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Abstract: We investigate the synchronization of pointlike

phase oscillators (“cells”) whose coupling is mediated by a

chemical diffusing in the intercell medium. We consider how

frequency synchronization is affected by the non-local fea-

tures of the coupling prescription.
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1. INTRODUCTION

Networks of coupled phase oscillators have been exten-

sively used in many physical and biological applications [1].

A number of different coupling prescriptions has been stud-

ied, but most attention has been given to two types: (i) local

(or Laplacian) coupling, where each oscillator interacts with

its nearest neighbors; and (ii) global coupling, where an os-

cillator is coupled to the mean field of all other oscillators

regardless of their position.

However, in many applications it turns out that an inter-

mediate form of coupling would better describe the system,

since each oscillator interacts with its neighbors but with a

strength which depends on the mutual spatial distance. Such

non-local couplings have been studied for a long time but re-

cently it was recognized their importance in the production

of chimera states.

One of the interesting dynamical aspects to be studied in

networks of non-locally coupled phase oscillators is synchro-

nization, which is a universal phenomenon [2]. A paradig-

matic example of them is the synchronization of flashing fire-

flies, which interact by the emission of light pulses. Since the

velocity of light is very large, the coupling effect is rapidly

spread along the network and fireflies can flash in unison,

producing an impressive phenomenon.

On the other hand, emission of light pulses is not the

only way oscillators can use to communicate among them-

selves. Another possibility is the emission and absorption of

a chemical substance which diffuses in the medium contan-

ing the oscillators. A theory for describing such phenomena

has been proposed by Kuramoto, and in the case of fast relax-

ation it amounts to an interaction which decays exponentially

with the distance between oscillators [3–6].

In this work we consider a model of pointlike phase os-

cillators which interact according to this non-local coupling

prescription. We investigate in what extent the frequency

synchronization properties vary with the coupling parame-

ters. It turns out that there is a synchronization transition

with properties depending on both the coupling strength and

range.

2. MODEL

We use two classes of vectors: (i) positions ~r in a

d-dimensional Euclidean space; (ii) state variables X =



(x1, x2, . . . xM )
T

in a M -dimensional phase space of the dy-

namical variables characterizing the state of the system at a

given time t. There are N oscillator cells located at discrete

positions ~rj , where j = 1, 2, · · ·N , in the d-dimensional Eu-

clidean space; and Xj is the state variable for each oscillator,

whose time evolution is governed by the vector field F(Xj).
The time evolution of the state variable is affected by the lo-

cal concentration of a chemical, denoted as A(~r, t), through

a time-dependent coupling function g:

dXj

dt
= F(Xj) + g(A(~rj , t)), (1)

and the chemical concentration satisfies a diffusion equation

ε
∂A

∂t
= −ηA+D∇2A+

N
∑

k=1

h(Xk)δ(~r − ~rk), (2)

where ε ≪ 1 is a small parameter representing the fact that

diffusion occurs in a timescale faster than the intrinsic period

of individual oscillators; η is a phenomenological damping

parameter (representing the chemical degradation of the me-

diating substance), and D is a diffusion coefficient. The dif-

fusion equation above has a source term h which depends on

the oscillator state at the discrete positions ~rj : this means that

each oscillator secrets the chemical with a rate depending on

the current value of its own state variable.

If the diffusion is much faster than the oscillator period,

we can assume εȦ = 0 such that the concentration relaxes to

a stationary value

A(~rj) =

N
∑

k=1

σ(~rj − ~rk)h(Xk), (3)

where σ is a Green function, obtained by solving

−D∇2σ + ησ = δ(~rj). (4)

Substituting (3) into (2) we obtain

dXj

dt
= F(Xj) + g

(

N
∑

k=1

σ(~rj − ~rk)h(Xk)

)

. (5)

We adopt the following form of the coupling function

g(h(Xk)) = AH(Xk), (6)

where A is a M × M matrix indicating which variables of

the oscillators are coupled to whom, and H is a nonlinear

function of its arguments. Inspired by Kuramoto model of

coupled phase oscillators [7] we set M = 1 such that Xj is a

phase θj ∈ [0, 2π), and the vector function F(Xj) is the cor-

responding frequency ωj . In this case A reduces to a scalar

coupling strength K and the nonlinear coupling function is

sinusoidal, which results in

θ̇j = ωj +K
N
∑

k=1

σ(~rj − ~rk) sin (θk − θj) . (7)

A solution of Eq. (4), in the one-dimensional case, is

σ(r) = C exp(−γr), where γ =
√

η/D and C is deter-

mined from a normalization condition. In a one-dimensional

lattice (7) can be written in the following form

θ̇j = ωj +
K

α

N ′

∑

ℓ=1

e−γℓ [sin (θj−ℓ − θj) + sin (θj+ℓ − θj)] ,

(8)

where α = 2
∑N ′

ℓ=1
e−γℓ and j = 1, 2, . . .N .

In the numerical simulations to be shown in this work we

integrated the above system of differential equations using

a fourth-order Runge-Kutta method with variable stepsize.

The initial conditions θj(t = 0) were chosen within the in-

terval [0, 2π) using a uniform probability distribution. We

used periodic boundary conditions: θj±N = θj .

3. SYNCHRONIZATION OF FREQUENCIES

The frequency of the coupled oscillators is defined as

Ωj(t) = lim
t→∞

θj(t+ T )− θj(T )

t
, (j = 1, 2, . . .N),

(9)

where T is chosen such that transients have decayed. Two or

more adjacent oscillators are synchronized if this frequency

is equal, up to some tolerance. The non-locality of the cou-

pling causes the formation of synchronization with different

lengths. If Ni is the length of the ith plateau, and Np the total

number of them, with average size 〈N〉 = (1/Np)
∑Np

i=1 Ni,

the synchronization degreeP is the ratio between the average

plateau length and the total lattice size: P = 〈N〉/N .

For a totally synchronized state we have one plateau

comprising the entire lattice (〈N〉 = N ) so that P = 1.

On the other hand, for a completely non-synchronized state

Np ≈ N , or 〈N〉 ≈ 1, giving p ≈ 1/N → 0, if N → ∞.

In Fig. 1 we plot the variation of the synchronization de-

gree with the parameter γ for a fixed coupling strength K
and different lattice sizes. If γ is small enough the oscillators

are frequency-synchronized and, as γ increases past a critical

value γc, there is a transition to a non-synchronized state (or,

more properly, to a partially synchronized one). It turns out

that γc decreases as we increase the lattice size.

If we set a fixed value of γ and vary the coupling strength

K , a similar transition to frequency synchronization occurs,

after K increases past a critical value Kc. As a matter of

fact, the occurrence of frequency synchronization depends

on both coupling parameters (γ and K) as illustrated by Fig.

2, where we depict the region of frequency synchronization

(according to the value of the synchronization degree P ) as

a function of γ and K . The transition to frequency syn-

chronization occurs past a critical line. The critical coupling

strength in the globally coupled case is Kc ≈ 0.08, as can be

seen in the inset of Fig. 2.

4. DISCUSSION

The numerical results presented in the previous section

can be interpreted in the light of the competition between
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Figure 1 – Frequency synchronization degree as a function of

the inverse coupling length for K = 7 and different lattice sizes:

N = 401 (blue), 1001 (red), and 2001 (black).
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Figure 2 – Regions of frequency synchronization, according to

the value of the synchronization degree P , vs. coupling param-

eters (coupling strength K and inverse coupling length γ) for a

chain of N = 2001 Kuramoto oscillators. The squares indicate

the boundary of the frequency-synchronized region. In the inset

we show a magnification of the lower right corner of the figure.

coupling range and the disorder characteristic of the random-

ness of the frequencies (chosen from a Gaussian frequency

distribution). In order to do so, let us first consider the lim-

iting cases of the nonlocal form of coupling we used in this

work. If γ → 0 then C = 1/N − 1 and we have a global

type of coupling

θ̇j = ωj +
K

N − 1

N
∑

k=1

sin (θk − θj) , (10)

which is very similar to the classical Kuramoto model of cou-

pled phase oscillators [7].

In the case of large γ, the coupling decays very fast with

the lattice distance ℓ, such that only the term with ℓ = 1
contributes significantly to the summations, yielding C ≈
eγ∆/2 and the coupling takes into account only the nearest

neighbors of a given site

θ̇j = ωj +
K

2
[sin (θj−1 − θj) + sin (θj+1 − θj)] (11)

as is the usual local (diffusive or Laplacian) coupling.

Since uncoupled oscillators have randomly distributed

natural frequencies, the onset of frequency synchronization

appears due to the dominant effect of the coupling over the

randomness of the original distribution. For global couplings

(γ = 0) the value of Kc is close to zero, indicating that a

synchronized state occurs for very weak couplings. Local

couplings, where γ is large enough, however, may not yield

frequency synchronization even if K is very large.

5. CONCLUSIONS

The frequency synchronization properties of a network

of nonlocally coupled oscillators are strongly dependent on

both the coupling strength and range. The latter makes is

possible to go from the global (all-to-all) to local (nearest-

neighbor) coupling by varying a single parameter. We

showed that there is a synchronization transition as the cou-

pling strength is varied through a critical value. In the global

case this value can be described by a mean-field theory but,

as the range parameter increases the critical value of K also

increases. Hence, for locally coupled lattices, although the

synchronization transition could be possible in principle, the

critical coupling strength would be very large.
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