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ABSTRACT  

The theory of Matsubara and Toyozawa developed for impurity 

bands in semiconductors is investigated further in order to calculate 

the specific heat of Si:P. The effect of correlation as well as 

overlap on the electron hopping energy integral is taken into account 

via Heitler-London two-particle wave functions. The calculated specific 

heat shows good agreement when compared to the experimental data over 

a wide range of impurity concentration around the criticai value for 

MNM transition. The comparison between MT and AMO-MT calculations shows 

a big enhancement due to electron correlation. The results of the 

highly-correlated-electron-gas model and inhomogeneity model are shown 

for the sake of compariSn. 
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The correlation effect as well as disorder in doped 

semiconductors have given rise to considerable interest in a large 

number of experimental and theoretical studies. The experimental 

results of electric conduction (Fritzsche 1958, Yamanouchi et al. 1967, 

Toyotomi and Morigaki 1968) and of specific heat (Marko et al. 1974, 

Kobayashi et al. 1977, Sasaki 1979) as well as the theoretical 

investigations (Ishida and Yonezawa 1973, Aoki and Kamimura 1976) 

suggest that the Mott-Hubbard-Anderson (MEIA) scheme, in which electron 

correlation and Anderson local ization play the most essential roles, 

provides a proper description of the novel behavior of doped semi-

conductors near the metal-non-metal (MNM) transition. Matsubara and 

Toyozawa (1961) who will henceforth be referred to as MT, carried out 

one of the earliest theoretical studies along the lines of the MEIA 

scheme. They developed a one-band model which treats the random 

distribution of the impurities by the Green's function technique, but 

have neglected the correlation between both electronsandimpurities. 

Their scheme have recently been improved (Chao and Ferreira da Silva 

1978a, Osorio et al. 1978) by incorporating the alternant-molecular-

orbital (AMO) method (Pauncz 1967), to the MT theory. This AMO-MT 

scheme, yields and enhanced density of states of the impurity band 

and yields a specific heat in reasonable agreement with the measured 

values (Chao and Ferreira da Silva 1979a) around the critical impurity 

concentration for the MNM transition. 

Since in our case the narrowing of the impurity band has its 

origin in the reduction of electron hopping integrais V ij , we 

introduce the correlation effect into these matrix elements. Therefore, 
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instead of using a single-particle wave function, we use a Heitler-

London (HL) two-particle wave function, as was proposed by Chao et al. 

(1977), to obtain V ir  The calculated specific heat for phosphorus 

doped silicon (Si:P) is in good agreement with the experimental data. 

For comparison we show the results of the highly-correlated-electron-

gas model and the inhomogeneity model. 

An isolated impurity in a host semiconductor of static dielectric 

constant K
h 
can be considered as an ion core plus one weakly bound 

electron. The ground state wave function is a hydrogen-like is function 

0(;) = (1/irar:1 3 ) 1P exp (-r/ari ) 
	

( 1  ) 

The effective Bohr radius ar., is usually determined from the 

experimental ionization energy c I  (Edwards and Sienko 1978), via 

e 2 /2Khc i . 

In view of the hydrogenic type impurity orbital for an isolated 

impurity, an accurate calculation can be done using a Heitler-London 

two-particle wave function 

(ii;;01.2) = 6 [0(7- 1 -4i)E;2 4j)+0(it i -4j )(1)(;2 -Ãi)1 

where 0 is the normal ization constant. Therefore, we consider a pair 

of neutral impurities located at À
i 
and ff, 	r i  and r2  labelling 

the coordinates of the two electrons, forming an H 2 -like impurity 

molecule. The Hamiltonian is written as 

H = 
7 1)2  - 
	

Ir -RI• 
 	- 1  + 1  + 1 

P 	p,q P q 
	ri 2 C 13 

where 

p = 1,2 

 iJ = 

ri2 = 1;1 4- 21 

=
i 

(2) 

(3) 
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We choose units such that m = ti = e 2 /Kh  = 1. The lowest energy state 

of the impurity molecule 

E = < 	(i.j;?-17:2) I H i 	(ii;;1;2) > 	 (4) 

can be calculated analytically in terms of the Slater (1968) integrais 

S, K, J, J' and K': 

1 	  

L.  E (a,R. i ) - 	 2a2 (1-KS-S 2 ) + a(J . +K+ 	 14KS+2J-4) + 	] 	(5) 
1 ' 	2 (1+52) 	 R

ij 

-1/2 
normalization constant of the lowest-energy state is O = 12(1+S 2 )1 ' 

where 5 = <0(;- .)10 (-Ã.)> is the overlap integral. The ground 41 

state energy and the equilibrium separation of the impurity molecule 

are found by a minimization of the energy 3E(a,R ii )/âct=0. We found 

satisfactory agreement with the other calculations and experimental 

results. At the equilibrium distance (R=1.43 a.u.) the energy is 

quoted as -2.278 Ry. For large separation (R -+ co) the problem reduces 

to a = 1 (isolated hydrogen atoms), and for R = O it corresponds to 

a helium atam, a = 1.6875. 

The original scheme for doped semiconductors starts from a 

tight binding hamiltonian 

H = y 
E-1  
. ata. + 	V(

i
Ã..)ata. 	E

d 	
ata. + y V(.)ata 	 (6) 

iSi 
	 ij 	j 

for a single impurity band, where a ti  and a i  are the creation and the 

annihilation operators respectively of an electron at the ith impurity 

site. The one-site energy can be assumed to be constant (Chao and Fer-

reira da Silva 1978b). As measured from the host conduction band, 

it can be taken as E d = -c 1' the ionization energy of an isolated 

and a (1/a H ) can be treated as a variational parameter. Pie 
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impurity. Here we take this as our energy origin. The V(Aii )(sV ii ) is 

the energy integral for the transfer of an electron from the ith site 

to the jth site: 

	

= - VO1  
(1+aR.. 	

1
) exp (-aR..) 

	

J 	 J ( 7 ) 

where H(r) - 	
-e 2 

 
Kh  ir-4i i 

and V o  is equal to twice the ionization energy, V0-21E d i. Since we are 

going to deal with a two-particle Hamiltonian, and in order to keep the 

MT scheme intact, we have to single out the hopping of only the first 

electron in the combined field of the impurity ions and the second 

electron. Consequently, we will introduce an effective one-electron 

Hamiltonian Ti(r) as 

13( -1" 1 -4 i) +4) (;1 -4j)iNit in4)(r- I-A i )+(Pírt 1-4j ): 

= 	t(ij;;1 7'2) (H 	-RI—) If(ij;;1;2)É2 	 (8) 
ij 

The effective one-electron matrix elements can be written as 

'7" f~ (;-.)clit  
Aj  

From this relation we can find for i=j the diagonal matrix elements 

V.. - 	1 	ra2 4. a (J + =1.i 	2)] 
11 	2(1+5 2 ) 	 2 

and for i 	j the off-diagonal matrix elements 

V. 4  - 	1 
2(1+52) 

I: a2  (KSES 2 ) +a (2KS + 
l u 	 2 

The optimum values obtained for a when we minimise the ground state 

energy are introduced in V ii , as well as in V. 

(9)  

(10) 



The Green's functions defined by 

el ) (E) = <01 	
E-H±ic 

a 	1  	atrl  10 > 
11   

%in (E)  = 	Pe.) (E)  -  
2.ff 	n  

enable us to calculate the density of states. They are calculated from 

(6) with configuration averaging over the random distribution of 

impurities. For the sake of simplicity, we only give the results of the 

MT scheme. For detailed calculation, the reader should refer to the 

MT original work. Defining 

	

(±) = Z, < Gel )  (E) > 	 (14) 

where <...> means configuration averaging and Z, = E±ic, then (±) 

satisfies the equation 

	

(±) - N c (±)  I 	vd(')d-li  
1 - (15) 

(16) 

where N is the impurity concentration. 

The impurity density of states as well as the Fermi energy were 

calculated and were plotted for various values of the normalized 

impurity concentrations P = 32u Na 1 3  in Figure 1, and are compared 

with MT. We notice how the electron correlation substantially reduces 

the impurity bandwidth. If we look at the off-diagonal matrix elements 

V is  as a function of the interimpurity distance, we see that it has a 

(12) 

(13) 

8u 3 Z.;. 	1-(Ntl /Z„)v(t) 

where v(t) is the Fourier transform of V. 

The density of states is then 

_ 	
am 

N 	+ 
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form similar to that obtained by MT and AMO-MT (Chao and Ferreira da 

Silva 1978b). However, the magnitude of V ij  (HL) is reduced, specially, 

for large Rii ,i.e., 	 (AMO)I<IV ij  (MT)1. Then the 

long range hopping of electrons is effectivelly cut off by the electron 

correlation. The Fermi energy E F  is determined by numerical integration 

from 

E
F 

2 	D(E) dE.N 	 (17) 

Knowing the density of states for various impurity concentrations one 

can obtain the specific heat. First we calculate the total energy of 

the impurity electrons, 

Ë(T) = j ED(E)f(E,T)dE 	 (18) 

where f(E,T) is the Fermi distribution function. The specific heat is 

then 

C(T) 	= dE  ED(E) df(E ' T)  dE (19) 
dT dT 

It is worth-while to point out that keeping only the lower order terms 

in the Sommerfeld expansion, the low temperature specific heat can ber- 

well approximated by 
,2 5 2 
"'  C(T) 	B 	

D(EF )T =yT 	 (20) 
3 

where k
B 

is the Boltzmann constant. 

Calculating y from (20) and C(T)/T from (19) numerically, a discrepancy 

of less than 1% is found in a wide range of impurity concentration for 

T <50K. The electronic specific heat coefficient y for Si:P as 
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function of the impurity concentration, representing HL-MT, is 

plotted in Figure 2 as curve 1. We see that the strong electron 

correlation effect shows a larger enhancementthanAMO-MT, curve 2 and 

the MT calculations, curve 3. For comparison's sake, we also plot y, 

curve 4, calculated with a highly-correlated-electron-gas model by 

Berggren (1978) and Sernelius (1978).Their model is valid in the 

metallic region N>N c , where it gives good agreement with experiment. 

The dots with error bars are the experimental data (Kobayashi et al. 

1977, Sasaki 1979). The experimental criticai impurity concentration 
18 

Nc = 3.2 x 10 cm-3  or Pc= 0 ' 74 is indicated with an arrow. The 

Bohr radius obtained from the experimental ionization energy 

(Edwards and Sienko 1978) is 13.2Â. 

In Figure 3, we show the specific heat for Si:P obtained from (19) by 

numerical integration,as a full une. The dotted une refers to the 

inhomogeneity model and solid circles correspond to the experimental 

data, both carried out by Marko et al. (1974). In conclusion we have 

shown how sensitive the specific heat is, in phosphorus doped silicon 

to changes in electron correlation, presenting a satisfactory agreement 

between our calculation and experiment over a wide range of impurity 

concentration. 
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FIGURE CAPTIONS 

Fig. 1. Density of states of impurity bands for various values of 

impurity concentrations P. Full une corresponds to our 

calculation. Dot-das hed lines refer to the MT calculation. 

The position of the Fermi energy is indicated by dashed lines 

and the bottom of the host conduction band by dotted une. 

Fig. 2 . Electronic specific heat coefficient y for Si:P as function 

of the impurity concentration N. Curve 1 is the present 

calculation. Curve 2 is the AMO-MT calculation. Curve 3 

is the MT calculation. Curve 4 is the result from the highly 

correlated-electron-gas model. The dots with error bars are 

the experimental data measured by W. Sasaki and co-workers. 

Nc  indicates the impurity critica] concentration for MNM 

transition. 

Fig. 3. The electronic specific heat of Si:P in units of J/ok-mole 

as function of temperature for impurity concentration 

5.9 x 10" cm-3 . Full une corresponds to the present 

calculation. Dotted lines refer to the inhomogeneity model 

by Marko et al. (1974). Solid circles correspon to the 

experimental data by Marko et ai (1974) 



Fig. 1 M. Fabbri et ai 
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Fig. 2 M. Fabbri et ai 
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