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Introduction

Networks for data assimilation in the context of

highly nonlinear systems that exhibit chaotic behaviour, the Hénon and Lorenz systems, is investigated.
Ultimately, it is expected that the experience gained from the simple models may guide the application
of this new technique in data assimilation for atmospheric numerical models.

In the case of atmospheric continuous data assimilati
methods (Daley, 1991; Todling, 1997). Deterministi

on there are many deterministic and probabilistic
methods include Dynamic Relazation, Varia-

tional Methods and Luplace: Tranform, whereas probjabilistic methods include Optimal Interpolation
and Kalman Filtering. Dynamic Relaxation assumps the prediction model to be perfect, as does

|
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Laplace Transform. Variational Methods and Optimal Interpolation cah be regarded as minimum-
mean-square estimation of the atmosphere. Kalman Filtering has the 3jdvantage of minimizing the
error in the assimilation (Nowosad, Rios Neto, Campos Velho, 1999) pluk propagating itself the error
from one data insertion to the next. But it is computationally too expe
the intention of this work to examine whether neural networks can "emul
Filtering with economy in computer time.

nsive for large systems. It is
ate” the accuracy of Kalman

The new approach adopted requires training of a multilayer perceptron to emulate a chosen data
assimlation method. Kalman filter data assimilation methods are used tq generate training examples
for the networks. In the case of Hénon system an Adaptive Extended Kalman Filter is used to provide
examples for network training. In the case of Lorenz system the Extended Kalman Filter is used for
network training. The preliminary results obtained are promising.

In the next sections the paper is organized as follows: in section 2 there is & brief exposition of artificial
neural networks (ANN); in section 3 the data assimilation problem is cpnsidered in the context of
Hénon and Lorenz systems; in section 4 the proposed approach is teste

d; and section 5 contains a
summary of the results and some comments on the new method.

2 Backpropagation neural networks

An artificial neural network (ANN) is an arrangement of units characterfzed by: a large number of
very simple neuron-like processing elements: a large number of weighted|connections between these
elements, where the knowledge of thea network is stored: highly parallel, Histributed processing. The
processing element in an ANN is a linear combiner with multiple weighted inputs, followed by an
activation function. There are several different architectures of ANN's, mdst of which directly depend
on the learning strategy adopted. It is not the aim of the paper to present an overview on ANN. Instead,
a very brief description of the ANN used i- focused: the multilayer Percep

stron with backpropagation
learning (Haykin, 1994). -

The Multilayer Perceptron with backpropagation learning, also called the Hackpropagation neural net-
work, is a feedforward network composed of an input layer, an output layer, and a number of hidden
for extracting high order statistics from the input data (Haykin, 1994). In|order to make the network
more flexible to solve nonlinear problems, the activation functions for th
functions. Here tanh(x) is used as activation function at the hidden laye
is used at the output layer. Mathematically,
values onto output vector of real values. Th
during learning process, thus changing the p
in the usage of an ANN: the training phase (
network). In the training phase, the weight

hidden layer are sigmoid
and the identity function
a feedforward network simply|maps input vectors of real

erformance of the network. T ere are two distinct phases
learning process) and the runni g phase (activation of the
s are adjusted for the best performance of the network in
establishing the mapping of many input-output vector pairs. Once trained| the weights are fixed and
new inputs can be presented to the network for it to compute correspondi g outputs, based on what
it has learned. The training phase of a backpropagation network is controlldd by a supervised learning
algorithm, which differs from unsupervised learning. The main difference is that the latter uses only
information contained in the input data, whereas the former requires both nput and output (desired)
data, which permits the calculation of the error of the network as the differepce between the calculated
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output and the desired vector. Adjustment of the network's weights is conducted by backpropagating
such error through the network. The weight ch3nge rule is a development of the Perceptron learning
rule. Weights are changed by an amount proportional to the error at that unit, times the output of
the unit feeding into the weight. Equation (1) shows the general weight correction according to the
so-called delta rule

Awif =16;y; (1)

where §; is the local gradient, y; is the input signal of th{e neuron j, and 7 is the learning rate parameter
that controls the strength of change.

3 Data assimilation in nonlinear systems

The data assimilation process can be described af a procedure that uses observational data to improve
a prediction made by an inaccurate mathematical model. For example, suppose a computational
model where many properties are only expressed approximately, like turbulent fluxes. Typically, the
assimilation process can be outlined as a two step process:

Forecast step: wh = Flwg_];| Analysisstep:  wf =w! +d, ;

where w,, represents model state variable at n tjme step, F[] is the mathematical (forecast) model,
superscripts f and a denote forecasted and anplyzed values respectively, and d,, is the inovation.
Several methods of data assimilation have been |developed for air quality problemis (Zannetti, 1990),
numerical weather prediction (Daley, 1991), and numerical oceanic simulation (Bennet, 1992). One
of these assimilation techniques is based on the Kalman filter, where the analysis inovation d,, is
computed as a linear function of the misfit befween observation (denoted with superscript 0) and
forecast:

=, (ux - H, w,{) ; (2)

where G, is a weighting (gain) matrix, w? is the with error observed value of w, and H, is an
observation matrix. An adaptive extended Kalman filter has been tested in strongly nonlinear dynamical
systems for assimilation procedure: the Lorenz dhaotic system, and DYNAMO meteorological model
- a simplified version of the shallow water equatipns (Nowosad et al., 1999). The goal of the present
study is to introduce a new method to compute an assimilation function, where such function is
implemented by an ANN: w¢ = Fann(w/, w?).

This process of adding new observation data to the current integration of a numeric prediction model
is known as Data Assimilation. A similar problem may occur when disturbances are inserted in the
computer simulation of small-dimensional chaotic nonlinear synamical systems. Two such examples
are the Hénon and the Lorenz systems in chaotic $tate. The Hénon discrete-time system is (Thompson
and Stewart, 1986):

Xn+l =1¥¥.~- a/Y:n Yu+l ol bXn . (3)

This mapping will be evolved adopting a = 1.4 ajd b = 0.3 so that the system will be in chaotic state.
The unit of time, though unnecessary, will be takef as second, in the sense that An — (n+1)—-n=1s.
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Figure 1: Temporal corruption of disturbed variable X .

Initial conditions are [ Xy Yp]T = [0.9 0.9]". Two simulations will be m

at t = 50 s the disturbances [AX, AY]" = [\/ 102, v10'3]T. The
The dashed line represents the simulation without disturbance and th
disturbance. The insertion of the disturbances seriously damages the
on. Here modification of time-dependent variables X and Y or their

ade, in the second one inserting

result is illustrated by figure 1.
e solid line the simulation with
prediction of X, from t ="53 s
substitution for inappropriates

estimates during the integration can generate undesired solutions. A sjmilar experiment will be made

with the Lorenz dynamic system (Miller et al, 1994):

dX/dt = -o(X -Y), dY/dt=RX-Y -X2, dZ/d

SX¥=§F , " (4)

This system will be integrated using the Euler predictor-corrector méthod adopting At = 0.001 s,
o =10, b= 8/3, R = 28, with these values the system shows a chaotic dynamics. Initial conditions
are [Xo Yo Zo|" = [1.508870 — 1.531271 25.46091]7. Again, two simulations will be made, in
the second one inserting at t = 7,5 s the disturbances [AX, AY, AZ" =[10"2, -1072, lO”]T S
The result is illustrated by figure 2. The dashed line represents the simulation without disturbance and
the solid line the simulation with disturbance. As is known, the insertion of inappropriate estimates,
even if containing only small perturbations, during the integration nmjay cause complete loss of the

original dynamics of the process.

4 Testing the new approach

Having presented in the previous section a new approach for the Assimil

tion of Data, using a multilayer

perceptron, it is necessary to test it. The first test was made using the Henon system and the second

was made using the Lorenz system. Both systems were quoted in sect
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4.1 Implementation of multilayer

The backpropagation training algorithm in batch n
Toolbox (MNNT) (Demuth and Beale, 1994) to

10 12 14 16 18 20

on of disturbed variable X.
perceptron

node was adapted from MATLAB Neural Network
FORTRAN. The algorithm used constant learning

rate 7. The toolbox features a method for initialization of weights w;; called Nguyen- Widrow method

(1990) which was also adapted. In what follows th

N
Cp = Z “FANN(U’I{1
k=1

where W and i are the weights and biases of th
number of examples in the training set.

e training error at each iteration n is defined as

wg, W, p, m) — w

(5)

2

e network, k represents each example and N the

4.2 Results obtained with the chaotic Hénon system

The first numeric experiment consisted in using
and Kuga, 1985; Nowosad et al, 1999; Gelb, 197
implemented using:

e
Wagy = o flw)s B Bu{n 1
0.001 0 g |
R, = 0 0001 o0
0 0 0001 |
Py = xR, =1 a=
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an Adaptive Extended Kalman Filter (Rios Neto
8) to train the neural newtwork. The Filter was

v Hapn =1, Qo=0 (6)
X 0 9

; Fg=10x] 0 Y? 0 (7)
¢ o

3 (8)
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Figure 3: Data assimilation in Hénon system using Adaptive Ext

f(.) describes the dynamics of the system, H, ., is the observation mat
of modeliing error, R,, the covariance of observation error and Py the ini
error. P, v and o are parameters adjusted for the adaptation process
be constant for n > (. The result inserting data at all timesteps of the
3. After generating the examples a network consisting of

e inputs u,'lf, w?j, wf, ws;
o 1 input layer having 2 ncurons with activation function f(:) = tay

e 1 hidden layer having 2 neurons with activation function f(z) =t

e 1 output layer having 2 neurons with activation function f(z) = aj;

® outputs w{, wy;

was trained by attaching to its input and output layers respectively the
vectors

=
o = wl(n) wi(n) wo(n) win) ], wl=[win)

for all n. The network was trained with constant learning rate n = 10™*
new assimilation method one attaches to the input of the trained netwo

i - - ro 1T
ne{x W 2 N
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The result inserting data at each At = 2 s can be
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4.3 Results obtained with the chag

Writing the Lorenz system as

dw
@~

to calculate wy4y = f (w,) model (12) is integrated

Uy = Wy + AL - ¢

bn system using neural network.

ions and X and Y)? are observations. Then one

by - (11)

seen in figure 4. The dashed lines represent the
ugh the assimilation was not perfect the chaotic
een avoided. o

tic Lorenz system
) (12)

using the Euler explicit method:

(wn) = f(wn)

The filter was implemented using:

of : ’
Wy = f (wn)u F, = 5“}—“ E o ) Hn+l =1, Qu=0 (13)
200 ¢ oo S SR
R, = 020, PPH10x| 0 ¥ o . (14)
92 $ U Z

218




q
f

i

2 a 6 8 10

12

14

(] 2 4 6 a8

60 v T T T

Z-component
N Y
(=} o

o N . " L L

o & 4 6 8 10
Time (s)

12

Figure 5: Data assimilation in Lorenz system using Extended |Kalman Filter.

The result inserting data at all timesteps of the simulation is shown in fi

re 5. After generating the

To calculate w,.; = f (w,) the prediction model (12) is integrated usi$ Euler predictor-corrector.

examples a network composed of

® inputs u;{, m.f, m{, wy, wy, wg;

o 1 input layer having 2 neurons with activation function f(z) = tanlj(z);

e 1 hidden layer having 2 neurons with activation function f(z) = tanh(z);

o 1 output layer having 2 neurons with activation function f(z) =

1,8 o Gl .
e outputs wy, wy, wy;

x;

was trained by attaching to its input and output layers respectively the ppirs (7, w?) formed by the

vectors

wy = [ wi(n). wi(n) win)]:

40

£, = [u‘{(n) wi(n) wi(n) wi(n) wi(n) w(n) ]T'— (15)

(16)

for all n. The vectors are scaled so that the input and output signals arg in the range [—1,1]. The
network was trained with constant 7 = 10~* until ¢,, < 10. To test the new assimilation method one

attaches to the input of the trained network the vectors

A={Xl v B2 vy
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X/ and Y}/ are predicted by the Lorenz equationg and X7 and Y,? are observations. The assimilation

output will actually be
X=Xt  Pra
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5 Conclusions

Multilayer Perceptron Neural Networks are used for
the Hénon and Lorenz systems in chaotic state. Th
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)x Y | Zt=d0x 2 . (19)

be seen in figure 6. The dashed lines represent the
though the assimilation was not perfect the chaotic
e been avoided.

layers of m; neurons has been trained to emulate a
ted by the network has complexity of order (Terada,

= Dm0 (iny) . (20)

t L < my then the algorithm to calculate wh =
e other hand, the complexity of a standard Kalman
s O(my) due to the matrix products at every step.

data assimilation in two nonlinear dynamic systems:
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methods avoiding recalculation of the gain matrix at each instant of assimjlation. In the case of Hénon
system an Adaptive Extended Kalman Filter was used to provide examples for network training. In

the case of Lorenz system the Extended Kalman Filter was used for netwdr

k training. The preliminary

results obtained were promising. It was also shown that the complexity of the resulting assimilation
function is smaller than that of the standard Kalman Filter. Kalman Filters provided the training sets

for the networks, but other assimilation methods can also be used to traih
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