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Abstract. Distinguishing Brazilian savanna physiognomies is an essential task 
to better evaluate carbon storage and potential emissions of greenhouse gases. 
In this study, we propose to evaluate the potential of texture features to 
improve the discrimination among five physiognomies in the Brazilian 
savanna: Open Grasslands, Shrubby Grassland, Shrubby Savanna, Savanna 
Woodland and Gallery Forest. Texture features extracted from RapidEye 
images and also from Spectral Linear Mixture Model components and 
Vegetation Index are evaluated in this study. Results showed that texture 
features based on GLCM can reduce misclassification for Open Grasslands, 
Shrubby Grasslands and Shrubby Savanna classes. 

1. Introduction 
Brazilian savanna, also known as Cerrado, occupies an area of approximately two 
million square Kilometers on the Brazilian territory, mainly in the central part of Brazil 
(MMA, 2015). Cerrado is one of the richest biomes in the world and it contains more 
than 160.000 species of plants, animals and fungi (Ferreira et al., 2003). Besides that, 
Cerrado is responsible for storing about 5.9 billion tons of carbon in vegetation and 23.8 
billion tons in the ground (MMA, 2014). 
 The loss of natural vegetation in Cerrado reached 45.5% of its original area by 
2013 (MMA, 2015). The loss of biodiversity can lead to problems such as: soil erosion, 
water pollution, carbon cycle of instability, microclimate changes and also biome 
fragmentation (Klink & Machado, 2005). Considering these negative effects on 
biodiversity, it is essential to promote strategies to monitor the Cerrado biome. 
 Mapping of heterogeneous tropical areas, such as Cerrado, should be carried out 
considering biological, climatic and topographical information. The major natural 
formations in Cerrado are Grasslands, Shrublands and Woodlands (Figure 1). Their 
mapping has been the subject of several studies. Sano et al. (2009) performed visual 
interpretation of satellite images to produce maps of Cerrado. This process was very 
time consuming and difficult to discriminate Grasslands. 
 The difficulty to map Cerrado patterns is even greater when considering more 
formations than those mentioned above. For example, the system proposed by Ribeiro 
& Walter (2008) splits these major formations into 14 physiognomies. Identifying these 
physiognomies is important to evaluate carbon storage and potential emissions of 
greenhouse gases for each type of land cover. 
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Figure 1. Major Cerrado formations describing the vegetation gradient (adapted 
from Schwieder et al., 2016). 

   
 Most studies aiming to classify vegetation types in the Cerrado biome rely on 
the use of spectral information from remote sensing imagery. The NDVI (Normalized 
Difference Vegetation Index) has been tested to discriminate Cerrado physiognomies 
(Liesenberg et al., 2007; Oliveira et al., 2007; Costa et al., 2014). However, there is still 
difficulty to discriminate different grassland physiognomies using only NDVI. Spectral 
Linear Mixture Model (SLMM) has also been used to classify physiognomies on a 
protected area of Cerrado in Distrito Federal State, Brazil (Ferreira et al., 2007). The 
SLMM reduced the classification error between Grasslands and Shrublands, but it was 
not enough to fully automate the classification.  
 Differently, Carvalho et al. (2010) used texture features to map the vegetation 
cover in the Cerrado. In this paper, an initial classification was performed using data 
based on NDVI, SLMM and spectral features. Afterwards, they included texture 
information into the dataset and noticed an increase in the classification accuracy. 
Peneque-Galvez et al. (2013) also used texture features to classify Cerrado 
physiognomies in Bolivia. In this case, Woodlands were classified with high accuracy, 
but some errors confusion occurred in the discrimination between Grasslands and 
Shrublands. However, some texture features increased this error, and reduced the 
overall classification accuracy. Therefore, it is necessary to investigate whether these 
features may be really effective for Cerrado classification. 
 In order to better analyze texture features in the Cerrado classification, we 
could calculate texture features from NDVI instead of calculating it from original 
image. The NDVI texture has been used in other applications such as urban studies 
(Nussbaum & Menz, 2008). It has also been used to detect bushfire prone areas (Chen et 
al., 2001) as well as to identify different types of forest and spatial patterns of 
vegetation structure (Ning et al., 2011).  
 Therefore, we propose in this work to evaluate the potential use of texture 
information extracted from RapidEye original images, and also from vegetation index 
and SLMM components to classify the following physiognomies in the Brazilian 
Cerrado: Open Grasslands, Shrubby Grassland, Shrubby Savanna, Savanna Woodland 
and Gallery Forest. 

2. Methodology 
Figure 2 presents the methodology flowchart proposed to classify vegetation cover in 
Cerrado. Each processing step is detailed in the following sections. 
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Figure 2: Methodology flowchart. 

2.1. Study Area and Reference Map 
The study area is located in the Brasília National Park (PNB), which has approximately 
30.000 ha of preserved natural Cerrado vegetation. Figure 3 shows the major part of the 
park, in which a red line highlights the study area. For the experiments, we used a 
RapidEye image in the path-row 1-318 tile 2331801 of the RapidEye Earth Imaging 
System (REIS). This image was acquired in 05/30/2014 and processed in level 3A 
product (Blackbridge, 2015). 

 
Figure 3: Study area in the Brasilia National Park. 

  
 We also used as reference the map of PNB that was produced by Ferreira et al. 
(2007). The authors used the system proposed by Ribeiro & Walter (1998) to classify 5 
Cerrado physiognomies described in Table 1. Other classes such as Water Bodies, 
Marsh, Reforestation, Bare Soil and Constructed Area were removed from the dataset. 
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Table 1. Cerrado physiognomies characteristics (Adapted from Ferreira et al., 
2007 and Ribeiro & Walter, 2008) 

Physiognomy name Vegetation description Tree cover (%) Tree height (m) 
Open Grassland (OG) Grasses 0 - 
Shrubby Grassland (SG) Grasses and Shrubs 0-5 - 
Shrubby Savanna (SS) Shrubs and a few trees 5-20 2-3 
Wooded Savanna (WS) Trees and a few Shrubs 20-50 3-6 
Gallery Forest (GF) Trees 70-95 15-30 

2.2. Image Partitioning 
In order to extract texture features, the image was partitioned into square objects of size 
s by s pixels. The use of square objects instead of polygons extracted from segmentation 
algorithms based on similarity allows us to evaluate texture features that capture the 
natural heterogeneity in the image. This procedure prevents detecting texture as a 
possible rule in the classification process, once we intend to evaluate texture potential 
for classifying Cerrado vegetation cover. 
 Following, the image was linked with the reference map to identify the square 
objects represented within each class in the map. The larger is the square object size, the 
fewer number of objects can be extracted from the image.  We tested different object 
sizes ranging from 10 to 35, with a step of 5. The maximum value 35 was chosen 
because the number of samples for Gallery Forest reached almost zero. Figure 4 
illustrates the influence of object size in relation to the number of samples for Gallery 
Forest.  

 
Figure 4. The influence of objects size in relation to the number of samples of 
Gallery Forest.  
 

 After partitioning process, some segments presented two or more classes, 
which can lead to misclassification (Ferreira et al., 2007, Oliveira et al., 2007 and 
Carvalho et al., 2010). To reduce this problem these elements were removed from the 
dataset. Figure 6 illustrates this procedure of cleaning up. 
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             a            b         c 

Figure 6. Clean up process. a) original map with 3 different classes; b) 
highlighted objects for removal; c) map of samples after cleanup process. 

2.3. Feature Extraction 
Spectral features were obtained from Digital Numbers (DN) of RapidEye (RE) bands. 
The description the spectral features is presented in Table 2. 

Table 2. Spectral Features. 
Feature Description 
Band_1 DN from band 1 (Blue 440 – 510 µm) 
Band_2 DN from band 2 (Green 520 – 590 µm) 
Band_3 DN from band 3 (Red 630 – 685 µm) 
Band_4 DN from band 4 (Red Edge 690 – 730 µm) 
Band_5 DN from band 5 (NIR 760 – 510 µm) 

Brightness (BT) Average of the sum of means for bands 1-5 
Maximum Difference (MD) Maximum of the difference between bands 

NDVI Normalized Difference Vegetation Index 
SLMM_soil SLMM component of soil 

SLMM_shadow SLMM component of shadow 
SLMM_vegetation SLMM component of vegetation 

  
 NDVI and SLMM components (soil, shadow and vegetation) were computed 
according to Tucker (1979) and Shimabukuro & Smith (1991), respectively. Texture 
features were computed from Gray Level Co-occurrence Matrix (GLCM) as shown in 
Table 3. GLCM is a second order histogram in which each entry reports the join 
probability of finding a set of two grey levels at a certain distance and direction from 
each other over some pre-defined window (Haralick et al., 1973). Additionally, some 
texture measures were computed from Gray Level Difference Vector (GLDV), as 
shown in Table 3. GLDV indicates occurrence of the absolute difference between a 
reference pixel and its neighbor. It can be calculated for 4 different directions (0º, 45º, 
90º and 135º). In this study, we used only direction 0º. 
 Texture features were also extracted from image bands, from NDVI, and from 
each SLMM component (soil, shadow and vegetation). Therefore, 9 texture features 
(Table 3) were extracted from five images (vector of bands, NDVI, SLMM), which 
produced a total of 45 features. The features of BT and MD were not used for extracting 
texture. 
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Table 3. Textural features based on (Haralick et al., 1973). Pi,j is the normalized 
co-occurrence matrix, N is the number of rows or columns, σi and σj are 
standard deviation of row i and column j, µi and µj are  means of row i and 
column j, Vk is the normalized gray level difference vector, and k = |i-j|. 

Feature Formula Feature Formula 

GLCM 
Entropy ! "#,%	(− ln "#,%	)

,-.

#,%/0
 GLCM 

Dissimilarity ! "#,%	|2 − 3|
,-.

#,%/0
 

GLDV 
Entropy !45	(− ln 45	)

,-.

5/0
 GLCM 

Homogeneity ! "#,%	
1 +	(2 − 3)8

,-.

#,%/0
 

GLCM 
Contrast ! "#,%	(2 − 3)8

,-.

#,%/0
 GLCM  

Mean 
μ# = ! 2	("#,%)

,-.

#,%/0
 

GLDV 
Contrast !45	(;8)

,-.

5/0
 GLDV 

Mean 
μ# = ! 45	(;)

,-.

#,%/0
 

GLCM 
Correlation ! "#,% <

(1 −	μ#)(1 − μ%)
=(>#)8	(>%)8

?
,-.

#,%/0
 

  

2.4. Classification 
In the classification phase we performed two experiments. In the first experiment, we 
used four datasets in the classification phase, as shown in Table 4. This was the baseline 
to evaluate the classification accuracy gain by including each feature into the datasets 
one at a time. The idea of this experiment is to evaluate classification accuracy for each 
spectral feature and also the spectral texture, which has been pointed out by Carvalho et 
al. (2010) and Peneque-Galvez et al. (2013) as features that improve Cerrado 
classification. In Table 4, Spectral Texture means texture features extracted from 
RapidEye bands only. 

Table 4: Combination of groups of features to evaluate the best subset for 
classification. 

 RE bands, BT, MD NDVI SLMM Spectral Texture 
Dataset 1 X    
Dataset 2 X X   
Dataset 3 X X X  
Dataset 4 X X X X 

 
In the experiment 2, we evaluated all 45 texture features, adding one at a time in each 
one of the datasets 1-3. The idea was to evaluate the improvement or not in the 
classification accuracy for each texture feature. 
 For comparison, we established the same classification algorithm and parameters 
for all tests. We used Random Forest classification algorithm (Breiman, 2001), 
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implemented in Weka software (Hall et al., 2009), and set the number of trees to 100 in 
order to construct each forest. 

2.5. Texture Feature Evaluation 
The experiments were carried out using a 10-fold cross validation. For the validation 
process, we used Global Accuracy, Precision and Recall values to summarize the 
confusion matrix in the experiments: 

 !"#$!	%&&'($&) = *. + *+
,  

 
(1) 

.(-&3.3", = *.
(*. + /.) 

 
(2) 

0-&$!! = *.
(*. + /+) (3) 

in which TP = True Positive, FP = False Positive, TN = True Negative, FN = False 
Negative and n = number of samples. Recall and Precision mean, respectively, 
percentage of instances of one class that are correctly classified and the map accuracy. 
 We proposed a ranking system to evaluate the inclusion of textural features into 
the datasets. It is based on accuracy percentage gain (or loss), Acc, when a certain 
feature is added into the dataset: 

%&& = %&&1
%&&:

 (3) 

in which Acc is the accuracy percentage gain, Acci is the initial accuracy and Accf is the 
accuracy when a texture feature is included in the set of features. 
 Each one of the 45 features were ranked from 1-45, being 1 the feature that 
presented more percentage gain and so on. This was performed for datasets 1-3 and 
segmentation of size equal to 30. A final rank considered the average performance. 
Table 5 shows an example of this ranking for 3 hypothetical features. 

Table 5: Ranking system example for 3 hypothetical features. 

Dataset # 1 2 3 Average rank Final Rank 
Feature 1 Rank 1st 1st 1st 1,00 1st 
Feature 2 Rank 2nd 2nd 3rd 2,33 2nd 
Feature 3 Rank 3rd 3rd 2nd 2,66 3rd 

3. Results 
This section presents results obtained from two experiments mentioned in section 2.4. 

3.1. Experiment 1: spectral texture features analysis  
Figure 7 presents the accuracy classification for all 4 datasets (Table 3) in relation to the 
segmentation parameter s. We observe that for datasets 1, 2 and 3, the classification 
values did not presented meaningful difference. That is, the addition of NDVI and 
SLMM features into the feature set did not improve the classification result. 
Nevertheless, inclusion of spectral texture features (dataset 4) improved the 
classification result, which corroborates with Carvalho et al. (2010) and 
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Peneque-Galvez et al. (2013). Another observation is that the classification for 
segmentation parameter equals to 30 presented better result than the others (Figure 7). 
 In order to better investigate this result, we evaluated Precision and Recall 
values for each class for the classification for the segmentation parameter of 30 
(Table 7). We can observe that Shrubby Savanna (SS) and Shrubby Grassland (SG) 
classes presented the worst classification. Open Grassland (OG) and Wooded Savanna 
(WS) presented better precision values, but not as good as the ones for Gallery Forest 
(GF) class. GF class is the only physiognomy with forest structure and it was expected 
that it would present better classification accuracy than the others. 
 

 
Figure 7: Accuracy values (%) for datasets 1-4 according to the segmentation parameter. 

  
 When spectral texture is added, we noticed an increase in the recall values for all 
classes, except for GF. The SG class presented the highest precision gains when spectral 
texture was added. Oliveira et al. (2007) pointed out that discrimination between OG 
and SG classes is difficult. Costa et al. (2014) even suggested merging both classes to 
decrease classification error. Ferreira et al. (2007) also reported confusion between SG 
and SS classes. However, our results show that the use of spectral texture can improve 
considerably their discrimination. 
 

Table 7. Precision (P) and Recall (R) values for each class from dataset 1 and 4 for the 
segmentation parameter of 30. 

 Open Grassland Shrubby Grassland Shrub Savanna Wooded Savanna Gallery Forest  

 P R P R P R P R P R Accuracy 
Dataset1 0,761 0,829 0,519 0,411 0,620 0,510 0,761 0,827 0,947 0,941 71,43 
Dataset4 0,757 0,866 0,578 0,486 0,666 0,507 0,781 0,842 0,970 0,935 73,82 

 
 3.2. Experiment 2: texture features analyses 
In this part, we analyze the texture potential of improving the classification in relation to 
the 5 cerrado classes and s = 30. As mentioned on section Section 2.4, each of the 45 
texture features were added separately on datasets 1-3. Final rank of the best features is 
presented in Table 8.  
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Table 8. Ranking the 10 best texture features. Vegetation, shadow and soil 
represent the features obtained from SLMM images. 

Feature Name Average Rank Final Rank 
GLCM  Entropy vegetation  1,3 1st 
GLCM  Entropy NDVI  2,3 2nd 
GLCM  Entropy shadow 2,6 3rd 
GLCM  Entropy soil 4,6 4th 
GLDV Entropy spectral  9,6 5th 
GLCM Contrast shadow  10,0 6th 
GLCM Contrast spectral  11,0 

7th 
 

GLDV Contrast shadow  11,0 
GLCM Dissimilarity spectral  11,0 
GLCM Corre shadow  11,6 10th 

 Considering SLMM components and NDVI, the best ranks were achieved by 
'GLCM Entropy' features. Homogeneous objects have high entropy values while 
heterogeneous ones have low entropy. In Cerrado, tree density and canopy formation 
are responsible for making an object more or less homogeneous. 
 Figure 8 shows the mean values for the “GLCM Entropy vegetation” for the five 
Cerrado physiognomies. It shows us that, SG and SS classes presented the lowest mean 
values for 'GLCM Entropy vegetation'. Although SG does not have continuous canopy 
it presents bushes more frequently when compared to OG. This makes SG less 
homogeneous than OG and, therefore, producing lower entropy vegetation than OG. 
Regarding to SS class, Ribeiro and Walter (2008) stated that there is a canopy 
formation, however it is much sparser and with a lower tree cover percentage than the 
WS class. These vegetation patterns were captured by features such as “GLCM Entropy 
vegetation” and “GLCM Entropy NDVI”, which achieved the best rankings (1st and 
2nd, respectively). 

 
Figure 8: GLCM Entropy vegetation mean values for Cerrado physiognomies 
(adapted from Schwieder et al., 2016). 
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 Table 10 presents Recall and Precision values when “GLCM Entropy 
vegetation”, first feature in the ranking, was added to dataset 3. We noticed a slightly 
classification improvement for all classes, except for GF Precision. The SG and OG 
classes presented a little increase in the Recall values. The use of features such as 
‘GLCM Entropy vegetation’ and ‘GLCM Entropy NDVI’ improved the discrimination 
of both classes, as can be noticed in Recall values. We also observed a little 
improvement of Recall values for SS class.  

 
Table 10. Precision (P) and Recall (R) for each class with addition of textural 
entropy.  

 Open Grassland Shrubby Grassland Shrub Savanna Wooded Savanna Gallery Forest 

 P R P R P P R P R P 
Dataset3 0,760 0,824 0,516 0,450 0,611 0,504 0,763 0,824 0,958 0,941 

+ GLCM Entropy vegetation 0,782 0,864 0,567 0,488 0,649 0,529 0,791 0,846 0,936 0,953 

  
 Figure 9 shows an example of how important is to correctly choose the best 
features to improve the classification accuracy. GLCM Entropy features were much 
more consistent than the others in all classifications, obtaining always the best ranking. 
Using some texture features may not really improve the classification results as 
mentioned by Peneque-Galvez et al. (2013). 

 
Figure 9. Influence of some features in the final classification accuracy. Feature ranked 
as 1st is “GLCM Entropy vegetation”, 22th is “GLDV Contras NDVI” and  45th is “GLCM 

Mean spectral”. 

4. Conclusion 
 In this study, we presented the assessment of texture features (spectral, NDVI 
and SLMM) to improve the discrimination of Cerrado physiognomies. Considering only 
spectral features, the initial accuracy was about 71.3%. The spectral texture improved 
the classification accuracy to 73.8%. Spectral texture was responsible for reducing the 
misclassification between grassland physiognomies (Open Grassland and Shrubby 
Grassland). However, the texture based on GLCM entropy extracted from NDVI and 
SLMM components, especially vegetation, improved even more the classification 
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accuracy reaching 74.3%. They not only reduced the confusion between grassland 
physiognomies mentioned before but also increased the discrimination of Shrubby 
Grassland and Shrubby Savanna. Gallery Forests had high accuracy on all cases. As 
future works, we suggest using temporal data analysis and combining spectral texture 
with NDVI and SLMM textures. 
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