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“The best way to predict your future is to create it”. 

Abraham Lincoln 
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ABSTRACT 

Although ensemble forecasting systems provide richer forecasts by adding 
probabilistic concepts to single deterministic forecasts, they have intrinsic 
shortcomings caused by the lack of full comprehension of the relationship 
between meteorological variables. It is especially noticed in medium and large-
scale forecasts, whose effects of chaotic behavior of the atmosphere drastically 
increase as the target forecasting date is lengthened. Improvements on weather 
forecasting systems can be done either by the meteorology staff concerning 
physical aspects of weather behavior as well as by implementing computational 
statistical methods in order to tune the weather forecasting model output. The 
purpose of this work is to compute, along the forecast horizon, a more accurate 
precipitation value than the ensemble mean precipitation by post-processing 
INPE/CPTEC's ensemble prediction output. To achieve the goal, some 
prognostic fields and derived data are combined and submitted as explanatory 
variables to an artificial neural network system. Experiments were guided in an 
exploratory way such that several computational models were generated and 
thereafter assessed. The study was individually performed at some grid points 
located within the boundaries of La Plata Basin. Results indicate that the 
application of this methodology presented values closer to actual values when 
compared to the ensemble mean precipitation. It also shows that the inclusion 
of the ensemble mean precipitation itself, as well as data from adjacent grid 
points, improve the calibration process of the target grid point. In addition, the 
exploratory approach detects different artificial network models to fit specific 
location and lead-time. Although this input-driven system computes less than 
ideal forecasting values, it performs better than the mean output of the 
ensemble model, which is widely used in various weather forecasting products. 

Keywords: Machine learning. Neural nets. Statistical weather forecasting. Rain. 
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MODELOS DE REDES NEURAIS BASEADOS EM ENTRADA PARA 

CALIBRAR A PRECIPITAÇÃO MEDIA DE UM SISTEMA DE PREVISÃO POR 

CONJUNTOS 

Embora os sistemas de previsão por conjuntos forneçam previsões mais ricas, 
acrescentando conceitos probabilísticos às previsões determinísticas simples, 
eles têm deficiências intrínsecas causadas pela falta de plena compreensão da 
relação entre variáveis meteorológicas. Isto é especialmente notado nas 
previsões de média e grande escala, cujos efeitos de comportamento caótico 
da atmosfera aumentam drasticamente à medida que a data alvo de previsão é 
estendida. Melhorias nos sistemas de previsão do tempo podem ser feitas tanto 
pela equipe de meteorologia em relação aos aspectos físicos do 
comportamento do tempo, bem como através da aplicação de métodos 
computacionais estatísticos, visando ajustar a saída do modelo de previsão. O 
objetivo deste trabalho é calcular, ao longo do horizonte de previsão, um valor 
de precipitação mais preciso do que a precipitação média do sistema de 
previsão por conjunto através do pós-processamento das saídas do modelo do 
INPE/CPTEC. Para atingir esta meta, alguns campos de prognóstico e dados 
derivados são combinados e apresentados como variáveis explanatórias a um 
sistema de rede neural artificial. Os experimentos foram orientados de forma 
exploratória onde vários modelos computacionais foram gerados e 
posteriormente avaliados. O estudo foi realizado individualmente em alguns 
pontos de grade localizados dentro dos limites da Bacia da Prata. Os 
resultados indicam que a aplicação desta metodologia apresentou valores mais 
próximos da realidade do que a média de precipitação do sistema de previsão 
por conjuntos. Mostra também que ao incluir a própria precipitação média, bem 
como dados de pontos de grade adjacentes o processo de calibração melhora 
no ponto de grade alvo. Além disso, a abordagem exploratória traz uma 
melhora ainda maior pois detecta diferentes modelos de redes neurais para 
locais e dias de previsão específicos. Embora este sistema baseado em 
entrada calcule valores de previsão inferiores aos ideais, ele tem um 
desempenho melhor do que a média do modelo de previsão por conjunto, que 
é amplamente usado em vários produtos de previsão de tempo.  

Palavras-chave: Aprendizado de máquina. Redes neurais artificiais. Previsão 
de Tempo. Chuva. 
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1 INTRODUCTION 

The current state of the art in weather forecasting is Numerical Weather 

Prediction Systems (NWPS) and the current global model that simulates the 

atmospheric processes was idealized in the early 1900s. It is based on single 

weather estimates built from the evolution of initial measurements of the 

atmosphere throughout time, which are done by Atmospheric General 

Circulation Models (AGCM). Over time, scientists have found that single 

predictions have critical accuracy limitations that are specially verified on 

predictions longer than 5-6 days, i.e., in the mid-range scale or longer. 

The reason for the lack of accuracy is credited to the chaotic behavior of the 

atmosphere once that imprecise initial states make the forecasting error grow in 

an exponential way, as time goes by. These imprecision were found to be 

inherent to weather forecasting since neither the initial state of the atmosphere 

nor physical equations of prediction systems faithfully represents the actual 

initial state and weather behavior. 

In order to try to capture such initial and modeling uncertainties, multiple 

deterministic predictions are added to a single control deterministic prediction, 

composing an ensemble of predictions. These multiple predictions differ from 

each other by either applying small perturbations to the control initial condition 

or varying the way that weather evolves through time, i.e., changing the physics 

of the forecasting model. 

The advantages of ensemble prediction over deterministic prediction, which 

focus only on the information of the magnitude of the event, include the 

extension of predictability beyond mid-range scale and the gauging the 

uncertainty of the event in a probabilistic way, which is done ordinary statistical 

computations from a set of values. 

The concept of ensemble spread appeared as a consequence of the ensemble 

approach and represent how distant the lower ensemble value is from the 
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higher value. A compact data distribution leads to more predictable weather, 

and vice versa. Another concept that arose is the ensemble mean (MEAN, from 

now on), which is the arithmetic mean of the ensemble values.  

The MEAN is known as the best available estimate of the future state of the 

atmosphere because it holds smaller error than any of the individual ensemble 

members. Its use adds an expressive value to ensemble-based forecast 

products. 

Despite endorsed by the meteorological community as a way to enhance the 

predictability and applicability of weather forecasting, Ensemble Prediction 

Systems (EPS) propagate the deficiencies caused by systematic errors that are 

found in the deterministic prediction model. In order to alleviate the effects, the 

literature has proven that historical ensemble data can be processed to adjust 

the values of its own output data, ameliorating the effect of the error between 

forecast and observed value. The literature also strongly signalizes that one of 

the available techniques to execute such post-processing task are Artificial 

Neural Networks (ANN), since it is conceptually able to deal with the complex 

and dynamic relationships that exist among weather variables. 

That said, the general goal of this work is to propose a methodology to adjust 

(calibrate) the ensemble mean precipitation forecast of the ensemble prediction 

system of the Center for Weather Forecasts and Climate Studies of the 

Brazilian National Institute for Space Research (CPTEC/INPE).  

In order to test and validate the methodology, few locations within La Plata 

Basin were chosen as spatial domain as well as data from 2009-2012 rainy 

seasons as temporal domain. 

The pioneering spirit of this methodology is based on grouping few 

meteorological variables, named “experiment”, and submit each of them to one 

hundred ANN structures, aiming to reach the optimum combination of 

experiment and ANN topology for each location and forecast target date. 
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To accomplish this task the following specific goals, are: 

a) assess how much the chosen meteorological variables are useful in order 

to approximate OBS; 

b) investigate the combination of meteorological variable that best calibrates 

the ensemble mean precipitation in different lead-times; 

c) investigate which MLP topology performs better with respect to the lead-

time; 

d) analyze if data from adjacent grid points have some influence on data 

from a specific grid point.  

This work is organized as follows: Chapter 2 progressively presents the 

fundamental knowledge to understand this work, Chapter 3 explains the data 

and methodology applied to accomplish the goals, and Chapter 4 reports the 

experiments and results in numbers and plots. Finally, conclusions are exposed 

in Chapter 5, which is followed by the list of references. 
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2 FOUNDATION 

2.1. Deterministic weather prediction 

Since Bjerknes (1904) introduced the deterministic “rational”-numerical method 

to estimate values of future states of the atmosphere based on the measure of 

its current state, the weather prediction has been developed and evolved at first 

to a Numeric Weather Prediction Model (NWPM) (RICHARDSON, 1922) and 

then to its computational version known as Numerical Weather Prediction 

Systems (NWPS) (CHARNEY, 1948, 1950, 1951), which is the state of the art 

of weather prediction. 

A NWPM that solves the atmospheric representation in a global domain is 

called Atmospheric General Circulation Model (AGCM). The future state of the 

atmosphere (prediction) is estimated from its current state, called Initial 

Condition (IC). The whole process starts with an IC that is submitted to a loop of 

numerical solving of complex physics equations that iterates according to time-

steps in a way that the last output is used as the input for the next iteration, 

aiming to represent the evolution of the state of the atmosphere in time. This 

time stepping occurs up to the final prediction target date in the forecast 

horizon.  

Analysis is a snapshot of the atmosphere at a certain moment of time that is 

conceived from complex observation gathering and data-assimilation 

techniques of different data sources, aiming to be the best representation of the 

current state of the atmosphere as possible. An IC is the starting state of the 

atmosphere that will be evolved throughout the forecast horizon, it can be 

identical to the analysis or some variation of it. Time-step is an increment of 

time that represents the temporal evolution along iterations of the computation 

of predictions and its size varies according to internal routines of the AGCM, 

respecting its particular working details. 
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The parameterization is an important phase in the whole process to provide a 

way to treat the unresolved effects of the small-scale processes on the resolved 

scale of the AGCM. It is required because these effects cannot be explicitly 

predicted in full detail in model forecast equations. Generically, 

parameterization is used to simulate the effect of shortwave (solar) and long-

wave (terrestrial) radiation in the atmosphere, land and sea surface 

characteristics and their impact and mechanical transfer of heat and moisture 

(UCAR, 2009). 

2.2. Limitations of deterministic weather prediction 

Having only a single picture of the future has revealed some limitations since 

forecasters can estimate nothing but the magnitude of the event without any 

statement of the confidence. Moreover, through time, scientists have proven 

that atmosphere has a chaotic, hence nonlinear, nature (EADY, 1949; 

LORENZ, 1963, 1965a, 1965b, 1969), meaning that small differences in the 

initial state of the atmosphere ultimately result in large differences in the 

forecast, which generates a time limit specially for longer-range deterministic 

predictions caused by the rapid growth of errors. Given such evidences, it 

becomes clear that in addition to an event’s prediction in deterministic way, its 

uncertainty and predictability also needs to be estimated, i.e. how uncertainties 

evolve during the forecast horizon.  

These errors exist at every component within the weather forecasting process 

because all of them have its own uncertainties, such as (REYNOLDS, 1994): 

 Incomplete and imperfect analysis due to hardware limitations; data 

errors and inconsistencies; interpolation methods over areas with 

insufficient data; etc. – known as initial uncertainties and responsible for 

the internal error. 

 Physics equations due to lack of a complete understanding of the 

atmospheric physics process and chemistry it tries to simulate; inherent 
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limitation of the predictability of highly complex processes forcing the 

use of approximations and simplifications to represent them – known as 

model uncertainties and responsible for the external error.  

It must also be mentioned that there are trade offs between the appropriate time 

for publishing the forecasts versus the time to produce them, since forecasts 

can't take much time to be published under penalty of being useless. Figure 2.1 

shows the definitions of the forecast horizons applied in meteorology with 

respect to the target forecasting date. 

Figure 2.1 Forecast horizon range definitions. 

 

Ranges are expressed in hours (hs) and days. The gradient color from green to orange 

roughly represents few uncertainties at short-range forecasts and orange represents 

many uncertainties at longer-range forecasts. Literature is not sharp about limits. 

Source: Adapted from Petroliagis and Pinson (2013), AMS (2016), and NOAA (2016). 

2.3. Ensemble prediction 

Aiming to simulate the effects of the chaotic weather behavior, Epstein (1969) 

idealized the concept of Ensemble Prediction Systems (EPS), which consists on 

releasing an ensemble of future weather scenarios. Consequently, it enables to 

gauge the uncertainty of the event in a probabilistic way instead of focusing only 

on the information of the magnitude of the event, as it happens in the 

deterministic approach. 

An EPS run is composed by multiple AGCM runs (predictions). By having 

multiple predictions, this approach provide means to go beyond deterministic 
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prediction and make further estimates like: the range of possible values the 

prediction can reach, the probability for any individual prediction, and the most 

likely scenario to occur (UCAR, 2009). 

As shown in Figure 2.2, ensemble prediction is composed by a set of 

deterministic forecasts evolution, called members. Aiming to simulate the IC 

uncertainties, one of existing manners is to make slight perturbations on the 

analysis and then run the AGCM with them as new ICs. This process results in 

a final multiple-prediction scenario that can be used to release a probabilistic 

forecast emphasizing the confidence of events. In ensemble prediction jargon, 

the evolution of the analysis is called control member, or CTRL from now on. 

Figure 2.2 Evolution of deterministic and ensemble weather prediction  

 

Black-filled circles represents an atmospheric state, thin lines represent the evolution of 

the forecasts throughout time (members), bold line represents the evolution of CTRL, 

ellipses represent the range of uncertainties. 

Source: Adapted from INPE.CPTEC (2016). 

Due to computational time limits, these perturbations must try to best represent 

the infinite number of values within the range of the initial and model 

uncertainties, since it is not feasible to process the whole range. 
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Different strategies can be used for generating members. An ensemble can be 

composed by either: members, which are built from multiple parameterizations 

(focusing on model uncertainties); multiple ICs (focusing on the initial 

uncertainties); or even from a combination of both (BUIZZA et al., 2005). 

The evolution of EPSs can be found in Lewis (2005) and Lynch (2007) and 

some of the next-generation of NWPSs is reported in Hong (2010). In the 

comparison among the EPS of three big weather centers (ECMWF-Europe, 

NCEP-USA and MSC-Canada) in Buizza et al. (2005) concluded that, although 

more valuable than single forecasts, the weaknesses identified in the three 

systems offer guidelines for the future development of ensemble forecasting 

techniques. Among them are, “Improving the simulation of model uncertainties” 

and “Investigating the possibility to generate calibrated products”.  

2.4. Weather prediction post-processing related work 

The process of seeking for the best computational model that maps the 

relationship between the output of a numerical weather prediction (NWP) model 

and observations, in order to improve forecasts, was concretely conceived in 

1965 (GLAHN; LOWRY, 1972) and is called Model Output Statistics (MOS). It is 

an objective weather forecasting technique that consists in determining a 

statistical relationship between a variable to be predicted (namely dependent, 

target, or explained variable) and variables forecast by a numerical model at 

some projection time (namely independent variables, predictors, or explanatory 

variables). Since then, it has evolved to MOS-2000 (GLAHN; DALAVALLE, 

2000) and has been used in a variety of situations. Examples of statistical post-

processing are related in the paragraphs below. 

Bocchieri (1977) used MOS for predicting the probability of heavy snow; 

Zunrndorfer (1980) categorized and forecast the probability of precipitation 

amount based on MOS; Carter et al. (1989) developed a interpretive forecasting 

system in the USA National Weather Service (NWS) to serve as a statistical 

guidance for most weather elements and projections for USA and Alaska; 
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Taylor and Buizza (2002) used 51 ensemble members as input to an Artificial 

Neural Network (ANN) to estimate the load demand for the whole England and 

Wales; Fall et al. (2007) used weather prediction models for hazard mitigation 

planning based on heavy off-season rains in Senegal; Guarnieri et al. (2007) 

used the INPE/CPTEC’s Regional ETA model outcome as input to an ANN to 

refine sun radiation prediction; Wei et al. (2008) used Ensemble Transform (ET) 

method and variations on ensemble forecasts to gauge uncertainties and fed 

them back to its own analysis fields. 

Also, Bravo et al. (2009) used quantitative precipitation forecasts as input to a 

multilayer feed-forward ANN and a distributed hydrologic model to predict 

medium-range stream flow on the Furnas Reservoir on the Rio Grande River; 

Wessel et. al. (2009) improved the short-term wind forecast based on weather 

forecasts of the German weather service and the online measured power output 

of forecast wind farms; ECMWF has developed a tool called Extreme Forecast 

Index to provide forecasters with an indication of potential extreme weather 

events based on information from the ensemble predictions (PETROLIAGIS; 

PINSON, 2013); In Kalteh (2013), ANN and SVM ad hoc models were used for 

monthly river flow forecasting.  

2.5. Ensemble spread and ensemble mean 

EPS output (predictions) can be used to estimate the probability of occurrence 

of any weather event, since there are multiple predicted values for a single 

target date. The spread of the values can be very different and directly affects 

predictability of the atmosphere. In such way, some distributions can be more 

compact than others, showing that the predictions are more coherent and 

hence, the final scenario is more likely to be predicted. 

The best available estimate of the future state of the atmosphere is the 

arithmetic mean of the ensemble members, or ensemble mean. In fact, it has, 

on average, a smaller error than any of the individual ensemble members 

(LEITH, 1974; MURPHY, 1988). It happens because ensemble mean smooths 
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out unpredictable detail and simply presents the more predictable elements of 

the forecast. It can be a good forecasting guide but forecasters must not rely 

only on it because it will rarely capture extreme events.   

The skill that the ensemble mean (MEAN, from now on) has to get closer to the 

actual observed values (OBS, from now on) is highly related to the size of the 

ensemble spread. The less spread it is, the more likely ensemble mean will 

occur, and vice versa. The additional use of a measure of the ensemble 

distribution adds an expressive value to ensemble-mean-based forecast 

products. Examples of predictability associated to large and small ensemble 

precipitation spread during the evolution of the forecast are shown in Figure 2.3.  

Figure 2.3 Evolution of the ensemble precipitation forecasting elements. 

a) 

 

b) 

 
c) 

 

d)  

 

Perturbed ensemble members are in thin red lines, CTRL is the thick green line, MEAN 

is the thick black line, and OBS is in thick blue line. Lead-time extends along the fifteen 
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days of the CPTEC-EPS’s forecast horizon. Each plot is generated from distinct 

CPTEC’s EPS runs. Data were extracted from a grid point in Caxambu, in the Minas 

Gerais State. 

Source: author’s production. 

The performance of the MEAN seems to be the best since it roughly follows 

OBS closer than any other member. As demonstrates Table 2.1, Pearson’s 

correlation coefficient (r) between MEAN and OBS is 0.70 (in bold), which is 

higher than any other ensemble member.  

Table 2.1 Pearson’s correlation coefficients of forecasting elements and OBS. 

MEMBER r MEMBER r MEMBER r MEMBER r 

MEAN 0.70 PREC_02P 0.29 PREC_04P 0.53 PREC_06P 0.43 

PREC_01N 0.36 PREC_03N 0.44 PREC_05N 0.59 PREC_07N 0.39 

PREC_01P 0.30 PREC_03P 0.23 PREC_05P 0.35 PREC_07P 0.38 

PREC_02N 0.11 PREC_04N 0.36 PREC_06N 0.62 PREC_AVN 0.43 

The correlation coefficient (r) was calculated for MEAN and all ensemble members with 

respect to OBS for the specific dates reported on each of the four plots presented in 

Figure 2.3. The suffix 01 to 07, N, P and AVN are identification of ensemble members 

and are explained later. 

Source: author’s production. 

In addition, the four distinct scenarios show peculiar situations, such as but not 

limited to: 

 Large spread causing degradation in MEAN skill, as in days 2-14 in (a), 

days 1-3 and 13 in (b) and days 9-15 in (d), although it still can be 

considered the best forecast among all members.  

 Chaotic behavior of CTRL leading to a completely wrong forecast, as in 

(a) 
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 Small spread that increases MEAN skill, as in days 6-9 in (b), 1-4 in (c) 

and 1-8 in (d).  

 Probabilities that can lead to misleading forecast, as at day #5 in (c) 

where most members was positioned at higher values causing MEAN to 

be raised and the actual value was verified among only few members, 

where the probability were low. 

2.6. Rank histograms 

One of the main tools to diagnose the ensemble spread is the rank histogram 

(EUMETCAL, 2011). It provides ways to visualize how the spread is related to 

observed data, serving as a guide to correct (calibrate) the ensemble by 

evaluating one of its forms (shapes). 

It is based on the assumption that ensemble member forecasts are distributed 

in ranges (or "bins") of the predicted variable such that the probability of 

occurrence of the observation within each bin is equal, simulating a perfect 

distribution of members. Thus, in the best case and over a large enough 

sample, the histogram should take a flat shape, meaning that, on average, the 

ensemble spread correctly represents the uncertainty in the forecast.  

Bins are ranges whose limits are determined by ranking the ensemble members 

from the lowest to the highest. If there are N ensemble members, then there will 

be N+1 bins. Rank histograms are built by increasing the relative frequency of 

each bin by one, where each observation falls into. The outer bins – both lowest 

and highest – are open-ended, which means that any observed value lower 

than the ensemble lowest value or higher than the ensemble highest value 

should be allocated in those bins, respectively.  

Hamill and Colucci (1997) performed some experiments on calibrating the 

spread of members of an ensemble system by post-processing them and had 

the following results. Figure 2.4 shows rank histograms of three forecast fields 
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as they were released from model (left column). Distributions are nonuniform, 

meaning that there is a high tendency for the distributions to be most populated 

at the extreme ranks. This may indicate systematic errors in the forecast, 

insufficient variability among ensemble members. Then, a 15-day-based 

correction was applied and the associated results are show in the right column 

of the Figure 2.4. When comparing both b) and c), from both columns, there can 

be noticed that the skewness of the distribution is nearly eliminated. 

Figure 2.4 Rank distributions 24-h forecasts from the ensemble. 
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(a) 850-mb temperature, (b) 500-mb geopotential height, and (c) 24-h total precipitation 

amount. Left columns refers to raw data and right column to calibrated data. 

Source: Adapted from Hamill and Colucci (1997). 

The authors also stated that there were potentially many causes to not 

improving case “a”: a) the bias corrections may need to be more sophisticated 

as with MOS; b) the ensemble may truly be insufficiently variable, due to either 

less than optimal choices for ICs, or model errors. Other commonly rank 

histogram shapes are show in Figure 2.5. 

Figure 2.5 Shapes of commonly found rank histograms. 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

X-axis is the ensemble bins and Y-axis is the relative frequency. Figure 2.5 shows that 

the shape in plot (a) is "flat", meaning that on average the spread is correct since 

observations should fall equally into every bin (ideal shape). Plot (b) is left-skewed, 

meaning that observations are too often higher than the highest value of the ensemble 

members, indicating that there is a tendency to underforecast, in other words, 
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members values tend to be lower than observed value. Plot (c), oppositely, is right-

skewed, meaning that observations are too often lower than the lowest value of the 

ensemble members, indicating that there is a tendency to overforecast. The “U” shape 

presented in (d) shows that the spread tends to be underdispersive, while both lower 

and higher limits are not enough to capture most observed values. Plot (e) shows a 

center tendency, meaning that observed values occur too often in the center of the 

spread distribution, characterizing an overdispersive spread. 

Source: Eumetcal (2011). 

2.7. Ensemble spread correction related work 

Despite all improvements EPS has been adding to weather prediction it is not 

either perfect or an error-free system. It imposes additional difficulties by 

propagating the uncertainties already exposed in 1.2 (GNEITING; RAFTERY, 

2005) leading the ensemble spread to have a systematic error when compared 

to observations, characterizing a bias. Furthermore, forecast ensembles are 

typically underdispersive (HAMILL; COLUCCI, 1997; ECKEL; WALTERS, 

1998). 

In order to handle and correct this issue, researches have been demonstrating 

that historical ensemble data can be post-processed to produce means to 

calibrate probabilistic forecast and also, the more cases available, the more 

sophisticated bias corrections can be applied, improving the probability 

forecasts (HAMILL; COLUCCI, 1997). Ideally, it is preferable to have as many 

sample cases as possible and correct for systematic error by location, as is 

done with Model Output Statistics (MOS; DALLAVALLE et al., 1992).  

According to Gneiting et al. (2007) calibration here refers to post-processing 

techniques that apply statistical adjustments of numerical forecasts in order to 

increase their sharpness.  

Several techniques, which are related in following paragraphs, have been 

developed to calibrate ensemble members and, consequently, the MEAN. Most 
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of them are based on the study of the relationship between error, forecast, and 

observed value related to a specific location. 

Eckel and Walters (1998) constructed a calibration method to account for 

systematic errors that arise from an imperfect forecast model and initial 

perturbations in order to produce higher quality Probabilistic Quantitative 

Precipitation Forecasts (PQPFs). Calibration technique noticeably improved the 

quality of PQPF and extended predictability by about 1 day, but predictability 

was found to be dependent upon the precipitation category and the calibration 

was found to be useful only for short-range PQPFs. Applequist et al. (2002) 

used five different linear and nonlinear statistical methodologies, namely, LR, 

discriminant analysis, LogReg, and ANN to make comparisons of forecast skill. 

Results indicated that LogReg performed best among all methodologies but all 

other also showed significantly greater skill than LR, which was the reference. 

Gallus and Seagal (2004), divided the range of forecast precipitation in bins and 

then applies linear regression to compute the probabilities for other forecast 

precipitation values. Raftery et al. (2005) proposed a method based on BMA, 

which is a standard method for combining predictive distributions from different 

sources, and Hamill and Whitaker (2006) used reforecast analogs to calibrate 

members based on the most similar situation.  

Yuan et al. (2007) applied a feed-forward ANN to calibrate probabilistic 

quantitative precipitation forecast (PQPF) of the NCEP regional model. The 

calibration procedure improved the scores for all geographic regions and most 

precipitation thresholds but degraded the resolution of the PQPFs by 

systematically producing more forecasts with low nonzero forecast probabilities, 

mainly where the sample of observed events was relatively small. 

Sloughter et al. (2007) applied the Gamma Algorithm where calibrated 

probabilities are obtained as a linear combination of the individual PDFs 

associated with each ensemble member. Peña and Van den Dool (2008) 

analyzed the performance of ridge regression methods for prediction the sea 



 

 
18 

surface temperature (SST) from multiple seasonal ensemble prediction systems 

data. Wilks (2009) introduced the concept of extended logistic regression, 

where a monotonic function of the threshold itself is included as a predictor 

within the regression equation, and Veenhuis (2013) used a MOS variation 

called Ensemble Kernel Density Model Output Statistics that uses MOS 

equations and spread–skill relationships to generate calibrated probabilistic 

forecasts.  

Ruiz and Saulo (2012) developed assessments using several different 

techniques that were applied to precipitation forecasts since they are one of the 

most challenging and least accurate products available from numerical weather 

prediction (EBERT, 2001; STENSRUD; YUSSOUF, 2007). They concluded that 

methods using only MEAN show very similar results in terms of calibration and 

skill and that the use of ensemble members does not lead to an improvement of 

skill or reliability. It should be remarked, however, that forecasts using MEAN 

are better than those derived from a single deterministic forecast because the 

errors were found smaller (RUIZ et al., 2009). 

The methods here mentioned are sometimes applied alone and sometimes are 

combinations of them: LR, LogReg, weighted histogram-based rank, simple 

averaging bias correction, BMA, reforecast analogs; multivariate linear 

regression, ridge regression, Gaussian regression, and Artificial Neural Network 

(ANN).  

Hamill and Colucci (1998), Eckel and Walters (1998) and Buizza et al. (2005) 

also reinforced that systematic errors can be reduced by using post-processing 

techniques in order to produce more calibrated probabilistic forecasts and that 

calibration of ensemble systems that suffer from underdispersion is highly 

necessary. It seems clear that post-processing of ensemble forecasts is 

considered a necessary step to improving forecast quality and benefiting end 

users.  
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Moreover, nowadays post-processing is highly recommended instead of 

improving the model. Hamill et al. (2000) said that mitigation through the 

improvement of assimilation procedures and model formulations alone poses a 

significant long-term challenge to the research community, especially for 

ensemble forecasts because of the increased dimensionality of the prediction 

system. Moreover, Reynolds et al. (1994) reported that most forecast errors are 

attributable to predictability error growth rather than model deficiencies, i.e., 

problems with the IC. Simmons et al. (1995) also showed that improving model 

itself it’s not trivial when they experienced that forecasts at higher resolution 

amplify initial errors more quickly than previous lower-resolution versions of the 

model.  

2.8. Machine Learning  

The post-processing techniques mentioned in the last section are real examples 

of a branch of artificial intelligence called machine learning (ML), which can be 

defined as a "Field of study that gives computers the ability to learn without 

being explicitly programmed" (SAMUEL, 1959).  

Roughly, ML techniques execute a learning (or training) phase that builds a 

model from a training dataset. Then, an optional cross-validation phase can be 

executed in order to establish the performance of the model from a validation 

dataset. After that, a generalization phase, in which unknown data (from a test 

dataset) are applied to the model expecting approximating forecast values and 

actual values. Commonly, some metric is applied to compute the difference 

between forecast and actual data. 

The term “generalize” means the ability to classify (or categorize) and predict 

(or regress) unknown data, i.e., measure how good the solution (the model) is 

when it meets data outside the training set. The term “learning“ refers to a 

process that produces, from a known data (training set), a suitable “ability” to 

solve a problem according to the importance that each input feature has for the 

computation of the global solution, in other words, produces a mathematical 
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forecasting model. Technically, it is a process that searches for the optimized 

set of parameter values that minimizes the squared error between estimated 

and actual data (FAUSETT, 1994). This characteristic is particularly very 

interesting because it avoids the need to specify a set of rules as it happens in 

the ordinary programming paradigm. 

The generalization task can be applied for two reasons: a) classification, which 

tries to categorize class labels represented by discrete values and includes 

Decision Tree (DT), Bayes Rule-Based, SVM and Artificial Neural Network 

(ANN) as examples of classification algorithms; and b) regression, which tries to 

find the most accurate way to predict an output given some input and includes 

LR, LogReg, Polynomial Regression and also ANN as examples of regression 

algorithms. 

In addition to the type of generalization`s task there is a need to know the type 

of the learning process that the system will deal with, which can be inferred from 

the available data set and from the user particular needs. With respect to the 

learning type, ML techniques can be classified in: a) supervised learning, i.e., a 

type of learning that is conducted by a “teacher”, in other words, there must be 

a subset of model features that maps a correct answer (output) to every input 

pattern; b) unsupervised learning, in which there is no correct answer in the 

dataset (mainly used for discovering hidden patterns in data), and c) 

reinforcement learning, in which is given just a partial set of answers and a 

grade of confidence of it (ABU-MOSTAFA et al., 2012). 

ANN is one of the most used supervised learning ML techniques in science for 

both classification or regression tasks due to its capacity to approximate highly 

nonlinear functions in order to model complex multivariate dynamical 

relationships among the associated physical-environmental variables 

(ABRAHART; SEE, 2007).  

It is also particular attractive because requires no prior knowledge of the nature 

of input/output relationship (GARDNER; DORLING, 1998) neither any human 
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subjective interference (NICULESCU, 2003), making it flexible enough to 

accommodate various possible additional constraints. These remarkable 

qualities have led ANNs to be considered “universal approximators” 

(CYBENKO, 1989 and references therein). 

These characteristics have made ANN to be a suitable tool to create 

classification and regression models for the atmosphere`s nonlinear dynamical 

system, since the early 1990's (RIAD et al., 2004; HSIEH, 2009). 

2.9. Artificial neural network (ANN) 

ANNs are nonlinear statistical models whose structure and mechanics are 

inspired on the biological architecture of human's neurons, the fundamental 

information-processing unit to the operation of a neural network. The neuron 

biological elements, which form the basis for designing ANNs and simulate the 

capabilities of leaning and making associations, are (HAYKIN, 1999):  

 Soma:  the neuron cell body. In ANN, a processing node (or unit); 

 Dendrites: connections in which soma receives signals, i.e., how inputs 

are accepted by soma. In ANN, the summing function; 

 Axons: connections that sends signals out of a neuron. In ANN, the 

activation function that limits the output signal amplitude of a neuron; 

 Synapses: electrochemical contact between neurons. In ANN, weighted 

links connecting inputs and nodes, i.e., values that represent the 

“knowledge” acquired from the ANN's learning process. 

ANN can be viewed as a structure of nodes interconnected by weighted edges 

that can be arranged in different manners (architectures) according to the 

characteristics of the problem to be solved. Two of the most used ANN 

architecture families for supervised learning are: i) feed-forward neural network 

(FF-NN), in which nodes have no loops, and ii) recurrent (or feedback) neural 
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network (R-NN), in which loops occur because of feedback connections. Figure 

2.6 shows some examples of ANN architectures.   

Figure 2.6 Taxonomy of feed-forward and recurrent network architectures. 

 

In red, the MLP ANN type. 

Source: Jain and Mao (1996). 

Multi-Layer Perceptron (MLP) network models are the most popular network 

architecture used for mathematical modeling in several fields of science and 

engineering [Yilmaz and Kaynar (2011), Saroha and Aggarwal (2014), Dawson 

and Wilby (2001), and Chadwick et al. (2011)]. 

As illustrated in Figure 2.7, MLP's architecture consists in a set of inputs in the 

input layer followed by sets of neurons organized into one or more intermediate 

(or hidden) layers, and one output layer. Every neuron is interconnected, in a 

unidirectional and forward way, to every neuron in the subsequent layer, from 

the input layer towards the output layer (Bishop, 1995), namely feed-forward  

(FF) neural networks. MLP’s topology is commonly written as a vector of 

integers collapsed by a dash (‘-’) where the first element is the number of input 

units, followed by a vector specifying the number of hidden neurons in each 

layer, and terminating with the number of output units, as show the legend of 

Figure 2.7. 
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Figure 2.7   Example of MLP topology. 

 

Example of a 4-3-3-3-1 MLP topology composed by four inputs in dark-orange ellipses, 

three hidden layers with three nodes each in light-blue, and a single output node in 

green. The biases of each layer are in light-orange ellipses. Colored lines represent the 

synapses that link each node to every node in the next layer. Subscript of node 

represents the index of the layer and of the node within it. 

Source: author’s production. 

The model of the neuron describes the output behavior of a neuron, i.e., refers 

to the manner that the input signal is transferred outside the neuron. McCulloch 

and Pitts (1943) described the biological neuron as a Threshold Logic Unit 

(TLU) with L binary (0 or 1) inputs and 1 binary output. It is represented in 

Figure 2.8 and operates as follows: 

a) The input weights (w0, w1, w2, ..., wn) are initialized with small random 

values. Random values help to break the symmetry of the strength of 

the input signal, if all weights are the same, all units in hidden layer 

will have the same value of the input and they will compute the same 

gradients during back-propagation. Small weight values are used in 
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order to bring the input closer to the neuron output signal, which can 

lay within [0,1] interval. 

b) A weighted sum of the products (namely linear combination) of the 

input signals composed by the bias term (x0, which is commonly set to 

0 or 1) plus the inputs (x1, x2, ..., xn) and the associated input weights 

is computed according to the formula: 

 𝑣 =∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (1.1) 

Where v is the final summation value, n is the total number of input 

signals, w and x are the input and associated weight according to the 

index i, respectively. The bias is used to increase or decrease the final 

summation value according to its sign, and represents a constant 

influence of some unknown effect in the computation of the neuron’s 

value, something unknown within the relationship. 

c) The final value of the Formula 1.1 is submitted to the activation 

function () that computes the final output according to the threshold 

(or Heaviside) step function, which assumes only 1 if v >= 0 or 0 

otherwise. 
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Figure 2.8 McCulloch and Pitts-based model of a neuron. 

 

The manner the input is transferred to outside the neuron is ruled by the transfer 

function. The summing junction represents a way to combine the input data (x) and the 

associated weights (w), resulting in the value v. It is then passed to the activation 

function that processes it and generates the output y. 

Source: author’s production 

The activation function (or output or squash function) is a nonlinear function 

used to map the linear input (from the linear combination) to a nonlinear value in 

a different but limited domain, typically between [0,1] or [-1,1], which makes 

easier the task of classifying the sample. The TLU, however, has some 

drawbacks because it is a discontinuous function and limits the output range to 

only two values, 0 and 1. Concretely, an output equals to zero means that the 

input should not be considered important to final system (has zero influence) 

and one it should be. Although enough for binary classification, this behavior 

brings some issues while modeling nonlinear real world problems, such as the 

fact that small adjusts on the weights, in general, are not reflected in the output. 
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Other models were derived from TLU in order to adapt it to particular needs. 

The main modification was to use smooth continuous activation functions in all 

units instead of using TLUs. Available options include Piecewise-Linear 

Function, S-shaped functions like Hyperbolic Tangent and Sigmoid Function 

(HAYKIN, 1999), and Rectified Linear Unit (ReLU), which Nair and Hilton (2010) 

reported as a very promising activation function option. Table 2.2 shows more 

details about activation function. 

Table 2.2 Behavior and rules of some activation functions. 

Rules and comments Behavior 

Threshold function 

𝝋(𝒗) = {
𝟏, 𝒗 ≥ 𝟎
𝟎, 𝒙 < 𝟎

 

Step-like function. Output is only 0 or 1. Mostly 

used for binary classification.  

 

Piecewise-Linear function 

𝝋(𝒗) =

{
 
 

 
 𝟏, 𝒗 ≥ +

𝟏

𝟐

𝒗 +
𝟏

𝟐
,
𝟏

𝟐
> 𝒗 ≥ −

𝟏

𝟐

𝟎, 𝒗 ≤ −
𝟏

𝟐

 

Linear continuous output when v is not large and 

threshold-like otherwise. 
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Table 2.2 Behavior and rules of some activation functions (cont.). 

Hyperbolic tangent function 

𝝋(𝒗) ≡ 𝒕𝒂𝒏𝒉(𝒗) ≡
𝒆𝒗 − 𝒆−𝒗

𝒆𝒗 + 𝒆−𝒗
 

Nonlinear continuous output from -1 to 1. 

 

Sigmoid function 

𝝋(𝒗) =
𝟏

𝟏+𝒆−𝒂𝒗
 

Nonlinear continuous output from 0 to 1. a is the 

slope parameter, whose variation changes the 

slope of the function and impacts in the ANN 

system concerning training, convergence and 

generalization performance (SHARMA; 

CHANDRA, 2010). Higher values generate more 

step-like functions and lower values generate 

more linear-like functions. 

 

 

ReLU function 

𝝋(𝒗) = {
𝒗 ∗ 𝒂, 𝒗 < 𝟎

𝒗, 𝒗 ≥ 𝟎
 

Linear output when v ≥ 0. For v < 0 a slope ‘a’ 

can be used to avoid 0 values for f(v). 

 

 

Plots in the right show, in blue line, the behavior of the function given by the rules in the 

left. 

Source: author’s production 
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The first practical form of ANNs was introduced by Rosenblatt (1958) and was 

named perceptron. It consists in inputs directly linked via weighted connections 

to a single output layer composed by TLU`s neurons and it was proposed as a 

model for visual pattern recognition. 

However, the limits of the perceptron model were found and it was proven that 

perceptrons could not be trained to recognize many classes of patterns since 

the single-layer perceptron could only solve problems that are linearly separable 

(MINSKY; PAPERT, 1969), and many real-world problems are not linearly 

separable problems. MLP arose as a way to overcome perceptron`s limitations 

by introducing extra layers of nodes (hidden layers) between the input and 

output layers. Together, these neurons become capable of solving complex 

multipurpose nonlinear systems.  

Regarding MLP’s training algorithm, the most popular method used to define 

how the model is adjusted to become closer to the optimal global solution is the 

back-propagation (BP) (RUMELHART; MCCLELLAND, 1986). BP (or 

generalized delta rule) (HAYKIN, 1999) is based on the fact that a desired 

output is given to the system for each input pattern but, commonly, it is different 

of the actual output. The learning process, i.e., the approximation of forecast 

and actual values, is done by computing the difference (squared error) between 

them followed by a backward update of the synaptic weights (namely free 

variables) on the prior layers, i.e., a backward propagating the error. 

The FF and BP processes can be summarized in the following stages:  

a) weights initialization: all the weights of the synapses are initialized with 

small random values; 

b) sample feed-forwarding: each hidden node in the first layer computes its 

activation level (concerning the neuron model) by receiving the input data 

from each sample in the training set and, iteratively, sends it to the next 

hidden layer until the last one is reached; 
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c) network error computation: the difference between each target (ideal) 

and each final output (actual) is computed according to the squared error 

function and then summed up. 

 𝑵𝒆𝒕𝑬𝒓𝒓𝒐𝒓 = ∑ (𝒕𝒂𝒓𝒈𝒆𝒕𝒊 − 𝒐𝒖𝒕𝒑𝒖𝒕𝒊)

#𝒐𝒖𝒕𝒑𝒖𝒕𝒔

𝒏=𝟏

 (1.2) 

d) Back-propagation: the associated error of each weight is computed in 

backwards, i.e., how much a change in each individual weight affects the 

total network error. Technically, each partial derivative of NetError with 

respect to weighti (also known as the gradient with respect to weighti), is 

computed with 

 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙
𝜕𝑤𝑖

 (1.3) 

A partial derivative can be viewed as the slope of the tangent line 

towards the smaller error of the weight. The direction of the step is 

indicated by the sign and how much the weight need to be adjusted is 

indicated by the value itself (magnitude). Weights are updated with their 

respective partial derivatives in backwards and the algorithm loops back 

and forth until the maximum number of iteration (or epochs) is reached 

for each sample and the ANN model is determined. 

This process repeats until an arbitrary level of generalization, verified by a stop 

criterion is reached. In ANN, the best-for-the-moment solution is achieved when 

the accuracy (error) reaches a threshold or the error becomes invariant at some 

level for some amount iterations, according to arbitrary needs. 

It turns out that, for a fairly steep gradient produced by the formula 1.3, the step 

towards the solution can be too large, overshooting the expected value in 

almost the same magnitude of the weight value. The weight can, consequently, 

stay oscillating back and forth the optimum value forever. The use of a learning 
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rate parameter in the BP algorithm is to determine, along with the magnitude of 

the gradient, a weight delta small enough to avoid this overshoot. The problem 

that arises is that the learning rate makes the training phase to be very slow 

because the steps become smaller and smaller as it approaches the solution 

(process known as gradient descend). One way to get around this situation is 

adding a momentum term. Momentum adds a fraction of the previous weight 

update to the current one in a manner that increases the size of the steps taken 

towards the minimum if the gradient keeps pointing in the same direction, 

otherwise decreases.  

BP algorithm requires a good adjustment of these parameters in order to work 

well. It is also high dependable on the value of the random weights, since a 

“wrong” initialization of them can lead the solution to a local, and not the best 

solution. Despite of the large use of the BP algorithm, some other alternatives 

are worth being considered: the quasi-Newton algorithm (DENNIS; MORÉ 

,1977; CORTIVO; CHALHOU; VELHO, 2012), and the resilient back-

propagation (RPROP) (RIEDMILLER; BRAUN, 1993). 

Although RPROP algorithm is more complex than BP algorithm, it has some 

advantages, such as: faster training and better generalization (AHMAD, 2008; 

KISI; UNCUOGLU, 2004), and the independence of free parameters like the 

learning rate, and the optional momentum term, and of the synapses weights.  

RPROP algorithm has two main differences when compared to BP algorithm. It 

uses only the sign of the gradient to update the weights and maintains individual 

weight deltas for updating the weights. For each particular weight, if the 

previous and current partial derivatives have the same sign, it means the weight 

value hasn't overshot the solution and the function will move even faster in the 

same direction, since the amount that was added to the weight delta on the last 

iteration is used to increase the current. Oppositely, if the signs of the previous 

and current partials have changed, an overshooting has occurred and the 

algorithm undo the changes by moving the values back to the previous iteration 
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and decrease the amount added on the last iteration, aiming not to move so far 

next time.  

Once ANN’s architecture is chosen, it can still have its structural composition 

configured in different ways with respect to the amount of neurons at each layer 

(topology). The architecture, topology and neuron model of ANN can 

significantly impact on its performance, the estimate of the optimal ANN model 

must consider: 

 the numbers of input and output units; 

 the number of training cases; 

 the complexity of the function or classification to be learned; 

 the type of hidden unit activation function; 

 the training algorithm; 

 and other ANN’s fine tuning. 

ANN’s training phase can be time-consuming but its application is not. Training 

is usually performed only once and each application is practically instantaneous 

since there are only simple computation of floating point additions and 

multiplications. 

This section focuses only in the ANN aspects that were considered relevant to 

the present work, further details can be found in Fausett (1994), Bishop (1995), 

and Haykin (1999). 

2.10. CPTEC’S ensemble prediction system (CPTEC-EPS) 

The ensemble prediction system used in this study is based on the CPTEC-

AGCM (CAVALCANTI, 2002), which is operational since November 1994. 

Coutinho (1999) adapted the methodology described by Zhang and 
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Krishnamurti (1999) in order to produce an ensemble of forecasts that are 

distinguishable by analysis’ perturbations. The meteorological variables present 

in the analysis are showed in Table 2.3. 

Table 2.3 List of CPTEC-AGCM`s analysis meteorological fields. 

Variable Description  Unit 

psfc SURFACE PRESSURE (p) HPA 

uves SURFACE ZONAL WIND (u) M/S 

uvel ZONAL WIND M/S 

vves SURFACE MERIDIONAL WIND (v) M/S 

vvel MERIDIONAL WIND M/S 

vort VORTICITY 1/S 

fcor STREAM FUNCTION M2/S 

potv VELOCITY POTENTIAL M2/S 

zgeo GEOPOTENTIAL HEIGHT GPM 

psnm SEA LEVEL PRESSURE HPA 

tems SURFACE ABSOLUTE TEMPERATURE K 

temp ABSOLUTE TEMPERATURE (t) K 

umrs SURFACE RELATIVE HUMIDITY NO DIM 

umrl RELATIVE HUMIDITY NO DIM 

umes SPECIFIC HUMIDITY (q) KG/KG 

agpl INST. PRECIPITABLE WATER KG/M2 

tsfc SURFACE TEMPERATURE K 

tp2m TEMPERATURE AT 2-M FROM SURFACE K 

u10m U-WIND COMPONENT AT 10-M M/S 

v10m V-WIND COMPONENT AT 10-M M/S 

Source: author`s production 

CPTEC-EPS provides fifteen members, one from the analysis (the unperturbed 

IC) plus fourteen members from perturbed ICs, which are generated according 

to the following steps: 

a) random small perturbations are added to fields temperature (t), wind 

components (u,v), surface pressure (psfc) and specific humidity (q) of the 

control (unperturbed) analysis. These perturbations obey a Gaussian 
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distribution with mean zero and standard deviation comparable to that of 

the forecast error verified in 3h forecast, which corresponds to 0.6ºK for t, 

3 m.s-1 for u,v, 1 hPa for psfc and the q obeys Table 2.4; 

Table 2.4 Standard deviation values proposed by Mendonça and Bonatti (2009). 

 

Specific perturbation of the humidity (q) for each sigma level (σ) of CPTEC-EPS. 

Values are multiplied by a factor of 103.  

Source: Mendonça and Bonatti (2009). 

b)  the resulting randomly perturbed analysis and the control analysis are 

used to integrate the model up to 36h, having the results saved at every 

3h. However, the first 6h of model integration is discarded in order to 

allow a self-adjustment of the model to the perturbed initial conditions and 

consequently develop more balanced forecast perturbations; 

c) the time series of the difference field forecasts is constructed by 

subtracting the control forecast from the perturbed forecasts at each time 

increment of 3h; 

d) an EOF analysis is performed for the time series over a tropical domain, 

in order to determine the eigenvectors whose EOF coefficients increase 

rapidly with time. These eigenvectors are considered as the EOF 

perturbations. Figure 2.9 shows examples of the evolution of three 

coefficients (amplitude) for different eigenmodes along time; 
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Figure 2.9 Example of EOF coefficients for different eigenmodes. 

 

From the highest coefficient eigenmode to the 3rd, from left to right.  

Source: Adaptated of from Zhang and Krishnamurti (1999). 

e) adding and subtracting the highest perturbation to and from control 

analysis produces an ensemble of two initial perturbed states (positive 

and negative members, respectively) in order to achieve the maximum 

and the minimum variance caused by the perturbation; 

f) the resulting highest and lowest variance analysis and the control 

analysis are used to fully integrate the model up to 360h, whose 

archiving occurs at every 6h. 

CPTEC-EPS is in operational mode since October 2001 and runs twice a day at 

00h and 12h with a forecast horizon defined from 6h to 360h ahead. Its 

archiving generates 4.1 GB/run or ~3 TB/year on the Tupã (Cray XE6 

supercomputer) archiving system. 

 The horizontal spectral truncation used in the CPTEC-AGCM is T126 (i.e., 

triangular truncation at zonal wave number 126). To avoid aliasing in the 

solution of nonlinear terms of model equations it is necessary to use 

approximately a number of points in the zonal direction equivalent to 3 times the 

shortest wave number considered, which corresponds to approximately a 0.948 

degrees in the geographic coordinate resolution, i.e., a low resolution of ~100 

km x ~100 km, making X-axis to vary from 1 to 385 grid points (longitude 0° to 
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360°) and Y-axis to vary from 1 to 192 grid points (latitude -89.2842° to 

89.2842°) (shown in Figure 2.10). In the vertical, the atmosphere is divided into 

28 sigma layers (L28). CPTEC-AGCM output variables are listed in Table 2.5. 

Figure 2.10 Horizontal domain of CPTEC-AGCM. 

 

Bottom and left axes (in red) are the geographic coordinates of the domain. Top and 

right axes (in blue) approximately represents the correspondent X-Y grid coordinate. 

Source: author’s production 

Table 2.5 List of CPTEC-AGCM`s prognostic fields. 

Variable Description  Unit 

psfc SURFACE PRESSURE (p) HPA 

uves SURFACE ZONAL WIND (u) M/S 

uvel ZONAL WIND M/S 

vves SURFACE MERIDIONAL WIND (v) M/S 

vvel MERIDIONAL WIND M/S 

vort VORTICITY 1/S 

fcor STREAM FUNCTION M2/S 

potv VELOCITY POTENTIAL M2/S 

zgeo GEOPOTENTIAL HEIGHT GPM 

psnm SEA LEVEL PRESSURE HPA 

tems SURFACE ABSOLUTE TEMPERATURE K 

temp ABSOLUTE TEMPERATURE (t) K 

umrs SURFACE RELATIVE HUMIDITY NO DIM 
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Table 2.5 List of CPTEC-AGCM`s prognostic fields (cont.). 

umrl RELATIVE HUMIDITY NO DIM 

umes SPECIFIC HUMIDITY (q) KG/KG 

agpl INST. PRECIPITABLE WATER KG/M2 

tsfc SURFACE TEMPERATURE K 

tp2m TEMPERATURE AT 2-M FROM SURFACE K 

u10m U-WIND COMPONENT M/S 

v10m V-WIND COMPONENT M/S 

uvmt TIME MEAN ZONAL WIND (U) M/S 

vvmt TIME MEAN MERIDIONAL WIND (V) M/S 

prec TOTAL PRECIPITATION KG/M2/DAY 

neve SNOWFALL KG/M2/DAY 

usst SURFACE ZONAL WIND STRESS PA 

vsst SURFACE MERIDIONAL WIND STRESS PA 

cbnv CLOUD COVER 0-1 

tgsc GROUND/SURFACE COVER TEMPERATURE K 

Source: author`s production 

Since 2001 up to current days, no further significant changes occurred in the 

operational version of the CPTEC-EPS, however, some improvements 

concerning perturbation method are in the operationalization phase and are 

described below. 

Based on previous studies about the underdispersiveness, i.e., ensemble 

spread smaller than the Root Mean Squared Error (RMSE) of the ensemble 

mean, Mendonça and Bonatti (2009) evaluated five experiments using 

statistical scores like pattern anomaly correlation (PAC), RMSE, and standard 

deviation spread in order to assess changes on the method that generates the 

initial perturbation of the temperature (t) and wind components (u, v) and also to 

assess the inclusion of perturbations to surface pressure (p) and specific 

humidity (q) fields, in six regions. As the original method, these perturbations 

also obey a Gaussian distribution with mean zero and standard deviation 

comparable to that of the 3h forecast error. 



 

 
37 

Results showed that, on overall, the application of the new method to perturb 

mid-latitude variables, produced positive impact on the quality of CPTEC-EPS 

and alleviated the underdispersion of the system. This fact has encouraged 

CPTEC’s staff to make it the new operational version as well as the author of 

this work to use it as reference. 

2.11. CPTEC-EPS`s performance 

The new CPTEC-EPS data are already used in this work aiming to make 

improvements in the foremost system. A preliminary analysis of its spread in 

Figure 2.11 presents CPTEC-EPS rank histograms from La Plata Basin region 

for the months JFMA and OND from 2009 to 2012. Each plot represents a lead-

time within the forecast horizon, from 24h to 360h, incremented by 72h. The last 

one represents the rank histogram considering all lead times. 

According to this plot, there is a clear lower bias in the ensemble members 

spread as most observations fall into the last bin. Also, the gap between the last 

bin and the others decreases as the lead-time approximates to 360h forecast, 

which corroborates the assumption that an EPS has better performance from 

mid-range forecasts. Finally, considering all lead times, the spread still shows a 

lower bias, which means that the overall performance of MEAN has real 

evidences that it is not good. This picture shows that there is a dispersion 

problem and that some improvement is needed. Despite there is no clear 

deficiency of the MEAN, the results of this work show, by comparisons of pure 

MEAN vs. ANN MEAN, that the performance, whatever it is, can be improved 

using the proposed methodology.  
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Figure 2.11 Rank histograms from CPTEC-EPS from La Plata Basin region for the 
months JFMA and OND from 2009 to 2012. 

 

Each plot represents a lead-time within the forecast horizon, from 24h to 360h, 

incremented by 72h. The last one considers all lead times. The red dotted line is where 

all bars should be in a flat shape.  

Source: author`s production 

2.12. Ensemble mean calibration related work 

MEAN is computed to aggregate reliability to forecasts by minimizing the 

difficulties caused by ensemble dispersion problems (KALNAY, 2003, p. 26). 
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However it also carries the underdispersiveness problems from members, 

which characterizes a systematic error (bias) and consequently degrades the 

forecast accuracy (HAMILL; COLUCCI, 1997; STENSRUD; YUSSOUF, 2003; 

BUIZZA et al., 2005). 

Despite of some authors have found that MEAN is more better than any 

individual forecasts members (HOU et al., 2001; GRIMIT; MASS, 2002) it is not 

as good as the best bias-corrected forecasts (RAFTERY at al., 2005). To obtain 

it, therefore, it seems necessary to carry out some form of statistical post 

processing (HAMILL; COLUCCI, 1997, 1998; BUIZZA et al., 2005). 

Nowadays post-processing ensemble prediction is considered a necessary step 

to calibrate the forecast and, as seen, several works that use many different 

post-processing techniques has been proposed. However, almost all of them 

are applied over ensemble members, aiming to calibrate the probabilistic 

forecast and thus the MEAN. Experiments concerning calibrating EM in a direct 

manner appear to be relatively rare. 

Based on such facts and that MEAN is considered a crucial component for the 

whole forecasting process it was decided to investigate means to try to make 

some progress in performance skills of the MEAN produced by the CPTEC’s 

EPS by post-processing it directly.  

Even though this work uses EPS variables as a way to improve the accuracy of 

the precipitation forecast, which is one of those variables, this approach looks 

closely similar to applying soft computing techniques in order to forecast 

precipitation, since both of them use meteorological variables. The difference is 

that the later is primarily based on actual meteorological measurements and the 

former is based on prognostic fields. 
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2.13. Precipitation forecasting through ML related work 

The task of predicting the precipitation through the use of ML techniques is 

extensively explored as demonstrate the following few works. 

French et al. (1992) used several ANN configurations for forecasting rainfall in 

space and at 1h lead-time, using the rainfall field as input and output. They 

noticed that it is capable of learning the relationship space vs. time mainly when 

a relatively large number of hidden nodes are utilized (it was from 15 to 100 

nodes), as it provides means for storing higher order relationships necessary for 

adequately abstracting the process. The ANN accuracy, measured in RMSE, 

showed similar results to two other well-known physics-based methods of short-

term forecasting. 

Hall et al (1999) used data from a regional model to feed an ANN in order to 

forecast the probability of precipitation (PoP) and the quantitative precipitation 

forecast for the Dallas–Fort Worth, Texas, USA area. They got 95% of linear 

correlation between forecast and OBS. 

Ramirez, Velho and Ferreira (2005) used data from CPTEC’s ETA model to 

construct a nonlinear mapping between its outcome and surface rainfall in São 

Paulo/Brazil. They applied LR and ANN and concluded that the forecasts of the 

later were superior to the ones obtained by the LR. 

Hung et al. (2009) applied ANN for forecasting rainfall of Bangkok, Thailand. 

Different network types and configurations combined with different types of 

input information were tested and a Feed-Forward ANN using hyperbolic 

tangent transfer function achieved the best generalization of rainfall forecast. 

The input information was a combination of meteorological parameters such as 

relative humidity, air pressure, wet bulb temperature and cloudiness; the rainfall 

at the point of forecasting and rainfall at the surrounding stations were also 

used. Results revealed that ANN forecasts were better compared to simple 

persistent method.  
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Dastorani et al. (2010) also explored the ANN capabilities comparing its 

precipitation prediction against Adaptive Neuro-Fuzzy Inference Systems 

(ANFIS) in a single meteorological station in Iran. Different architectures of ANN 

and ANFIS models were applied, as well as various combinations of 

meteorological parameters as input, including 3-year precipitation moving 

average, maximum temperatures, mean temperatures, relative humidity, mean 

wind speed, maximum wind direction and evaporation. ANN types include, Multi 

Layer Perceptron (MLP), Generalized Feed Forward (GFF), Modular Neural 

Network, Recurrent Network (RN), and Time Lagged Recurrent Network 

(TLRN). At the end, RN and TLRN showed better performance for this 

application. 

Moustris et al. (2011) used a 7-5-1 MLP-BP ANN to forecast precipitation of 

Greece, measured the performance with RMSE and concluded that it had better 

results than classical statistical methods. The ANN configuration was achieved 

via test and error approach. 

The usage of ANN variations in forecasting rainfall is wide and does not seem 

to end so soon, other scientists also explored it as well as other techniques to 

accomplish this task.  

Ingsrisawang et al. (2008) used three Machine Learning (ML) techniques 

available from WEKA (HALL, 2009) for short-term rain forecasting: DT, ANN 

and SVM. These techniques were applied to classify and predict rainfall 

forecasts. The results showed that there was no final consensus of which 

method was the best in overall since the performance varies according to the 

task (classification o regression), to the number of predictors used (3 to 14), 

lead-time forecast data (same day to 2 days ahead), and spatial location of the 

station. 

Wu et al. (2010) explored a bunch of components for forecasting daily and 

monthly rainfall time series seeking a relatively optimal data-driven model based 

three aspects: model inputs, modeling methods, and data-preprocessing 



 

 
42 

techniques. Firstly, they applied 7 linear and nonlinear techniques in order to 

identify the best set of inputs and the ordinary Linear Correlation Analysis (LCA) 

was capable to perform better. Then, they proposed a model called Modular 

ANN whose performance was compared to ordinary ANN, K-Nearest Neighbors 

(K-NN) and LR. The variation of using a preprocessed and non-preprocessed 

(normal mode) dataset was also explored. Data-preprocessing techniques 

includes moving average (MA), principal component analysis (PCA), and 

singular spectrum analysis (SSA). In normal mode, results indicate that MANN 

performs the best among all prediction models, but this improvement is not 

significant in monthly rainfall forecasting compared to ANN. The final conclusion 

is that the proposed optimal rainfall forecasting model can be derived from 

MANN coupled with SSA. 

Hong (2008) used a hybrid model of RNNs (for forecasting rainfall data) and 

SVM (for solving time series problems), namely RSVR, to forecast rainfall depth 

values and the results reveal that this model provides a promising alternative. 

Gagne et al. (2013) applied LogReg and RF to produce calibrated probabilistic 

forecasts from the raw ensemble data correcting the systematic biases in the 

ensemble precipitation forecast. 

Radzuan et al. (2013) compared three techniques namely LogReg, DT, and RF 

for precipitation forecast. They concluded that every model has advantage and 

weakness in making rainfall forecasts. LogReg showed good on ranking 

variables according to its importance to the process, DT produced a visual 

model, thus easier to be understood and RF helps to display variable trees in 

more details. 

Soft computing for precipitation forecasting can also be done for predicting 

seasons rather than single daily events, as have done Navone and Ceccatto 

(1994). They used hierarchical ANN to predict summer monsoon rainfall over 

India based on the fact that it can correlate nonlinear relationships. The results 

showed that the forecasting capabilities was remarkably improved compared to 



 

 
43 

conventional methods. Also for longer periods, Freiwan and Cigizoglu (2005) 

estimated monthly precipitation amount also using different configurations of 

ANNs and stated that the estimations of rainfall resulted in favor of the ANN 

compared to conventional stochastic models.  

El-Shafie et al. (2011) used ANFIS and ANN techniques for forecasting monthly 

rainfalls in Malaysia. They also used trial and error approach to determine the 

optimum structure for the ANN. Similarly to other works, different rainfall 

combinations were used as inputs. They measured the results using 5 different 

metrics: RMSE, Correlation Coefficient (2R), Nash Sutcliffe coefficient, gamma 

coefficient (GC) and Spearman correlation coefficient and the final result was 

that ANFIS had higher accuracy vs. ANN. 

2.14. Illustration of foundation and goal 

Figure 2.12 illustrates the summary of the foundation and the goal of this 

Thesis. 

Figure 2.12 Foundation and goal. 
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The weather forecasting engine (model), presented by Bjerknes (1904) and improved 

by Richardson (1922), are represented by the big grey square. It is responsible for the 

evolution of the “best” state of the atmosphere (filled green circle) by integrating 

physical equations along time, up to a target forecast date. It turns out that the final 

values can be too different from actual values especially in longer-range forecasts (blue 

circles and line), and nothing more than measurements of the magnitude of the error 

can be computed. Over time, scientists show that it was caused by the uncertainties 

that are present in the initial state of the atmosphere and even in the way the model 

computes weather (red texts). This uncertainties represents the difference between 

what is estimate as states of the atmosphere and its actual values and can lead the 

forecast to results too far from the truth because of the chaotic behavior of the weather. 

To alleviate this fact, an ensemble of forecasts (members) was idealized in order to 

gauge the forecast in a probabilistic way (red circles and lines), since it allows the 

computation of the event that most likely to occur. An ensemble is composed by 

multiple evolutions of the weather that are distinguishable either by a different initial 

state of the atmosphere or by different model operation. In addition to the ensemble, a 

concept of control member (green line), ensemble mean (black circles and line), and 

spread (dashed ellipses) arose. The control member is the evolution of the “best” state 

of the atmosphere. Ensemble mean is de arithmetic mean of all ensemble members 

and performs better than any individual member. Spread is the measure of how far the 

lowest member value is from the highest. Besides, being the best, the ensemble mean 

can, in general, be improved. This work is about post-processing the model output in 

order to bring the ensemble mean closer to the actual values (lithe black arrows) and it 

is done for the forecast target dates of 1, 3, 6, 9, 12, and 15 days (yellow transparent 

rectangles).  

Source: author`s production 
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3 DATA AND METHODOLOGY 

Given such foundation and motivation, the upcoming sections expose the 

methodology applied for dataset generation, some exploratory data analysis on 

the data, and the ANN configuration. The way this work addresses the problem 

can be classified as an exploratory search of input sets and ANN topologies 

that, in the end, will be the optimal input-based model that can be applied to 

calibrate the MEAN forecast of CPTEC-EPS for each lead-time in the forecast 

horizon. 

The programming language used to extract all data from CPTEC-EPS was 

Fortran (FORmula TRANslator) version 90/95, which is part of the development 

environment of the CPTEC`s supercomputer, which also stores CPTEC-EPS`s 

data. The chosen platform used in the development of the procedures for data 

manipulation, analysis, ANN implementation and assessments was the R 

Platform (R CORE TEAM, 2015) because it was considered to be a complete 

platform that could handle all needs.  

R is a language and an environment for statistical computing and graphics. It is 

composed by a core function set, namely base, and optional third-party multi-

purpose packages. When applied, R citations are in the form 

<package>::function(). 

3.1. Spatial domain 

In order to validate the whole process, the La Plata Basin (LPB) region was 

chosen due to its importance to living society. Coronel (2006) described in 

some degree of detail the most important aspects. In drainage area terms LPB 

is world’s fifth best ranked and the second with respect to South America, 

extending over 3.1 million km2, which corresponds to 17% of South America 

surface (Amazon Basin is the first). As seen in Figure 3.1.a), LPB spreads 

among five countries: Argentina, Bolivia, Brazil, Paraguay, and Uruguay and 

includes São Paulo, the largest city in South America, and four of the five 
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capitals of its countries: Asunción, Brasilia, Buenos Aires, and Montevideo. It is 

also the most important in population terms accommodating 50% of its five 

countries population, causing it to be the most populated region within South 

America.  

Moreover, it has important rank in economic activities terms owning 70% of the 

total Gross Domestic Product (GDP). Its water resources (Figure 3.1.b) sustain 

the more developed region of South America, where agriculture is one of the 

most valuable assets. Navigation along the rivers has been increased due to 

the integration of the regional economies. Also, key ecosystems lay within LPB, 

such as: The wetland of the Pantanal, Chaco, Pampa’s plain, Cerrado, and the 

Mata Atlantica, revealing abundance and quality of natural resources. In 

addition, the hydroelectric potential is the main source of the generated power 

of its countries, which is the core of the economy.  

Natural disasters like floods are one of the major concerns in the region due to 

the damage they cause in almost the whole basin, mainly in the urban areas, as 

a result of the overflow of the three main rivers of the La Plata basin (Paraná, 

Uruguay and Paraguay). Improving precipitation forecasts of such area that is 

highly influenced on water resources is a great step towards mitigating material 

and economical damages and increasing quality of life for LPB citizens. 
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Figure 3.1 LPB contour in South America and drainage paths 

a) 

 

b) 

 

a) LPB contour in South America delimited by colored polygons representing the 

surface of composing countries and gridded by geographic coordinates (in red) and 

approximate CPTEC-EPS grid coordinates (in blue). b) Zoomed LPB contour with 

drainage paths. 

Source: author’s production based on CIAT (1998) and base::plot(). 

Further details about LPB can be read in Barros, Clarke, and Dias (2006), which 

gathers studies aiming to raise awareness in the hydrologic community of the 

important changes that have occurred in the climate and hydrology of the LPB 

during recent last decades. Barros et al. (2005) must also be cited because they 

relate the potential impacts of climate change in the LPB as well as Berbery and 

Barros (2002) that reports its hydrologic cycle. 

Since this work was idealized to operate exactly on each of the CPTEC-EPS 

grid points, it was necessary to match the LPB geographic coordinates 

(longitude/latitude pairs) and the CPTEC-EPS grid coordinates (X/Y pairs) in 

order to extract the data. According to Villela (1984), LPB’s extreme geographic 

coordinates are 14.08 to 37.61 of latitude south and 43.58 to 67.0 of longitude 
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west, in decimal representation. This domain matches grid coordinates 314 to 

339 and 54 to 81, in Y- and X-axis, respectively. However, there must be data 

from the adjacent grid points for every X-Y pair in LPB domain due to some 

experiments require it as predictors (details later), therefore, it was necessary to 

enlarge all four extreme grid coordinates at one grid point. After all, for 

extraction purposes, the final extreme grid coordinates were set to 313 to 340 

(in X-axis) and 53 to 82 (in Y-axis), composing a 28 x 29 grid (812 grid points). 

Figure 3.2 shows a representation of both working and extraction domains. 

Figure 3.2 Extreme extraction and working coordinates of LPB. 

 

A zoomed view of the LPB extreme grid coordinates and contour (in yellow). Red line 

bounds the working domain and blue line the extraction domain. Blue dots represent 

CPTEC-EPS grid points.  

Source: author’s production based on CIAT (1998) and base::plot(). 

The term working domain (LPB domain from now on) means the square area 

limited by the extreme grid coordinates that is effectively used as a source of 

choice of the grid points for the experiments. This domain is the minimum grid-

based square area that encloses the LPB contour and is used to build the final 
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data sets. The term extraction domain refers to an expansion of the working 

domain by one grid point on both horizontal and vertical directions. The extra 

data points of the extraction domain are only used to aggregate information of 

the adjacent grid points of the working domain grid points. 

However, the implementation of all experiments of a pilot project of machine 

learning system for the whole LPB domain was considered not feasible since it 

would be difficult to assess the results to each grid point as well as very time-

consuming. The initial strategy was set to the following steps: a) pick up some 

grid point within LPB contour; b) perform all the experiments on it; c) assess the 

results; d) reapply then on other sparsely located grid points still within LPB 

contour, and e) compare the results of all chosen grid points. 

In order to start the experiments in a location that best represents the rainy 

season (defined later), the choice of the first grid point was based on the 

amount of rainy days among all grid points. The MEAN values at every grid 

point within LPB domain were used to classify the rainner grid points. Figure 3.3 

shows a color-ranked map based on the amount of rainy days that was used to 

choose the first grid point.  
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Figure 3.3 Color-ranked LPB domain and top 30 best-ranked rainy grid points. 

 

LPB domain filled with a gradient color from red, which represents lower rates of rainy 

days, to blue, which represents higher rates. Numbers in yellow represent the rank and 

location of the top 30 best rated grid points, in descending order. The lowest rainy rate 

within spatial domain was 14% and the highest was 98%. The yellow polygon 

represents LBP physical contour. 

Source: author’s production based on CIAT (1998) and base::plot(). 

As can be seem in Figure 3.3, the first grid point that lies within LPB contour is 

the 23rd best-ranked grid point. A closer look at its physical map location shows 

that it lies near to the town of Caxambu, state of Minas Gerais, Brazil. 

Thereafter, it was chosen as the first grid point for the experiments.  

As shows Figure 3.4, the nearest town from the grid point is Caxambu, thus it is 

be referenced as so. The same naming logic is applied for the other grid points, 

i.e., the nearest town names it. 
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Figure 3.4 Terrain view of the 23rd best-ranked rainy grid point and surroundings. 

  

Red filled circle is the location of the 23rd best-ranked grid point within LPB contour in 

terms of rainy days.  

Source: author’s production based on ggmap:googlemap(). 

In addition to Caxambu, the other grid points, which were chosen by spatial 

distribution and/or importance (such as being the capital of state or country), 

sum up to twelve and are listed in more details in Table 3.1 and spatially 

showed on Figure 3.5. 

Table 3.1 List of chosen LPB grid points. 

X  Y LON LAT SNAME NAME PERC % 

337 73 -45.0000 -21.9739 CX Caxambu_MG 96.4 

332 69 -49.6875 -25.7142 CT Curitiba_PR 95.4 

335 71 -46.8750 -23.8441 SP Sao Paulo_SP 94.9 

334 80 -47.8125 -15.4285 BR Brasilia_DF 94.2 

315 76 -65.6250 -19.1688 PO Potosi_BOL 92.8 

325 80 -56.2500 -15.4285 CB Cuiaba_MT 88.5 

327 75 -54.3750 -20.1038 CG CampoGrande_MS 79.4 

325 59 -56.2500 -35.0648 MV Montevideo_URU 74.6 

315 70 -65.6250 -24.7791 ST Salta_ARG 64.6 

327 63 -54.3750 -31.3246 BG Bage_RS 57.8 
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Table 3.1 List of chosen LPB grid points (cont.). 

323 59 -58.1250 -35.0648 BA BuenosAires_ARG 55.1 

324 69 -57.1875 -25.7142 AS Asuncion_PAR 54.9 

SNAME stands for short name. Letters after ‘_’ represent a state, while in Brazil, or a 

country: MG=Minas Gerais, PR=Paraná, SP=São Paulo, DF=Brazilian Federal District, 

BOL=Bolivia, MT=Mato Grosso, MS=Mato Grosso do Sul, URU=Uruguay, 

ARG=Argentina, and PAR=Paraguay. In descending order of percentage of rain, 

indexed by the PERC column. 

Source: author’s production.  

Figure 3.5 Color-ranked rainy LPB domain grid points and the 12 grid points. 

 

LPB domain filled with a gradient color from red, which represents lower rates of rainy 

days, to blue, which represents higher rates. Yellow dots are the location of the twelve 

chosen grid points. The lowest rainy rate within spatial domain was 14% and the 

highest was 98%. The yellow polygon represents LBP physical contour. The yellow 
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lines on the bottom legend represent the position of each grid point in the gradient 

scale. 

Source: author’s production based on CIAT (1998) and base::plot(). 

3.2. Main dataset 

The main dataset is essentially composed by forecast data and associated 

OBS. It has also been created a few sub-datasets based on combinations or 

transformations of the raw data. 

3.2.1. Forecasting data 

The forecast data comes from the CPTEC-EPS past forecasts. Datasets like 

this are usually referred to reforecast (HAMILL et al., 2004, 2006) that, in 

summary, is a companion dataset generated by retrospective runs of a fixed 

numerical model in order to be re-analyzed in terms of diagnosing model bias, 

statistically correcting weather forecasts, studying atmospheric predictability, 

etc. In general, these sets are produced utilizing other than the model version 

that is running operationally, and because of that, become computationally 

expensive as they are great resource consumers. The term fixed here refers to 

a version of the EPS that is ”frozen”, i.e., neither programming code nor 

parameterization values are modified along the runs. 

3.2.2. Data selection 

The process for getting data ready for the ANN algorithm starts with data 

selection. The following variables listed in Table 3.2 were chosen from Table 

2.5 in order to serve as initial predictors for the post-processing training system, 

expecting that the relationship with OBS can be mapped.  

As bottom topography substantially affects the linear baroclinic instability 

(CHEN; KAMENKOVICH, 2013), the location of data points will be used as a 

way to filter the data used to build the dataset for the experiments, aiming to 
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capture how location influences in weather behavior. Thus, in addition to the 

five meteorological fields (uves, vves, psnm, tsfc, and prec), the data point 

location (in grid (x/y) and in geographic (lon/lat) coordinates), and the target 

forecast date, were also extracted.  

Table 3.2 List of CPTEC-EPS`s raw variables. 

Variable Description  Unit 

x LOCATION OF THE GRID POINT IN X-AXIS - 

y LOCATION OF THE GRID POINT IN Y-AXIS - 

fct_date TARGET FORECAST DATE DATE 

lon LOCATION OF THE GRID POINT IN LONGITUDE DEGREES 

lat LOCATION OF THE GRID POINT IN LATITUDE DEGREES 

uves SURFACE ZONAL WIND (u) M/S 

vves SURFACE MERIDIONAL WIND (v) M/S 

psnm SEA LEVEL PRESSURE HPA 

tsfc SURFACE TEMPERATURE K 

prec TOTAL PRECIPITATION KG/M2/DAY 

Source: author`s production 

3.2.3. Data preprocessing 

CPTEC-EPS`S data are stored in gridded data (GRIB format) (WMO, 2016) and 

its archiving is done by member (15 members) and lead-time (15 days) for each 

run, which generates 225 forecasting GRIB files. For the purposes of this work 

the lead-times considered were 1, 3, 6, 9, 12, and 15 days (which corresponds 

to 24, 72, 144, 216, 288, and 360h, respectively). Moreover, aiming to perform 

distinct assessments per lead-time, one dataset for each was generated, having  

the target forecast date as the key that distinguishes the occurrences of the 

same grid point. After data sampling and formatting, the dataset structure is 

composed as described in Table 3.3. The final number of columns sums up to 

80, as there are 5 key columns and 75 data columns (5 variables x 15 

members). 
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Table 3.3 Members dataset structure.  

Variable Type Contents 

X int 313 313 313 313 313 313 313 313 313 313 ... 

Y int 55 55 55 55 55 55 55 55 55 55 ... 

LON num -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 ... 

LAT num -38.8 -38.8 -38.8 -38.8 -38.8 ... 

FCT_DATE Date "2009-01-16" "2009-01-17" "2009-01-18" ... 

UVES_01N num 0.81 4.84 2.37 3.65 6.75 2.89 6.76 -1.48 3.26 5.37 ... 

VVES_01N num 1.54 4.94 3.11 5.3 -0.02 4.13 0.2 -3.29 2.09 4.36 ... 

PSNM_01N num 1018 1015 1015 1015 1021 ... 

PREC_01N num 0 0 0 0 0 0 0 0 0 0 ... 

TSFC_01N num 293 296 296 298 293 ... 

UVES_01P num 8.48 -5.45 7.78 -0.47 -4.26 4.24 1.64 -1.36 4.1 4.41 ... 

VVES_01P num 2.23 6.03 0.36 1.44 -0.99 4.54 -2.62 -0.07 5.84 3.86 ... 

PSNM_01P num 1013 1028 1012 1019 1019 ... 

PREC_01P num 0 0 0 0 0 0 0 0 0 0 ... 

TSFC_01P num 293 294 293 294 292 ... 

UVES_02N num -3.37 -4.15 -0.2 -3.78 0.75 5.73 -0.03 6.24 7.1 2.21 ... 

VVES_02N num 1.95 -2.83 -2.92 -3.63 4.84 2.44 2.16 3.88 0.03 6.45 ... 

PSNM_02N num 1016 1027 1018 1018 1012 ... 

PREC_02N num 0.22 0 0 0 0 0 0 0 0 0 ... 

TSFC_02N num 296 293 295 299 299 ... 

. 

. continues up to 75 meteorological variables 

. 

UVES_CTR num 0.68 1.97 2.66 5.06 5.7 4.32 -0.46 2.03 2.75 -1.73 ... 

VVES_CTR num -3.32 2.11 -0.69 6.34 5.2 5.85 3.01 -0.91 1.43 6.09 ... 

PSNM_CTR num 1019 1018 1011 1013 1014 ... 

PREC_CTR num 0 0 0 0 0 0 0 0 0 0 ... 

TSFC_CTR num 297 295 295 296 294 ... 

In the variable name, “01” and “02” means the first two perturbations (of seven), “N” or 

“P” means the negative and the positive perturbation, respectively. CTR means the 

CTRL member. UVES, VVES, PSNM, PREC, and TSFC are the variables extracted 

from the GRIB datafile and are explained in Table 3.2. 

Source: author`s production based on base::str(). 
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3.2.4. Data transformation 

3.2.4.1. Averaging by arithmetic mean 

Once the raw dataset is ready, some data transformation was considered in 

order to observe whether and how new features contribute to the whole 

calibration process. Moreover, as the goal of this work is calibrating MEAN, a 

natural step would be creating a dataset averaged by the arithmetic mean of the 

members. Thus, all fifteen members from each of the five meteorological fields 

were averaged and suffixed with ‘_MEAN’, as shown in Table 3.4. 

Table 3.4 Averaged dataset structure.  

Variable Type Contents 

X int 313 313 313 313 313 313 313 313 313 313 ... 

Y int 55 55 55 55 55 55 55 55 55 55 ... 

LON num -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 ... 

LAT num -38.8 -38.8 -38.8 -38.8 -38.8 ... 

FCT_DATE Date "2009-01-16" "2009-01-17" "2009-01-18" ... 

UVES_MEAN num 0.584 1.601 2.279 4.666 5.346 ... 

VVES_MEAN num -2.9 2.23 -1.1 6.3 5.32 ... 

PSNM_MEAN num 1019 1018 1011 1012 1014 ... 

PREC_MEAN num 0 0 0 0 0.000667 ... 

TSFC_MEAN num 296 295 296 296 294 ... 

Source: author`s production based on base::str(). 

It is opportune to mention that PREC_MEAN is, actually, the MEAN, which this 

work aims to calibrate.  

3.2.4.2. Neighborhood generation 

Aiming to capture the influence that neighbors could have on each data point, it 

was considered to associate the data of all five variables from the eight adjacent 

data points to each sample case line (also known as observation) in both 

members and mean data sets. Figure 3.6 illustrates the idea behind 

neighborhood’s data inclusion. 
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Figure 3.6 Representation of the adjacent neighborhood of a data point. 

 

Each target grid point is composed by its own data and the data from the eight adjacent 

neighbors in cardinal and ordinal directions: northwest (NW), north (N), northeast (NE), 

west (W), east (E), southwest (SW), south (S), and southeast (SE). 

Source: author`s production 

This construction makes each sample line in the dataset, and consequently 

each input set of the ANN, to be composed by 9 values (grid point + 8 

neighbors). This combination made the total number of columns of both mean 

and members data sets to be increased by a factor of eight, for every 

meteorological feature. As shown in the examples in Table 3.5, the process of 

naming the new features was done by prefixing each variable with the letters 

that represents each compass direction. 

Table 3.5 Examples of neighbor variables.  

Variable Type Contents 

E_UVES_01N num 0.67 4.26 0.8 3.44 6.25 2.77 6.17 -2.7 4.76 ... 

SW_UVES_01N num 1.53 4.47 2.51 4.72 9.42 3.73 8.08 0.68 4.84 ... 

S_UVES_01N num 1.51 3.85 1.01 4.19 8.96 3.46 7 -0.46 4.14 ... 

NW_VVES_01N num -0.4 4.81 3.71 5.27 0.4 3.91 0.19 -3.28 4.55 ... 

…. 

SW_PSNM_MEAN num 1018 1019 1018 1015 1014 ... 

SE_PSNM_MEAN num 1018 1019 1017 1015 1013 ... 

NW_PREC_MEAN num 0.367 0.137 1.867 0 0 ... 

N_PREC_MEAN num 0.0333 0 1.366 0 0 ... 

NE_PREC_MEAN num 0.000667 0 0.78 0.001333 0 

Source: author`s production, based on base::str(). 
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The number of resulting columns in each dataset is summarized in Table 3.6. 

Table 3.6 Number of columns in data sets.  

Dataset Key Meteorological Neighbor Total 

Members 5 15 (members) x 5 = 75 75 * 8 = 600 680 

Mean 5 5 5 * 8 = 40 50 

Both members and mean data sets are composed by five key columns (X, Y, LON, 

LAT, and FCT_DATE), five meteorological variables (UVES, VVES, PSNM, TSFC, and 

PREC), and the eight neighbors for each of them. 

Source: author`s production. 

3.2.5. Sampling and temporal domain 

The CPTEC-EPS runs initialized at 12 UTC were was used in order to match 

the accumulation timetable of the OBS dataset, in which is computed exactly at 

12h, which avoids further conversions. Due to computational constraints it was 

generated data only from January 2009 up to April 2012 and, moreover, to 

avoid no-rain data, only rainy regime was considered, i.e., data from months 

October, November, December, January, February, March, and April. Table 3.7 

summarizes the amount of the available data per month and year at every grid 

point of LPB domain. 

Table 3.7 Amount of data samples per grid point. 

Year\Month Jan Feb Mar Apr Oct Nov Dec Total 

2009 *30 28 31 30 30 30 31 210 

2010 31 28 31 30 30 30 31 211 

2011 31 28 31 30 30 30 31 211 

2012 31 29 30 30 - - - 120 

Numbers are the amount of samples cases for each grid point. Data from 2009 to 2011 

was used for training, summing up to 632 samples. Data from 2012 (in bold) was used 

for testing, summing up to 120 cases. (*) Data generation problem this month. 

Source: author`s production, based on base::table(). 
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The ordinary rainy season range includes months October to March but 

according to Figure 3.7, the precipitation in April is comparable to October, thus, 

it seems natural to include April in the rainy season, helping to increase sample 

case number. 

Figure 3.7 Average precipitation of the whole La Plata Basin. 

 

Precipitation in mm/day. 

Source:  Barros, Clarke, and Dias (2006:p22) 

3.2.6. Observed precipitation data 

OBS data come from a product that is a combination of satellite precipitation 

estimates with surface observations over the South American continent – 

namely MERGE (ROZANTE et al., 2010). The former comes from a joint project 

– the Tropical Rainfall Measuring Mission (TRMM) - between the National 

Aeronautics and Space Administration (NASA) and the Japan Aerospace 

Exploration Agency (JAXA). They provide different products based on different 

satellite sensors and the 3B42RT product (HUFFMAN et al., 2007) is the one 

MERGE uses as one of the combining elements. The other component comes 

from a CPTEC’S database fed up by approximately 1500 surface stations that 

report data to CPTEC on a daily basis. Its spatial distribution is very irregular, as 

shown by white dots in Figure 3.8 (a), since there is a major concentration of 

the surface stations in the eastern portion of South America and becomes 
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drastically scarce towards both the north and south. The main goal of MERGE 

is to minimize problems with interpolation in regions of low-density observation 

networks, as well as the low and high biases of the TRMM product.  

To achieve the goal, MERGE technique consists in combining both sources of 

data according to the weight they have in terms of being the most reliable 

information, it is assumed that surface observations are considered ‘‘the truth’’, 

thus, have more weight than satellite data. Once verified which data is the most 

valuable, it is used to establish the value of the grid box itself and of the two 

rows of adjacent grid boxes  (resulting in 24 grid points). The establishment of 

values is done by an interpolation method idealized by Barnes (1973). Figure 

3.8 (b) shows that the white dots in (a) have its dimension increased due to this 

technique. And, for the remaining grid boxes in which there are no surface 

observations, the TRMM data are considered. 

Results show the performance is superior over areas with sparse observations 

and equivalent in terms of simply averaging the stations over areas with a high 

density of observations. Using MERGE in this work is a way to guarantee that 

the observational data will be at least equivalent in performance compared to 

data from surface stations since various grid points in LPB domain lay within 

areas with scarce data. 

Figure 3.8 The TRMM gauging operation. 

a)    b) 
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The TRMM 24-h accumulated precipitation estimate (shaded) for 8 Mar 2003. (a) White 

dots represent the reporting rain gauges on that particular day. (b) White squares 

represent the 0.258 TRMM grid boxes near the rain gauges shown in (a). The box in 

yellow represents the LPB geographic boundaries. 

Source: Adapted from Rozante et al. (2010). 

As shown in Figure 3.9, the final merged product has a resolution of 0.25 

degrees and CPTEC-EPS has a resolution of approximately 0.94 degrees, 

which requires a regrid (conversion from one grid resolution to another). To fix 

it, the simple arithmetic mean of the overlaid MERGE grid boxes was calculated 

for each grid box in CPTEC-EPS resolution. 

Figure 3.9 TRMM to CPTEC-EPS grid resolution conversion. 

a) 

 

b) 

 

TRMM`s original spatial grid resolution in (a) and regrided in (b), matching CPTEC-

EPS spatial grid resolution. Colors mean the amount of rainfall for each grid point in 

some date (irrelevant in this case). 

Source: Dr. Christopher Castro’s production. 

Data from MERGE were also extracted to another particular dataset in order to 

serve as the source of the target variable for the training process as well as 

assessments in the testing phase. Table 3.8 shows its structure. 
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Table 3.8 OBS dataset structure.  

Variable Type Contents 

X int 313 313 313 313 313 313 313 313 313 313 ... 

Y int 55 55 55 55 55 55 55 55 55 55 ... 

LON num -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 -67.5 ... 

LAT num -38.8 -38.8 -38.8 -38.8 -38.8 ... 

FCT_DATE Date "2009-01-16" "2009-01-17" "2009-01-18" ... 

PREC_OBS num 0.466343 0 0 0 0.000000323 

Source: author`s production based on base::str(). 

3.2.7. Normalization 

Another data pre-processing technique is the normalization, in which, here, 

refers to the process of adjusting data values measured in different scales to 

some normal form, i.e., to a common scale. It must be applied to all input and 

output features within the system. As shown in Table 3.9, there are mean 

values among the five meteorological variables that differ from other in some 

order of magnitude. The difference of the scaling factor between input or target 

variables tends to make back-propagation type algorithms to be slow and have 

inaccurate results (SARLE, 2002). It’s also opportune to mention that it is not 

about modeling because ANNs are flexible enough to bypass any problem 

caused by data distribution of the input, but it is only about numerical issues. 

Table 3.9 Descriptive statistics of meteorological variables.  

Statistics PREC_01N TSFC_01N PSNM_01N UVES_01N VVES_01N 

#Samples 589568 589568 589568 589568 589568 

Mean 2.43 296.26 1013.67 -0.45 -0.15 

Std. Dev. 7.96 5.78 4.44 3.17 3.40 

Median 0.00 297.35 1013.18 -0.39 -0.32 

Min 0.00 259.53 986.62 -19.49 -17.13 

Max 250.91 311.13 1034.94 18.32 19.48 

Range 250.91 51.60 48.32 37.81 36.61 

Skew 7.42 -1.36 0.41 0.21 0.17 
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Descriptive statistical measurements on the 24h member dataset. #Samples is 589,568 

because there are 784 grid points and 752 days. 

Source: author`s production, based on psych::describe() 

Normalizing either input or target variables ensure that values are equally 

important to the training process (DA SILVA, 2001). As the target variable of 

this work is OBS, whose lower limit is zero, it seems natural to normalize the 

target within the range [0, 1], and consequently, apply the same normalization 

process for all input features. There are many methods for data normalization in 

literature. Some commonly found are min-max, Z score, and decimal scaling 

normalization.  

Based on Jiawei et al. (2012), let 𝐴 be a numeric attribute with 𝑛 sample values, 

𝑣1, 𝑣2, … , 𝑣𝑛.  Min-max normalization performs a linear transformation on the 

original data ranging them to the interval within [0,1]. The drawback is that an 

“out-of-bounds” error is raised if a future input case for normalization falls 

outside of the original data range. Min-max normalization maps a value, 𝑣𝑗, of 𝐴 

to 𝑣𝑗
′ in the range [0, 1] by computing 

 𝑣𝑗
′ =

𝑣𝑖 −𝑚𝑖𝑛𝐴
𝑚𝑎𝑥𝐴 −𝑚𝑖𝑛𝐴

 (2.1) 

where 𝑚𝑖𝑛𝐴and 𝑚𝑎𝑥𝐴are the minimum and maximum values of an attribute, 𝐴.  

Z-score normalization (or zero-mean normalization) normalizes the values 

based on the arithmetic mean and standard deviation. It is a zero-centered-

based algorithm in which lower and upper values are not necessarily symmetric. 

It is useful when the actual minimum and maximum of attribute are unknown, or 

when there are outliers that dominate the min-max normalization. Z-score 

normalization maps a value, 𝑣𝑗, of 𝐴 to 𝑣𝑗
′ in the range [0, 1] by computing 

 𝑣𝑗
′ =

𝑣𝑖 − 𝐴̅

𝜎𝐴
 (2.2) 
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where 𝐴̅ and 𝜎 are the mean and standard deviation, respectively, of attribute 𝐴.  

Decimal scaling normalization acts by moving the decimal point of values of the 

attribute according to the number of decimal points moved on the maximum 

absolute value of the attribute. It is a quasi-zero-centered-based algorithm in 

which lower and upper values are not necessarily symmetric. Decimal scaling 

normalization maps a value, 𝑣𝑗, of 𝐴 to 𝑣𝑗
′ in the range [0, 1] by computing 

 𝑣𝑗
′ =

𝑣𝑖
10𝑗

 (2.3) 

Where 𝑗 is the smallest integer such that max(|𝑣𝑗
′|) < 1. 

Table 3.10 shows the application of these normalization methods on the 

meteorological variables. As can be noticed, the skew factor remains the same 

as original values, which is shown in Table 3.6, for every normalization method, 

indicating that the relationships that exist in the original data were preserved. 

Table 3.10 Descriptive statistics of meteorological variables, normalized by three 
different methods.  

Statistics 

PREC VVES 

Min-max Z-Score 
Decimal 

Scaling 
Min-max Z-Score 

Decimal 

Scaling 
Mean 
Std. Dev. 
Median 
Min 
Max 
Range 
Skew 

0.01 
0.03 
0.00 
0.00 
1.00 
1.00 
7.42 

0.00 
1.00 

-0.30 
-0.30 

31.22 
31.52 

7.42 

0.00 
0.01 
0.00 
0.00 
0.25 
0.25 
7.42 

0.46 
0.09 
0.46 
0.00 
1.00 
1.00 
0.17 

0.00 
1.00 

-0.05 
-5.00 
5.77 

10.77 
0.17 

0.00 
0.03 
0.00 

-0.17 
0.19 
0.37 
0.17 

Statistics 

PSNM TSFC 

Min-max Z-Score 
Decimal 

Scaling 
Min-max Z-Score 

Decimal 

Scaling 
Mean 
Std. Dev. 
Median 
Min 
Max 
Range 
Skew 

0.56 
0.09 
0.55 
0.00 
1.00 
1.00 
0.41 

0.00 
1.00 

-0.11 
-6.09 
4.79 

10.88 
0.41 

0.10 
0.00 
0.10 
0.10 
0.10 
0.00 
0.41 

0.71 
0.11 
0.73 
0.00 
1.00 
1.00 

-1.36 

0.00 
1.00 
0.19 

-6.36 
2.57 
8.93 

-1.36 

0.30 
0.01 
0.30 
0.26 
0.31 
0.05 

-1.36 
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Data extracted from 24h-members dataset. All variables refer to member 01N. UVES is 

omitted once that VVES has similar behavior. 

Source: author`s production, based on Jiawei et al. (2012) and psych::describe(). 

However, preserving the original relationship between the attributes is an 

important component for succeeding in machine learning but it is not the only 

one. Concerning ANNs, it is highly recommended that the output of the 

activation function match the distribution of the targets, avoiding forcing the data 

to conform to the activation function output. In other words, if the activation 

function outputs values within the range of [0,1], then the target values should 

lie within that range.  

As exposed in the section 2.3, the activation function chosen was the sigmoid 

function which outputs continuous values within range [0,1]. The natural choice 

should be choosing the Min-max normalization but the shortcoming that raises 

an exception for new data that lies outside the original range could be a 

problem if the validation dataset encloses that case. The remaining Z-score and 

Decimal Scaling are zero-centered and have free lower and upper limits but it 

does not become a problem in this work because the original range of the target 

variable is always zero or higher, which makes the normalization process to 

output values that are also zero or higher, but in a small scale.  

This fact should make both methods suitable for this work, but a closer look at 

Table 3.10 shows that the minimum and maximum values for PREC ranges 

from -0.30 to -31.22 in Z-score normalization, while in Decimal Scaling it ranges 

from 0 to 0.25. Since a normalization process aims to convert numbers to a 

common scale, the range of the Z-score were considered very high, leading us 

to chose Decimal scaling as the normalization method. 

It should also be mentioned that it is necessary to save the normalization 

parameters (j, for the Decimal Scaling) in order to denormalize the data back. 
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3.3. Artificial Neural Network (ANN) 

The supervised learning approach is the natural choice of this work since 

approximating to OBS is the main goal. The foundation exposed in Chapter 1 

has revealed that the MLP model architecture is suitable to address the task of 

handling complex dynamic non-linear relationships regardless data distribution 

and prior knowledge of the input/output relationship, thus it was chosen. 

Two R packages that implement ANNs are ‘neuralnet’ (FRITSCH; GUENTHER, 

2012) and ‘nnet’ (RIPLEY; VENABLES, 2016). The drawback of nnet package 

is that it supports only one hidden layer, but was considered too limited for the 

purposes of this work, which include evaluating few numbers of layers. Thus, 

thus, ‘neuralnet‘ package was chosen. 

MPL networks are applied in this work, however, the use of back-propagation 

algorithm as the learning algorithm has been avoided due to the fact that it has 

some problems associated with its convergence (HAYKIN, 1999), such as slow 

training, getting stuck in the local minimum, or even requiring many processes 

in order to obtain a response within an acceptable error interval (CORTIVO; 

CHALHOUB; VELHO, 2012). The chosen learning algorithm was RPROP. 

‘neuralnet’ supports sigmoid and hyperbolic tangent (tanh) as activation 

functions. Since the target value assumes values greater or equal zero, the 

sigmoid function was chosen, with a fixed default slope parameter set to 1. The 

value that specifies the threshold for the partial derivatives of the error function 

as stopping criteria was set to 10-3. The epoch (maximum steps for the training 

of the neural network) was set to 1x106. The weights were set to be randomly 

initialized and no constraints were added to limit them. In order to become 

reproducible the “seed” 1968 was set before the each unique ‘neuralnet’ 

invocation. 

Concerning topology, the suitable model for this work is neither proved nor has 

a consensus in the literature. Statements similar to “In most situations, there is 
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no way to determine the best number of hidden units without training several 

networks and estimating the generalization error of each” (SARLE, 2002), 

encouraged to set the trial and error strategy as the approach to determine the 

optimal ANN topology. 

All training process was run in a HP Z820, a 32-core and 62GB-RAM 

workstation. Taking advantage of the multi-process capabilities provided by the 

R packages 'foreach' (CALAWAY; WESTON, 2015), and ‘doParallel’ 

(CALAWAY et al., 2015), it was idealized one hundred ANN topology variations. 

The idea was to loop the amount of hidden units from 1 to 10 within 1 to 10 

hidden layers, which generates 100 topologies to be evaluated for each lead-

time of the experiment. This approach generates only ‘regular’ topologies of 

hidden layers obeying the terminology UxL, where U is the number of hidden 

units in each of the L layers. The term ‘regular’ means that there is no variation 

on the number of hidden units within the hidden layers. 

Figure 3.10 show some examples of the topology and the common terminology 

that describes the whole topology (1st line) as well as the UxL terminology (2nd 

line) obtained with this approach, which is used to describe the optimal ANN 

topology of the experiments. 

Figure 3.10 Examples of ANN topologies applied to the experiments. 

a)  
1-1-1 
UxL: 1x1 
 

 

b)  
5-1-1 
UxL: 1x1 

         

c)  
9-3-3-3-3-1 
UxL: 3x4 
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Figure 3.10 Examples of ANN topologies applied to the experiments (cont.). 

d) 
8-6-6-6-6-6-6-6-1 
UxL: 7x6 

 

 

e)  
15-10-1 
UxL: 10x1 

 

 

f)  
45-10-10-10-10-10-10-
10-10-10-10-1 
UxL: 10x10 

 

In red, the input sets. In blue, the bias and corresponding synapses linked to every 

neuron in the next layer. In black, hidden neurons and corresponding synapses. In 

green, the output set, which has one element in this case. a) Minimum topology used in 

the experiments and f) the maximum. 1st header line is the terminology commonly 

found in literature that describes the topology, and the 2nd line is the UxL terminology. 

Source: author`s production, based on neuralnet::plot.nn(). 

There are a multitude of possibilities that might be feasible to consider 

regarding the combination of architecture, topology, and configuration of ANN. 

Even from few examples in literature there is no consensus about which ANN 

model is better. As have been highlighted in related work sections, lots of work 

have been done by training several combinations of architecture, topology and 

configuration with a subsequent comparison of the generalization error of each 

one in order to determine the optimal ANN model, just as was done here. 

 

 

 

 



 

 
69 

4 EXPERIMENTS AND RESULTS 

4.1. Performance of MEAN calibration 

The inter-comparisons between OBS versus MEAN and ANN output were done 

through Root Mean Squared Error (RMSE), which is a highly recommended 

verification score of forecasting precipitation amount (WMO, 2008) and 

measures the magnitude of the mean error giving greater weight to larger 

errors. Like every error measurement, values closer to zero is better. 

In addition, RMSE skill score (SS) was also applied in order to evidence 

percentage improvements in ANN models with respect to the MEAN, which is 

the reference score. They are expressed by Formulas 3.1 and 3.2, in sequence. 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑗 − 𝑦̂𝑗)

2

𝑛

𝑗=1

 (3.1) 

where 𝑛 = number of samples, 𝑦 = target output and 𝑦̂ = ANN estimate.  

 

 
𝑆𝑆𝐴𝑁𝑁 = (

𝑅𝑀𝑆𝐸𝑀𝐸𝐴𝑁 − 𝑅𝑀𝑆𝐸𝐴𝑁𝑁
𝑅𝑀𝑆𝐸𝑀𝐸𝐴𝑁

)100% (3.2) 

where 𝑅𝑀𝑆𝐸𝐴𝑁𝑁 is the RMSE of the ANN estimate and 𝑅𝑀𝑆𝐸𝑀𝐸𝐴𝑁 is the RMSE 

of the MEAN. The percentage improvement is relative to its magnitude. A 

positive value indicates a better performance of the ANN compared to the 

MEAN and a negative value, the opposite. 

4.2. Outlining the experiments 

This study is an attempt to seek an optimal input-driven model for calibrating 

MEAN given both location and forecast horizon. The term input-driven means 

that each experiment for approximating MEAN towards OBS is designed based 

on specific set of predictors set, whose selection were done aiming exploratory 

purposes. The whole process to build an experiment can be summarized in the 
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following steps: i) predictors selection; ii) grid point selection: in order to filter 

data by location; iii) data set creation: creates six distinct data sets, one for each 

lead-time (1, 3, 6, 9, 12, and 15 days); iv) ANN processing: train and test each 

data set in each of the one hundred ANN topologies; and v) analysis: gathers 

and compares the results at each lead-time. 

The general goal of each experiment is to measure the ability of the chosen 

predictors to make MEAN approximate OBS and to check which ANN topology 

performs better at each lead-time.  

In order to explain the predictors used on each experiment in a compact way 

the following terms, listed in Table 4.1, are used to compose the experiment 

identifier, which informs the dataset and the features used in the experiments. 

The experiment identifier is written in upper or lower case interchangeably. 

Table 4.1 Meaning of terms used to define the experiments.  

TERM PREDICTOR MEANING 

P Mean precipitation data were used from the mean dataset. 

V Mean data from the variables PREC, TSFC, UVES, VVES, and PSNM were 

used from the mean dataset. 

M<x> Data from member <x> were used from members dataset, such that x ⊂ 

{C, N, P, A}, where C is CTRL, N is member 01N, P is member 01P, and ALL 

means all 15 members. 

GP Data from target grid point was used. 

N Data from the eight adjacent grid points of the target location were used. 

+ Prior set is repeated for N (neighbors). 

Source: author`s production. 

In the next section, the experiments at Caxambu are described and the results 

are graphically shown in two charts. In general, more than one experiment is 

gathered together for clarity purposes but do not necessarily express the order 

that they were done. Description includes: the experiment identifier, the number 
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of predictors, the correspondent specific goal, and a discussion about the 

results based on the charts and numbers.  

In line chart (a), the evolution of each experiment within the group is show along 

the forecast horizon. Moreover, three dark-blue lines, which are located 

immediately below their associated lead-time, express the RMSE, the ANN 

topology, and the identifier of the best experiment (EXP). In addition, some 

legends show the overall RMSE of the experiments and of the MEAN. In bar 

chart (b), multiple bars illustrate the percentage improvement of each 

experiment also according to the associated lead-time. The colors of both 

charts match. 

All figures and tables in this section were produced by the author based mainly 

on base: data.table(), table(), reshape(), dcast(), and ggplot().  
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4.3. Experiments at Caxambu 

4.3.1. Experiment set #1 

Pgp; (1); Check whether ANN is able to model the relationship between MEAN 

and OBS using only MEAN as predictor. 

Pn; (8); Check whether MEAN from neighbors improve ANN forecast at the 

target location. 

Pgp+n; (9); Check whether submitting both MEAN from the target grid point and 

from its neighborhood improves the calibration. 

 

a) 

 

b) 

 
 

Discussion: ANN calibration from all these experiments surpasses MEAN at 

every lead-time and, consequently, in the overall performance. The two peaks 

registered at 3rd and 12th days for MEAN imply that there are larger errors in 

these target days when compared to ANN. Moreover, a better overall 

performance was achieved when using both precipitation data from the target 

location and from the neighbors as predictors (thin blue line) when compared to 

their individual submission. The “best of” measure (in thick yellow line) indicates 

the best RMSE at each lead-time, helping to perform calibration using the most 

suitable ANN model for each of them, in order to boost up the performance of 

the calibration process. 
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4.3.2. Experiment set #2 

Vgp; (5); Check whether submitting MEAN and other mean variables from the 

target grid point improves the calibration process. 

Vn; (40); Check whether submitting MEAN and other mean variables from the 

neighbors can improve the calibration. 

 

a) 

 

b) 

 
 

Discussion: The performance of the neural network was worse than MEAN. 

Large RMSE values possibly indicate that the maximum number of iterations 

was reached and the ANN did not converge to the solution, most likely because 

either got stuck in a local minimum or the weights became too high or too low, 

causing the denominator of the sigmoid function to vary high (or low), 

characterizing an overflow (namely saturation). Vn presented a small RMSE at 

the 15th day but it was still worst than the experiments in set #1. The use of the 

five mean variables together brought none improvements to MEAN calibration, 

thus, no further experiments were done with them. 
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4.3.3. Experiment set #3 

McPgp; (1); Check how an input built from “the best snapshot of the 

atmosphere” (the control member) performs along the forecast horizon. 

MnPgp; (1); Check how an input built from physical laws (weather model) 

performs, in case, it is a negative leg of the perturbation. 

 

a) 

 

b) 

 
 

Discussion: Both experiments showed some instability in some forecast day 

and high overall RMSE. One of possible reasons is that, both CTRL (green) and 

perturbed members (orange) are deterministic predictions and, because of that, 

its variability can be too different from OBS, making the relationship between 

them harder to comprehend, as exposed in Chapter 1.  
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4.3.4. Experiment set #4 

MpPgp; (1); Similar to MnPgp, but using the positive perturbation member. 

MaPgp; (15); Measure how the ANN performs using all precipitation data of 

members from the target location as input. 

MaPgp+n; (75); Check whether adding precipitation data of members from 

neighbors to the precipitation data of members from the target location 

improves calibration. 

 

c) 

 

d) 

 
 

Discussion:  

As an exception of the behavior of individual members among the experiments, 

MpPgp remained stable at certain RMSE level for all lead-times, however, its 

overall performance was worst that the experiments in set #1. Besides 

members are, conceptually, individual deterministic predictions, which causes 

some difficulties on approximating the solution, CPTEC-EPS’s members are 

built from a random mechanism and, therefore, the relationship between a set 

of values and OBS is not kept among the samples cases. Both experiments 

concerning all fifteen members presented better RMSE compared to MEAN, but 

none could surpass the experiments in set #1.  
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4.3.5. Optimum predictors selection and ANN topology 

The optimum set of predictors for each lead-time and concerning Caxambu can 

be inferred from on Table 4.2, which summarizes the results of the experiment 

sets. 

Table 4.2 RMSE summarization by experiment and lead-time 

EXP.ID OV.ALL 1 3 6 9 12 15 

Pgp+n 7.66 6.87 7.19 7.77 7.73 8.21 8.16 

Pn 7.73 6.84 7.54 7.78 7.78 8.32 8.13 

Pgp 7.83 6.98 7.58 7.67 8.09 8.45 8.22 

MaPgp 8.25 7.88 8.41 8.00 8.42 8.34 8.44 

MaPgp+n 8.35 8.41 8.14 8.22 8.42 8.45 8.44 

MpPgp 8.39 8.40 8.28 8.42 8.41 8.41 8.43 

MEAN 8.81 7.47 8.78 8.21 8.84 10.06 9.48 

MnPgp 13.45 7.15 39.94 8.35 8.41 8.43 8.44 

McPgp 16.59 7.52 8.15 8.18 8.21 8.38 59.11 

Vn 479.76 624.54 511.93 551.85 540.33 641.66 8.22 

Vgp 552.91 624.52 553.97 475.54 484.93 575.14 603.37 

Sorted by overall performance (OV.ALL). Shows RMSE at every lead-time (1-15). Bold 

lines in back have worst overall performance compared to MEAN (RMSE=8.81, in red). 

Delimited values refer to the best RMSE at each lead-time. 

Source: author`s production. 

Based on the results it can be seen that only the first three experiments had at 

least one of its values as the best of some lead-time, which are delimited by 

black rectangles in Table 4.2. The experiments that used only the MEAN from 

the target grid point, the one that used only the MEAN from neighbors, and the 

one that used both data together are comprised by experiment set #1. A 

detailed view of the numeric results is shown in Table 4.3. Bold lines refer to the 

optimum experiment (best predictors set) and ANN topology at each lead-time 

that was computed for Caxambu. 
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Table 4.3 RMSE results of experiment set #1 by lead-time. 

 EXP.ID 1 3 6 9 12 15 

 MEAN 7.47 8.78 8.21 8.84 10.06 9.48  

 BEST 6.84 7.19 7.67 7.73 8.21 8.13  

 EXP Pn Pgp+n Pgp Pgp+n Pgp+n Pn  

 ANN 5x1 4x1 9x5 3x1 1x1 1x1 

Source: author`s production. 

And the final optimum predictor set and ANN topology for Caxambu is 

summarized in Table 4.4. 

Table 4.4 Optimum predictor set and ANN topology for Caxambu. 

Day: 1 

Pn (8) 

5x1 or 8-5-1 

Day: 3 

Pgp+n (9) 

4x1 or 9-4-1 

Day: 6 

Pgp (1) 

9x5 or 1-9-9-9-9-9-1 

   
Day: 9 

Pgp+n (9) 

3x1 or 9-3-1 

Day: 12 

Pgp+n (9) 

1x1 or 9-1-1 

Day: 15 

Pn (8) 

1x1 or 8-1-1 

   

First line: forecast days 1, 3, 6, 9, 12, and 15. Second line: Experiment ID plus number 

of predictors. Third line: compact ANN topology notation plus common notation. Chart: 

representation of the resulting ANN topology. Red=inputs, blue=bias and its synapses, 

black= hidden neurons and its synapses, green=output. 

Source: author`s production. 
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In order to prevent from applying underperforming experiments to other grid 

points, a cutting criterion was established aiming to ignore every experiment 

whose overall performance was below MEAN overall performance 

(RMSE=8.81).  Table 4.2 demonstrates the ignored experiments in bold and the 

remaining experiments are: Pgp+n, Pn, Pgp, MaPgp, MaPgp+n, and MpPgp. 

4.4. Experiments at remaining locations 

4.4.1. Assuncion (PAR) - AS 

a) 

 

b)

 
 

c) 

 

d)

 
 

 

Four of six experiments that performed worst than MEAN were eliminated. The 

1st target lead-time achieved the maximum improvement, reaching 20%, but in 

overall ANN could help only a little since it was around 13%. 
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4.4.2. Buenos Aires (ARG) - BA 

a) 

 

b)

 
 

c) 

 

d)

 
 

 

Four of six experiments that performed worst than MEAN were eliminated. 

Better improvements were verified at the 1st and 3rd days, reaching 15%. 

Overall performance was around 14%. 
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4.4.3. Bagé (RS) - BG 

a) 

 

b)

 
 

There was no experiment that performed worst than MEAN, so none was 

eliminated. In general, ANN performance followed the MEAN and improved 

around 9%. 

 

4.4.4. Campo Grande (MS) - CG 

a) 

 

b) 

 
 

There was no experiment that performed worst than MEAN, so none was 

eliminated. A better performance is noticed in the 3rd day achieving 26%. In 

general, ANN performance was 17%.  
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4.4.5. Brasília (DF) - BR 

a) 

 

b)

 
 

c) 

 

d)

 
 

 

Three of six experiments that performed worst than MEAN were eliminated. 

ANN performed very well at all lead-times, especially at longer-range where 

improvements around 40% were achieved. Overall performance were around 

36%. 
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4.4.6. Cuiabá (MT) - CB 

a) 

 

b) 

 
c) 

 

d) 

 
 

Four of six experiments that performed worst than MEAN were eliminated. A 

better performance was verified at the 3rd day of forecast, achieving almost 

30%. A performance decay is noticed for all subsequent lead-times, which led 

the overall performance to be around 13%. 
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4.4.7. Curitiba (PR) - CT 

a) 

 

b) 

 
c) 

 

d)

 
 

 

One of six experiments that performed worst than MEAN was eliminated. A 

better performance was verified at the 1st day of forecast, achieving almost 

30%. A performance decay is noticed for all subsequent lead-times, which led 

the overall performance to be around 14%. 
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4.4.8. Montevideo (URU) - MV 

a) 

 

b)

 
 

c) 

 

d)

 
 

 

There was no experiment that performed worst than MEAN, so none was 

eliminated. A better performance is noticed in the 1st day achieving 12%. In 

general, ANN performance was 6% only. 
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4.4.9. Salta (ARG) - ST 

a) 

 

b)

 
 

There was no experiment that performed worst than MEAN, so none was 

eliminated. A better performance is noticed in the 1st and last days of 

forecasting. In general, ANN performance was 13%. 

4.4.10. Potosi (BOL) - PO 

a) 

 

b)

 
 

 

There was no experiment that performed worst than MEAN, so none was 

eliminated. A better performance is noticed in the 1st forecasting day achieving 

around 30%. A performance decay is noticed for all subsequent lead-times, 

which led the overall performance to be around 24%. 
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4.4.11. São Paulo (SP) - SP 

a) 

 

b)

 
 

c) 

 

d)

 
 

One of six experiments that performed worst than MEAN was eliminated. A 

better performance was verified at the 1st day of forecast, achieving almost 

30%. A performance decay is noticed for all subsequent lead-times, which led 

the overall performance to be around 7% only. 
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4.5. Results in numbers 

The same cutting criterion of Caxambu experiments was applied to the 

remaining locations, i.e., ignore every experiment whose overall performance 

was below MEAN overall performance for the location. Table 4.5 shows the 

ignored experiments of the remaining experiments. 

Table 4.5 Ignored experiments at remaining locations. 

LOC EXP_ID 
OVERALL RMSE 

LOCATION MEAN 

AS 

Pgp+n 

Pn 

Pgp 

MpPgp 

13.71 

13.77 

14.52 

14.17 

13.68 

BA 
MaPgp 

MpPgp 

18.39 

21.34 
14.57 

BR 

MaPgp 

MaPgp+n 

MpPgp 

16.12 

18.38 

18.05 

12.09 

CB 

Pgp 

MaPgp 

MaPgp+n 

MpPgp 

15.15 

40.95 

41.13 

21.79 

13.88 

CT MaPgp 16.26 9.42 

MV MpPgp 24.01 11.52 

SP MaPgp 15.59 7.96 

LOC is the location where the experiment was run. EXP_ID is the experiment identifier. 

After taking unperformed experiments out, a number of statistics can be done 

on the final resulting Table 4.6, which shows the best experiment and the ANN 

topology for each lead-time at every chosen location. The term “best 

experiment” means that it had the lowest RMSE value among all experiments, 

i.e., the winning experiment. 
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Table 4.6 Summarization of experiments vs. location vs. lead-time 

LOC 
1 3 6 9 12 15 

N L N L N L N L N L N L 

CX 
Pn Pgp+n Pgp Pgp+n Pgp+n Pn 

5 1 4 1 9 5 3 1 1 1 1 1 

CT 
Pn Pgp+n Pn Pn Pgp+n Pn 

2 5 2 2 2 1 3 5 2 1 2 1 

SP 
Pgp Pgp MpPgp Pgp Pgp+n Pn 

4 3 7 6 10 1 3 1 2 4 4 7 

BR 
Pn Pn Pgp+n Pn Pn Pn 

2 2 2 8 1 1 1 3 3 10 4 1 

PO 
MaPgp+n Pn Pn MaPgp+n MpPgp MaPgp 
5 10 4 1 7 2 4 5 10 3 2 1 

CB 
Pn Pn Pgp+n Pgp+n Pgp+n Pn 

1 2 1 3 7 9 2 2 1 2 1 3 

CG 
MpPgp Pgp Pgp Pgp Pgp Pn 

10 1 5 6 10 1 7 4 7 4 1 4 

MV 
Pgp+n Pgp+n Pgp MaPgp Pgp+n Pn 

2 2 2 2 3 4 1 1 2 4 8 5 

ST 
Pn Pgp+n Pgp+n Pn Pgp+n MaPgp+n 

3 8 1 1 5 2 2 2 8 2 4 8 

BG 
MpPgp Pgp Pn MaPgp+n MaPgp MpPgp 

5 3 7 1 6 10 4 3 2 2 10 6 

BA 
MaPgp+n MaPgp+n Pgp MaPgp+n Pgp Pn 
2 3 7 6 8 2 3 6 10 6 9 3 

AS 
MaPgp MaPgp+n MaPgp MaPgp MaPgp+n MaPgp+n 

8 2 7 4 7 2 8 5 4 2 6 8 

LOC=location; N= # of neurons of the winner topology at the lead-time; L= # of layers 
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4.5.1. Experiments  

Figure 4.1 illustrates the rank of winning experiments in general terms and how 

they are split by lead-time. Table 4.7 shows the rank in numbers. 

Figure 4.1 Frequency chart: general winning experiments end by lead-time 

 

a) in general; b) by lead-time 

 

Table 4.7 Rank table: winning experiments by lead-time. 

EXP_ID 1 3 6 9 12 15 FREQ REL.FREQ 

Pn 5 3 3 3 1 8 23 32% 

Pgp+n 1 4 3 2 6 0  16  22% 

Pgp 1 3 4 2 2 0  12 17% 

MaPgp+n 2 2 0 3 1 2 10 14% 

MaPgp 1 0 1 2 1 1 6 8% 

MpPgp 2 0 1 0 1 1 5 7% 

Total 12 12 12 12 12 12 72 100% 

FREQ=frequency, REL.FREQ=relative frequency.  

 

a) 

 

b) 
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4.5.2. Number of layers  

Figure 4.2 illustrates the rank of the number of layers used in the ANN topology. 

It is sorted by the relative frequency of the number of hidden layers and 

summation is not 100% due to rounding issues. Figure 4.3 illustrates how it 

splits along lead-time. 

Figure 4.2 Frequency chart: winning number of hidden layers. 

 

Figure 4.3 Frequency chart: winning number of hidden layers by led-time 
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4.5.3. ANN topologies 

Figure 4.4 illustrates the rank of ANN topologies (neuron-layer pairs) used in the 

experiments and Figure 4.5 illustrates how it is split by lead-time. 

Figure 4.4 Frequency chart: winning ANN topologies. 

 

Figure 4.5 Frequency chart: winning ANN topologies by lead-time. 
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5 CONCLUSIONS 

The quality of numerical weather prediction has been constantly improved. 

Much of this is undoubtedly credited to advances in intrinsic weather issues that 

are present in weather forecast modeling, but there is also a credit for 

computational post-processing systems, which are used to fine-tune the 

weather forecasting model outcome. The use of statistical techniques to post-

process weather forecasting model's data is an essential requirement these 

days, once there are both renowned techniques as computational power to 

perform this processing. The purpose of using these techniques, such as neural 

networks, is to discover the best computational representation of the 

relationship among meteorological variables that are present in the system. 

In this work, different experiments distinguishable by different arrangements of 

pure or derived CPTEC-EPS forecast variables were submitted as predictors to 

different structures of MLP neural networks. The goal was to build and assess 

different computational models of their relationship with OBS along the forecast 

horizon. The experiments were applied locally due to differences in weather 

behavior caused by different geographies.  

Conclusions are now addressed from different perspectives. 

5.1. Predictors selection 

Results from Caxambu grid point (experiment set #2) showed that the 

simultaneous use of the variables vves, uves, tsfc, psnm, and prec led ANN to 

have a very poor performance, revealed by high RMSE rates, which indicates 

that they are not a good set of predictors, at least when used concomitantly. 

One possible explanation is the low level of correlation between chosen 

variables and OBS, as shown in the multi-charts in Figure 5.1.  

Although WMO (2008) highly recommends Pearson’s correlation coefficient as 

a score of forecasting precipitation amount, newer studies have found that its is 
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neither robust to deviations from linearity in a relationship nor resistant to 

outlying data (WILKS, 2011, p. 55-56). Thus, the correlation is measured by 

Spearman's rank correlation coefficient (or Spearman's rho, denoted by rs or ρ). 

Figure 5.1 Multi-info chart: correlation between variables and OBS at Caxambu. 

 

Each line is related to a variable, which is labeled in the x-axis; Each column is related 

to a lead-time, from the 1st to the 15th day, which is labeled in blue at the top of each 

column; Density histogram of OBS is in light blue, which remains unchanged in all 

plots; Thick black-lined rectangles are the density histogram of the independent 

variable; Red small circles are the scatter plot between the independent variable (x-

axis) and OBS (y-axis); Blue thick line is the best-fitting straight line that represents the 

relationship between both vars. Spearman’s correlation coefficient (rho) is shown in 

black at the top of each chart. 

Source: author’s production based on base::plot(), cor(), and lm(). 
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According to the subjective classification proposed by Evans (1996) and Cohen 

(1988), the correlation is classified as very weak or weak for rho < 0.3 and 

moderate for rho ≈ 0.4. Among the variables, only psnm and prec, which is 

actually the MEAN, have coefficients greater than 0.4, indicating that this set of 

predictors could not work well. 

Developing a screening regression, i.e., selecting a good set of predictors from 

a pool of potential predictors, is not trivial and should be done with care. 

According to Wilks (2011), some issues must be taken into account, such as:  

a) avoid selecting uncorrelated predictors with respect to the target variable 

because it increases variance of prediction and, thus, reduces precision;  

b) although the tendency is to choose the most correlated set of predictors 

with respect to the target variable, choosing too many predictors can cause 

over fitting, i.e., good generalization in training but poorly generalization 

when facing new data; 

c) avoid choosing mutually correlated predictors, because redundant 

information leads to poor estimates. 

The final conclusion about the predictors selection method applied in this work 

is that the search for predictors should have been done in a more critical way. 

First of all, more variables should have been extracted from the prognostic 

fields of the CPTEC-EPS, then it could have been used some measurements 

such as Pearson or Spearman correlation or even apply the techniques 

reported by Applequist (2002) in order to asses the importance of the predictor 

to the target variable. In addition, the use of psnm should have been more 

explored, once it was already available and has revealed to be more correlated 

to OBS even than MEAN, in most lead-times. 
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5.2. Averaged vs. members variables 

According to the rank of winning experiments (Figure 4.1), the experiment that 

used MEAN as predictors performed better than the experiments that used raw 

precipitation data from members. A possible reason can be credited to the fact 

that raw original member’s data are, indeed, deterministic predictions and its 

variability can be too different from OBS, making the relationship to be even 

more complex. Figure 3.3 and its interpretation below show that MEAN is more 

correlated to OBS than any individual member.  

The conclusion regarding this issue is that the complexity of deterministic 

predictions was carried to inside the ANN system, making MEAN to be much 

more correlated to OBS than data from members. To complement, other 

measurements of central tendency as median and mode could also be taken 

into account to generate additional derived data, since the arithmetic mean is 

highly sensitive to skewed data distributions, as are the precipitation data. 

5.3. Data from adjacent grid points 

Data from neighbors explain the relationship with OBS better than data from the 

target grid point. Figure 4.1 shows that, in general, adding data from adjacent 

grid points enhances the skill of the set of predictors to calibrate MEAN. It can 

be noticed in the first three winning experiments, which are the experiments 

composed by MEAN, and also in the last three worst experiments, which are 

the ones that used members’ data as predictors. 

As detailed in Figure 4.2, with a exception of the 6th day, the inclusion of data 

from adjacent grid points made the set of predictors perform better than using 

only data of the target grid point, highlighting days 1, 12, and 15, whose 

difference in the number of occurrence is greater. 

The conclusion regarding this issue is that data from adjacent grid points should 

be used, however, the use of all eight neighbors together should be reevaluated 
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and applying screening regression to them should be considered, in order to 

filter the most important ones for each grid point and lead-time. 

5.4. Processing by location 

The location filter used to create the train and test datasets is considered 

correct, since the relationships between weather variables can vary according 

to the topography of the terrain, which affects the baroclinic stability. The 

disadvantage is that it makes the training set to have only 632 cases, which can 

be not enough to set the model with the most appropriate weights. To solve this 

problem, one solution to be explored in a future work can be to apply the 

clustering technique on the entire sample cases according to behavioral 

similarity. This would make the 513.184 samples cases (28 x 29 grid points x 

632 days) to be grouped in few groups, increasing the number of training cases 

of the ANN. 

5.5. ANN 

Rules of thumb assert that ANN topologies composed by three hidden layers is 

enough to solve the majority of complex relationships. However, according to 

Figure 4.3 and detailed in Table 4.6, approximately 38% of winning ANN 

topologies were composed by at least four hidden layers.  

Such expressive amount has lead the author to conclude that although the loop 

to create one hundred ANN topologies, reaching up to a 10x10 topology, can 

cause some impact, it was worth exploring ANN capabilities. In strict sense, 

tests on ANN topology had exploratory purposes and the approach was also 

motivated by the lack of consensus about the suitable ANN topology.  

Another significant fact is the number of winning topologies composed by only 

one and two layers. According to Figure 4.3, such ANN topologies are 

responsible for the solution of about 50% of cases. According to Figure 4.4, this 

fact is emphasized at the 6th day, in which the factor increases to 66%. It can 
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also be seen that, in general, chart bars lay on the left side of lead-time charts, 

just where the ANNs composed by smaller number of hidden layers are. To the 

author, this scenario corroborates both assumptions that different problems 

require different solution as well as ANNs composed by few layers are powerful 

enough to solve highly complex relationships. 

According to Figure 4.5, the total number of topologies used to solve 72 

experiments  (12 locations x 6 lead-times) sums up to 41, and the most used is 

a 2x2 topology, in 10% of cases, followed by the 1x1 topology, which is the 

minimum possible topology, with hidden layers.  

The conclusion regarding this issue is that, on future work, an exploration of 

ANN topologies composed by a high amount of neurons up to 2 hidden layers, 

as proposed by Cybenko (1989), can be a good alternative to avoid de loop of 

ANN topologies and tune the mechanism in a more detailed way. Furthermore, 

a hint of the best configuration for each location+lead-time pair can be 

investigated as done in Anochi (2015), which aims to make the configuration 

phase easier.  

The problem this work deals with is considered very difficult given that the 

chosen variables are very weakly correlated to the target observed value. In 

order to try to “help” the ANN, an architecture that keeps memory of prior events 

to simulate temporal behavior could be explored in a future work. This 

architecture is present in Recurrent Neural Networks (or Hopfield networks) 

(HOPFIELD 1982). 

5.6. R platform experience 

The choice of using R for the whole process is controversial. While providing 

high-level solutions avoiding the implementation of consolidated tasks such as 

analysis charts and neural network itself, it presents limitations in flexibility, and 

prevents certain needs to be achieved. The use of a third-part package in order 

to run ANNs has presented limitations in the following situations: 
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a) lack of information about poor performance: as described in 

experiment set #2, the reason for high RMSE values could not be 

identified and discussion is based on suppositions about getting into a 

local minimum or saturation; 

b) trade-off between fast execution and error evolution during training: as 

one hundred ANN topologies were run for each experiment and lead-

time, the output of the training process provided by the neuralnet 

function had to be disabled once the whole process was demanding 

too much time to complete, making the methodology to be not 

feasible; 

c) lack of configuration on activation function: fine tuning issues such as 

the slope of the sigmoid function and even the use of alternative 

functions such as Piece-wise or ReLU is missing; 

d) lack of momentum configuration: the official user manual says nothing 

about momentum and advanced configurations in order to avoid local 

minimum is missing; 

e) the conclusion regarding this issue is that the tool that plays the role of 

protagonist in such a complex process of dealing with highly non-

linear relationships present in this work should provide means to 

configure its working process, under penalty of lack of clarity in some 

details. The tool could be implemented even in R programming 

language, but should be flexible enough to provide full control of the 

operation for the researcher. 

5.7. Final remarks 

The main contribution of this work is that it allows an improvement in the 

ensemble mean forecast at every lead-time based only in computational effort, 

involving no physics concepts. This improvement is verified at every lead-time 
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and the difference of the performance among the locations can be explained by 

the amount of rainy days verified at each of them. As can be seem in Figure 

5.2, in which X-axis is sorted by the amount of rain verified at each location from 

rainner to dryer, both tendency red lines indicate that the rainiest is the location 

the best the network performance is.  

Figure 5.2 Multi-info chart: correlation between variables and OBS at Caxambu. 

 

X-axis sorted by rainner location to dryer. Top box shows the percentage of rainy days 

at each location (blue line). Bottom box shows de percentage improvements in ANN 

models with respect to the MEAN at each location (black line). Tendency lines are in 

red. 

Source: author’s production. 

Yet with respect to improvements, the greater one was achieved for the 24hs 

and 72hs forecast, as can be seem in Figure 5.3. This leads to a overall 

improvement of about 13% with respect to MEAN. 

FCT PREC 

Linear fit 

% improv. wrt MEAN 

Linear fit 
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Figure 5.3 Percentage improvements at each lead-time  

 

Source: author’s production. 

The specific goals of assessing the correlation between variables and OBS, 

investigating the best combination of predictors and ANN topology that best 

calibrate MEAN along lead-times were achieved. As also were the check of 

whether neighbor's data influence the precipitation at the target grid point. 

Moreover, the general goal of discovering an optimal input-based model based 

on both set of predictors and ANN topology in order to improve MEAN forecast 

for the lead-times in the forecast horizon by using data from CPTEC-EPS was 

also achieved. As can be seen in Table 4.6 and in the charts of the 

experiments, location and lead-time pairs have different set of predictors and 

ANN topologies as most suitable solutions. This fact corroborates the 

assumption that weather variables have different relationships with each other 

for distinct location and lead-time. To solve this, different ways of thinking are 

required and, in this case, they are represented by predictors and topologies. 
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Directions of future work are based on addressing the shortcomings that have 

been identified in the methodology. Although it is considered promising, the 

exposed adjustments and further tests are necessary to consolidate it as an 

operational tool and help forecasters in the complex task of predicting weather. 

The mentioned screening regression, the issues about ANN fine tuning, and 

also providing more samples cases in order to feed the training process with 

more data compose the main requirements to improve this pioneer 

methodology. Figure 5.4 shows a simplified scheme that could serve as an 

operational workflow of the entire process of training and calibrating the MEAN 

according to the methodology here proposed. 

Figure 5.4 Simplified operational workflow  

 

Salmon box represents daily forecasting procedures that start with the execution of the 

CPTEC-EPS. Its output is archived and used to build the ANN models from time to time 

(light yellow box). Back in daily routines, the CPTEC-EPS output is calibrated by the 

models generating new output and both are used by forecasters to predict the weather. 

Source: author’s production. 
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APPENDIX A – MULTI-INFO CHARTS OF ALL LOCATIONS 

Figure A.1 Multi-info chart: correlation of variables and OBS at Assuncion (PAR). 

 

 

Figure A.2 Multi-info chart: correlation of variables and OBS at B. Aires (ARG). 
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Figure A.3 Multi-info chart: correlation of variables and OBS at Bagé (RS). 

 

 

 

Figure A.4 Multi-info chart: correlation of variables and OBS at Brasília (DF). 

 



 

 
117 

Figure A.5 Multi-info chart: correlation of variables and OBS at Cuiabá (MT). 

 

 

 

Figure A.6 Multi-info chart: correlation of variables and OBS at C. Grande (MS). 
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Figure A.7 Multi-info chart: correlation of variables and OBS at Curitiba (PR). 

 

 

 

Figure A.8 Multi-info chart: correlation of variables and OBS at Caxambu (MG). 
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Figure A.9 Multi-info chart: correlation of variables and OBS at Montevideo (URU). 

 

 

Figure A.10 Multi-info chart: correlation of variables and OBS at Potosi (BOL). 
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Figure A.11 Multi-info chart: correlation of variables and OBS at São Paulo (SP). 

 

 

Figure A.12 Multi-info chart: correlation of variables and OBS at Salta (ARG). 
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