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ADAPTIVE WAVELET SIMULATION OF WEAKLY COMPRESSIBLE FLOW IN

A CHANNEL WITH A SUDDENLY EXPANDED SECTION
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and Kai Schneider4

Abstract. We present an adaptive multiresolution simulation method for computing weakly com-
pressible flow bounded by solid walls of arbitrary shape, using a finite volume (FV) approach coupled
with wavelets for grid adaptation. A volume penalization method is employed to compute the flow in
the Cartesian geometry and to impose the boundary conditions. A dynamical adaption strategy to
advance both the locally refined grid and the flow in time uses biorthogonal wavelet transforms at each
time step. We assess the quality and efficiency of the method for a two-dimensional flow in a periodic
channel with a suddenly expanded section. The results are compared with a reference flow obtained
by a non-adaptive FV simulation on a uniform grid. It is shown that the adaptive method allows for
substantial reduction of CPU time and memory, while preserving the time evolution of the velocity
field obtained with the non-adaptive simulation.

Résumé. Nous développons une méthode de simulation multi-résolution adaptative pour calculer les
écoulements faiblement compressibles délimités par des parois solides de forme arbitraire, en utilisant
des ondelettes et une approcheen volume fini (FV). La pénalisation en volume est employée pour calculer
l’écoulement dans une géométrie cartésienne. Une stratégie d’adaptation dynamique pour avancer à la
fois la grille raffinée localement et le flux en temps utilise les ondelettes biorthogonales à chaque pas
de temps. On évalue la qualité et l’efficacité de la méthode pour un écoulement à deux dimensions
dans un canal avec une section soudainement élargie, en comparant avec un calcul de référence obtenu
par une méthode en FV non adaptatif. Il est montré que la méthode adaptative permet une réduction
substantielle du temps de calcul, tout en préservant l’évolution temporelle du champ de vitesse obtenu
avec la simulation non adaptatif.

1. Introduction

Wall-bounded flows in complex geometries are often encountered in our daily life and in many engineering
applications. The development of computational methods for simulating such flows has been one of the main
issues in computational fluid dynamics.
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Volume penalization (VP) methods are powerful tools to compute wall-bounded flows in complex geometries
or flows with obstacle, while using simple Cartesian geometries. VP methods have been used in the context of
incompressible, e.g. [1], or compressible flows, e.g. [2, 3]. For a recent review on VP we refer to [4].

Adaptive numerical simulation methods aim to reduce the computational cost, i.e., CPU time and memory,
compared to non-adaptive simulation methods, while preserving the accuracy. Adaptive methods track the
time evolution of the flow field using a locally refined mesh which changes in time. The number of grid points
in the refined mesh is directly related to the computational cost of the methods. The adaptive methods can
be more efficient using wavelet representations, because wavelets have attractive mathematical features, e.g.
efficient multiscale decomposition and local error indicators [1]. A comparison of an adaptive wavelet method
with adaptive mesh refinement both using finite volume discretization has been presented in [5,6] for two- and
three-dimensional compressible Euler equations. Wavelet methods in computational fluid dynamics have been
reviewed in [7, 8].

In order to reduce the number of mesh points not only in the fluid region but also inside the obstacles
or walls, adaptive simulation methods coupled with the VP method seem to be promising. In this study we
consider weakly compressible flow bounded by solid walls of arbitrary shape, e.g., a compressible flow in micro
channels [9]. Our aim is to develop an adaptive wavelet method to compute the flow bounded by complex
geometries, employing a VP method for compressible flow [3]. A finite volume (FV) method is used for spatial
discretization. The quality and efficiency of the wavelet method is assessed for the flow in a channel with a
suddenly expanded section, comparing with a reference flow obtained by a non-adaptive FV simulation method.
The paper is organized as follows: after recalling the governing equations, we present the numerical method in
section 3. Section 4 shows the numerical results, and conclusions are drawn in section 5.

2. Basic equations

In this section, we recall the penalized Navier-Stokes equations for compressible flow and the corresponding
wavelet filtered equations.

2.1. Penalized Navier-Stokes equations for compressible flows

The volume penalization method is based on the idea of modeling a solid domain as a porous medium whose
permeability tends to zero [10]. The method allows us to consider solid walls of arbitrary shape. A sketch of
the flow region Ωf bounded by solid regions Ωs is given in Fig. 1. Compressible flow can be modeled by the

Figure 1. Sketch of the computational domain. The fluid region Ωf is surrounded by solid
regions Ωs. The computational domain, a rectangle, is Ω = Ωf +Ωs.
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dimensionless penalized Navier-Stokes equations [3],
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Here, ui(x, t) is the i-th component of velocity, ρ(x, t) the density, p(x, t) the pressure, T (x, t) the temperature,
E(x, t) the total energy, τij(x, t) the viscous strain tensor, δij the Kronecker delta, Fi(x) a forcing term, µ(x, t)
the molecular viscosity, λ the conductivity, γ the specific heat ratio, Re the Reynolds number, Ma the Mach
number, Pr the Prandtl number, t time and x = (x1, x2). Einstein’s summation convention is used for repeated
indices. The viscosity µ obeys the dimensionless Sutherland law µ = T 3/2(1 + Ts)/(T + Ts), where Ts ≈ 0.404.
The permeability of the solid region Ωs is denoted by η and called penalization parameter. The mask function

χ(x) =

{

1 in Ωs,

0 in Ωf ,
(6)

describes the geometry of the flow and the solid domain. The energy of Ωs is given as EΩ = TΩ/[γ(γ − 1)Ma2],
where TΩ is a constant wall temperature. The no-slip condition (i.e., both the parallel and normal components
of velocity vanish on the wall) and the isothermal condition on the walls are included in the penalization terms.
The Navier-Stokes equations are solved numerically in a periodic computational domain, which consists of the
fluid region Ωf and the solid region Ωs, as illustrated in Fig. 1. In Eqs. (1) - (5), and hereafter, we omit the
arguments x and t, if not otherwise stated. For convenience, we define a vector U = (ρ, ρu1, ρu2, ρE).

2.2. Wavelet filtered equations

We make a brief summary of wavelets and an adaptive wavelet simulation method for compressible flow,
which is called CVS [11]. We then derive a corresponding formulation of the penalized CVS.

Wavelet analysis is an efficient tool to perform multiscale decompositions, since wavelets are well localized
functions in space, scale, and direction [12]. Analysis of incompressible, e.g. [13–15], and compressible flow [11]
show that coherent structures can be efficiently extracted and the statistics of the original fields is well preserved
with a reduced set of degrees of freedom.

The underlying idea of CVS for compressible flow is to decompose U into an organized coherent part U and
a noise-like incoherent part U ′ using here a biorthogonal wavelet representation at each time step. The coherent
part U is reconstructed from the few wavelet coefficients whose modulus is larger than a given threshold, while
the incoherent part U ′ is obtained from most of the remaining wavelet coefficients. We only compute the time
evolution of U deterministically, while neglecting the influence of the incoherent part here. The threshold ǫ
used here is based on the H1-norm [11]. In the two dimensional case, ǫ takes a constant value and is not level
dependent. It is applied to all components of U . For a discussion on the choice of the threshold using other
norms, we refer the reader to [11].
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Following Roussel & Schneider [11], the dimensionless density ρ and the pressure p are decomposed into

ρ = ρ+ ρ′, p = p+ p′, (7)

where · and ′ respectively denote the coherent and incoherent part. The other remaining variables φ, e.g., the
velocity (u1, u2), the temperature T and energy E, are decomposed using the Favre averaging technique, such
that

φ = φ+ φ′, φ =
ρφ

ρ
. (8)

Inserting the decompositions of Eqs. (7) and (8) into Eqs. (1)−(4), while retaining only the coherent part
and using the approximation µ = µ(T ), we obtain the evolution equations for U , which are called the wavelet
filtered equations,
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3. Numerical scheme

We briefly describe the numerical methods for the penalized Navier-Stokes equations, Eqs. (1) - (4), and the
wavelet filtered equations, Eqs. (9) - (12). The discretizations are the same as in Ref. [11] except the treatment
of the penalization and forcing terms.

3.1. Numerical method for the penalized Navier-Stokes equations

We obtain the reference flow, performing non-adaptive simulations solving Eqs. (1) - (4) with a finite volume
(FV) method on a uniform grid, which we call penalized Navier-Stokes simulation (abbreviated as PNS here).
We use an explicit (2,4) MacCormack scheme, which is second-order accurate in time, fourth-order in space for
the convective terms, and second-order in space for the diffusive terms. The penalization and forcing terms are
integrated in time in the same way as the diffusive terms.

The time increment ∆t is determined, taking into account the Courant-Friedrichs-Lewy condition and its sta-
bility constraints which originate from the penalization terms and the diffusion terms. The explicit discretization
of the penalization terms requires that ∆t has to be smaller than η, see, e.g., the discussion in [16].

3.2. Numerical method for the wavelet filtered equations

The time integration of the wavelet filtered equations is performed on an adaptive grid with a tree data
structure, a quad-tree here. The adaptive grid is constructed by adding or removing cells, applying thresholding
of the wavelet coefficients, which are computed through the cell-averaged multiresolution analysis. A sketch of
the adaptive grid with three hierarchy levels is shown in Fig. 2. In the grid in Fig. 2 (b), there are adjacent cells
whose scales are different from each other. For the conservative flux computation between these cells, virtual
cells indicated by dashed lines are used as illustrated in Fig. 2 (c). The numerical method for the wavelet
filtered equations is the same as the one mentioned in Sec. 3.1, except that the computational procedure is
now executed on the adaptive grid. A CVS computation with the threshold value ǫ = 0 corresponds to the
non-adaptive computation, whose grid at the finest level is identical to the grid used in the PNS computation.
However, it is not efficient in terms of computational cost and memory due to the overhead.
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(a) (b) (c)

Figure 2. Examples of nested grids (a) and an adaptive grid (b). The level of each grid is
denoted by l. (c) Virtual cells bounded by dashed lines are added to the adaptive grid (b).

4. Numerical results

4.1. Flow configuration and initial field

We consider a two-dimensional periodic channel with a suddenly expanded section, illustrated in Fig. 3. We
compute one cell of the periodic channel, for which bifurcation from a steady state to an oscillatory state was
observed in [17]. We take the x1-axis along the flow direction and the x2-axis as the vertical direction. The
rectangle shown in dashed lines indicates the boundary of the computational domain Ω. Periodic boundary
conditions are used for the computational domain in the x1 and x2 directions. Note that replacing the successive
periodic repetition of the unit cell by a single unit with periodic boundary condition is not equivalent as observed
in [17]. The solid line indicates the boundary of the channel wall. The mask function in Eq. (6) is set to χ = 1
for the region bounded by the dashed and solid lines, while χ = 0 for the fluid region. The shape of the channel
is defined by the following three parameters: (i) expansion ratio: E = D/d, (ii) aspect ratio of the expanded
section: A = ℓe/(2D), and (iii) nondimensional throat length s = ℓr/d. The periodic length L of the channel
is L = 2(s + EA). Here, E = 3, A = 7/3 and s = 1/2. The nondimensional length of the solid region in the
x2-direction is ℓh/d = 3/10. To drive the flow, the forcing term Fi is set to be Fi = 2(1−χ)δi1/Re and Re = 65.
For details we refer to [18]. The remaining parameters are set as Ma = 0.2, Pr = 0.71, γ = 1.4 and TΩ = 1.

To make an initial field for the three PNS computations in Sec. 4.2 and three CVS computations in Sec. 4.3,
we performed a preceding CVS at η = 10−3, until the flow becomes periodic. For the PNS computations, data
on the uniform grid are obtained by interpolation of the CVS data.

The number of grid points for the PNS computations is NPNS = 2m× 2m, where m = 8. The maximum level
L of the CVS grid is also L = m. Since CVS uses a tree data structure, the maximum number of degrees of
freedom is NPNS

∑m
l=0

(1/4)l, which is the summation of the number of grid points at each level l.

4.2. Penalization parameter dependence for penalized Navier-Stokes equations

To assess the influence of the penalization parameter, we performed three PNS computations for η =
10−2, 10−3 and 10−4. The corresponding time increments are set to 5 × 10−4, 5 × 10−4 and 5 × 10−5, re-
spectively. As discussed theoretically in [19], smaller η allows for more accurate solutions for sufficiently fine
grids. However, the constraint from the penalization terms becomes more severe than the other constraints as η
becomes smaller. Thus, it is important to choose a suitable value of η for a given grid size, taking into account a
balance between the CPU cost and the accuracy of the solutions. We also refer to the discussion in [20]. For the
cases of η = 10−3 and 10−4, ∆t is determined by the constraints imposed by η, while for the case of η = 10−2,
∆t is determined by the diffusive constraint.
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Flow

P

Q

R

Figure 3. Flow geometry and coordinates.

Figure 4. Visualization of |u| for PNS at t = 25 (left) and t = 35 (right), where u = (u1, u2).
The white lines indicate the wall positions.

To get an intuitive idea on the flow field, velocity magnitudes obtained with PNS at η = 10−3 are visualized
for two time instants in Fig. 4. We see that wavy structures are formed by the intense velocity regions. The
wavy structures seem to oscillate as time increases, as observed for incompressible flow [17].

Figure 5 shows the η dependence for the time evolutions of the streamwise velocity u1 and the trajectories
(u1, u2) for PNS computations, where u1 and u2 are measured at the point P indicated in Fig. 3. In Fig. 5 (left),
we observe that the curves at η = 10−3 and η = 10−4 overlap well, while the curve at η = 10−2 significantly
departs from them after about t = 5. Figure 5 (right) shows that the curves for η = 10−3 and η = 10−4 agree
well with each other. We find that the flows are indeed periodic with a period of about T0 ≈ 23.8. We observe
that the curve for η = 10−2 differs from the curves for η = 10−3 and η = 10−4.

Figure 6 shows the η dependence of one dimensional cuts of u1 along the line QR given in Fig. 3. It can
be seen that two curves for η = 10−3 and 10−4 overlap well over the whole range of x2, while |u| for η = 10−2

is much smaller than |u| for the other two cases around x2 ∼ 0 and −2.3. Inside the walls of the expanded
section, i.e., |x2| ≥ 3, |u| is sufficiently small. This confirms that the volume penalization method models well
the walls.

We conclude that η = 10−3 is a suitable value, because (i) the PNS at η = 10−4 is about 10 times more
expensive than PNS at η = 10−3 and (ii) the effect of the difference between η = 10−3 and η = 10−4 on the
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Figure 5. Left: time evolutions of u1 at the point P for η = 10−2, 10−3 and 10−4. Right:
trajectory in the (u1, u2) plane from t = 24 to t = 48.
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Figure 6. One-dimensional cuts of u1 at t = 35 along the line QR.

flow field can be hardly observed. In the following, CVS computations for η = 10−3 are performed for different
threshold values. The quality and efficiency of the CVS computations are assessed by comparison with PNS at
η = 10−3.

4.3. Assessment of CVS

Now we assess the quality and efficiency of CVS, comparing with a reference flow obtained by the PNS
computation for η = 10−3. We perform three CVS computations (CVS1, CVS2 and CVS3) using η = 10−3.
The threshold value ǫ used in the wavelet filtering in CVS1, CVS2 and CVS3 is ǫ = 0.02, 0.04 and 0.08,
respectively.
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Figure 7. Visualizations of |u| for CVS with ǫ = 0.04 at (top, left) t = 25 and (top, right)
t = 35. Visualizations of the adaptive grids at (bottom, left) t = 25 and (bottom, right) t = 35,
where the black lines indicate the wall positions. The color bar (bottom, right) indicates grid
levels.

We start with visualizing the velocity magnitude at two time instants obtained by CVS2 and the correspond-
ing adaptive grids in Fig. 7. We observe that CVS2 well preserves the wavy structures of the original flow
obtained with PNS. There are many grid points at the finest level near the corner of the outlet, which track
intense velocity gradients near the corner. Note that the finest level of the grid is m = 8, which is colored
yellow. Away from the corners, the number of grid points is significantly reduced, not only in the fluid region
apart from the walls, but also inside the wall regions.

Figure 8 shows the time evolutions of u1 and the trajectories in the (u1, u2) plane at the point P for the
PNS and CVS computations. In Fig. 8 (left), we observe that CVS1 and CVS2 well retain the time evolution
of PNS, while CVS3 departs significantly from PNS after about t = 25. In Fig. 8 (right), it can be seen that
the curves for CVS1 and CVS2 are close to the results obtained with PNS. We find that the flows are indeed
periodic in time. In contrast, the curve for CVS3 significantly deviates from the curve of PNS. Concerning the
one-dimensional cuts of u along the line QR, for the whole x2 range, we confirm that CVS1 and CVS2 are in
good agreement with PNS and that |u| is sufficiently small inside the walls (figure omitted).

Figure 9 shows the time evolution of the ratio R = 100NCVS/NPNS, where NCVS consists of two parts; one is
the number of degrees of freedom (DoF) of the adaptive mesh on which the flux computations are carried out,
and the other is the number of DoF inside the tree, which are necessary to perform the multiresolution analysis.
The latter causes overhead of CVS, that does not exist in the PNS computation. However, if the overhead is not
so significant, CPU gain can be larger than memory gain. Figure 9 shows, as expected, that most coefficients are
retained by CVS1 (about 31%), followed by CVS2 (about 26%), and then CVS3 (22%). Table 1 summarizes the
computational cost of each computation and the relative error obtained from Fig. 8 (left). The relative error is
a measure of the predictability of CVS, which is defined in the caption. We conclude that CVS1 and CVS2 are
reasonable choices taking into account the balance between CPU time and predictability of the flow. In CVS,
the deterministic predictability of CVS becomes better for smaller ǫ, as expected. However, the computational
cost of CVS with small ǫ is large. Therefore, the balance between computational cost and predictability is
important.
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5. Conclusion and Perspectives

We have developed an adaptive multiresolution simulation method, called CVS, to compute weakly compress-
ible flow bounded by walls with complex geometry, using biorthogonal wavelets and a finite volume approach.
A volume penalization method has been employed to compute the flow in a Cartesian geometry and to impose
the boundary conditions. The quality and efficiency of the method have been assessed for the flow in a periodic
channel with a suddenly expanded cross section, comparing with a reference flow obtained by the non-adaptive
FV simulation (PNS).

We found that the CPU time of CVS is about five times smaller than that of PNS, while preserving the
deterministic predictability with 25 to 30% of the number of degrees of freedom compared to that of the PNS
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Method CPU time CPU (CVS/PNS) Memory Relative error
PNS 22 h 21 min - - -
CVS1 5 h 3 min 22.6% 31.1% 1.1%
CVS2 4 h 2 min 18.0% 25.6% 2.7%
CVS3 3 h 13 min 14.4% 21.5% 6.5%

Table 1. Computational costs for the PNS and CVS computations. Memory compression is
defined by time average of R. Relative error is defined by the maximum value of 100|uCVS

1 −
uPNS
1 |/|uPNS

1 | at the point P for 0 < t < 47.6.

computation. The number of the grid points in CVS is significantly reduced in the fluid region apart from the
wall and inside the wall region.

The efficiency of the present CVS can be improved further using spatially variable time stepping method [21].
This CVS would allow for adaptivity both in space and time, which can lead to further speed-up of CPU time.
The application of CVS to reacting flow may be promising, because reacting flow is strongly multiscale both
in space and time [22, 23]. The assessment of adaptive CVS for turbulent flows bounded by walls of complex
geometries is also an important issue. In [24], it was shown that wavelet representations are more efficient
than non-adaptive representations for isotropic turbulent flow, as the Reynolds number increases. It is thus
expected that adaptive CVS is an attractive tool for high Reynolds number flows bounded by walls in complex
geometries.
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