0,869366488	157,5434224
747,57	144,7	0,843399159	178,9172837
777,4	218,5	0,882649277	244,1411331
818,48	120,7	0,795467067	165,3904459
821,072	143,1	0,778990897	191,3904891
823,53	95,55	0,762048634	147,5423735
844,67	127,6	0,701165645	192,8953065
856,774	96,99	0,662027809	170,8369238
859,4	103	0,643131592	180,9757471
862,92	114,6	0,613637212	199,0202691
868,34	153,4	0,569029237	247,5671118
870,32	120	0,553907647	217,471179
928,55	85,49	0,303227245	237,7348471

Tabela B.3 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 3 - frame (4) -1271, caso 01 CC.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
743,65	88,37	0,883050204	109,1636738
744,78	102,2	0,869366488	125,4266384
747,57	109	0,843399159	136,8436295
777,4	177,8	0,882649277	198,6649586
818,8	93,69	0,793553973	130,3961035
821,63	112,3	0,775144769	152,2792601
844,67	100,6	0,701165645	153,7327482
860,43	84,06	0,635106546	148,9380561
862,92	91,96	0,613637212	160,6553036
868,34	117,6	0,569029237	194,2266017
871,17	92,68	0,548954872	172,8758237

Tabela B.4 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 4 - frame (8) -1267, caso 01 CC.

T : 1 ()	D.::11	T4	D.::11 :: -:: -1 -
Linhas (nm)	Brilho	Interpolação	Brilho corrigido
744,78	90,52	0,869366488	111,2907284
747,57	96,99	0,843399159	121,8895337
777,4	159	0,882649277	177,658765
818,48	84,77	0,795467067	117,2907364
821,072	100,6	0,778990897	135,7404474
824,23	81,18	0,757223742	119,781425
844,67	89,08	0,701165645	136,5946624
862,92	84,06	0,613637212	145,4916832
866,43	86,8	0,58428279	152,8990363
868,34	103,9	0,569029237	172,4243513
871,17	82,62	0,548954872	154,3361753

Tabela B.5 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 5 - frame (9) -1266, caso 01 CC.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
744,78	91,24	0,869366488	112,703086
747,57	101,6	0,843399159	127,3295181
777,4	164,3	0,882649277	183,5807238
818,48	84,06	0,795467067	117,6647609
821,072	99,01	0,778990897	135,3217957
844,67	91,96	0,701165645	141,0584844
862,92	86,93	0,613637212	150,409406
868,34	110,8	0,569029237	181,6084964
871,17	84,77	0,548954872	158,8767145

Tabela B.6 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 6 - frame (16) -1259, caso 01 CC.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
736,61	81,18	0,948738171	90,37637217
742,87	86,93	0,8924956	106,2162893
744,78	102,5	0,869366488	125,9356521
747,57	112,6	0,843399159	140,6941908
777,4	179,4	0,882649277	200,4527198
818,48	91,96	0,795467067	128,6532082
821,072	114,7	0,778990897	154,3490331
844,67	104,8	0,701165645	158,4108832
862,92	93,39	0,613637212	162,7034841
868,34	120,8	0,569029237	198,1161549
871,17	91,96	0,548954872	172,8774959

Tabela B.7 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 7 - frame (17) -1258, caso 01 CC.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
743,65	115,8	0,883050204	142,5581134
744,78	141,1	0,869366488	170,9889476
747,57	152,7	0,843399159	188,5302724
777,4	228,8	0,882649277	255,6498455
818,48	133	0,795467067	179,7971351
821,072	157,3	0,778990897	207,8668828
824,23	107	0,757223742	162,5472077
844,67	137	0,701165645	205,3733003
856,774	101,3	0,662027809	178,6280374
859,4	107,1	0,643131592	188,7514917
862,92	126,5	0,613637212	214,8998058
865,436	104	0,592221027	197,299829
868,34	164	0,569029237	262,6061106
870,32	130,7	0,553907647	232,7659303
956,5	84,77	0,261063968	253,8385642

Tabela B.8 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 8 - frame (26) -1249, caso 01 CC.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
744,78	97,58	0,869366488	121,1724123
747,57	98,76	0,843399159	127,0421118
777,4	180,6	0,882649277	201,7935406
818,48	89,08	0,795467067	126,0186477
821,072	108,6	0,778990897	148,5142441
844,67	98,42	0,701165645	152,3894844
862,92	86,93	0,613637212	156,7071194
868,34	116	0,569029237	193,8333198
871,17	88,37	0,548954872	169,8287501

Tabela B.9 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 9 - frame (53) -1222, caso 01 CC.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
742,87	94,41	0,8924956	115,6528694
744,78	117,2	0,869366488	143,013182
747,57	124,5	0,843399159	155,4443261
777,4	197,6	0,882649277	220,7885029
818,48	108,5	0,795467067	148,9157076
821,072	128,3	0,778990897	171,9713988
844,43	115,1	0,701114282	174,1598178
859,4	91,24	0,643131592	161,7571974
862,92	102,9	0,613637212	179,2452868
868,34	138,4	0,569029237	223,5598228
871,17	105,4	0,548954872	194,5265173

Tabela B.10 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 10 - frame (54) -1221, caso 01 CC.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
652,11	87,65	0,793158454	133,0517192
667,78	90,52	0,973530555	96,33004313
743,65	110,8	0,883050204	136,4704803
744,78	132	0,869366488	160,6740559
747,57	142	0,843399159	176,3738845
754,62	93,39	0,813268696	134,3775212
765,67	89,08	0,879819275	115,4596691
777,4	219,5	0,882649277	245,2584838
818,48	128,2	0,795467067	173,0949788
821,072	148,9	0,778990897	197,4114982
824,23	102,7	0,757223742	155,9893885
844,43	131,3	0,701114282	196,9054151
856,774	95,55	0,662027809	169,734896
859,4	105,5	0,643131592	183,8326155
862,92	118,7	0,613637212	203,5066319
865,436	97,45	0,592221027	186,9574846
868,34	158,4	0,569029237	252,9980825
870,32	127,2	0,553907647	225,1172714
928,55	84,77	0,303227245	237,7116198

Tabela B.11 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 11 - frame (55) -1220, caso 01 CC.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
743,65	81,9	0,883050204	102,00367
744,78	95,42	0,869366488	117,8759007
747,57	102,5	0,843399159	129,4196845
777,4	0 171,9	0,882649277	192,0725893
818,48	88,37	0,795467067	123,5292112
821,072	108,4	0,778990897	146,3914649
844,43	94,83	0,701114282	146,2084549
862,92	85,49	0,613637212	151,9057632
868,34	114,4	0,569029237	188,4838742
871,17	84,06	0,548954872	161,5946575

Tabela B.12 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 1 - frame -1081, caso 02 RS1.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
621,73	40,04	0,995431949	41,00340196
653,28	57,69	0,909260007	76,82706452
715,67	34,1	0,790672281	78,24721594
742,87	74,8	0,8924956	97,47267796
744,7	94,75	0,870335247	122,0962964
747,57	103,6	0,843399159	136,6271174
777,4	210,9	0,882649277	235,6492675
818,8	57,99	0,793553973	101,5294671
821,6	83,07	0,77535155	130,4483581
824,23	54,93	0,757223742	106,1315128
845,64	65,14	0,700325831	128,3412822
860,43	57,13	0,635106546	134,0860294
862,92	65,23	0,613637212	146,713912
865,58	69,15	0,591071021	155,3931217
868,74	88,96	0,565834775	180,525446
871,17	85,08	0,548954872	180,2054175
926,89	23,82	0,309723257	169,3993651

Tabela B.13 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: 2 - frame -990, caso 02 RS2.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
621,23	13,92	0,996752195	14,4279567
715,67	12,61	0,790672281	45,34885525
742,87	33,52	0,8924956	50,33368816
744,23	46,28	0,876026704	65,66942349
747,57	53,31	0,843399159	77,80237153
777,4	156,4	0,882649277	174,7536531
818,8	28,7	0,793553973	60,98815862
822,31	45,68	0,770457731	81,58041087
824,23	26,15	0,757223742	64,12020675
845,64	31,54	0,700325831	78,40904003
859,4	17,94	0,643131592	73,75421901
862,92	28,15	0,613637212	88,57714004
868,34	46,58	0,569029237	113,9838273
869,9	47,13	0,556570837	116,4823211
870,3	42,46	0,554024183	112,2106178
871,17	44,46	0,548954872	115,003458

Tabela B.14 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: frame -1012, caso 03.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
715,68	68,24	0,79069465	104,5963393
742,36	92,34	0,89867144	109,9407709
743,681	105,9	0,88267481	126,2793855
746,831	117,3	0,85009997	143,3376352
777,4	173,7	0,88264928	194,0838201
820,1437	82,25	0,78538939	119,527863
823,3	96,14	0,76363396	137,1967811
824,239	79,15	0,75716171	121,331011
844,636	92,69	0,70115837	144,5987911
862,924	83,11	0,61360272	150,2272075
865,6112	88,14	0,59082185	159,2142447
868,028	92,45	0,57152092	166,8768162
871,17	99,14	0,54895487	177,4865391
872,889	107,9	0,53893861	187,9863634

Tabela B.15 - Correção do brilho com relação à Resposta Espectral da Câmera Phantom V9.1 para: frame -1208, caso 04.

Linhas (nm)	Brilho	Interpolação	Brilho corrigido
609,61	30,46	0,908329815	41,47875619
614,3	32,12	0,951293871	37,97447671
617,43	34,56	0,978541041	37,13936683
648,27	42,68	0,947829306	48,95091742
661,056	50,83	0,928600363	59,41223642
715,67	40,37	0,790672281	65,53119188
742,3	53,2	0,899398006	65,29235972
744,26	61,41	0,875663419	76,35525702
746,83	68,24	0,850109042	86,25689311
777,4	120,2	0,882649277	134,3055569
820,036	52,61	0,786131736	78,31696529
822,1	59,93	0,771905199	87,34699513
824,23	48,22	0,756375727	77,50363762
845,642	56,1	0,700322986	92,12117709
859,4	50,24	0,643131592	93,13558264
860,43	50,78	0,635106546	94,64019317
862,94	53,46	0,612154467	100,0790331
865,589	54,59	0,590999146	103,7519027
868,7	62,95	0,563347055	115,435684
871,1	64,68	0,549362748	118,8465977

APÊNDICE C - ERRO PERCENTUAL PARA CADA CASO.

O erro percentual calculado é regido pela Equação C.1:

$$E(\%) = ((valor_{te\acute{o}rico} - valor_{experimental}))/(valorte\acute{o}rico) * 100)$$
 (C.1)

Tabela C.1 - Identificação, valores experimentais, valores teóricos e erro percentual para: 1 - frame (1) -1274, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
ΝΙ	618,8	618,7	-0,02
$H\alpha$	658,7	656,3	-0,37
ΝΙ	660,6	660,61	0,00
ΝΙ	664,5	664,49	0,00
ΝΙ	675,1	675,2	0,01
O V	676,5	676,47	0,00
O V	678,9	678,96	0,01
OI	716,4	715,67	-0,10
NI	743,3	743,65	0,05
ΝΙ	744,7	744,78	0,01
O III	747,6	747,57	0,00
O I (1)	777,4	777,4	0,00
O I (35)	794,7	794,7	0,00
ΝΙ	818,3	818,48	0,02
ΝΙ	821,1	821,072	0,00
N I (2)	824	824,23	0,03
O I (4)	844,7	844,67	0,00
N I (8)	856,7	856,774	0,01
N I (8)	858,6	859,4	0,09
N II	859,6	860,43	0,10
N I (8)	863	862,92	-0,01
N I (1)	868,2	868,34	0,02
N I (1)	870,2	870,32	0,01
ΟI	905,7	905,7	0,00
O III	929,3	929,14	-0,02
Cr I	1008	1008,035	0,00

Tabela C.2 - Identificação, valores experimentais, valores teóricos e erro percentual para: 2 - frame (3) -1272, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
$H\alpha$	659,2	656,29	-0,44
NI	742,8	742,87	0,01
NI	744,7	744,78	0,01
O III	747,6	747,57	0,00
O I (1)	777,4	777,4	0,00
O I (35)	794,7	794,7	0,00
NI	818,3	818,48	0,02
ΝΙ	821,1	821,072	0,00
O I	823,5	823,53	0,00
O I (4)	844,7	844,67	0,00
NI	856,7	856,774	0,01
NI	859,6	859,4	-0,02
N I (8)	863	862,92	-0,01
N I (1)	868,2	868,34	0,02
N I (1)	870,2	870,32	0,01
O I	905,7	905,7	0,00
N III	928,3	928,55	0,03

Tabela C.3 - Identificação, valores experimentais, valores teóricos e erro percentual para: 3 - frame (4) -1271, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
NI	744,7	744,78	0,01
O III	747,6	747,57	0,00
O I (1)	777,4	777,4	0,00
NI	818,3	818,48	0,02
NI	821,1	821,072	0,00
N I (2)	824	824,23	0,03
O I (4)	844,7	844,67	0,00
N I (8)	863	862,92	-0,01
NI	866,3	866,43	0,02
N I (1)	868,2	868,34	0,02
N I (1)	871,1	871,17	0,01

Tabela C.4 - Identificação, valores experimentais, valores teóricos e erro percentual para: 4 - frame (8) -1267, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
NI	744,7	744,78	0,01
O III	747,6	747,57	0,00
O I (1)	777,4	777,4	0,00
NI	818,3	818,48	0,02
NI	821,1	821,072	0,00
N I (2)	824	824,23	0,03
O I (4)	844,7	844,67	0,00
N I (8)	863	862,92	-0,01
NI	866,3	866,43	0,02
N I (1)	868,2	868,34	0,02
N I (1)	871,1	871,17	0,01

Tabela C.5 - Identificação, valores experimentais, valores teóricos e erro percentual para: 5 - frame (9) -1266, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
Fe II	680,3	680,31	0,00
NI	744,7	744,78	0,01
O III	747,6	747,57	0,00
O I (1)	777,4	777,4	0,00
NI	818,3	818,48	0,02
NI	821,1	821,072	0,00
O I (4)	844,7	844,67	0,00
N I (8)	863	862,92	-0,01
N I (1)	868,2	868,34	0,02
N I (1)	871,1	871,17	0,01

Tabela C.6 - Identificação, valores experimentais, valores teóricos e erro percentual para: 6 - frame (16) -1259, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
$H\alpha$	659,2	656,29	-0,44
NI	736,61	736,61	0,00
NI	742,8	742,87	0,01
NI	744,7	744,78	0,01
O III	747,6	747,57	0,00
O I (1)	777,4	777,4	0,00
NI	818,3	818,48	0,02
ΝΙ	821,1	821,072	0,00
O I (4)	844,7	844,67	0,00
N I (8)	863	862,92	-0,01
N I (1)	868,2	868,34	0,02
N I (1)	871,1	871,17	0,01

Tabela C.7 - Identificação, valores experimentais, valores teóricos e erro percentual para: 7 - frame (17) -1258, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
$H\alpha$	659,2	656,29	-0,44
NI	743,3	743,65	0,05
NI	744,7	744,78	0,01
O III	747,6	747,57	0,00
O I (1)	777,4	777,4	0,00
O I (35)	794,7	794,7	0,00
NI	818,3	818,48	0,02
NI	821,1	821,072	0,00
N I (2)	824	824,23	0,03
O I (4)	844,7	844,67	0,00
N I (8)	856,7	856,774	0,01
N I (8)	859,6	859,4	-0,02
N I (8)	863	862,92	-0,01
N III	865,4	865,436	0,00
N I (1)	868,2	868,34	0,02
N I (1)	870,2	870,32	0,01
O I	905,7	905,7	0,00
Fe II	927,3	927,325	0,00
O III	956,2	956,5	0,03

Tabela C.8 - Identificação, valores experimentais, valores teóricos e erro percentual para: 8 - frame (26) -1249, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
$H\alpha$	658,7	656,29	-0,37
NI	744,7	744,78	0,01
O III	747,6	$747,\!57$	0,00
O I (1)	777,4	777,4	0,00
NΙ	818,3	818,48	0,02
ΝΙ	821,1	821,072	0,00
O I (4)	844,7	844,67	0,00
N I (8)	863	862,92	-0,01
N I (1)	868,2	868,34	0,02
N I (1)	871,1	871,17	0,01

Tabela C.9 - Identificação, valores experimentais, valores teóricos e erro percentual para: 9 - frame (53) -1222, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
$H\alpha$	658,7	656,29	-0,37
NI	742,8	742,87	0,01
NI	744,7	744,78	0,01
O III	747,6	747,57	0,00
O I (1)	777,4	777,4	0,00
NI	818,3	818,48	0,02
NI	821,1	821,072	0,00
N III	844,2	844,43	0,03
NI	859,6	859,4	-0,02
N I (8)	863	862,92	-0,01
N I (1)	868,2	868,34	0,02
N I (1)	871,1	871,17	0,01

Tabela C.10 - Identificação, valores experimentais, valores teóricos e erro percentual para: 10 - frame (54) -1221, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
NI	652	652,11	0,02
$H\alpha$	659,2	656,29	-0,44
O II	667,4	667,78	0,06
NI	743,3	743,65	0,05
NI	744,7	744,78	0,01
O III	747,6	$747,\!57$	0,00
NI	754,8	754,62	-0,02
O II	765,9	765,67	-0,03
O I (1)	777,4	777,4	0,00
O I (35)	794,7	794,7	0,00
NI	818,3	818,48	0,02
NI	821,1	821,072	0,00
N I (2)	824	824,23	0,03
N III	844,2	844,43	0,03
N I (8)	856,7	856,774	0,01
N I (8)	859,6	859,4	-0,02
N I (8)	863	862,92	-0,01
N III	865,4	865,436	0,00
N I (1)	868,2	868,34	0,02
N I (1)	870,2	870,32	0,01
Ne I	905,2	905,24	0,00
N III	928,3	928,55	0,03

Tabela C.11 - Identificação, valores experimentais, valores teóricos e erro percentual para: 11 - frame (55) -1220, caso 01 CC.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
$H\alpha$	659,7	656,29	-0,52
NI	743,3	743,65	0,05
NI	744,7	744,78	0,01
O III	747,6	747,57	0,00
O I (1)	777,4	777,4	0,00
NI	818,3	818,48	0,02
ΝΙ	821,1	821,072	0,00
N III	844,2	844,43	0,03
N I (8)	863	862,92	-0,01
N I (1)	868,2	868,34	0,02
N I (1)	871,1	871,17	0,01

Tabela C.12 - Identificação, valores experimentais, valores teóricos e erro percentual para: 1 - frame -1081, caso 02 DR1.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
Ne I	621,7	621,73	0,00
Ne I	653,4	653,28	-0,02
$H\alpha$	658,7	656,3	-0,37
O I (38)	716,4	715,67	-0,10
NI	742,8	742,87	0,01
N I (3)	744,7	744,7	0,00
O III	747,1	747,57	0,06
O II	757,7	759,33	0,21
Mg I	765,9	765,9	0,00
O I (1)	777,4	777,4	0,00
O I (35)	795,2	794,7	-0,06
NI	818,7	818,8	0,01
N I (2)	821,6	821,6	0,00
N I (2)	825	824,23	-0,09
O III	845,2	845,64	0,05
N II	860,5	860,43	-0,01
N I (8)	862,5	862,92	0,05
N I (8)	864,4	865,58	0,14
N II	868,7	868,74	0,00
N I (1)	871,6	871,17	-0,05
Na IV	907,2	907,2	0,00
N III	927,8	926,89	-0,10
Si III	1018	1018	0,00

Tabela C.13 - Identificação, valores experimentais, valores teóricos e erro percentual para: 2 - frame -990, caso 02 DR2.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
N IV	621,2	621,23	0,00
Ne I	652,9	652,95	0,01
$H\alpha$	658,2	656,3	-0,29
O I (38)	716,4	715,67	-0,10
NI	742,8	742,87	0,01
N I (3)	744,7	744,23	-0,06
O III	747,1	747,57	0,06
Mg I	765,9	765,91	0,00
O I (1)	777,4	777,4	0,00
O I (35)	795,2	794,7	-0,06
ΝΙ	818,7	818,8	0,01
ΝΙ	822,1	822,31	0,03
N I (8)	824,5	824,23	-0,03
O III	845,2	845,64	0,05
NΙ	858,6	859,4	0,09
N I (8)	863,4	862,92	-0,06
N I (1)	869,2	868,34	-0,10
N II	869,7	869,9	0,02
N I (1)	870,6	870,3	-0,03
N I (1)	871,6	871,17	-0,05
Fe II	905,2	905,3	0,01

Tabela C.14 - Identificação, valores experimentais, valores teóricos e erro percentual para: frame -1012, caso 03.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
$H\alpha$	656,3	656,3	0
O I (38)	715,4	715,68	0,04
N I (3)	742,3	742,36	0,01
NI	743,8	743,681	-0,02
N I (3)	746,7	746,831	0,02
O I (1)	777,4	777,4	0,00
O I (35)	795,7	794,9	-0,10
NI	820,2	820,1437	-0,01
ΟI	823,1	823,3	0,02
N I (2)	825,9	824,239	-0,20
O I (4)	847,6	844,636	-0,35
N I (8)	862	862,924	0,11
Cs II	863,9	863,9	0,00
N I (8)	865,8	865,6112	-0,02
N I (1)	867,3	868,028	0,08
N I (1)	871,1	871,17	0,01
NI (1)	873	872,889	-0,01
Cr I	912,4	912,4	0,00

Tabela C.15 - Identificação, valores experimentais, valores teóricos e erro percentual para: frame -1208, caso 04.

Identificação	V_{exp} (nm)	V_{teo} (nm)	Erro (%)
Ne I	609,7	609,61	-0,01
Ne I	614	614,3	0,05
N II	617,4	617,43	0,00
N I (21)	649,6	648,27	-0,21
H ALFA	657,8	656,3	-0,23
N II(31)	660,2	661,056	0,13
O I (38)	715,9	715,67	-0,03
N I(3)	742,3	742,3	0,00
N I (3)	744,3	744,26	-0,01
N I (3)	747,1	746,83	-0,04
O I (1)	777,4	777,4	0,00
O I (35)	795,2	794,9	-0,04
NI	819,2	820,036	0,10
O I	822,1	822,1	0,00
N I (2)	824	824,23	0,03
O III	845,7	845,642	-0,01
N I (8)	859,6	859,4	-0,02
N II	860,5	860,43	-0,01
N I (8)	863	862,94	-0,01
NI	864,4	865,589	0,14
N II	868,7	868,7	0,00
N I (1)	871,1	871,1	0,00
60,6 N I(15)	906,7	906,7	0,00

APÊNDICE D - DADOS PARA CALCULO DA TEMPERATURA

Tabela .1 - Dados e cálculo da temperatura para: 1-frame (1) -1274, caso 01 (CC).

676,47 O V / 747,57 O III 676,40 747,5 678,96 O V / 747,57 O III 678,90 747,5 715,67 O I / 777,4 O I 715,60 777,4 715,67 O I / 844,67 O I 715,6 844,6 618,7 N I / 860,43 N II 618,7 860,4 660,61 N I / 744,78 N I 660,6 860,4 664,49 N I / 821,072 N I 664,4 821,0 664,49 N I / 856,774 N I 664,4 856,7	87,30744 87,31488 14,4604121 14,4604121 14,003495 13,6291684	78 850690	191 9220909						
678,90 715,60 715,6 618,7 660,6 660,6 664,4 664,4 664,4	87,31488 14,4604121 14,4604121 14,003495 13,6291684	10,000,01	121,5558205	183,9199551	3	33	4,37E+06	1,81E+04	74332,559
715,60 715,6 618,7 660,6 660,6 664,4 1 664,4 664,4 664,4	14,4604121 14,4604121 14,003495 13,6291684	48,859620	120,9113269	183,9199551	ಬ	က	5,79E+06	1,81E+04	65678,782
715,6 618,7 660,6 1 660,6 664,4 1 664,4 1 664,4	14,4604121 14,003495 13,6291684	10,740475	136,992964	232,7441557	ಬ	ಬ	5,05E+07	3,69E+07	46587,325
618,7 660,6 1 660,6 664,4 1 664,4 1 664,4	14,003495	10,988792	136,992964	194,157895	ಬ	က	5,05E+07	3,22E+07	27307,012
660,6 660,6 664,4 1 664,4 664,4	13.6291684	26,580243	98,53103946	186,0073065	9	ಬ	9,02E+03	4,67E+06	28606,103
(660,6 664,4 (664,4 (664,4	1001010101	12,000142	137,8169508	165,5109606	9	4	8,87E+04	1,49E+04	7584,964
664,4 [664,4 664,4	13,6291684	26,580243	137,8169508	186,0073065	9	ಬ	8,87E+04	4,67E+06	46714,489
664,4	13,6291684	12,000142	112,8010396	165,5109606	9	4	3,49E+06	1,49E+04	2972,678
I 664,4	13,6291684	11,839708	112,8010396	186,3361962	9	4	3,49E+06	5,23E+06	29062,572
	13,6291684	12,126378	112,8010396	168,8196075	9	4	3,49E+06	4,86E+06	23832,550
675,2 N I / 744,78 N I 675,2 744,7	13,6754533	12,000142	115,1799499	165,5109606	9	4	3,47E+05	1,49E+04	4843,412
675,2 N I / 860,43 N II 675,2 860,4	13,6754533	26,580243	115,1799499	186,0073065	9	ಬ	3,47E+05	4,67E+06	88319,667
743,65 N I / 860,43 N II 743,6 860,4	12,3567497	26,580243	140,7606426	186,0073065	4	25	1,40E-03	4,67E+06	7597,035
744,78 N I / 860,43 N II 744,7 860,4	12,0001424	26,580243	165,5109606	186,0073065	4	5	1,49E+04	4,67E+06	29633,787
818,48 N I / 862,92 N I 818,4 862,9	11,8444765	12,126378	160,20421	202,6793686	9	4	8,21E+06	2,67E+07	6734,990
818,48 N I / 870,32 N I 818,4 870,3	11,8444765	11,750091	160,20421	220,421037	9	2	8,21E+06	2,16E+07	2139,884
821,072 N I / 859,4 N I 821,0 859,4	11,8397081	12,121957	186,3361962	179,5356894	4	2	5,23E+06	2,09E+07	4790,937
821,072 N I / 862,92 N I 821,0 862,9	11,8397081	12,126378	186,3361962	202,6793686	4	4	5,23E+06	2,67E+07	2223,108
824,23 N I / 862,92 N I 824,2 862,9	11,8397081	12,126378	154,7702945	202,6793686	4	4	1,31E+07	2,67E+07	8390,452
859,4 N I / 870,32 N I 859,4 870,3	12,1219569	11,750091	179,5356894	220,421037	2	2	2,09E+07	2,16E+07	23348,179
862,92 N I / 868,34 N I 862,9 868,3	12,1263781	11,757531	202,6793686	240,77121	4	9	2,67E+07	1,88E+07	34573,681
862,92 N I / 870,32 N I 862,9 870,3	12,1263781	11,750091	202,6793686	220,421037	4	2	2,67E+07	2,16E+07	4377,263
$M \'edia Temperatura$									25893,247

Tabela .2 - Dados e cálculo da temperatura para: 2-frame (3) -1272, caso 01 (CC).

Razão	$ \lambda_1 \text{ (nm)} \lambda_2 \text{ (nm)}$	$\lambda_2 \text{ (nm)}$	E_1 (eV)	E_2 (eV)	$I_1 \; (\mathrm{s.u.})$	$ I_2 \text{ (s.u.)} g_1 \text{ (s.u.)} g_2 \text{ (s.u.)} A_1 \text{ (s^{-1})} A_2 \text{ (s^{-1})}$	$g_1 \ (s.u.)$	$g_2 \text{ (s.u.)}$	$A_1 (s^{-1})$	$A_2 (s^{-1})$	Temperatura (K)
742,87 N I / 744,78 N I	742,80	744,7	13,6686600	12,0001424	12,0001424 131,8897113 157,5434224	157,5434224	2	4	9,06e+05	1,49e+04	5386,178
744,78 N I /928,55 N III	744,70	928,5	12,0001424	47,03276	157,5434224	237,7348471	4	4	1,49e+04	4,75e+06	79208,39546
818,48 N I / 862,92 N I	818,40	862,9	11,8444765	12,1263781	165,3904459	199,0202691	9	4	8,21e+06	2,67e+07	6105,507336
818,48 N I / 870,32 N I	818,40	870,3	11,8444765	11,7500911	165,3904459	217,471179	9	2	8,21e+06	2,16e+07	2347,823545
821,072 N I / 859,4 N I	821,00	859,4	11,8397081	12,1219569	191,3904891	180,9757471	4	2	5,23e+06	2,09e+07	4662,887216
821,072 N I / 862,92 N I	821,00	862,9	11,8397081	12,1263781	191,3904891	199,0202691	4	4	5,23e+06	2,67e+07	2158,231742
859,4 N I / 870,32 N I	859,40	870,3	12,1219569	11,7500911	180,9757471	217,471179	2	2	2,09e+07	2,16e+07	26415,60783
862,92 N I / 868,34 N I	862,90	868,3	12,1263781	11,7575314	199,0202691	247,5671118	4	9	2,67e+07	1,88e+07	25199,64975
862,92 N I / 870,32 N I	862,90	870,3	12,1263781	11,7500911	1,7500911 199,0202691	217,471179	4	2	2,67e+07	2,67e+07 2,16e+07	4356,538876
$M\'edia_{Temperatura}$											17315,647

Tabela .3 - Dados e cálculo da temperatura para: 3-frame (4) -1271, caso 01 (CC).

Razão	$ \lambda_1 \text{ (nm)} $	$\lambda_2 \; (\mathrm{nm})$	$E_1~({ m eV})$	E_2 (eV)	I_1 (s.u.)	I_2 (s.u.)	$g_1 \; ({ m s.u.})$	g_1 (s.u.) g_2 (s.u.)	$A_1 (s^{-1})$	$A_2 (s^{-1})$	$A_2 (s^{-1}) \mid \text{Temperatura (K)}$
743,65 N I / 860,43 N II	743,60	860,4	12,3567497	26,580243	109,1636738 148,9380561	148,9380561	4	2	1,4e-03	4,67e+06	7608,225612
744,78 N I / 860,43 N II	744,70	860,4	12,0001424	26,580243	198,6649586	148,9380561	4	ಬ	1,49e+04	.,49e+04 4,67e+06	27671,7074
818,8 N I / 862,92 N I	818,80	862,9	11,8397081	12,1263781	130,3961035	160,6553036	4	4	1,25e+07	2,67e+07	6682,851438
818,8 N I / 871,17 N I	818,80	871,1	11,8397081	11,7528944	130,3961035	172,8758237	4	4	1,25e+07	1,29e+07	3224,656641
821,63 N I / 868,34 N I	821,60	868,3	11,8444765	11,7575314	152,2792601	194,2266017	9	9	2,26e+07	1,88e+07	2090,294437
862,92 N I/ 868,34 N I	862,90	868,3	12,1263781	11,7575314	160,6553036	194,2266017	4	9	2,67e+07	1,88e+07	30282,67199
862,92 N I/ 871,17 N I	862,90	871,1	12,1263781	11,7528944	160,6553036	172,8758237	4	4	2,67e+07	2,67e+07 $1,29e+07$	5349,374297
MédiaTemperatura											11844,255

Tabela .4 - Dados e cálculo da temperatura para: 4-frame (8) -1267, caso 01 (CC).

$Raz ilde{a}o$	$ \lambda_1 \text{ (nm)} $	$\lambda_1 \; (\mathrm{nm}) \; \mid \; \lambda_2 \; (\mathrm{nm}) \; \mid \;$	E_1 (eV)	E_2 (eV)	$I_1 \; (\mathrm{s.u.})$	I_2 (s.u.)	$g_1 \text{ (s.u.)}$	$g_2 \; (\text{s.u.})$	$A_1 (s^{-1})$	$A_2(s^{-1})$	I_2 (s.u.) g_1 (s.u.) g_2 (s.u.) A_1 (s^{-1}) A_2 (s^{-1}) Temperatura (K)
744,78 N I / 866,43 N I	744,70	866,4	12,0001424	13,0332035	111,2907284 152,8990363	152,8990363	4	4	1,49e+04	1,49e+04 1,63e+05	6232,831457
18,48 N I / 862,92 N I	818,40	862,9	11,8444765	12,1263781	117,2907364	145,4916832	9	4	8,21e+06	8,21e+06 2,67e+07	6472,313738
818,48 N I / 871,17 N I	818,40	871,1	11,8444765	11,7528944	117,2907364	154,3361753	9	4	8,21e+06	8,21e+06 1,29e+07	3658,734995
321,072 N I / 862,92 N I	821,00	862,9	11,8397081	12,1263781	135,7404474	145,4916832	4	4	5,23e+06	5,23e+06 2,67e+07	2201,484078
824,23 N I / 862,92 N I	824,20	862,9	11,8397081	12,1263781	119,781425	145,4916832	4	4	1,31e+07	1,31e+07 2,67e+07	7052,276098
824,23 N I / 871,17 N I	824,20	871,1	11,8397081	11,7528944	119,781425	154,3361753	4	4	1,31e+07	1,31e+07 1,29e+07	3107,504293
862,92 N I / 868,34 N I	862,90	868,3	12,1263781	11,7575314	145,4916832	172,4243513	4	9	2,67e+07	2,67e+07 1,88e+07	35252,0034
862,92 N I / 871,17 N I	862,90	871,1	12,1263781	11,7528944	1,7528944 145,4916832 154,3361753	154,3361753	4	4	2,67e+07	2,67e+07 1,29e+07	5445,473827
$M\'edia_{Temperatura}$											8677,828

Tabela .5 - Dados e cálculo da temperatura para: 5-frame (9) -1266, caso 01 (CC).

Razão	$\lambda_1 \text{ (nm)}$	$\lambda_1 \text{ (nm)} \mid \lambda_2 \text{ (nm)} \mid$	$E_1 \; ({ m eV})$	$E_2~({ m eV})$	$I_1 \; \mathrm{(s.u.)}$	$I_2 \; (\mathrm{s.u.})$	$g_1 \; ({ m s.u.})$	$g_2 \; (s.u.)$	$\mid g_1 \text{ (s.u.)} \mid g_2 \text{ (s.u.)} \mid A_1 \text{ (s^{-1})} \mid \neq$	$4_2 (s^{-1})$	Temperatura (K)
818,48 N I / 862,92 N I	818,40	862,9	11,8444765	12,1263781	117,6647609	150,409406	9	4	8,21e+06	8,21e+06 2,67e+07	6881,560467
818,48 N I / 871,17 N I	818,40	871,1	11,8444765	11,7528944	117,6647609	158,8767145	9	4	8,21e+06	8,21e+06 1,29e+07	3360,151302
821,072 N I / 862,92 N I	821,00	862,9	11,8397081	12,1263781	135,3217957	150,409406	4	4	5,23e+06	5,23e+06 2,67e+07	2255,717651
862,92 N I / 868,34 N I	862,90	868,3	12,1263781	11,7575314	150,409406	181,6084964	4	9	2,67e+07	2,67e+07 1,88e+07	30557,697
862,92 N I / 871,17 N I	862,90	871,1	12,1263781	11,7528944	150,409406	158,8767145	4	4	2,67e+07	2,67e+07 $1,29e+07$	5474,68479
$Mcute{e}dia_{Temperatura}$											9705,962

Tabela .6 - Dados e cálculo da temperatura para: 6-frame (16) -1259, caso 01 (CC).

Razão	$\parallel \lambda_1 \; (\mathrm{nm}) \parallel$	$\lambda_2 \text{ (nm)}$	E_1 (eV)	E_2 (eV)	$I_1 ext{ (s.u.)}$	<i>I</i> ₂ (s.u.)	$g_1 \text{ (s.u.)}$	g ₂ (s.u.)	$A_1 (s^{-1})$	$A_2 (s^{-1})$	I_2 (s.u.) g_1 (s.u.) g_2 (s.u.) A_1 (s^{-1}) A_2 (s^{-1}) Temperatura (K)
736,61 N I / 744,78 N I	736,60	744,7	13,6782735	12,0001424	$12,0001424 \mid 90,37637217 \mid 125,9356521$	125,9356521	4	4	1,31e+06	1,31e+06 1,49e+04	4040,945272
742,87 N I / 744,78 N I	742,80	744,7	13,6686600	12,0001424	106,2162893	125,9356521	2	4	9,06e+05	9,06e+05 1,49e+04	5397,351085
818,48 N I / 862,92 N I	818,40	862,9	11,8444765	12,1263781	12,1263781 128,6532082	162,7034841	9	4	8,21e+06	8,21e+06 2,67e+07	6729,904692
818,48 N I / 871,17 N I	818,40	871,1	11,8444765	11,7528944	128,6532082	172,8774959	9	4	8,21e+06	8,21e+06 1,29e+07	3412,218351
821,072 N I / 862,92 N I	821,00	862,9	11,8397081	12,1263781	154,3490331	162,7034841	4	4	5,23e+06 $2,67e+07$	2,67e+07	2177,47526
862,92 N I / 868,34 N I	862,90	868,3	12,1263781	11,7575314	162,7034841	198,1161549	4	9	2,67e+07	2,67e+07 1,88e+07	28822,69162
862,92 N I / 871,17 N I	862,90	871,1	12,1263781	11,7528944	11,7528944 162,7034841 172,8774959	172,8774959	4	4	2,67e+07	2,67e+07 1,29e+07	5434,279395
$Mcute{e}dia_{Temperatura}$											8002,124

Tabela .7 - Dados e cálculo da temperatura para: 7-frame (17) -1258, caso 01 (CC).

$E_2 \text{ (eV)} \qquad I_1 \text{ (s.u.)}$	() E_1 (eV) E_2 (eV) I_1 (s.u.)
7 45,25351 142,5581134	12,3567497 45,25351 142,5581134
$11,8444765 \mid 12,1263781 \mid 179,7971351 \mid 214,8998058$	12,1263781 179,7971351
$11,8444765 \ \big \ 11,7500911 \ \big \ 179,7971351 \ \big \ 232,7659303$	11,7500911 179,7971351
$11,8397081 \ \big \ 12,1263781 \ \big \ 207,8668828 \ \big \ 178,6280374$	12,1263781 207,8668828
11,8397081 12,1219569 207,8668828 188,7514917	12,1219569 207,8668828
$11,8397081 \ \ \ 12,1263781 \ \ \ 207,8668828 \ \ \ 214,8998058$	12,1263781 207,8668828
$11,8397081 \ \ \boxed{12,1263781} \ \ \boxed{162,5472077} \ \ \boxed{214,8998058}$	12,1263781 162,5472077
11,8397081 11,7500911 162,5472077 232,7659303	11,7500911 162,5472077
12,1219569 11,7500911 188,7514917 232,7659303	11,7500911 188,7514917
12,1263781 11,7575314 214,8998058 262,6061106	214,8998058
12,1263781 11,7500911 214,8998058 232,7659303	1 11,7500911 214,8998058

Tabela .8 - Dados e cálculo da temperatura para: 8-frame (26) -1249, caso 01 (CC).

Razão	$\lambda_1 \text{ (nm)}$	$\lambda_1 \text{ (nm)} \mid \lambda_2 \text{ (nm)} \mid$	E_1 (eV)	E_2 (eV)	$I_1 \; (\mathrm{s.u.})$	I_2 (s.u.) g_1 (s.u.) g_2 (s.u.) A_1 (s^{-1}) A_2 (s^{-1})	$g_1 \; ({ m s.u.})$	g ₂ (s.u.)	$A_1 (s^{-1})$	$A_2 (s^{-1})$	Temperatura (K)
818,48 N I / 862,92 N I	818,40	862,9	11,8444765	12,1263781	126,0186477	156,7071194	9	4	8,21e+06 2,67e+07	2,67e+07	6504,299482
818,48 N I / 871,17 N I	818,40	871,1	11,8444765	11,7528944	126,0186477	169,8287501	9	4	8,21e+06	8,21e+06 1,29e+07	3380,762474
821,072 N I / 862,92 N I	821,00	862,9	11,8397081	12,1263781	148,5142441	156,7071194	4	4	5,23e+06	5,23e+06 2,67e+07	2178,879725
862,92 N I / 868,34 N I	862,90	868,3	12,1263781	11,7575314	156,7071194	193,8333198	4	9	2,67e+07	2,67e+07 1,88e+07	26067,51754
862,92 N I /871,17 N I	862,90	871,1	12,1263781	11,7528944	156,7071194	169,8287501	4	4	2,67e+07	2,67e+07 1,29e+07	5302,906903
$Mcute{e}diaTemperatura$											8686,873

Tabela .9 - Dados e cálculo da temperatura para: 9-frame (53) -1222, caso 01 (CC).

Razão	$\parallel \lambda_1 \; (\mathrm{nm}) \parallel$	$\lambda_2 \; (\mathrm{nm})$	E_1 (eV)	E_2 (eV)	$I_1 ext{ (s.u.)}$	I ₂ (s.u.)	g_1 (s.u.)	g ₂ (s.u.)	I_2 (s.u.) g_1 (s.u.) g_2 (s.u.) A_1 (s^{-1}) A_2 (s^{-1})	$A_2 (s^{-1})$	Temperatura (K)
742,87 N I / 744,78 N I	742,80	744,7	13,6686600	12,0001424	$12,0001424 \mid 115,6528694 \mid$	143,013182	2	4	9,06e+05	9,06e+05 1,49e+04	5334,818202
818,48 N I / 862,92 N I	818,40	862,9	11,8444765	12,1263781	148,9157076 179,2452868	179,2452868	9	4	8,21e+06 2,67e+07	2,67e+07	6108,666595
818,48 N I / 871,17 N I	818,40	871,1	11,8444765	11,7528944	148,9157076 194,5265173	194,5265173	9	4	8,21e+06 1,29e+07	1,29e+07	3752,913051
821,072 N I / 859,4 N I	821,00	859,4	11,8397081	12,1219569	171,9713988	161,7571974	4	2	5,23e+06	5,23e+06 2,09e+07	4628,105603
821,072 N I / 862,92 N I	821,00	862,9	11,8397081	12,1263781	171,9713988	179,2452868	4	4	5,23e+06 $2,67e+07$	2,67e+07	2161,507717
862,92 N I / 868,34 N I	862,90	868,3	12,1263781	11,7575314	179,2452868 223,5598228	223,5598228	4	9	2,67e+07	2,67e+07 1,88e+07	24812,70485
862,92 N I / 871,17 N I	862,90	871,1	12,1263781	11,7528944	11,7528944 179,2452868 194,5265173	194,5265173	4	4	2,67e+07	2,67e+07 1,29e+07	5293,830388
$M\'ediaTemperatura$											7441,792

Tabela . 10 - Dados e cálculo da temperatura para: 10-frame (54) -1221, caso 01 (CC).

Razão	$\lambda_1 \; (\mathrm{nm})$	$\lambda_2 \; (\mathrm{nm}) \; $	E_1 (eV)	$E_2 \; ({ m eV})$	$I_1 \; (\mathrm{s.u.})$	$I_2 ({ m s.u.})$	$g_1 \; ({ m s.u.})$	g ₂ (s.u.)	$A_1 (s^{-1})$	$A_2 (s^{-1})$	Temperatura (K)
667,78 O II / 765,67 O II	667,70	765,6	30,811969	30,471393	96,33004313	115,4596691	4	2	3,37e+06	2,30e+06	2836,971286
652,11 N I / 744,78 N I	652,10	744,7	13,6645950	12,0001424	133,0517192	160,6740559	9	4	4,66e+04	1,49e+04	10344,85784
743,65 N I / 844,43 N III	743,60	844,4	12,3567497	43,95618	136,4704803	196,9054151	4	4	1,4e-03	9,05e+03	24143,70768
743,65 N I / 865,436 N III	743,60	865,4	12,3567497	45,25351	136,4704803	186,9574846	4	2	1,4e-03	1,69e+06	19327,29656
743,65 N I / 928,55 N III	743,60	928,5	12,3567497	47,03276	136,4704803	237,7116198	4	4	1,4e-03	4,75e+06	19009,82279
744,78 N I / 754,62 N I	744,70	754,6	12,0001424	13,6426899	160,6740559	134,3775212	4	2	1,49e+04	2,85e+06	4033,143172
744,78 N I / 928,55 N III	744,70	928,5	12,0001424	47,03276	160,6740559	237,7116198	4	4	1,49e+04	4,75e+06	78904,39371
818,48 N I / 862,92 N I	818,40	862,9	11,8444765	12,1263781	173,0949788	203,5066319	9	4	8,21e+06	2,67e+07	5851,698846
818,48 N I / 870,32 N I	818,40	870,3	11,8444765	11,7500911	173,0949788	225,1172714	9	2	8,21e+06	2,16e+07	2404,394701
821,072 N I / 856,774 N I	821,00	856,7	11,8397081	12,1263781	197,4114982	169,734896	4	4	5,23e+06	4,86e+06	94736,20783
821,072 N I/ 859,4 N I	821,00	859,4	11,8397081	12,1219569	197,4114982	183,8326155	4	2	5,23e+06	2,09e+07	4563,411661
821,072 N I / 862,92 N I	821,00	862,9	11,8397081	12,1263781	197,4114982	203,5066319	4	4	5,23e+06	2,67e+07	2146,142462
824,23 N I / 862,92 N I	824,20	862,9	11,8397081	12,1263781	155,9893885	203,5066319	4	4	1,31e+07	2,67e+07	8311,367576
824,23 N I / 870,32 N I	824,20	870,3	11,8397081	11,7500911	155,9893885	225,1172714	4	2	1,31e+07	2,16e+07	1692,85526
844,43 N III / 865,436 N III	844,40	865,4	43,95618	45,25351	196,9054151	186,9574846	4	2	9,05e+03	1,69e+06	3298,727081
844,43 N III / 928,55 N III	844,40	928,5	43,95618	47,03276	196,9054151	237,7116198	4	4	9,05e+03	4,75e+06	5970,416365
859,4 N I / 870,32 N I	859,40	870,3	12,1219569	11,7500911	183,8326155	225,1172714	2	2	2,09e+07	2,16e+07	23677,37285
862,92 N I / 868,34 N I	862,90	868,3	12,1263781	11,7575314	203,5066319	252,9980825	4	9	2,67e+07	1,88e+07	25287,74305
862,92 N I / 870,32 N I	862,90	870,3	12,1263781	11,7500911	203,5066319	225,1172714	4	2	2,67e+07	2,16e+07	4303,881392
865,436 N III / 928,55 N III	865,40	928,5	45,25351	47,03276	186,9574846	237,7116198	2	4	1,69e+06	4,75e+06	14581,37622
Wédiaremnenatuma											17771.289

Tabela .11 - Dados e cálculo da temperatura para: 11-frame (55) -1220, caso 01 (CC).

Razão	$\lambda_1 \; (\mathrm{nm})$	$\lambda_1 \text{ (nm)} \mid \lambda_2 \text{ (nm)} \mid$	E_1 (eV)	E_2 (eV)	I_1 (s.u.)	I_2 (s.u.) g_1 (s.u.) g_2 (s.u.) A_1 (s ⁻¹)	$g_1 \text{ (s.u.)}$	g ₂ (s.u.)		$A_2(s^{-1})$	Temperatura (K)
743,65 N I / 844,43 N III	743,60	844,4	12,3567497	43,95618	102,00367	146,2084549	4	4	1,4e-03	9,05e+03	24133,23552
818,48 N I / 862,92 N I	818,40	862,9	11,8444765	12,1263781	123,5292112	151,9057632	9	4	8,21e+06	2,67e+07	6363,033543
818,48 N I / 871,17 N I	818,40	871,1	11,8444765	11,7528944	123,5292112	161,5946575	9	4	8,21e+06	1,29e+07	3734,117942
821,072 N I / 862,92 N I	821,00	862,9	11,8397081	12,1263781	146,3914649	151,9057632	4	4	5,23e+06	5,23e+06 2,67e+07	2155,274625
862,92 N I / 868,34 N I	862,90	868,3	12,1263781	11,7575314	151,9057632	188,4838742	4	9	2,67e+07	1,88e+07	25579,59346
862,92 N I / 871,17 N I	862,90	871,1	12,1263781	11,7528944	151,9057632	161,5946575	4	4	2,67e+07	2,67e+07 $1,29e+07$	5426,271882
$Mcute{e}dia_{Temperatura}$											11231,92116

Tabela .12 - Dados e cálculo da temperatura para DR1 do caso 02.

	$\lambda_1 \text{ (nm)} \lambda_2 \text{ (nm)}$	$\lambda_2 \; (\mathrm{nm})$	E_1 (eV)	E_2 (eV)	I_1 (s.u.)	I_2 (s.u.)	$g_1 \; (\text{s.u.})$	g ₂ (s.u.)	$A_1 (s^{-1})$	$A_2 (s^{-1})$	Temperatura (K)
715,67 O I/ 777,4 O I	715,67	777,4	14,4604121	10,7404751	78,24721594	235,6492675	5	5	5,05E+07	3,69E+07	28798,516
742,87 N I / 744,7 N I	742,87	744,7	13,66866	12,0001424	97,47267796	122,0962964	2	4	9,06E+05	1,49E+04	5316,070
742,87 N I/ 860,43 N II	742,87	860,43	13,66866	26,580243	97,47267796	134,0860294	2	2	9,06E+05	4,67E+06	71678,459
744,7 N I / 860,43 N II	744,7	860,43	12,0001424	26,580243	122,0962964	134,0860294	4	2	1,49E+04	4,67E+06	29514,673
744,7 N I / 868,74 N II	744,7	868,74	12,0001424	22,103081	122,0962964	180,525446	4	1	1,49E+04	1,16E+06	48378,295
744,7 N I / 926,89 N III	744,7	926,89	12,0001424	47,02722	122,0962964	169,3993651	4	2	1,49E+04	5,97E+06	85506,686
818,8 N I / 862,92 N I	818,8	862,92	11,8397081	12,1263781	101,5294671	146,713912	4	4	1,25E+07	2,67E+07	9832,980
818,8 N I / 871,17 N I	818,8	871,17	11,8397081	11,7528944	101,5294671	180,2054175	4	4	1,25E+07	1,29E+07	1667,251
824,23 N I / 862,92 N I	824,23	862,92	11,8397081	12,1263781	106,1315128	146,713912	4	4	1,31E+07	2,67E+07	9716,488
824,23 N I / 871,17 N I	824,23	871,17	11,8397081	11,7528944	106,1315128	180,2054175	4	4	1,31E+07	1,29E+07	1678,518
860,43 N II / 868,74 N II	860,43	868,74	26,580243	22,103081	134,0860294	180,525446	22	1	4,67E+06	1,16E+06	15700,365
862,92 N I / 871,17 N I	862,92	871,17	12,1263781	11,7528944	146,713912	180,2054175	4	4	2,67E+07	1,29E+07	4598,200
$Mcute{e}dia_{Temperatura}$											26032,2

Tabela .13 - Dados e cálculo da temperatura para DR2 do caso 02.

Razão	$\lambda_1 \; (\mathrm{nm})$	$\lambda_2 \; (\mathrm{nm})$	E_1 (eV)	E_2 (eV)	I_1 (s.u.)	I_2 (s.u.)	$g_1 \; (\text{s.u.})$	$g_2 \; (s.u.)$	$A_1 (s^{-1})$	$A_2 (s^{-1})$	Temperatura (K)
715,67 O I / 777,4 O I	715,67	777,4	14,4604121	10,7404751	45,34885525	174,7536531	5	2	5,05E+07	3,69E+07	24731,211
742,87 N I / 869,9 N II	742,87	6,698	13,66866	26,564567	50,33368816	116,4823211	2	3	9,09E+05	2,26E+07	57077,167
744,23 N I / 822,31 N I	744,23	822,31	11,9955748	11,8374293	65,66942349	81,58041087	4	2	1,19E+07	2,62E+07	8317,284
744,23 N I / 862,92 N I	744,23	862,92	11,9955748	12,1263781	65,66942349	88,57714004	4	4	1,19E+07	2,67E+07	4205,750
744,23 N I / 870,3 N I	744,23	870,3	11,9955748	11,7500911	65,66942349	112,2106178	4	2	1,19E+07	2,16E+07	3609,519
744,23 N I / 871,17 N I	744,23	871,17	11,9955748	11,7528944	65,66942349	115,003458	4	4	1,19E+07	1,29E+07	4420,139
818,8 N I / 862,92 N I	818,8	862,92	11,8397081	12,1263781	60,98815862	88,57714004	4	4	1,25E+07	2,67E+07	9982,238
818,8 N I / 870,3 N I	818,8	870,3	11,8397081	11,7500911	60,98815862	112,2106178	4	2	1,25E+07	2,16E+07	1273,093
818,8 N I / 871,17 N I	818,8	871,17	11,8397081	11,7528944	60,98815862	115,003458	4	4	1,25E+07	1,29E+07	1515,433
822,31 N I / 862,92 N I	822,31	862,92	11,8374293	12,1263781	81,58041087	88,57714004	2	4	2,62E+07	2,67E+07	5765,698
822,31 N I / 870,3 N I	822,31	870,3	11,8374293	11,7500911	81,58041087	112,2106178	2	2	2,62E+07	2,16E+07	1782,558
822,31 N I / 871,17 N I	822,31	871,17	11,8374293	11,7528944	81,58041087	115,003458	2	4	2,62E+07	1,29E+07	2355,437
824,23 N I / 862,92 N I	824,23	862,92	11,8397081	12,1263781	64,12020675	88,57714004	4	4	1,31E+07	2,67E+07	9696,910
824,23 N I / 870,3 N I	824,23	870,3	11,8397081	11,7500911	64,12020675	112,2106178	4	2	1,31E+07	2,16E+07	1288,561
824,23 N I / 871,17 N I	824,23	871,17	11,8397081	11,7528944	64,12020675	115,003458	4	4	1,31E+07	1,29E+07	1538,121
859,4 N I / 870,3 N I	859,4	870,3	12,1219569	11,7500911	73,75421901	112,2106178	2	2	2,09E+07	2,16E+07	10807,255
859,4 N I / 871,17 N I	859,4	871,17	12,1219569	11,7528944	73,75421901	115,003458	2	4	2,09E+07	1,29E+07	17325,121
862,92 N I / 868,34 N I	862,92	868,34	12,1263781	11,7575314	88,57714004	113,9838273	4	9	2,67E+07	1,88E+07	21003,871
862,92 N I / 870,3 N I	862,92	870,3	12,1263781	11,7500911	88,57714004	112,2106178	4	2	2,67E+07	2,16E+07	3796,616
862,92 N I / 871,17 N I	862,92	871,17	12,1263781	11,7528944	88,57714004	115,003458	4	4	2,67E+07	1,29E+07	4342,611
$Mcute{e}dia_{Temperatura}$											9741.7

Tabela .14 - Dados e cálculo da temperatura para o caso 03.

Temperatura (K)	42544,160	2899,599	42878,368	38364,821	1389,925	1582,906	32143,383	10986,223	2680,773	113866,805	7350,796	2233,109	4795,988	1510,026	21801,92019
$A_2 (s^{-1})$	3,69E+07	2,43E+07	3,22E+07	3,22E+07	2,67E+07	3,75E+06	1,31E+07	1,29E+07	3,75E+06	3,75E+06	2,67E+07	1,29E+07	1,29E+07	3,75E+06	
$A_1 (s^{-1})$	5,05E+07	5,05E+07	5,05E+07	3,69E+07	5,64E+06	5,64E+06	1,69E+07	1,69E+07	1,69E+07	1,39E+06	1,31E+07	1,31E+07	2,67E+07	2,67E+07	
g ₂ (s.u.)	5	3	2	2	4	2	4	4	2	2	4	4	4	2	
g ₁ (s.u.)	5	2	5	5	4	4	4	4	4	4	4	4	4	4	
I_2 (s.u.)	194,0838201	137,1967811	144,5987911	144,5987911	150,2272075	187,9863634	121,331011	177,4865391	187,9863634	187,9863634	150,2272075	177,4865391	177,4865391	187,9863634	
I_1 (s.u.)	104,5963393	104,5963393	104,5963393	194,0838201	109,9407709	109,9407709	143,3376352	143,3376352	143,3376352	119,527863	121,331011	121,331011	150,2272075	150,2272075	
E_2 (eV)	10,7404751	14,0472008	10,9888611	10,9888611	12,1263781	11,7500911	11,8397081	11,7528944	11,7500911	11,7500911	12,1263781	11,7528944	11,7528944	11,7500911	
E_1 (eV)	14,4604121	14,4604121	14,4604121	10,7404751	11,9955748	11,9955748	12,3566896	12,3566896	12,3566896	13,8680115	11,8397081	11,8397081	12,1263781	12,1263781	
$\lambda_2 \; (\mathrm{nm})$	777,4	823,3	844,636	844,636	862,924	872,889	824,239	871,17	872,889	872,889	862,924	871,17	871,17	872,889	
$\lambda_1 \text{ (nm)} \lambda_2 \text{ (nm)}$	715,68	715,68	715,68	777,4	742,36	742,36	746,831	746,831	746,831	820,1437	824,239	824,239	862,924	862,924	
Razão	715,68 O I /777,4 O I	715,68 O I / 823,3 O I	715,68 O I / 844,636 O I	777,4 O I /844,636 O I	742,36 N I /862,924 NI	742,36 N I /872,889 N I	746,831 N I /824,239 N I	746,831 N I /871,170 N I	746,831 N I/872,889 NI	820,1437 N I / 872,889 N I	824,239 N I / 862,924 NI	824,239 N I / 871,170 N I	862,924 N I / 871,170 N I	862,924 N I / 872,889 N I	$Mcute{e}dia_{Temperatura}$

Tabela .15 - Dados e cálculo da temperatura para o caso 04.

TCGZGO	ν1 (ππ)	Λ2 (IIIII)	E_1 (eV)	E_2 (eV)	11 (S.U.)	I2 (s.u.)	$g_1 \; (s.u.)$	g ₂ (s.u.)	$A_1 (s^{-1})$	$A_2 (s^{-1})$	lemperatura (K)
715,67 O I / 777,4 O I	715,6	777,4	14,4604121	10,7404751	65,53119188	134,3055569	5	5	5,05e+07	3,69e+07	38744,028
715,67 O I /822,1 O I	715,6	822,1	14,4604121	14,0467663	65,53119188	87,34699513	5	2	5,05e+07	2,89e+07	7410,370
777,4 O I /822,1 O I	777,4	822,1	10,7404751	14,0467663	134,3055569	87,34699513	2	7	3,69e+07	2,89e+07	82259,729
617,43 N II / 744,26 N I	617,4	744,2	27,661099	13,6655510	37,13936683	76,35525702	3	4	1,40e+06	9,01e+04	48291,696
617,43 N II / 868,7 N II	617,4	868,7	27,661099	22,103081	37,13936683	115,435684	3	Н	1,40e+06	1,16e+06	23350,432
648,27 N I / 661,056 N II	648,2	661,0	13,6758573	23,474567	48,95091742	59,41223642	10	7	4,90e+06	6,01e+07	58707,979
648,27 N I / 742,364 N I	648,2	742,3	13,6758573	11,9955748	48,95091742	65,29235972	10	4	4,90e+06	5,64e+06	16259,181
648,27 N I / 746,83 N I	648,2	746,8	13,6758573	11,9955748	48,95091742	86,25689311	10	4	4,90e+06	1,96e+07	81891,434
648,27 N I / 820,036 N I	648,2	820,0	13,6758573	11,8374293	48,95091742	78,31696529	10	2	4,90e+06	4,68e+06	9038,229
648,27 N I / 824,23 N I	648,2	824,2	13,6758573	11,8397081	48,95091742	77,50363762	10	4	4,90e+06	1,31e+07	33680,794
648,27 N I / 859,4 N I	648,2	859,4	13,6758573	12,1219569	48,95091742	93,13558264	10	2	4,90e+06	2,09e+07	16631,905
648,27 N I / 862,94 N I	648,2	862,9	13,6758573	12,1263781	48,95091742	100,0790331	10	4	4,90e+06	2,67e+07	80957,401
648,27 N I / 865,589 N I	648,2	865,5	13,6758573	12,1219569	48,95091742	103,7519027	10	2	4,90e+06	1,07e+07	9649,519
648,27 N I / 871,17 N I	648,2	871,1	13,6758573	11,7528944	48,95091742	118,8465977	10	4	4,90e+06	1,29e+07	19732,621
661,056 N II / 742,364 N I	661,0	742,3	23,474567	11,9955748	59,41223642	65,29235972	2	4	6,01e+07	5,64e+06	42475,529
661,056 N II / 744,26 N I	661,0	744,2	23,474567	13,6655510	59,41223642	76,35525702	7	4	6,01e+07	9,01e+04	15316,233
661,056 N II / 746,83 N I	661,0	746,8	23,474567	11,9955748	59,41223642	86,25689311	7	4	6,01e+07	1,96e+07	61246,005
661,056 N II /820,036 N I	661,0	820,0	23,474567	11,8374293	59,41223642	78,31696529	2	2	6,01e+07	4,68e+06	31425,250
661,056 N II /824,23 N I	661,0	824,2	23,474567	11,8397081	59,41223642	77,50363762	2	4	6,01e+07	1,31e+07	52546,051
661,056 N II /859,4 N I	661,0	859,4	23,474567	12,1219569	59,41223642	93,13558264	2	2	6,01e+07	2,09e+07	43607,729
661,056 N II / 862,94 N I	661,0	862,9	23,474567	12,1263781	59,41223642	100,0790331	2	4	6,01e+07	2,67e+07	60996,891
661,056 N II /865,589 N I	661,0	862,5	23,474567	12,1219569	59,41223642	103,7519027	2	2	6,01e+07	1,07e+07	34617,959
661,056 N II /868,7 N II	661,0	2'898	23,474567	22,103081	59,41223642	115,435684	2	1	6,01e+07	1,16e+06	2329,898
661,056 N I / 871,17 N I	661,0	871,1	23,474567	11,7528944	59,41223642	118,8465977	2	4	6,01e+07	1,29e+07	44340,333
742,364 N I / 820,036 N I	742,3	820,0	11,9955748	11,8374293	65,29235972	78,31696529	4	2	5,64e+06	4,68e+06	1580,473
/ I	742,3	859,4	11,9955748	12,1219569	65,29235972	93,13558264	4	2	5,64e+06	2,09e+07	12746,908
742,364 N I / 862,94 N I	742,3	862,9	11,9955748	12,1263781	65,29235972	100,0790331	4	4	5,64e+06	2,67e+07	1553,406
}/ I	744,2	860,4	13,6655510	26,580243	76,35525702	94,64019317	4	5	9,01e+04	4,67e+06	39321,556
746,83 N I / 824,23 N I	746,8	824,2	11,9955748	11,8397081	86,25689311	77,50363762	4	4	1,96e+07	1,31e+07	4584,612
_	746,8	862,9	11,9955748	12,1263781	86,25689311	100,0790331	4	4	1,96e+07	2,67e+07	94855,293
746,83 N I / 871,17 N I	746,8	871,1	11,9955748	11,7528944	86,25689311	118,8465977	4	4	1,96e+07	1,29e+07	3154,457
820,036 N II / 859,4 N I	820,0	859,4	11,8374293	12,1219569	78,31696529	93,13558264	2	2	4,68e+06	2,09e+07	2587,158
820,036 N II / 862,94 N I	820,0	862,9	11,8374293	12,1263781	78,31696529	100,0790331	2	4	4,68e+06	2,67e+07	1568,104
820,036 N II / 865,589 N I	820,0	865,5	11,8374293	12,1219569	78,31696529	103,7519027	2	2	4,68e+06	1,07e+07	6715,023
824,23 N I /862,94 N I	824,2	862,9	11,8397081	12,1263781	77,50363762	100,0790331	4	4	1,31e+07	2,67e+07	8103,340
824,23 N I /871,17 N I	824,2	871,1	11,8397081	11,7528944	77,50363762	118,8465977	4	4	1,31e+07	1,29e+07	2021,991
859,4 N I / 871,17 N I	859,4	871,1	12,1219569	11,7528944	93,13558264	118,8465977	2	4	2,09e+07	1,29e+07	91759,254
1 / 868,7	860,4 N I	2'898	26,580243	22,103081	94,64019317	115,435684	2	1	4,67e+06	1,16e+06	16183,395
862,94 N I / 871,17 N I	862,9	871,1	12,1263781	11,7528944	100,0790331	118,8465977	4	4	2,67e+07	1,29e+07	4769,205

APÊNDICE E - DADOS PARA CALCULO DA DENSIDADE DE ELÉTRONS

Tabela E.1 - Dados e cálculo da densidade de elétrons para: 1-frame (1) -1274, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7774	46587,32516	16,9469	5,80E-02	2,92355E+18
8446	27307,01245	22,2136	7,76E-02	2,8614E+18
8604	28606,10313	111,0225	1,09E-01	1,0171E+19
7447	7584,963526	32,4666	4,84E+01	6,71437E+15
8604	46714,48896	111,0225	1,25E-01	8,857E+18
6644	2972,678323	426,9114	2,48E-03	1,72379E+21
7447	2972,678323	32,4666	3,12E-02	1,04044E+19
6644	29062,57212	426,9114	9,77E-03	4,36947E+20
8210	29062,57212	21,7089	6,73E-02	3,22374E+18
6644	23832,55033	426,9114	8,99E-03	4,74818E+20
8567	23832,55033	111,0225	1,03E-01	1,07417E+19
7447	4843,411589	32,4666	3,64E-02	8,92729E+18
8604	88319,6666	111,0225	1,37E-01	8,10383E+18
7436	7597,034818	32,4666	4,24E-02	7,66487E+18
8604	7597,034818	111,0225	6,63E-02	1,67369E+19
7447	29633,78651	32,4666	7,04E-02	4,61419E+18
8604	29633,78651	111,0225	1,10E-01	1,00559E+19
8184	6734,989642	11,9867	3,77E-02	3,18134E+18
8629	6734,989642	111,0225	6,34E-02	1,75202E+19
8184	2139,883971	11,9867	2,74E-02	4,37471E+18
8703	2139,883971	111,0225	2,71E-02	4,09677E+19
8210	4790,936774	21,7089	3,34E-02	6,49033E+18
8594	4790,936774	22,2136	5,65E-02	3,93299E+18
8210	2223,108085	21,7089	2,74E-02	7,92296E+18
8629	2223,108085	111,0225	4,64E-02	2,39273E+19
8242	8390,451858	21,7089	4,12E-02	5,27072E+18
8629	8390,451858	111,0225	6,91E-02	1,60755E+19
8594	23348,17863	22,2136	1,03E-01	2,16153E+18
8703	23348,17863	111,0225	6,42E-02	1,72809E+19
8629	34573,68106	111,0225	1,16E-01	9,53744E+18
8683	34573,68106	111,0225	7,38E-02	1,50462E+19
8629	4377,26274	111,0225	5,47E-02	2,03115E+19
8703	4377,26274	111,0225	3,22E-02	3,44724E+19
$M\acute{e}dia_{Densidade}$				$8,99793*10^{19}cm^{-3}$

Tabela E.2 - Dados e cálculo da densidade de elétrons para: 2-frame (3) -1272, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7428	5386,178286	25,691	3,76E-02	6,82791E+18
7447	5386,178286	57,0507	3,76E-02	1,51624E+19
7447	79208,39546	57,0507	8,76E-02	6,51145E+18
8184	6105,507336	94,2976	3,63E-02	2,59461E+19
8629	6105,507336	311,0627	6,12E-02	5,08248E+19
8184	2347,823545	94,2976	2,74E-02	3,44152E+19
8703	2347,823545	311,0627	2,71E-02	1,14783E+20
8210	4662,887216	18,5572	3,31E-02	5,60471E+18
8594	4662,887216	311,0627	5,59E-02	5,56297E+19
8210	2158,231742	18,5572	2,74E-02	6,7727E+18
8629	2158,231742	311,0627	4,64E-02	6,70394E+19
8594	26415,60783	311,0627	1,06E-01	2,92091E+19
8703	26415,60783	311,0627	6,69E-02	4,65292E+19
8629	25199,64975	311,0627	1,05E-01	2,96201E+19
8683	25199,64975	311,0627	6,58E-02	4,72598E+19
8629	4356,538876	311,0627	5,46E-02	5,70038E+19
8629	4356,538876	311,0627	5,46E-02	5,70038E+19
$M\'edia_{Densidade}$				$3,85967*10^{19}cm^{-3}$

Tabela E.3 - Dados e cálculo da densidade de elétrons para: 3-frame (4) -1271, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
8604	7608,225612	32,3561	6,64E-02	4,87494E+18
7447	27671,7074	6737,3668	6,88E-02	9,78951E+20
8604	27671,7074	32,3561	1,08E-01	2,99535E+18
8188	6682,851438	21,8731	3,76E-02	5,82232E+18
8629	6682,851438	32,3561	6,32E-02	5,12053E+18
8188	3224,656641	21,8731	2,93E-02	7,46189E+18
8711	3224,656641	32,3561	2,91E-02	1,113E+19
8216	2090,294437	21,8731	2,74E-02	7,98288E+18
8683	2090,294437	32,3561	2,71E-02	1,19395E+19
8629	30282,67199	32,3561	1,11E-01	2,90989E+18
8683	30282,67199	32,3561	7,01E-02	4,61306E+18
8629	5349,374297	32,3561	5,86E-02	5,52134E+18
8711	5349,374297	32,3561	3,49E-02	9,28431E+18
$M\'edia_{Densidade}$				$8,14313*10^{19}cm^{-3}$

Tabela E.15 - Dados e cálculo da densidade de elétrons para o caso 04.

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7774	38744,03	17,1208	5,58E-02	3,06673E+18
8221	7410,37	48,225	6,76E-02	7,12911E+18
7774	82259,73	17,1208	6,49E-02	2,63803E+18
8221	82259,73	48,225	8,67E-02	5,56228E+18
6174	48291,70	1080,3207	7,40E-02	1,46076E+20
7442	48291,70	719,024	8,04E-02	8,93999E+19
6174	23350,43	1080,3207	5,86E-02	1,84208E+20
8687	23350,43	211,5767	6,42E-02	3,29313E+19
6482	58707,98	1080,3207	1,41E-02	7,6786E+20
6610	58707,98	1080,3207	2,07E-02	5,21614E+20
6482	16259,18	1080,3207	8,47E-03	1,27485E+21
7423	16259,18	719,024	5,71E-02	1,25975E+20
6482	81891,43	1080,3207	1,54E-02	7,01507E+20
7468	81891,43	79,8682	8,78E-02	9,09661E+18
6482	9038,23	1080,3207	6,10E-03	1,77228E+21
8200	9038,23	48,225	4,26E-02	1,13093E+19
6482	33680,79	1080,3207	1,19E-02	9,10372E+20
8242	33680,79	48,225	7,11E-02	6,78447E+18
6482	16631,91	1080,3207	8,59E-03	1,25776E+21
8594	16631,91	1080,3207	9,06E-02	1,19263E+20
6482	80957,40	1080,3207	1,54E-02	7,01507E+20
8629	80957,40	1866,2793	1,37E-01	1,36225E+20
6482	9649,52	1080,3207	6,38E-03	1,6938E+21
8655	9649,52	211,5767	7,34E-02	2,88274E+19
6482	19732,62	1080,3207	9,55E-03	1,13154E+21
8711	19732,62	70,1761	6,10E-02	1,1511E+19
6610	42475,53	1080,3207	1,90E-02	5,69606E+20
7423	42475,53	719,024	7,91E-02	9,09287E+19
6610	15316,23	1080,3207	1,13E-02	9,5378E+20
7442	15316,23	719,024	5,56E-02	1,29242E+20
6610	61246,00	1080,3207	2,10E-02	5,14832E+20
7468	61246,00	79,8682	8,34E-02	9,57197E+18
6610	31425,25	1080,3207	1,65E-02	6,5591E+20

8200	31425,25	48,225	6,93E-02	6,96345E+18
6610	52546,05	1080,3207	2,00E-02	5,38848E+20
8242	52546,05	48,225	7,95E-02	6,06655E+18
6610	43607,73	1080,3207	1,91E-02	5,65974E+20
8594	43607,73	1866,2793	1,24E-01	1,50188E+20
6610	60996,89	1080,3207	2,10E-02	5,1549E+20
8629	60996,89	1866,2793	1,30E-01	1,43176E+20
6610	34617,96	1080,3207	1,73E-02	6,24439E+20
8655	34617,96	1866,2793	1,16E-01	1,6025E+20
6610	2329,90	1080,3207	3,63E-03	2,97609E+21
8687	2329,90	211,5767	2,71E-02	7,80726E+19
6610	44340,33	1080,3207	1,92E-02	5,63648E+20
8711	44340,33	70,1761	7,96E-02	8,8156E+18
7423	12746,91	719,024	5,17E-02	1,39069E+20
8594	12746,91	1866,2793	8,12E-02	2,29781E+20
7442	39321,56	719,024	7,80E-02	9,22211E+19
8604	39321,56	1866,2793	7,78E-02	2,3981E+20
7468	4584,61	79,8682	3,57E-02	2,24012E+19
8242	4584,61	48,225	3,29E-02	1,46566E+19
7468	3154,46	79,8682	3,17E-02	2,519E+19
8711	3154,46	70,1761	2,89E-02	2,42991E+19
8200	2587,16	48,225	2,76E-02	1,74538E+19
8594	2587,16	1866,2793	4,68E-02	3,98918E+20
8200	6715,02	48,225	3,76E-02	1,28136E+19
8655	6715,02	211,5767	6,33E-02	3,34246E+19
8242	8103,34	48,225	4,06E-02	1,18842E+19
8629	8103,34	1866,2793	6,81E-02	2,74148E+20
8604	16183,40	1866,2793	8,95E-02	2,08518E+20
8687	16183,40	211,5767	5,52E-02	3,83437E+19
8629	4769,20	1866,2793	5,64E-02	3,30992E+20
8711	4769,20	70,1761	3,33E-02	2,10915E+19
$M\acute{e}dia_{Densidade}$				$3,6*10^{20}cm^{-3}$

Tabela E.4 - Dados e cálculo da densidade de elétrons para: 4-frame (8) -1271, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
8184	6472,313738	18,2096	3,71E-02	4,90543E+18
8629	6472,313738	27,0132	6,25E-02	4,32455E+18
8184	3658,734995	18,2096	3,05E-02	5,97839E+18
8711	3658,734995	27,0132	3,03E-02	8,92946E+18
8210	2201,484078	18,2096	2,74E-02	6,64584E+18
8629	2201,484078	27,0132	4,64E-02	5,82181E+18
8242	7052,276098	18,2096	3,84E-02	4,74816E+18
8629	7052,276098	27,0132	6,45E-02	4,1907E+18
8242	3107,504293	18,2096	2,90E-02	6,27835E+18
8711	3107,504293	27,0132	2,88E-02	9,39511E+18
8629	35252,0034	27,0132	1,17E-01	2,30427E+18
8683	35252,0034	27,0132	7,44E-02	3,63255E+18
8629	5445,473827	27,0132	5,89E-02	4,58376E+18
8711	5445,473827	27,0132	3,49E-02	7,74065E+18
$M\'edia_{Densidade}$				$5,67707*10^{18}cm^{-3}$

Tabela E.5 - Dados e cálculo da densidade de elétrons para: 5-frame (9) -1226, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
8184	6881,560467	19,5182	3,80E-02	5,13787E+18
8629	6881,560467	25,8259	6,39E-02	4,04335E+18
8184	3360,151302	19,5182	2,97E-02	6,57825E+18
8711	3360,151302	25,8259	2,94E-02	8,7725E+18
8210	2255,717651	19,5182	2,74E-02	7,12343E+18
8629	2255,717651	25,8259	4,64E-02	5,56593E+18
8629	30557,697	25,8259	1,12E-01	2,31565E+18
8683	30557,697	25,8259	7,04E-02	3,6698E+18
8629	5474,68479	25,8259	5,90E-02	4,37483E+18
8711	5474,68479	25,8259	3,50E-02	7,38658E+18
$M\acute{e}dia_{Densidade}$				$5,49682*10^{18}cm^{-3}$

Tabela E.6 - Dados e cálculo da densidade de elétrons para: 6-frame (16) -1259, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7447	4040,945272	29,8833	3,42E-02	8,74983E+18
7428	5397,351085	29,8833	3,77E-02	7,93706E+18
7447	5397,351085	29,8833	3,77E-02	7,93706E+18
8184	6729,904692	73,2093	3,77E-02	1,94357E+19
8629	6729,904692	126,246	6,34E-02	1,99281E+19
8184	3412,218351	73,2093	2,98E-02	2,45601E+19
8711	3412,218351	76,3694	2,96E-02	2,58168E+19
8210	2177,47526	331,1864	2,74E-02	1,20871E+20
8629	2177,47526	126,246	4,64E-02	2,72082E+19
8629	28822,69162	126,246	1,09E-01	1,15378E+19
8629	5434,279395	126,246	5,89E-02	2,14362E+19
8711	5434,279395	76,3694	3,49E-02	2,18994E+19
$M\'edia_{Densidade}$				$2,64431*10^{19}cm^{-3}$

Tabela E.7 - Dados e cálculo da densidade de elétrons para: 7-frame (17) -1258, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7436	19337,28431	34,3521	6,18E-02	5,55985E+18
8654	19337,28431	51,8728	9,71E-02	5,34205E+18
8184	6029,492278	14,8604	3,62E-02	4,10707E+18
8629	6029,492278	51,8728	6,09E-02	8,51191E+18
8184	2428,797047	14,8604	2,74E-02	5,4235E+18
8703	2428,797047	51,8728	2,71E-02	1,91413E+19
8210	4408,613716	20,6166	3,24E-02	6,35555E+18
8594	4408,613716	100,3268	5,48E-02	1,83085E+19
8210	2150,117635	20,6166	2,74E-02	7,52431E+18
8629	2150,117635	51,8728	4,64E-02	1,11795E+19
8242	8596,877338	10,3258	4,16E-02	2,48065E+18
8629	8596,877338	51,8728	6,98E-02	7,43448E+18
8594	22800,86387	100,3268	1,02E-01	9,82603E+18
8703	22800,86387	51,8728	6,38E-02	8,13299E+18
8629	28148,05553	51,8728	1,09E-01	4,77651E+18
8683	28148,05553	51,8728	6,83E-02	7,59197E+18
8629	4395,118647	51,8728	5,47E-02	9,47647E+18
8703	4395,118647	51,8728	3,23E-02	1,60822E+19
$M\'edia_{Densidade}$				$8,736381*10^{18}cm^{-3}$

Tabela E.8 - Dados e cálculo da densidade de elétrons para: 8-frame (26) -1249, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
8184	6504,299482	20,2264	3,72E-02	5,4388E+18
8629	6504,299482	23,2854	6,26E-02	3,72121E+18
8184	3380,762474	20,2264	2,97E-02	6,80446E+18
8711	3380,762474	23,2854	2,95E-02	7,89451E+18
8210	2178,879725	20,2264	2,74E-02	7,3819E+18
8629	2178,879725	23,2854	4,64E-02	5,01841E+18
8629	26067,51754	23,2854	1,06E-01	2,19524E+18
8683	26067,51754	23,2854	6,66E-02	3,49854E+18
8629	5302,906903	23,2854	5,84E-02	3,98436E+18
8711	5302,906903	23,2854	3,46E-02	6,73407E+18
$M\'edia_{Densidade}$				$5,26715*10^{18}cm^{-3}$

Tabela E.9 - Dados e cálculo da densidade de elétrons para: 9-frame (53) -1222, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7428	5334,818202	13,9489	3,75E-02	3,71807E+18
7447	5334,818202	13,9489	3,75E-02	3,71807E+18
8184	6108,666595	12,0427	3,64E-02	3,31295E+18
8629	6108,666595	25,835	6,12E-02	4,22045E+18
8184	3752,913051	12,0427	3,07E-02	3,92172E+18
8711	3752,913051	21,5495	3,05E-02	7,06357E+18
8210	4628,105603	19,3568	3,30E-02	5,86246E+18
8594	4628,105603	18,59	5,58E-02	3,33371E+18
8210	2161,507717	19,3568	2,74E-02	7,06453E+18
8629	2161,507717	25,835	4,64E-02	5,56789E+18
8629	24812,70485	25,835	1,05E-01	2,47113E+18
8683	24812,70485	25,835	6,55E-02	3,94483E+18
8629	5293,830388	25,835	5,84E-02	4,42299E+18
8711	5293,830388	21,5495	3,46E-02	6,23572E+18
$M\'edia_{Densidade}$				$4,63272*10^{18}cm^{-3}$

Tabela E.10 - Dados e cálculo da densidade de elétrons para: 10-frame (54) -1221, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7447	10344,85784	36,0598	4,80E-02	7,50814E+18
7436	24143,70768	36,0598	6,61E-02	5,45924E+18
7436	19327,29656	36,0598	6,18E-02	5,83768E+18
8654	19327,29656	109,9073	9,71E-02	1,13215E+19
7436	19009,82279	36,0598	6,13E-02	5,88395E+18
7447	4033,143172	36,0598	0 3,41E-02	1,0565E+19
7447	78904,39371	36,0598	8,75E-02	4,11899E+18
8184	5851,698846	81,2051	3,58E-02	2,26794E+19
8629	5851,698846	109,9073	6,03E-02	1,82177E+19
8184	2404,394701	81,2051	2,74E-02	2,96369E+19
8703	2404,394701	72,9744	2,71E-02	2,69278E+19
8210	4563,411661	36,8777	3,28E-02	1,1227E+19
8594	4563,411661	70,8496	5,55E-02	1,27705E+19
8210	2146,142462	36,8777	2,74E-02	1,3459E+19
8629	2146,142462	109,9073	4,64E-02	2,36869E+19
8242	8311,367576	36,8777	4,10E-02	8,99015E+18
8629	8311,367576	109,9073	6,88E-02	1,5977E+19
8654	3298,727081	109,9073	4,99E-02	2,20192E+19
8594	23677,37285	70,8496	1,03E-01	6,8674E+18
8703	23677,37285	72,9744	6,45E-02	1,13093E+19
8629	25287,74305	109,9073	1,05E-01	1,0455E+19
8683	25287,74305	72,9744	6,59E-02	1,10744E+19
8629	4303,881392	109,9073	5,43E-02	2,02269E+19
8703	4303,881392	72,9744	3,20E-02	2,27998E+19
8654	14581,37622	109,9073	8,56E-02	1,28335E+19
$M\'edia_{Densidade}$				$1,35328 * 10^{19} cm^{-3}$

Tabela E.11 - Dados e cálculo da densidade de elétrons para: 11-frame (55) -1220, caso 01 (CC).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7436	24133,23552	6,6414	6,60E-02	1,00559E+18
8184	6363,033543	45,1632	3,69E-02	1,22428E+19
8629	6363,033543	34,0457	6,21E-02	5,48339E+18
8184	3734,117942	45,1632	3,07E-02	1,47313E+19
8711	3734,117942	34,0457	3,05E-02	1,11784E+19
821	2155,274625	45,1632	2,74E-02	1,64829E+19
8629	2155,274625	34,0457	4,64E-02	7,33744E+18
8629	25579,59346	34,0457	1,05E-01	3,22772E+18
8683	25579,59346	34,0457	6,61E-02	5,14731E+18
8629	5426,271882	34,0457	5,89E-02	5,78356E+18
8711	5426,271882	34,0457	3,49E-02	9,76785E+18
$M\'edia_{Densidade}$				$8,39893*10^{18}cm^{-3}$

Tabela E.12 - Dados e cálculo da densidade de elétrons para: 1-frame -1081, caso 02 (DR1).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7774	28798,516	19,6176	4,97E-02	3,94632E+18
74287	5316,070	68,4327	3,75E-02	1,82602E+19
7447	5316,070	68,4327	3,75E-02	1,82602E+19
74287	71678,459	68,4327	8,59E-02	7,96978E+18
86043	71678,459	781,3694	1,34E-01	5,82731E+19
7447	29514,673	68,4327	7,03E-02	9,73867E+18
86043	29514,673	781,3694	1,10E-01	7,08659E+19
7447	48378,295	68,4327	8,04E-02	8,50646E+18
86874	48378,295	137,6108	8,07E-02	1,70469E+19
7447	85506,6862	68,4327	8,78E-02	7,79416E+18
92689	85506,6862	6681,0169	2,35E-01	2,84299E+20
8188	9832,980	54,6615	4,42E-02	1,2354E+19
86292	9832,980	781,3694	7,40E-02	1,05554E+20
82423	9716,488	54,6615	4,40E-02	1,24234E+19
86292	9716,488	781,3694	7,36E-02	1,06129E+20
86043	15700,365	781,3694	8,83E-02	8,84524E+19
86874	15700,365	137,6108	5,44E-02	2,53E+19
86292	4598,200	781,3694	5,56E-02	1,40453E+20
87117	4598,200	137,6108	3,28E-02	4,19454E+19
$M\acute{e}dia_{Densidade}$				$5,46*10^{19}cm^{-3}$

Tabela E.13 - Dados e cálculo da densidade de elétrons para: 2-frame -990, caso 02 (DR2).

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7774	24731,211	19,6176	4,72E-02	4,15542E+18
74287	57077,167	68,4327	8,65E-02	7,91388E+18
8699	57077,167	137,6108	8,31E-02	1,65519E+19
74423	4205,750	68,4327	3,46E-02	1,97737E+19
86292	4205,750	781,3694	5,39E-02	1,44952E+20
74423	3609,519	68,4327	3,30E-02	2,07609E+19
8703	3609,519	137,6108	3,01E-02	4,56907E+19
74423	4420,139	68,4327	3,52E-02	1,94413E+19
87117	4420,139	137,6108	3,23E-02	4,25739E+19
8188	9982,238	54,6615	4,46E-02	1,22663E+19
86292	9982,238	781,3694	7,45E-02	1,04827E+20
82231	5765,698	54,6615	3,56E-02	1,53443E+19
86292	5765,698	781,3694	6,00E-02	1,30154E+20
82423	9696,910	54,6615	4,40E-02	1,24351E+19
86292	9696,910	781,3694	7,36E-02	1,06226E+20
8594	10807,255	62,4286	7,65E-02	8,15575E+18
8703	10807,255	137,6108	4,64E-02	2,96474E+19
8594	17325,121	62,4286	9,23E-02	6,76707E+18
87117	17325,121	137,6108	5,91E-02	2,3274E+19
86292	21003,871	781,3694	9,99E-02	7,81997E+19
86834	21003,871	137,6108	6,23E-02	2,2105E+19
86292	3796,616	781,3694	5,21E-02	1,4996E+20
8703	3796,616	137,6108	3,06E-02	4,49315E+19
86292	4342,611	781,3694	5,45E-02	1,43351E+20
87117	4342,611	137,6108	3,21E-02	4,28535E+19
$M\'edia_{Densidade}$				$5*10^{19}cm^{-3}$

Tabela E.14 - Dados e cálculo da densidade de elétrons para o caso 03.

Multipleto (Å)	Temperatura (K)	w_{medida} (Å)	$w_{calculado}$ (Å)	Densidade-Ne (cm^{-3})
7774	42544,160	13,4295	5,71E-02	2,35078E+18
8233	2899,599	54,0607	2,85E-02	1,89987E+19
8446,36	42878,368	34,2484	9,03E-02	3,79158E+18
7774	38364,821	13,4295	5,56E-02	2,41562E+18
8446,36	38364,821	34,2484	8,80E-02	3,89314E+18
7468,31	32143,383	87,9706	7,23E-02	1,2162E+19
8242,39	32143,383	34,2484	6,98E-02	4,90411E+18
7468,31	10986,223	87,9706	4,90E-02	1,79499E+19
8711,7	10986,223	181,5034	4,67E-02	3,88595E+19
7468,31	2680,773	87,9706	3,04E-02	2,89387E+19
8728,89	2680,773	181,5034	2,76E-02	6,57819E+19
8242,39	7350,796	34,2484	3,90E-02	8,78532E+18
8711,7	4795,988	181,5034	3,33E-02	5,44318E+19
$M\'edia_{Densidade}$				$2*10^{19}cm^{-3}$

ANEXO A - TABELAS E DADOS PARA CORREÇÃO DA RESPOSTA ESPECTRAL DA CÂMERA V9.1

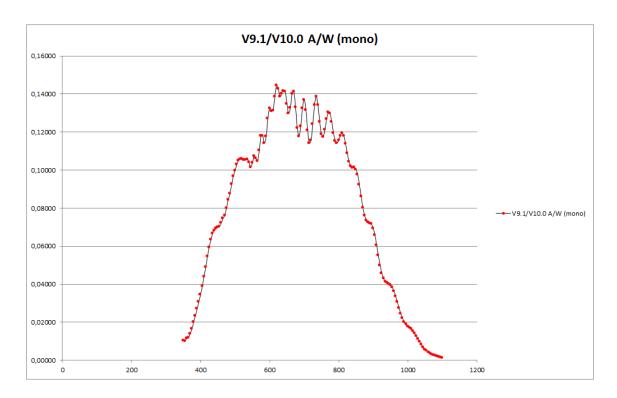


Figura A.1 - Gráfico que mostra a resposta espectral da Câmera Phantom V9.1

Tabela A.1 - Resposta Espectral para a Phantom V9.1

Comp. de onda (nm)	Ampères/Watt (mono)	Porcentagem (0,000)
350	0,01051	0,072639
355	0,01022	0,070641
360	0,01153	0,079705
365	0,01189	0,082226
370	0,01405	0,097156
375	0,01655	0,114451
380	0,02010	0,138942
385	0,02336	0,161529
390	0,02704	0,186968
395	0,03058	0,211383
400	0,03465	0,239556
405	0,03883	0,268428

410	0,04410	0,304908
415	0,04903	0,338993
420	0,05462	0,377630
425	0,05944	0,410942
430	0,06342	0,438454
435	0,06671	0,461221
440	0,06820	0,471532
445	0,06924	0,478716
450	0,06996	0,483671
455	0,07037	0,486472
460	0,07224	0,499433
465	0,07455	0,515404
470	0,07623	0,526990
475	0,08009	0,553707
480	0,08429	0,582743
485	0,08760	0,605642
490	0,09263	0,640384
495	0,09685	0,669580
500	0,09980	0,689946
505	0,10300	0,712076
510	0,10511	0,726686
515	0,10577	0,731213
520	0,10605	0,733179
525	0,10540	0,728671
530	0,10531	0,728050
535	0,10574	0,731003
540	0,10416	0,720104
545	0,10162	0,702517
550	0,10372	0,717100
555	0,10750	0,743207
560	0,10628	0,734738
565	0,10469	0,723799
570	0,11023	0,762102
575	0,11794	0,815371
580	0,11809	0,816397
585	0,11420	0,789494

590	0,11771	0,813795
595	0,12714	0,878987
600	0,13248	0,915922
605	0,13100	0,905646
610	0,13142	0,908557
615	0,13861	0,958251
620	0,14464	1,000000
625	0,14274	0,986798
630	0,13864	0,958454
635	0,14022	0,969441
640	0,14171	0,979724
645	0,14143	0,977744
650	0,13481	0,932003
655	0,12979	0,897334
660	0,13276	0,917865
665	0,14012	0,968694
670	0,14137	0,977393
675	0,13315	0,920529
680	0,12228	0,845381
685	0,11782	0,814575
690	0,12299	0,850314
695	0,13236	0,915045
700	0,13700	0,947150
705	0,13166	0,910215
710	0,12104	0,836792
715	0,11415	0,789173
720	0,11577	0,800359
725	0,12415	0,858293
730	0,13410	0,927108
735	0,13871	0,958944
740	0,13412	0,927250
745	0,12536	0,866702
750	0,11881	0,821365
755	0,11754	0,812603
760	0,12113	0,837453
765	0,12677	0,876413

770	0,13045	0,901835
775	0,12982	0,897532
780	0,12534	0,866526
785	0,11958	0,826736
790	0,11546	0,798241
795	0,11405	0,788467
800	0,11570	0,799894
805	0,11799	0,815751
810	0,11948	0,826050
815	0,11807	0,816272
820	0,11375	0,786380
825	0,10876	0,751916
830	0,10457	0,722959
835	0,10223	0,706754
840	0,10128	0,700166
845	0,10143	0,701236
850	0,10040	0,694123
855	0,09761	0,674793
860	0,09240	0,638814
865	0,08617	0,595703
870	0,08039	0,555772
875	0,07618	0,526638
880	0,07361	0,508889
885	0,07250	0,501219
890	0,07202	0,497925
895	0,07158	0,494878
900	0,06946	0,480235
905	0,06574	0,454475
910	0,06049	0,418205
915	0,05515	0,381271
920	0,04994	0,345266
925	0,04587	0,317119
930	0,04304	0,297553
935	0,04131	0,285582
940	0,04060	0,280694
945	0,04021	0,278011

950	0,03970	0,274437	
955	0,03833	0,265023	
960	0,03643	0,251825	
965	0,03363	0,232510	
970	0,03061	0,211612	
975	0,02736	0,189171	
980	0,02447	0,169165	
985	0,02207	0,152586	
990	0,02024	0,139949	
995	0,01881	0,130043	
1000	0,01785	0,123416	
1005	0,01706	0,117943	
1010	0,01643	0,113601	
1015	0,01545	0,106794	
1020	0,01424	0,098460	
1025	0,01283	0,088678	
1030	0,01126	0,077833	
1035	0,00965	0,066742	
1040	0,00817	0,056466	
1045	0,00690	0,047705	
1050	0,00578	0,039989	
1055	0,00495	0,034233	
1060	0,00423	0,029237	
1065	0,00368	0,025420	
1070	0,00314	0,021696	
1075	0,00277	0,019163	
1080	0,00243	0,016827	
1085	0,00222	0,015328	
1090	0,00187	0,012948	
1095	0,00161	0,011109	
1100	0,00135	0,009328	

ANEXO B - TABELA COM OS VALORES DE W (LARGURA) PARA CADA TEMPERATURA PARA CERTA LINHA ESPECTRAL

Tabela B.1 - Tabela com os dados de w para cada temperatura e linha espectral. Caso 01 (obtida de (??))

Linhas Å	2500 (°k)	5000 (°k)	10000 (°k)	20000 (°k)	40000 (°k)
7428(NI)	2,99E-02	3,68E-02	4,75E-02	6,28E-02	
7447(NI)	2,99E-02	3,68E-02	4,75E-02	6,28E-02	
8183(NI)	2,74E-02	3,40E-02	4,46E-02	6,00E-02	
8211 (NI)	2,74E-02	3,40E-02	4,46E-02	6,00E-02	
8683 (NI)	2,71E-02	3,39E-02	4,51E-02	6,14E-02	7,84E-02
8188 (NI)	2,74E-02	3,40E-02	4,46E-02	6,00E-02	
8216 (NI)	2,74E-02	3,40E-02	4,46E-02	6,00E-02	

Tabela B.2 - Tabela com os dados de w para cada temperatura e linha espectral. Caso 02 (obtida de (??))

Linhas Å	2500 (°k)	5000 (°k)	10000 (°k)	20000 (°k)	40000 (°k)	80000 (°k)
7447 (NI)	2,99E-02	3,68E-02	4,75E-02	6,28E-02	7,85E-02	8,78E-02
8687 (NI)	2,71E-02	3,39E-02	4,51E-02	6,14E-02	7,84E-02	8,95E-02
7774 (OI)	1,99E-02	2,48E-02	3,27E-02	4,43E-02	5,66E-02	6,49E-02
8221 (OI)	2,74E-02	3,40E-02	4,46E-02	6,00E-02	7,62E-02	8,67E-02

Tabela B.3 - Tabela com os dados de w para cada temperatura e linha espectral. Caso 03 (obtida de (??))

Linhas Å	2500 (°k)	5000 (°k)	10000 (°k)	20000 (°k)	40000 (°k)	80000 (°k)
7442,6 (NI)	2,99E-02	3,68E-02	4,75E-02	6,28E-02	7,85E-02	8,78E-02
7468,3 (NI)	2,99E-02	3,68E-02	4,75E-02	6,28E-02	7,85E-02	8,78E-02
7423,64 (NI)	2,99E-02	3,68E-02	4,75E-02	6,28E-02	7,85E-02	8,78E-02
8711,7 (NI)	2,71E-02	3,39E-02	4,51E-02	6,14E-02	7,84E-02	8,95E-02
8200,36 (OI)	2,74E-02	3,40E-02	4,46E-02	6,00E-02	7,62E-02	8,67E-02
8242,3 (OI)	2,74E-02	3,40E-02	4,46E-02	6,00E-02	7,62E-02	8,67E-02
6610 (NII)	3,63E-03	5,53E-03	8,86E-03	1,35E-02	1,87E-02	2,30E-02

Tabela B.4 - Tabela com os dados de w para cada temperatura e linha espectral. Caso 04 (obtida de $(\ref{eq:continuous})$

Linhas Å	2500 (°k)	5000 (°k)	10000 (°k)	20000 (°k)	40000 (°k)	80000 (°k)
7468,3 (NI)	2,99E-02	3,68E-02	4,75E-02	6,28E-02	7,85E-02	8,78E-02
8728,89(NI)	2,71E-02	3,39E-02	4,51E-02	6,14E-02	7,84E-02	8,95E-02
8711,7 (NI)	2,71E-02	3,39E-02	4,51E-02	6,14E-02	7,84E-02	8,95E-02
7774 (OI)	1,99E-02	2,48E-02	3,27E-02	4,43E-02	5,66E-02	6,49E-02
8233 (OI)	2,74E-02	3,40E-02	4,46E-02	6,00E-02	7,62E-02	8,67E-02
8242,3 (OI)	2,74E-02	3,40E-02	4,46E-02	6,00E-02	7,62E-02	8,67E-02
8446 (OI)	3,25E-02	4,03-2	5,28E-02	7,08E-02	8,95E-02	1,01E-01

PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI)

Teses e Dissertações apresentadas nos Cursos de Pós-Graduação do INPE.

Notas Técnico-Científicas (NTC)

Incluem resultados preliminares de pesquisa, descrição de equipamentos, descrição e ou documentação de programas de computador, descrição de sistemas e experimentos, apresentação de testes, dados, atlas, e documentação de projetos de engenharia.

Propostas e Relatórios de Projetos (PRP)

São propostas de projetos técnicocientíficos e relatórios de acompanhamento de projetos, atividades e convênios.

Publicações Seriadas

São os seriados técnico-científicos: boletins, periódicos, anuários e anais de eventos (simpósios e congressos). Constam destas publicações o Internacional Standard Serial Number (ISSN), que é um código único e definitivo para identificação de títulos de seriados.

Pré-publicações (PRE)

Todos os artigos publicados em periódicos, anais e como capítulos de livros.

Manuais Técnicos (MAN)

São publicações de caráter técnico que incluem normas, procedimentos, instruções e orientações.

Relatórios de Pesquisa (RPQ)

Reportam resultados ou progressos de pesquisas tanto de natureza técnica quanto científica, cujo nível seja compatível com o de uma publicação em periódico nacional ou internacional.

Publicações Didáticas (PUD)

Incluem apostilas, notas de aula e manuais didáticos.

Programas de Computador (PDC)

São a seqüência de instruções ou códigos, expressos em uma linguagem de programação compilada ou interpretada, a ser executada por um computador para alcançar um determinado objetivo. Aceitam-se tanto programas fonte quanto os executáveis.