SPIN STABILIZED SATELLITE’S ATTITUDE
PROPAGATION WITH QUATERNIONS

M. C. ZANARDI (1), V. ORLANDO (2), R. S. P. BENTO(1), M. F. SILVA(1)
(1) UNESP Séao Paulo State University,
Guaratingueta , SP, CEP 12516-410 —-BRAZIL,55-12334845
cecilia@feg.unesp.br
(2) INPE- Brazilian National Institute for Space Reszmar
S&o José dos Campos , SP, CEP 12201-970 — BRAXZIL253208-6374
valcir@ccs.inpe.br

Abstract: This paper presents a study of a modefingeme for the spin stabilized satellites
attitude, entirely developed in terms of quaterniparametrization. The analysis includes
numerical propagation of the rotational motion etjaa, considering the influence of the following
torques: aerodynamic, gravity gradient, residualgnatic, eddy currents and the one due to the
Lorentz force. Applications are developed consittgthe Brazilian Spin Stabilized Satellites SCD1
and SCD2, which are quite appropriated for verifioa and comparison of the theory with the real
data generated and processed by the INPE’s Sat€idntrol Center (SCC). The results show that
for SCD1 and SCD2 the influence of the eddy cun@wjue is bigger than the others ones, not only
due to the orbit altitude, but also to other sfiecsatellites characteristics. The influence of th
torque due to Lorentz force is smaller than theemdhones because of the dimension and the
electrical charges of the SCD1 and SCD2. In allfpened tests the errors remained within the
dispersion range specified for the attitude deteation system of INPE’'s SCC. The results show
the feasibility of using the quaternion attitudegraeterization for modeling the satellite dynamics
of spin stabilized satellites.

Keywords: attitude quaternion, spin velocity, external torques, numarisimulation, pointing
deviation.

1 Introduction

The objective of this paper is to analyze thewadtof spin stabilized satellites, entirely develdp
in terms of quaternion parametrization. The analyisicludes numerical propagation of the
rotational motion equation, considering the infloemf the following torques: aerodynamic, gravity
gradient, residual magnetic, eddy currents anatigedue to the Lorentz force.

The gravity gradient torque is generated by th&edihce of the Earth gravity force direction and
intensity actuating on each satellite mass elenmiéns torque is inversely proportional to the cube
of the satellite geocentric distance. The aerodyoaonque is created by the interactions of rackefie
air particles with the satellite surface and it ki@s predominant orbit perturbation effect in LEO
orbit satellites. In this paper TD-88 model is usedescribe the atmospheric density. The residual
magnetic torque results from the interaction betwtbe spacecraft’'s residual magnetic moment and
the Earth magnetic field and its main effect iptoduce a spin axis orientation drift. On the other
hand, the main effect of the eddy current torqu iproduce a reduction in the satellite spin rate
with time. The torque due to Lorentz force is assted with a rigid spacecraft equipped with an
electrostatically charged protective shield, havangntrinsic magnetic moment. The main element
of this shield is an electrostatically charged soresurrounding the protected volume of the
spacecraft. This torque depends on the Earth’s etagfeld, the form of the satellite shell, the
satellite spin rate, the angular velocity of thardal rotation of the geomagnetic field altogether
with the Earth and the electrical charge of thelksd. In this paper the dipole model is assunwed f
the Earth’s magnetic field and the satellite ispmged to be in an elliptical orbit.



A mathematical model is presented for each consttéorque in terms of quaternion attitude
parametrization.

The numerical propagation of the equations of rotal motion shows the evolution of the
components of the angular velocity vector and the tomponents of the attitude quaternion. The
influences of the Earth oblateness in the orbikaments are taken into account. Applications are
developed considering the Brazilian spin stabilizadellites SCD1 and SCD2, which are quite
appropriated for verification and comparison of tteeory with the real data generated and
processed by the INPE’s Satellite Control CentdBiPf’'s SCC). A spherical coordinate system
fixed in the satellite is used to locate the sageBpin axis in relation to the terrestrial equigio
system. The spin axis direction is specified byright ascension and the declination angles. The
time evolution of the spin axis right ascension dedlination angles is gotten from the numerical
results of the quaternion attitude propagation.

An initial approach is presented, in which the @ggted attitude is daily updated with the help of
real satellite data, supplied by INPE's SCC. A secapproach is also presented, where daily
updates of the attitude data has not been performie propagation process.

The results of this analysis can be useful forBhazilian mission satellite.
2. External Torques Model
2.1 Gravity Gradient Torque

The gravity gradient torque [9,12] for a spacectaft be modeled by:

M = 3%[8‘218‘31(' 2~ y) éx + a11a31(| X Iz) éy + a118‘21(I y l xx) éZ] , (1)

where p (3.986 x 10 m3¥s?) is the Earth gravitational parameteérjs the satellite geocentric
distance, a, &; and a; are the direction cosines which relate the orlgtatem and the satellite
fixed system ( the latter being associated withpiecipal moments of inertia axes of the satéllite
Iy, ly, Iz are the Principal Moments of Inertia of the samlﬁndé(,éy,éz units vectors of the satellite

fixed system. The elemenis;, a;; andas; depend on the orbital elements (orbit inclinativoe
anomaly, longitude of the ascending node and arguwfethe perigee) and the attitude quaternion
[12,14]. In this study the z-axis corresponds ® libng axis of cylinder. Equation (1) shows that
this torque decreases with the cube of the altiarttk depends on the shape, dimension and mass
distribution of the satellite. If the satellite hasuniform mass distribution and the principal
moments of inertia are equal, this torque vanishbs. gravity gradient torque magnitude has short
oscillations due to the satellite rotational motjd2] when the influence of rotational motion is
included in the direction cosineg aa; and a;.

2.2 Aerodynamic Torque

When the satellites move in the tenuous layershefupper atmosphere, the interactions of the
molecular stream with a satellite’s surface produeetorque about the center of mass. For
spacecraft below approximately 400 km, the aeroaiyndorque is the dominant environmental

disturbance torque [10, 12]. The end of a spaceanafsion often occurs when the aerodynamic
torques becomes so great as the spacecraft reémelEarth’'s atmosphere that the attitude control
systems ceases to become effective and the sptdaarnhles.

In this paper we will adopt to represent the aenaatyic torque the following model [5]:



N, = m, xD, 2)

Where m, is the position vector between the center of presand the center of mass, Deis the
drag force (in this paper the influence of thefiifitce in the aerodynamic torque is negligenciable)
and in the satellite fixed system it is given by:

D=D,& +D,& +D,8, (3)

with D, =-Dlay, coslys)+a,serlys)] @)
D, =-Dla,; codys)+ aserlys)| 1€
D, =-Dlas, cos(ys)+ayserlys)] ©)

:% PV2SC, . (7)

where p is the local densityy represents the magnitude of the satellite’s velo@lative to the
atmosphereS is a reference section area of the satelliteis the Drag Coefficientyis the angle

between the position vector and the orbital vejoeéctor andy; , i=1,2,3, j=1,2, are the direction
cosines which relate the orbital system and thellgatfixed system and depend on the orbital
elements and the attitude quaternion [14]. An ymmslconcerning the uncertainties and usual
values of some of these parameters can be fouil in[

Then by substituting the Eq. 3 in Eq. 2, the aenadtyic torque in the satellite fixed system is given
by:

N, =[D,mg -D,me s, +[D,me -D,me]e, +[D, mg -D, mg]e, . ®)

In order to estimate the influence of the aerodyinatarque magnitude in the rotational
motion, in this paper some simplifications are @and the thermosphere model TD-88 is used for
the atmospheric density [7]. The velocityis assumed equal to the orbit velocity and thegdra
coefficient is fixed. The thermosphere model TDi8&lefined for the height range of 150 — 750
km. According to [7], the atmospheric density osuaface of constant altitude can be described by
the expression

p= T fohg, ©)
where h, =Ko+ i Kn ex{(lzo_( I’.' — I )} (10)
j=1 29]

Here, ris Earth’s Equatorial radiug,, ; are numerical constantsand fo depend on the solar flux

and ko depends on the geomagnetic index. The tegmédescribing mean density, individual
dependence on the mean solar flux, North-South astny, anual, semi-anual, diurnal and semi-



diurnal variations) are functions of the day coahthe year, of the local time, of the latitudedan
numerical constants which are summarized in tdlles

2.3 Magnetic Torques

Magnetic disturbance torques result from the imtigoa between the spacecraft’s residual magnetic
field and the Earth’s magnetic field. In this pajpaes assumed that the spacecraft is manufactured
from material such that the primary sources of netigntorques are the spacecraft magnetic
moments and eddy currents with other sources nblgigThe spacecraft's magnetic moment is
usually the dominant source between the disturlsatargues [9]. Ifm is the magnetic moment of

the spacecraft an8 is the geocentric magnetic flux density, the neaidnagnetic torques is given
by [4, 11, 12]:

N, =mxE. (11)

The torque induced by eddy currents is caused dgplacecraft spinning motion. It is known [4,11]
that the eddy currents produce a torque which cateeprecession in the spin axis and causes an

exponential decay of the spin rate. W is the spacecraft’'s angular velocity vector ant @
constant coefficient which depends on the spadegedmetry and conductivity, this torque is
given by:

N, =p Bx(BxW). (12)

Here the magnetic torque is developed only for m-sgbilized satellite. In this case, the
spacecraft’s angular velocity vector and the s&tethagnetic moment are along z-axis and the
residual magnetic torque and induced eddy curresnisthe expressed in the satellite fixed system

by [4]:

N,=-mB,& +mB,&, , (13)

Ni:pW(BXBZéX+ByBZéy—(BX2+By2)éZ), (14)
where By, By, B, are the components of the geomagnetic field institellite fixed system [13].
These components are obtained in terms of the gaarénertial components of the geomagnetic
field [8] and the attitude quaternion of the sal[13]. In order to describe the geomagnetiafiel
the dipole vector model [8,11] is used.

2.4. Torque due Lorentz force

In this paper we will adopt the following modelrepresent the torque due Lorentz force [1]:

M, = W x Bs +wg x Bs, (15)

where is the spin velocity vector of the satellitg; is the vector of the spin velocity of the
diurnal rotational of the geomagnetic field togethwth the Earth, with the direction given by the
unit vectorf and



4Dd? 0 0 0B
Ps=Sb S=| 0 4Dd*> 0 | and =,
0 0 4Dh? ar (16)

whered and h are the diameter and height of the cylindricarged manta around the satellit,
is the magnitude of the geomagnetic Fietd,is the satellite geocentric distance aRds the
satellite’s electrical charge. The geomagnetidfisldescribed by the dipole vector model [8,11].

After the development of the Eq. 15, the componehtke torque due Lorentz force in the satellite
fixed satellite i3]:

IVIL:MLxéx-'-MLyé +MLzéz’ (17)
with
M = Dh?Bap(q+ Wy B2p )~ Dd 2 Ban( T + Wy B3 ), (18)
M, =Dd 2Bip (1 + Wy B3p ) - DhZIBBP(p+WgIB1P ), (19)
M, =Dd*(pBsp —dBsp ), (20)

—

wherep, q, r are the components of the satellite splnoity Wiin the satellite fixed system and

Bip, Bop, B3p depend on the components of tﬁein the equatorial system and the attitude
guaternion.

3. Equations of rotational motion in terms of the giaternion

The dynamic equations of the satellite’s rotatiomation are described by the Euler equations and
the kinematic equations for the attitude quaternidre Euler equations give the tax of variation of

the components of the satellite’s spin velocity atepend on the components of the external
torques in the satellite fixed system [6,10,13]:

p=q r (|y—|z)/ L AN/,

. 3 +

aq=pr|l, IX)/Iy Ny/Iy, (22)

r=pq IX—Iy)/ IZ+ NZ/ IZ.
In these equationis, |y, I, are the Principal Moments of Inertia of the sat@lp,q,r andNy, N, N,
are the components of the spin velocity and thereal torques in the satellite fixed system,
respectively.

In this paper the kinematic equations are describeterms of the attitude quaterniap The
guaternior is a vector 4x1 given by:

a=[a @ a; al'=[d a,t, (22)

where t represents the transposed of the matriis ltsual to call the vectoff as the vector
component of the quaternion aggthe scalar component of the quaternion. Teeay be expressed
in function of the rotation angley and of the axis of rotation in agreement it consists below:



q=[a qa a]'=sin(p/2)i and q, =codp/2). (23)

It is easeo prove that the module of the quaten is 1, sincen is a unitary vector in the directic
of the spin velocity vectoThe matrix of attitude in ters of the quaterniors presented i[6]. The
kinematic equations that describe the tax of viamabf the components of the quaten of
attitude, due to ration of the satellite, are given [6,13]:

1 1
G==[pa-qa +ra,), ¢ ==[qq, - ra, + pas),

_?L 21 (24)
q3=§[rq4—pq2+qq1], q4=—§[pq1+qqz+rq3]-

As it can be observed, the kinematic equationgims of theattitude quaternin are linked and
depend on the components €, 1) of the spin velocity, given for the EB1 making it difficult to
get an analytical solutio.hen in this papea numerical propagatidior the E«. 21 and Eq. 24 is
realized, usingRunge Kuttanethoc and the language FORTRAN.

4. Applications for spin stabilized satellite

Spin stabilized satellitehas the spin axis along the biggest principal mdnoénnertia’s
axis. A spherical coordinates system fixed in thtelite is used to locate the spin axis of
satellite in relation to the equatorial system. @ivection of the spin ax is speciied by its right
ascension ) and the declinatiord) which are represented in FigThis spherical coordinate ci
be obtained using the attde quaternioiq and the components of the spin velc W. If the units

vectors are associated with trequatorial system and the unitectors &, g &, of the
satellite fixed systerthen the spin velocity vector can be expresse

and (25)

Figure 1 —Equatorial Systen (T,:],R ), Spin axis orientation 42 ),right ascension ) and
declination (8) of the spin axis.

If the components of the attitude quatern and components of the satellite s
velocity (, g, ) are known, e vectors and are related by [13]:



P=(q; -q, —q, +0;)p+2q(q,9, - 9,9,) + 2r(9,q, +9,9,)
Q=2p(q,a, +q,q,) + (-0 +q; —q; +a;)g+2r(q,q, - 9,9,) (26)
R=2p(q,q9, - 9,d,) +29(q,q, +Q9,0,) + (-, —q; +0q; +q)r

and the magnitude of the spin velocity is given by:

1
2

W=(p*+q° +r°)>. (27)
According to Fig. 1, the components of spin velpé€it Q, R can be obtained by:
P=Wcosd coxm , Q=Wcad sin , R=Wga&in . (28)

Then the right ascensiow () and declination (  hefdpin velocity can be computed by:

. R P .
sind = —, cosxXx=——, sina =
w Wcosé W cosé

(29)

with 0 < § <90° and0 < a < 360°.

In this paper the right ascension and declinatibthe spin velocity will be computed using the
numerical results obtained for components of tha splocity and attitude quaternion by the
numerical simulation of the Eq. 21 and Eq. 24.

5. Pointing Deviation

For the tests it is important to observe the deMiabetween the actual attitude data supplied by
INPE and the computed attitude, for each satelire this deviation is called pointing deviation
and given by the angle betweerthe actual spin axi&¢ and the computed spin axs . It can be
computed by [4]:

cosf =k -k, , (30)

where (- ) indicates the scalar product between actual &gk and computed spin axis .
The unit vectorsk and k. can be obtained using thight ascension and declination of the spin
axis as:

k=cosacoséT+sinacos §f+siné K, (31)

—

k. = cos a, cos 8.1 + sina, cos 8¢ J + sin 8¢ K, (32)
with a andé supplied by INPE’s SCC ang andd. computed by the presented theory.
6. Numerical Applications

The theory developed has been applied to the sahiliged Brazilian Satellite (SCD1 and SCD2)

for verification and comparison of the theory agaidata generated by the INPE's SCC. THe 8

Runge Kutta method is used to determine the nualdesadution for Eq. 21 and Eg. 24.

The numerical solutions give the components ofdttikude quaternion and of the spin velocity,

which are used to compute the spin velocity, rigetension and declination of the spin axis by
using Eq. 27 and EqQ. 29. Then these computed vatesompared with real data supplied by
INPE’s SCC in order to check the precision of tlhespnted theory. Also important to observe is
the deviation between the actual spin axis anaddneputed spin axis, that is, the pointing deviation
computed by Eq. 30.



Two approaches are presented. In the first oneribhgagated attitude is daily updated with the help
of actual satellite data, supplied by INPE's SG&€tHe second approach the daily updates of the
attitude data has not been performed in the pramegarocess. In both approaches the orbital
elements are updated, taking into account the m#uences of the Earth oblateness

Initial conditions for the attitude were taken froNPE supplied data [4,9,12].
6.1 First approach: daily updated data

Simulations for the SDC1 were made for 17 days. Tdwults for the deviation between the

computed values and actual values for right asoangieclination and spin velocity and the

pointing deviation are shown in Tab.1 for the ctsd considers all torques actuating together. In
the Fig. 2, Fig. 3, Fig. 4 and Fig. 5 are shownréslts for the deviation between the computed
values and actual values of the right ascensiodjndion and spin velocity and for the pointing

deviation when it is considered each torque indiglty and all torques actuating together. In the
Tab. 2 are shown the mean and standard deviatiagafth simulation.

Table 1 — Deviation between computed values and aell values when all torques actuating
together for SCD1, with the daily updated data.

Day Deviation in Deviation in Deviation in Pointing Deviation
Right Ascension Declination Spin Velocity (degrees)
(degrees) (degrees) (rpm)

17/8/1993 0.000 0.000 0.000 0.000
18/8/1993 0.870 -0.347 -0.021 0.373
19/8/1993 0.662 -0.350 -0.016 0.366
20/8/1993 0.385 -0.358 -0.026 0.364
21/8/1993 0.154 -0.361 -0.033 0.362
22/8/1993 -0.079 -0.338 -0.034 0.338
23/8/1993 -0.232 -0.328 -0.061 0.33
24/8/1993 0.654 -0.172 -0.057 0.21
25/8/1993 -0.657 -0.308 0.010 0.332
26/8/1993 -0.759 -0.281 0.010 0.317
27/8/1993 -1.596 -0.031 -0.078 0.314
28/8/1993 -0.192 -0.452 0.057 0.454
29/8/1993 -1.041 -0.200 -0.020 0.292
30/8/1993 -1.068 -0.184 -0.027 0.288
31/8/1993 -1.110 -0.147 -0.033 0.276
1/9/1993 -1.163 -0.119 -0.022 0.274
2/9/1993 -1.178 -0.090 -0.025 0.268
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Figure 2 —Temporal variation for the deviation between the computed and actual right
ascension of the spin axis for SCD1 and with the dp updated data
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Figure 5 - Temporal variation for the pointing deviation for SCD1 and with the daily updated
data.

For the test period of 17 days, the results shdvat mean deviation error in right ascension,
declination, spin velocity and pointing deviatiore awithin the dispersion range of the attitude
determination system performance of INPE’s corgesiter, which is 05for the angles and 0.5rpm
for the spin velocity.

The residual torque acts in the opposite directbthe torque due Lorentz force. The biggest
influence in spin velocity and in the declinatiohtlee spin axis is given by eddy currents torque,
with the mean deviation equal -0.025rpnd -0.202 respectively

Table 2 — Mean values for SCD1 simulations with thdaily updated data.

Included Residual Gravity Eddy Due All
Torques Gradient current Aerod. Lorentz | torques
force

Right
Ascension
Deviation
(degrees)

-0.221 -0.251 -0.341 -0.225 0.221 -0.374

Declination
Deviation -0.207 -0.247 -0.202 -0.205 0.207 -0.239
(degrees)

Spin
Velocity
Deviation

(rpm)

-0.107 -0.107 -0.025 -0.148 0.107 -0.022

Pointing
Deviation 0.265 0.262 0.308 0.264 0.265 0.303
(degrees)

Simulations for the SDC2 were made for 16 days. Tdwults for the deviation between the
computed values and actual values for right asoangleclination and spin velocity and the
pointing deviation are shown in Tab.3 for the ctsd considers all torques actuating together. In
the Fig. 6, Fig. 7, Fig. 8 and Fig. 9 are shownrémlts for the deviation between the computed
values and actual values of the right ascensiodjndion and spin velocity and for the pointing
deviation when it is considered each torque indiglty and all torques actuating together. The
discontinuities in these figures occur due to ttiuale control corrections applied by SCC. In the



Tab. 4 are shown the mean and standard deviatiogafth simulation. It is important to note that
when the attitude control actuates, the computddesaare assumed to be equal the real data
because the control system is not included in thpgsed theory.

For the test period of 16 days, the mean deviaioor are also within the dispersion range of the
attitude determination system of INPE’s controhtee. The biggest influence in spin velocity is
given by eddy currents torque, with the mean dmmnaerror equal -0.009 rpm. The biggest
influence in the right ascension and declinatiomhef spin axis is due gravity gradient torque, with
the mean deviation error equal 0.0@hd 0.002 respectively.

Table 3 — Deviation between computed values and aetl values when all torques actuating
together for SCD2, with daily updated data

Day Deviation in Deviation in Deviation in Pointing
Right Ascension | Declination | Spin Velocity Deviation

(degrees) (degrees) (rpm) (degrees)

12/2/2002 0.000 0.000 0.000 0.000
13/2/2002 0.023 -0.018 -0.012 0.021
14/2/2002 0.023 0.004 0.000 0.011
15/2/2002 0.029 0.012 -0.007 0.018
16/2/2002 0.031 0.018 0.004 0.023
17/2/2002 0.028 0.024 -0.004 0.027
18/2/2002 0.040 0.036 -0.004 0.04
19/2/2002 0.061 0.060 -0.002 0.066
20/2/2002 0.087 0.086 -0.002 0.094
21/2/2002 0.119 0.088 -0.001 0.103
22/2/2002 0.126 0.095 -0.002 0.111
23/2/2002 0.108 0.095 -0.013 0.107
24/2/2002 0.000 0.000 0.000 0.000
25/2/2002 0.059 -0.087 0.051 0.092
26/2/2002 0.038 -0.084 -0.093 0.086
27/2/2002 0.033 -0.096 -0.028 0.097
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Figure 7 - Temporal variation for the deviation betveen the computed and actual declination
of the spin axis for SCD2 and with the daily update data.
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Figure 9 - Temporal variation for the pointing deviation for SCD2 and with the daily updated
data.



Table 4 — Mean values for SCD2 simulations with thdaily updated data.

Included
Torques

Residual

Gravity
Gradient

Eddy
current

Aerod.

All
torques

Due
Lorentz
force

Right
Ascension
Deviation
(degrees)

-0.071

0,001 -0,029

-0.068

0.071 0.050

Declination
Deviation
(degrees)

-0,053

0,002 -0,037

-0.053

0.056 0.015

Spin
Velocity
Deviation

(rpm)

-0,059

-0,054 -0,009

-0.118

0.054 -0.007

Pointing
Deviation
(degrees)

0,066

0,046 0.048

0.066

0.066 0.056

6.2. Second approach: without daily updated data

For SCD1 satellite the simulation was performedsaigring all torques actuating together. The
results in term of the difference between compuaied actual right ascension, declination and spin
velocity and pointing deviation are shown in TabT&eresults show a good agreement between the
computed values and the actual satellite behavilyr for 1 day simulation . For more than 1 day thean

deviation error for the right ascension is higtemt the precision required for INPE’'s SCC (0.5°)

Table 5 - Deviation between computed values and aetl values when all torques actuating

together for SCD1, without daily updated data

Day Right ascension Declination Spin velocity Poiirig deviation
17/08/93 0 0 0 0
18/08/93 -0.871 0.346 0.021 0.373
19/08/93 -1.511 0.702 0.035 0.741
Mean -0.794 0.349 0.0219 0.371

The Table 6 presents the results obtained whesahe simulation is applied to SCD2. Trksults
show a good agreement between the computed vahgghe actual satellite behavior for the entire

simulated time interval of 11 day.




Table 6 - Deviation between computed values andtaal values when all torques actuating
together for SCD2, without daily updated data.

Day Right ascension Declination Spin velocity Pointing deviation
(degrees) (degrees) (rpm) (degrees)

12/2/2002 0 0 0 0
13/2/2002 -0.023 0.018 0.012 0.021
14/2/2002 -0.048 0.029 0.014 0.036
15/2/2002 -0.077 0.026 0.026 0.043
16/2/2002 -0.104 0.008 0.028 0.047
17/2/2002 -0.143 -0.027 0.227 0.069
18/2/2002 -0.196 -0.084 0.241 0.122
19/2/2002 -0.198 -0.116 0.253 0.146
20/2/2002 -0.211 -0.16 0.265 0.186
21/2/2002 -0.238 -0.216 0.275 0.241
22/2/2002 -0.212 -0.257 0.288 0.274
23/2/2002 -0.196 -0.311 0.309 0.323
Mean -0.137 -0.091 0.110 0.126

7. Conclusions

In this paper a numerical approach was presentttetepin-stabilized satellite attitude propagation
taking into account the residual torque, eddy aur®rque, aerodynamic torque, torque due
Lorentz force and gravity gradient torque. The ntiodescheme is entirely developed in terms of
guaternion parameterization.

The theory was applied to the spin stabilized BisaZs satellites SCD1 and SCD2. The results
show that, for SCD1 and SCD2, the influence ofdlldy current torque is bigger than the others
ones, not only due to the orbit altitude, but alse to other specific satellites characteristidse T
influence of the torque due Lorentz force is smidhan the others ones because of the dimension
and the electrical charges of the SCD1 and SCD2.

Two approaches were presented. In the first oneravithe attitude and orbital data are daily
updated with real attitude data supplied INPE, dgults shown a good agreement between the
computed and actual data during the simulated meval. The mean pointing deviation was of
0.303 for SCD1 and of 0.056for SCD2, which are within the dispersion rangetiu attitude
determination system used for these satellites.

In the second approach the attitude and orbita det not updated. For SCD1, the obtained results
showed a good agreement between the analyticai@oland the actual satellite behavior only for
one day simulation. For more than 1 day the mearatien of the right ascension, declination and
pointing deviation were higher than the precigiequired for SCC (0.5°). For the satellite SCD2,
over the test period of the 11 days, the differeheéveen computed values and actual data
remained within an acceptable dispersion range aVsrmulated time interval.
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