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The study of the hydrodynamic instabilities in the context of the magnetohydrodynamics (MHD) is
very important in many branches of physics. Particularly, we can mention geophysical and astrophysics,
where we have several processes involving hydrodynamic effects, such as shock waves, plasma flows and
the propagation of waves. In these scenarios it is frequent the onset of instabilities. For example, let a
system be formed by two phases with different densities and relative velocities. Besides, consider these
phases are in contact with each other by means of a tangential surface, that is, an interface where there
is no transference of matter and where there are only relative tangential velocities. In this case, under
certain circumstances, we will have a particular type of phenomenon, the so-called Kelvin-Helmholtz (KH)
instability. In this paper we will address to the basic theory of such instabilities, explaining how they arise
from the hydrodynamic equations and showing the numerical simulation of a particular case. Besides, we
show examples of other MHD instabilities which are usually found in astrophysical processes.
Keywords: magnetohydrodynamics, instabilities, FLASH Code.

O estudo das instabilidades hidrodinâmicas no contexto da magneto-hidrodinâmica (MHD) é muito
importante para várias áreas da f́ısica. Particularmente, podemos mencionar a geof́ısica e a astrof́ısica,
em que temos diversos processos envolvendo efeitos hidrodinâmicos, tais como ondas de choque, fluxos de
plasma a propagação de ondas. Nestes cenários é frequente o surgimento de instabilidades. Por exemplo,
seja um sistema formado por duas fases com diferentes densidades e velocidades relativas. Além disso,
considere que estas fases estão em contato entre si por meio de uma superf́ıcie tangencial, isto é, uma
interface onde não há transferência de matéria e onde há somente velocidades relativas tangenciais. Nesse
caso, sob certas circunstâncias, teremos um tipo particular de fenômeno, conhecido como instabilidade de
Kelvin-Helmholtz (KH). Nesse artigo abordaremos a teoria básica de tais instabilidades, explicando como
elas surgem das equações hidrodinâmicas e mostrando a simulação numérica de um caso particular. Além
disso, são mostrados exemplos de outras instabilidades em MHD, as quais são geralmente encontradas em
processos astrof́ısicos.
Palavras-chave: magnetohidrodinâmica, instabilidades, código FLASH.

1. Introduction

Magnetohydrodynamics consists in the study of
the fluids which are compressible and conductor
of electricity under the influence of magnetic fields.
Roughly speaking, the equations governing the be-
havior of these fluids under such conditions are ob-
tained through the combination of the Euler equa-
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tions of the fluid mechanics with the Maxwell equa-
tions of the electromagnetism.

The formalism of the MHD is of great interest
for several branches of physics, such as space geo-
physics, astrophysics and engineering. For example,
the MHD is applicable in many scenarios in astro-
physics and cosmology, once most of the baryonic
matter in the universe is formed by plasma, includ-
ing stars and interplanetary, interstellar and inter-
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galactic media. Besides, many astrophysical systems
are not in local thermodynamic equilibrium, which
requires an extra kinematic treatment for the com-
plete description of the phenomena. Particularly,
solar winds and blasts are understood under the
framework of the MHD.

Concerning the instabilities, let a system be ini-
tially at a stationary state, that is, the variables
which define its configuration do not depend on
time. If that system undergo small perturbations,
which are gradually smoothed such that there are
not appreciable deviation from the stationary state,
we can say such a system is stable [1]. On the other
hand, if we imagine the system undergo small devia-
tion in a given region of its domain, in such a manner
the acting forces tend to increase more and more
the deformations, we have an unstable configura-
tion. Such an unstable behavior can occur in several
forms, that is, there are many types of instabilities,
having particular characteristics.

According to [2], there is a diversity of dynamic
instabilities which are characteristic of fluids. For
example, a static fluid in a gravitational field can un-
dergo convective inversions when its inferior portion
is heated or its superior portion is cooled. Gener-
ally speaking, a vertical stratification in the density
profile can be caused by a temperature gradient,
yielding the so-called Rayleigh-Taylor (RT) instabil-
ities [3]. Further, the presence of a radiation field
with spatially variable opacity can induce unstable
temperature and density distributions.

Of particular interest is the case where the fluid
has two adjacent phases with different densities and
which have a tangential movement relative to each
other. In this case, at the interface between the
phases, under certain circumstances, we can have
the KH instabilities. Such instabilities came from
the combined effect of the pressure, the gravity and
the Reynolds strain.

In this paper we address to the MHD and to its
instabilities, particularly the KH type. The basic
formalism of the MHD is treated in Section 2; in
Section 3 we discuss some examples in the context
of space physics where the phenomena related to the
MHD play important roles; in Section 4 we focus
on the KH instabilities and we show the simulation
of a particular case using FLASH Code; next, we
present our conclusions. Besides, in Annex A there
is a brief discussion on FLASH Code.

2. Basic formalism of the MHD

The ideal MHD describes the interplay between a
magnetic field and a compressible fluid, with no vis-
cosity and which is a perfect conductor of electricity
(hence the term “ideal”) [4]. Besides, we consider
the fluid has a non-relativistic behavior, that is, at
any point of the domain and at any instant, the
velocities are small when compared to the speed of
light in vacuum.

In general, the model which describes the phe-
nomena related to that interaction is built through
the combination of the equations governing the fluid
dynamics and the Maxwell equations of the electro-
magnetism. It is worth bearing in mind the Maxwell
equations yields an extra expression for the time
evolution of the magnetic field, besides imposing a
constraint to the model. Such a constraint is given
by Gauss’s Law for magnetism and it is stated as:
the divergence of the magnetic field is zero at all
points of the domain.

Following the scheme shown in [5], the system of
equations which form the ideal MHD model in three
dimensions contains:

• conservation of mass (1 equation);
• conservation of momentum (3 equations);
• Faraday’s Law (3 equations);
• conservation of energy (1 equation).

These eight equations are expressed in terms of
eight dependent variables:

• mass density (ρ);
• components x, y and z of the momentum den-

sity (ρux, ρuy, ρuz), where ux, uy, uz are the
components of the velocity;

• components x, y and z of the magnetic field
(Bx, By, Bz);

• plasma total energy (E),

where

E = ρe+ ρ
u · u

2 + B ·B
2µ0

. (1)

In Eq. (1) the energy density e is given by the
equation of state of an ideal gas:

e = p

(γ − 1)ρ, (2)

where p is the pressure. In the subsequent sections
we will briefly describe the above-mentioned equa-
tions.
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2.1. Conservation of mass

This equation will have the usual form used in the
fluid mechanics, namely:

∂ρ

∂t
+∇ · (ρu) = 0. (3)

2.2. Conservation of momentum

Written in differential form, the conservation of mo-
mentum has the form Ref. [5]

∂ρu
∂t

+∇ · (ρuu + pI) = j×B, (4)

where I the 3× 3 unit matrix. In our case, Ampère-
Maxwell law is written as ∇×B = µ0j, such that
Eq. (4) assumes the form

∂ρu
∂t

+∇ · (ρuu + pI) = 1
µ0

(∇×B)×B; (5)

now, using the vectorial identity (∇ × B) × B =
(A · ∇)B− (∇B) ·A, Eq. (5) is written as

∂ρu
∂t

+∇ ·
[
ρuu +

(
p+ B2

2µ0

)
I− BB

µ0

]
= − 1

µ0
B∇ ·B. (6)

2.3. Faraday’s law

In integral form, Faraday’s law is written as

− d

dt

∫∫
S

B · dS =
∮
∂S

E · dl, (7)

where the surface S is bounded by the closed curve
∂S, E is the electric field and dl is the line element.

However, we are considering the fluid moves rela-
tive to some inertial frame, in such a way we have
to consider a form of Eq. (7) which is consistent
with such a scenario. First, following Ref. [6], the
total rate of change of the magnetic flux through S
is given by

d

dt

∫∫
S

B · dS =
∫∫

S

∂B
∂t
· dS +

∮
∂S

B× u · dl

+
∫∫

S
(∇ ·Bu) · dS, (8)

where the third term in the right side is due to the
movement of S through the inomogeneous vector

field in which the magnetic field-lines are generated.
Substituting Eq. (8) in Eq. (7), using Stokes’ the-
orem, considering that E is zero in the comoving
frame (once in that frame the total variation of B
is zero) and doing the necessary algebra, we have

∂B
∂t

+∇ · (uB−Bu) = −u∇ ·B. (9)

2.4. Conservation of energy

Conservation of the hydrodynamic energy

E = ρ
p

(γ − 1)ρ + ρ
u · u

2 , (10)

considering a fixed volume of fluid, is given by

∂E

∂t
+∇ · [u(E + p)] = j ·E. (11)

where j is the current density. On the other hand,
we can write the term j ·E in the form

j ·E = 1
µ0

{
B · ∂B

∂t
− (u ·B)∇ ·B

−∇ · [(B ·B)u− (u ·B)B]
}
, (12)

which was deduced form Ampère’s law, combined
with the vector identities

∇ · (X×Y) = Y · (∇×X)−X · (∇×Y) (13)
E×B = (B ·B)u− (u ·B)B, (14)

valid for arbitrary vectors X, Y and where E, B
are the magnetic and electric fields, respectively.

Finally, using Eq. (1) the equation of the energy
E becomes

∂E

∂t
+∇ ·

[(
E + p+ BB

2µ0

)
u− 1

µ0
(u ·B)B

]
= − 1

µ0
(u ·B)∇ ·B. (15)

The reader should note that, so far, we addressed
to the the ideal MHD. However, strictly speaking,
the ideal version of the formalism is only applica-
ble when the plasma is strongly collisional, such
that the energy distributions of the particles can
be considered Maxwellian and the resistivity due
to such collisions is negligible. In other words, the
ideal MHD is basically a set of conservation laws.
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On the other hand, the non-ideal forms of the
MHD are those which include dissipative and en-
tropy terms, where there is the onset of effects such
as resistivity, viscosity, radiation transport and ther-
mal conduction.

Among those non-ideal models, it is worth em-
phasizing the resistive MHD, once it is a useful
formalism in the study of some fundamental ques-
tions concerning the phenomena observed on Earth’s
magnetosphere [7]. Besides, the finite resistivity is
omnipresent in real systems, in such a way that
resistive diffusion cannot be neglected in several
cases [8].

Specifically, in the framework of resistive MHD,
it is possible to understand the phenomenon known
as magnetic reconnection. Following [8], a simple
way of picturing such an effect is considering two
magnetic field lines being carried with the fluid
and obeying to the flux conservation law. When
these field lines come close together at some point
of the fluid, they are cut and undergo reconnection,
assuming a different shape, where such an effect of
“cut-and-reconnect” is due to the finite resistivity.
During the process, the magnetic energy is released
in the form of thermal and kinetic energy. It is worth
pointing out that almost all nonlinear processes in
MHD involve such reconnections.

3. Examples of application of the MHD

3.1. RT instabilities in Crab nebula

Now, it would be interesting to discuss some cases
in the context of space physics, where phenomena
related to the MHD are important. First, we mention
the onset of the RT instabilities in supernovae, more
specifically in Crab nebula [9]. Such a nebula, which
is the remnant of the supernova explosion recorded
by Chinese and Arab astronomers in 1054, is located
2000 parsecs away in the constellation of Taurus.

Today, Crab nebula is still expanding at a rate
of nearly 1450 km s-1 and it shows a luminosity of
8×104L� (where L� = 3.8×1026 W is the luminosity
of the Sun [10].) A large proportion of the radia-
tion being emitted comes from relativistic electrons
spiralling around strong magnetic fields. The contin-
uous source of the electrons and the permanence of
the high luminosities remained as a major problem
in astrophysics until the discovery of a pulsar at the
center of Crab nebula [10].

In fact, the object inside Crab nebula belongs
to the class of pulsar wind nebula (PWN), which
consists of a nebula powered by the wind of a pulsar.
Such a wind is formed by charged particles accel-
erated at relativistic velocities, where the source of
their energy are the strong magnetic fields gener-
ated by the spinning pulsar. The high pressures of
that hot plasma inflated by the pulsar produces a
shock wave into the cooler exterior remnants of the
supernova.

The nature of the contact between the pulsar wind
and the remnants has a configuration similar to the
one where a heavier (denser) fluid is placed above a
lighter (less dense) one in a gravitational field. As
it was mentioned, such configuration is subject to
the onset of the RT instabilities.

Figure 1 shows the phenomenon in the simulation
of a supernova. The instabilities are those peculiar
structures in the form of “fingers” or “trees”, which
arise when the shock waves from the heavier layers
penetrate the overlying lighter shells. Other figures,
related to Crab nebula itself, can be found in [9].

3.2. Megnetorotational (MR) instabilities in
accretion disks

The large viscosities observed in accretion disks
have for a long time remained a fact difficult to
explain. Molecular viscosity alone, as well as convec-
tion and tidal mixing, were too weak to explain such

Figure 1: This simulation shows the RT instabilities during
a supernova in a red supergiant star.
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a behavior. However, in the paper [11], the authors
demonstrated that the MR instabilities are present
in accretion disks, which could explain the turbulent
mixing necessary to the onset of the observed mass
accretion rates.

Basically, the developing of the MR instabilities
occurs in scenarios where there is a weak magnetic
field normal to the plane of the disk and the disk
itself is in differential rotation (dΩ/dR < 0.)

In ideal plasma, the magnetic field links contigu-
ous fluid portions that are situated along a same
field line. In this case, the magnetic field lines are
“frozen” in the fluid portions, that is, the movement
of the fluid carries the magnetic field attached to
him. So, we can think of the magnetic force acting
on the fluid as springs attaching two given fluid
elements.

In order to understand the basic mechanism of
formation of the MR instabilities, consider a system
where we have two masses connected by a spring.
Besides, such masses are in differential rotation,
where the inner mass has a higher angular velocity
than the outer one.

Initially, consider the two bodies are separated
by a given distance; then, the differential rotation
increases the displacement, and the spring tension
causes the inner mass to slow down and the outer
one to speed up; consequently, there is transfer of
angular momentum from the inner to the outer mass,
where the inner migrates inwards and the outer is
pushed outwards; the cycle is repeated, but this
time starting with a longer displacement.

A particular case is where the magnetic fields are
strong. In such a scenario, the cycle described above
will not occur. Instead, the tension will cause the
oscillation in the displacement between the bodies.

Figures 2 and 3 show the simulation of the MR
instability in a disk. In fact, the authors used a
square box to represent a small part of the disk.
They consider that a given gravitational source is
located at a position x << 0, and the disk is in
Keplerian rotation. The colors show the density
(which decreases from red to black) and the lines
represent the constant magnetic field.

Figure 2 shows the initial configuration (t = 0 s),
while in Fig. 3 we have the simulation at the instant
t = 5 s. We can note the growth of the instabilities,
where the inner magnetic lines move inwards and
the outer ones move outwards. In the reference given
in Fig. 2, the reader can find an instructive movie
of the simulation.

Figure 2: This simulation shows the MR instabilities in an
accretion disk. Here we have the initial configuration.

Figure 3: Same as in Fig. 2 for t = 5 s.

3.3. Magnetospheric substorms

Earth’s magnetosphere is the region above the iono-
sphere that is governed by the geomagnetic field
and shaped by its interaction with the surrounding
interplanetary plasma and field, that is, the solar
wind.
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Its outer boundary is the magnetopause, a current
layer that, to lowest order, separates the geomag-
netic field from the solar wind. The shocked solar
wind flowing around the magnetosphere outside the
magnetopause forms the magnetosheath. By means
of the impact of the solar wind, the dayside mag-
netosphere is compressed, while the nightside is
expanded, forming a magnetotail which has several
hundreds of Earth’s radii. In the magnetotail we
have nearly antiparallel magnetic field lines, which
encloses a current sheet of hot plasma [7]. Besides, it
is worth mentioning the cusps, which are the funnel-
shaped regions that contain field lines approaching
the vicinity of the magnetopause. Such regions are
depicted in Fig. 4.

Earth’s magnetosphere has many dynamic fea-
tures, where one of the most important are the so-
called magnetospheric substorms. Although it is not
a conclusive fact, one believes that the occurrence
of magnetic reconnection in the magnetosphere is
related to such substorms.

When the interplanetary magnetic field in the
bow-shock region has a southward component (the
reader should interpret “southward” as downward
in Fig. 4), we have reconnection between the solar
wind and the northward directed magnetospheric
field, where the arriving particles enter and modify
the shape and the composition of the magnetosphere
[12].

Once the solar-wind particles gain energy and
enter the magnetosphere, they can have two be-
haviors: in the first, called directly driven process,
the particles follow immediately to the cusps of
the dipole field; in the second mechanism, called
loading-unloading process, there is a flux of particles

Figure 4: Scheme of Earth’s magnetosphere and its main
parts.

to the magnetotail, where they are further energized
before precipitating into Earth’s atmosphere via
the so-called substorm current wedge centered near
the midnight sector. In both cases, the substorms
cause observable effects such as aurora and strong
ionospheric currents.

4. Study of the KH instability

According to [13], the KH instabilities arise when
one considers the patterns of equilibrium of a strati-
fied heterogeneous fluid whose layers are in relative
movement.

First, consider a given uncompressible fluid. For
the sake of simplicity, let us disregard the viscosity,
in such a way Euler’s equation for that system takes
the form

ρ
∂ui
∂t

+ ρui
∂ui
∂xj

= − ∂p

∂xi
, (16)

which was written in indicial notation for conve-
nience, where ui are the components of the velocity
at a given point of the fluid, ρ is the density, p is
the pressure and xi (i=1,2,3) are the spatial coor-
dinates. Further, consider the flow occurs only in
the direction of x and with velocity U, which will
be treated as a function of the height z.

Now, consider a given point of the fluid has den-
sity, pressure and initial velocity given, respectively,
by ρ, p and υ = (U, 0, 0). Suppose that, under the
effect of a perturbation, those variables assume the
values ρ+ δρ, p+ δp e υ′ = (U + u, v, w), in such a
way Eq. (16) assumes the form

(ρ+ δρ)∂ui
∂t

+ (ρ+ δρ)
[
(U + u)∂ui

∂x

+v∂ui
∂y

+ w
∂ui
∂z

]
= − ∂

∂xi
(p+ δp), (17)

where we introduced the notation x1 = x, x2 = y e
x3 = z.

If we take U = U (z), u = u(t,x), u << U ,
δρ << ρ and δp << p, Eq. (17) for i = 1 as-
sumes the simplified form:

ρ
∂u

∂t
+ ρU

∂u

∂x
+ ρw

∂U

∂z
= − ∂

∂x
δp. (18)

Similarly, for i = 2 and taking v = v(t,x), we have

ρ
∂v

∂t
+ ρU

∂v

∂x
= − ∂

∂y
δp. (19)
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At this point it would be straight to deduce the equa-
tion for i = 3 in the same form we made for (i = 1)
and i = 2. However, we are considering the system is
under the effect of the terrestrial gravitational field;
besides, we are considering the system is heteroge-
neous, in the sense that there will be discontinuities
along the z direction. Thereby, the corresponding
equation for i = 3 will take the form [13]

ρ
∂w

∂t
+ ρU

∂w

∂x
= − ∂

∂z
δp− gδρ

+
∑
s

Ts

[(
∂2

∂x2 + ∂2

∂y2

)
δzs

]
δ(z − zs),(20)

which is similar to the ones corresponding to (i = 1)
and (i = 2), but with extra terms corresponding
to the influence of the gravitational field g and of
the surface tensions Ts at the interfaces between
the layers. Here, zs are the z coordinates of the
discontinuities.

Besides Eq. (16) and its particular cases described
above, we should take into account the continuity
equation, written as

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0 =⇒ (21)

∂ρ

∂t
+ uj

∂ρ

∂uj
= −ρ∂uj

∂xj
.

The left side of the second equation is the total
derivative of the density, in such a way that if we
are considering the case of an incompressible fluid,
we have to establish

∂uj/∂xj ≡ ∇ · υ = 0, (22)

that is, the velocity field is solenoidal.
Using the same conditions and approximations

considered in the previous deductions, Eq. (21) as-
sumes the form

∂

∂t
(ρ+ δρ) + (U + u) ∂

∂x
(ρ+ δρ) (23)

+v ∂
∂y

(ρ+ δρ) + w
∂

∂z
(ρ+ δρ) = 0. (24)

Taking ρ = ρ(z) and δρ = δρ(t, x), we have

∂

∂t
δρ+ U

∂

∂x
δρ = −w∂p

∂z
∇ · v = 0. (25)

So far, we deduced five equations which are neces-
sary for the study of the KH instabilities. However,

as it will be clear subsequently, it is interesting to
include an expression which yields the w component
of the perturbed velocity at the discontinuities.

Suppose in the perturbed states the interface be-
tween two layers becomes slightly deformed, in such
a way that the coordinate zs assume the value

zs + δzs(x, y, t). (26)
Defining w(zs) as the total derivative of Eq. (26),
considering zs constant and following a method sim-
ilar to the one used in the previous deductions, we
have

w(zs) ≡
D

Dt
(zs + δzs) = ∂

∂t
δzs + U

∂

∂x
δzs. (27)

4.1. Solution of the equations

Equations (18), (19), (20), (25), (27) and (22) form
the system governing the KH instabilities. Following
[13], we can initially consider the solutions which
depend on x,y and t in the form

exp ı(kxx+ kyy + nt), (28)
so that such equations yield

ıρ(n+ kxU)u+ wρ
dU

dz
= −ıkxδp; (29)

ıρ(n+ kxU)v = −ıkyδp; (30)

ıρ(n+ kxU)w = − d

dz
δp− gδρ

−k2∑
s

Tsδzsδ(z − zs); (31)

ı(n+ kxU)δρ = −wdρ
dz

; (32)

ı(n+ kxUs)δzs = −ws; (33)

ı(n+ kyv) = −dw
dz
, (34)

where k2 = k2
x + k2

y. Multiplying Eqs. (29) and (30)
for −ıkx e −ıky respectively, summing them and
considering Eq. (34), we have

ıρ(n+ kxU)dw
dz
− ıρkxw

dU

dz
= −k2δp. (35)

On the other hand, combining the third, fourth and
fifth equations, we have

ıρ(n+ kxU)w = − d

dz
δp− ıg w

n+ kxU

dρ

dz

+ık2∑
s

Ts

(
w

n+ kxU

)
δ(z − zs). (36)
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Eliminating δp between Eqs. (35) and (36), we
obtain

d
dz

(
ρ(n+ kxU)dwdz − ρkxw

dU
dz

)
− k2ρ(n+ kxU)w

= gk2
{
dρ
dz −

k2

ρ

∑
s Tsδ(z − zs)

}
w

n+kxU
. (37)

Once the fluid is confined between two surfaces of
coordinates z = 0 and z = d, we must ensure that
Eq. (37) satisfies the boundary conditions w(0) = 0
and w(d) = 0; besides, it is necessary to establish
that the factor w/(n + kxU) is continuous at the
interfaces.

Integrating Eq. (37) between zs−ε and zs+ε and
applying the limit ε→ 0 in the result, we obtain

∆s

{
ρ(n+ kxU)dw

dz
− ρkxw

dU

dz

}
= gk2

{
∆s(ρ)− k2

g
Ts

}(
w

n+ kxU

)
s
, (38)

where we defined the notation ∆s(f) = fz=z+
s
−

fz=z−
s

.
We can consider Eq. (38) valid at the interfaces,
while in the regions where z 6= zs we have

d

dz

[
ρ(n+ kxU)dw

dz
− ρkxw

dU

dz

]
−k2ρ(n+ kxU)w = gk2dρ

dz

w

n+ kxU
, (39)

which follows from Eq. (37).

4.2. Some particular cases

Let us consider initially the case of a system formed
by two homogeneous fluids of densities ρ1 and ρ2
which have a horizontal relative movement and are
separated by the surface z = 0. In order to ensure
the stability of the system, consider the density ρ2
of the upper fluid is less than the density ρ1 of the
lower one. Further, the fluids have velocities U1 and
U2 relative to the laboratory.

In each of the two fluids, the following equation
is valid: (

d2

dz2 − k
2
)
w = 0, (40)

which was obtained as a particular case of Eq. (39)
when one considers ρ and U constant.

Considering the general solution of Eq. (40) is
a linear combination of the functions ekz and e-kz,

bearing in mind the w(z) cannot increase exponen-
tially in both sides of the surface and remembering
w/(n+ kxU) must be continuous in such a region,
we have the solutions


w1 = A(n+ kxU1)ekz for z < 0

w2 = A(n+ kxU2)e−kz for z > 0.
(41)

Substituting the solutions given by Eqs. (41) in Eq.
(38) and considering the value of w at the interface
is given by ws = A(n+ kxU), we have

ρ2(n+ kxU2)2 + ρ1(n+ kxU1)2

= gk

[
(ρ2 − ρ1) + k2T

g

]
. (42)

Defining the new variables α1 = ρ1/(ρ1 + ρ2) and
α2 = ρ2/(ρ1 + ρ2), substituting them in Eq. (42)
and expanding the resulting expression, we have

n2 + 2kx(α1U1 + α2U2)n+ k2
x(α1U

2
1 + α2U

2
2 )

−gk
[
(α1 − α2) + k2T

g(ρ1 + ρ2)

]
= 0. (43)

Equation (43) is of second order in n, such that
its roots are calculated by

n = −kx(α1U1 + α2U2)± {gk [(α1 − α2)

+ k2T

g(ρ1 + ρ2)

]
− k2

xα1α2(U1 − U2)2
}1/2

.(44)

From Eq. (44) we can analyze some particular
cases. First, let us investigate the influence of the
surface tension Ts on the behavior of the instabili-
ties.

4.3. The surface tension is zero

If we consider T = 0 in Eq. (43), we get

n = −kx(α1U1 + α2U2)

±
{
gk(α1 − α2)− k2

xα1α2(U1 − U2)2
}1/2

.(45)

For the perturbations which are transverse to the
relative movement of the phases, that is, those per-
turbations where kx = 0, Eq. (45) simplifies to
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n = ±
√
gk(α1 − α2). (46)

How in this case n does not depend on U1 and U2,
we conclude the instabilities which are transverse to
the direction of the flux are not affect by the flux
itself.

On the other hand, for an arbitrary direction,
there will be stability if the root at the right side of
Eq. (44) is real, that is, we will observe instabilities
if

k2
xα1α2(U1 − U2)2 > gk(α1 − α2). (47)

Doing kx u k in Eq. (47), we conclude the in-
stabilities will occur for the perturbations which
have wave numbers greater than the minimum value
given by

kmin = gk(α1 − α2)
α1α2(U1 − U2)2 . (48)

Is is worth mentioning that instabilities can arise
even when |U1−U2| is small, since the perturbations
have wave lengths sufficiently small.

4.4. The effect of the surface tension

We can verify from Eq. (43) that, in the case where
T 6= 0, there will be instabilities if

α1α2(U1 − U2)2 < (49)

g

{
α1 − α2

k
+ kT

g(ρ1 + ρ2)

}
.

The right side of Eq. (49) will have a minimum when

α1 − α2
k2 = T

g(ρ1 + ρ2) , (50)

from which we can calculate k for this particular
case, what will be written as k∗. Substituting this
value of k in Eq. (50), we have

(U1 − U2)2 <
2

α1α2

√
gT (α1 − α2)
ρ1 + ρ2

. (51)

The condition given by Eq. (51) establish that
the surface tension will suppress the instabilities if
it is true.

4.5. Example

Following [13], consider the air immediately above
the sea surface has density ρ2 = 1.225 kg m−3. Be-
sides, let us take the values ρ1 = 1020 kg m−3 and
T = 7.4 × 10−3 N m−1 for the density and surface
tension of the seawater, respectively. Further, the
gravitational acceleration at the local has the value
g = 9.81 m s−2, such that Eq. (51) yields

|U1 − U2| < 6.50m s−1. (52)

When |U1−U2| reaches its maximum allowed value,
that is, when the system is about to develop insta-
bilities, we will have (using the relation given by Eq.
50)

k∗ = 36.8m−1 → λ∗ = 2π
k∗

= 0.0171m. (53)

Now, applying Eq. (49) in Eq. (44) and considering,
for the sake of simplicity, U1 = 0, we will have

n = α2k∗|U2| = 3.02s−1, (54)

once in this case |U1 − U2| = |U2|.
Thereby, we conclude that, if the air velocity

relative to the sea surface is greater than the
value given by Eq. (52), the KH instabilities will
manifest themselves in the form of surface waves
of lenght λ∗ = 0.0171m and velocity given by
n/k∗ = 8.2× 10−3m s−1.

4.6. A more complex example performed
with the FLASH Code

FLASH code (see Annex 1 for details) allows the user
to choice the particular values of the parameters
concerning each simulation, as well as the forms
and values of the physical quantities to be used.
Thereby, we defined a model which has the initial
configuration such that its time evolution leads to
the appearance of KH instabilities.

Following [14], we configured a domain with the
dimension [0, 1]× [−1, 1] cm in which the physical
quantities are given by Table 1, where ρ is the den-
sity, p is the pressure, v = (vx, vy, vz) is the velocity
in each point of the fluid and B = (Bx, By, Bz) is the
magnetic field. Besides, these quantities are given
in CGS units, once this system is commonly used
in the FLASH code.

Roughly speaking, the codes intended to deal
with MHD problems use Riemann solvers in order
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Table 1: Initial data for the KH instabilities problem [14].
physical
quantity

value/form (in CGS units)

ρ 1.0
Bx 1.0
By 0.0
Bz 0.0
p 50.0
ux 5[tanh(20y + 10) − tanh(20y − 10) − 1.0]
uy 0.25 sin(2πx)[e−100(y+0.5)2

−e−100(y−0.5)2
]

uz 0.0

to handle the equations. Particularly, FLASH code
permits the users to choice some of such methods,
namely: the Roe scheme (named after Phil Roe [15]),
HLL (Harten-Lax-van Leer [16]), HLLC (Harten-
Lax-van Leer-Contact [16]) and HLLD (Harten-Lax-
van Leer-Discontinuities [16]).

Here, we use HLLD solver. According to [16], this
solver is more robust and efficient than the linearized
Riemann solvers and with an equally good resolu-
tion. Besides, HLLD scheme is specially suitable
in the treatment of problems which have contact
discontinuities.

Figures 5 and 6 show, respectively, the form of
the components vx and vy of the velocity considered
in the simulation. The reader should note the initial
configuration depicts a layer of fluid in the region
−0, 5 < x < 0, 5 and which is moving along the
positive direction of x-axis, while the outer layers
are moving in the opposite direction. Besides, note
that vy plays the hole of the initial perturbations
which will give rise to the instabilities.

We considered a Courant-Friedrichs-Levy number
(CFL) like parameter as having the value 0.3. Such
a parameter, which is related to the size of the time
steps of the simulations in relation to the numerical
domain partition [17], is a necessary condition to
perform the numerical solutions of partial differen-
tial equations. In general form, 0.0 < CFL < 1.0 for
the advection equation and, the lower the number,
the smaller the time steps considered by the code.

Figure 7 shows the time evolution of the density
profiles and of the magnetic field vectors for the
problems considered. In the left side we can observe
the growing of the KH instabilities from the initial
state for the case of the ideal MHD. From top to
bottom, we plot the simulation at the instants 0.2,
0.4 and 0.6 s.

Note that the shape of the perturbations is sim-
ilar to waves such as, for example, the sea surface

Figure 5: Component vx of the velocity of the fluid.

Figure 6: Same as in Fig. 5 for vy.

waves discussed previously, although the present
simulation depicts a more complex case. Such a fact
indicate us how present that phenomenon is in the
fluid mechanics.

Basically, if there are layers with different den-
sities in tangential motion relative to each other,
under certain circumstances the KH instabilities can
arise along the interfaces between two of such layers.
In this simulation, the given circumstance is a small
perturbation acting as a “seed”.

The right side of Fig. 7 shows the simulation
for the case of the resistive MHD, that is, where
the resistivity of the system cannot be neglected.
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Figure 7: Simulations at 0.2, 0.4, 0.6 seconds (from left to right) showing the density profile for the case of ideal (a, b, c)
and non-ideal (d, e, f) MHD, where we have a magnetic resistivity different from zero. Vectors represent the magnetic field.

Particularly, we gave the resistivity η the value1

η = 0.02 s. Again, from top to bottom, we depict
the evolution of the system at the instants 0.2, 0.4
and 0.6 s. Comparing this simulation to the one
corresponding to the ideal MHD, we can note that
the main effect of the finite resistivity is “slowing”
the time evolution of the instabilities.

Further, it is worth pointing out the behavior of
the magnetic field in both cases. Note that it tends

1It is an interesting fact that in CGS units the resistivity is
given in seconds.

to remain “attached” to the flux. Such a behavior is
typical of the MHD. Nevertheless, as it is mentioned
in Section 2, in some cases that “attachment” can
be broken in the reconnection processes.

5. Conclusions

In this paper we discussed some aspects of the MHD.
Particularly, we shown the basic formalism of the
ideal MHD, besides mentioning its non-ideal forms,
such as the resistive MHD. Of particular importance
in this issue are the instabilities which, as we can
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deduce from the discussions, surge in several forms
and under many circumstances.

By means of three examples we shown that such
instabilities are important in the study of several
processes in space physics. More specifically, we
discussed the existence of the KH and the MR in-
stabilities in Crab nebula and in accretion disks,
respectively. As the third example, we presented
the phenomenon of magnetic substorms in Earth’s
magnetosphere, where the magnetic reconnection
plays an important role.

From the basic equations of the hydrodynamics
we deduced an analytic approach to the KH insta-
bilities. We shown as such an instability arise at the
interface between two layers of different densities
and which have tangential motion relative to each
other. Although the deductions are based only in
the equations of the hydrodynamics, we observed
that such a phenomenon is intrinsically related to
the MHD.

As an example, we used FLASH code in order
to create the simulation of a specific case of KH
instability. Generally speaking, the code creates the
simulations from the framework of the MHD and it
consider some particular characteristics for each type
of problem. However, we noted that, fundamentally,
the phenomenon is the same that the simplified,
analytic one deduced in Section 4. This fact pointed
to the universality of the process. Further, in the
simulations, we studied the difference in the results
when using the ideal and the resistive MHD. We
observed that the resistivity has the main effect of
“slowing” the time evolution of the KH instabilities.

FLASH Code

FLASH code, developed by University of Chicago2,
is a very useful tool in the simulation of the MHD
problems. What makes the FLASH specially suit-
able for handling the MHD problems is the fact of
having schemes for solving the equations which are
useful in the treatment of the magnetic reconnection
problems found, for example, in solar physics, as well
as problems involving fluxes undergoing magnetic
perturbations. The latter are typical of astrophysical
events such as accretion processes in neutron stars
and black holes [18].

The latest version of the code, named FLASH4,
has two different algorithms for solving the MHD

2http://flash.uchicago.edu/site/flashcode

equations. Specifically, such algorithms solve the
equations for the ideal and non-ideal cases in one,
two and three dimensions.

The first algorithm is the eight-wave model [5]; the
second one is the unsplit steggered mesh (USM) [19].
There are significant differences between the two
methods, and one of them is the manner how each
scheme deals with the zero-divergence condition of
the magnetic field.

The eight-wave model uses the truncation-error
method, which is efficient in removing the non-
physical effects due to the magnetic monopoles in
the cases where these are generated during the simu-
lation. On the other hand, the USM uses the method
called constrained transport [20], which manages to
maintain the magnitude of ∇ ·B of order of 10-12

in the most of the simulations.
The second difference which is worth mentioning

is the fact the USM uses the unsplit algorithm to
evolve the system of equations, while the eight-wave
uses the split method. The latter has the advantage
of being robust and of a relatively simple imple-
mentation. However, the split algorithm introduces
errors when handling some classes of problems, mak-
ing the unsplit scheme an interesting choice in some
cases.
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