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Abstract. We investigated a method for noise removal on Landsat-8 OLI time-

series using CBERS-4 MUX data to improve crop classification. An algorithm 

was built to look to the nearest MUX image for each Landsat image, based on 

user defined time span. The algorithm checks for cloud contaminated pixels on 

the Landsat time series using Fmask and replaces them with CBERS-4 MUX 

to build the integrated time series (Landsat-8 OLI+CBERS-4 MUX). 

Phenological features were extracted from the time series samples for each 

method (EVI and NDVI original time series and multi-sensor time series, with 

and without filtering) and subjected to data mining using Random Forest 

classification. In general, we observed a slight increase in the classification 

accuracy when using the proposed method. The best result was observed with 

the EVI integrated filtered time series (78%), followed by the filtered Landsat 

EVI time series (76%). 

 

1. Introduction 
Given the large availability of arable land, and the growing demand for food in the 

world, Brazil has been consolidated as a big player on the global agricultural scene. 

Remote sensing is an important tool used within agriculture, regarding its ability to 

generate information on a large scale in a cost-effective way. In this way, agricultural 

mapping has become strategic enabling to provide better understanding of the 

distribution of croplands, and its impact on the environment. With advances in data 

processing and storage technologies as well as the availability of consistent and 

continuous long-term image series, remote sensing is undergoing a paradigm shift. Time 

series techniques stand out for allowing seasonal variation accounts of the analyzed 

target. Although the use of time series for cropland classification has been well explored 

using MODIS data (Sakamoto et al., 2005; Arvor et al., 2011; Körting, 2012; Risso et 

al., 2012; Borges & Sano, 2014; Neves et al., 2016), there is still a demand for more 

detailed maps, which are made possible from time series with finer spatial resolutions, 

such as Landsat-like images (Zheng et al., 2015; Peña et al., 2015; Pan et al., 2015; 

Bendini et al., 2016). As the temporal resolution of Landsat-like satellites it is still low 

(16 days, generally), an open question in the scientific literature is about how to deal 
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with the noise in the time series. The noise is characterized by negative outliers, which 

are possibly a result of factors such as cloud cover, cloud shadow contamination and 

atmospheric scattering. To deal with this, there are some approaches which include 

cloud and cloud shadow flags generated from the Automated Cloud Cover Assessment 

(ACCA) algorithm (Irish et al., 2006) and Fmask algorithm (Zhu & Woodcock, 2012). 

However, both ACCA and Fmask sometimes fail to detect thin clouds i.e. cirrus and the 

edges of cumulus clouds (Lymburner et al., 2016) and thus sometimes can be followed 

by methods based on the use of thresholds (Hamunyela et al., 2013; Bendini et al., 

2016; Lymburner et al., 2016) or on the use of smoothers (Pan et al., 2015). There is 

also the possibility to take advantage of multi-sensor data, considering the large amount 

of available remote sensing data. In a previous investigation, we show the potential use 

of higher temporal resolution Landsat-like images for crop mapping (Bendini et al., 

2016). Recently the China Brazil Earth Resources Satellite (CBERS) program launched 

the CBERS-4 that carries in the payload module, among others, the Multispectral 

Camera (MUX). In this study, we investigated a method for noise removal on Landsat-8 

OLI time-series using CBERS-4 MUX data to improve a crop classification method 

based on phenological features. 
 

2. Materials and Methods 

2.1. Study area 
The study area is situated in Sao Paulo state (southeast of Brazil), in a region located 

into the Cerrado biome (Figure 1). As the focus is on croplands, we selected a region of 

interest where main land cover is agriculture, silviculture and pasture. In this region, 

farmers grow a variety of crops throughout the year. Major field crops in this area are 

sugarcane, corn, bean, potato, soybean, sugar beet and onions. There is also production 

of mango, avocado and eucalyptus. Farmers grow crops in double cropping systems and 

even in triple cropping systems, mainly within the irrigated areas. The usual planting for 

summer crops occurs from October to December and harvesting from February to April. 

We also observed the planting of crops in late fall (May – July) and harvesting in the 

next spring, especially within the irrigated areas. 

2.2. Remote Sensing Data 

A total of 23 scenes of Landsat-8 OLI (WRS 2 – Worldwide Reference System2, 

Path/Row 219/75) between August 2015 and August 2016 were processed to Level 1 

Terrain Corrected (L1T). These were corrected for atmospheric conditions to identify 

and mask cloud and cloud shadows by the USGS EROS Science Processing 

Architecture (ESPA) (DeVries et al. 2015; DeVries et al. 2015a). Landsat-8 data were 

corrected using L8SR, a newly developed algorithm that takes advantage of some of 

Landsat-8's new sensor characteristics (U.S. Geological Survey, 2015; Vermote, 2016). 

Cloud (pixel value 4), cloud shadow (pixel value 2), snow (pixel value 3), water (pixel 

value 1) and clear (pixel value 0) masks were provided for Landsat-8 data using 

Cfmask, a C implementation of the Fmask algorithm (Zhu & Woodcock, 2012; Zhu, 

Wang, & Woodcock, 2015). The CBERS 4 MUX imagery has been provided by the 

National Institute for Space Research (INPE). 
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Figure 1. Location of the study area in Sao Paulo state, Brazil. 

 

A total of 11 scenes of CBERS-4 MUX (CBERS WRS Path/Row 155/124) were 

acquired in the same period (August 2015 and August 2016). They were radiometric 

and geometrically corrected, adjusted and refined by using control points and the SRTM 

30mv. 2.1 digital elevation model (DEM) (Level 4) and corrected for atmospheric 

conditions using the 6S model (Second Simulation of a Satellite Signal in the Solar 

Spectrum) (Vermote et al. 1997). Table 1 shows the availability of images from August 

2015 to August 2016. 

 

Table 1. Availability of Landsat-8 (Path/Row 219/75) and CBERS-4 (Path/Row 
155/124) imagery from August 2015 to August 2016. 

Month/Year Sensor Acquisition dates (day of year) 
Number of 

scenes 

Aug - Dec/2015 
OLI 

218, 234, 250, 266, 282, 298, 314, 330, 

346, 362 
10 

MUX 215, 241, 267, 345 4 

Jan - Aug/2016 
OLI 

13, 29, 45, 61, 77, 93, 109, 125, 141, 

157, 173, 189, 205, 237 
14 

MUX 32, 110, 162, 188, 240 5 

 

For the MUX imagery, we visually assessed the cloud cover for the region of interest 

for this study. The spectral band specifications for Landsat-8 OLI and CBERS-4 MUX 

can be seen on Table 2. 
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Table 2. Spectral band specifications for Landsat-8 OLI and CBERS-4 MUX. 

Band Landsat-8 OLI (µm) CBERS 4 MUX (µm) 

Blue Band 2: 0.45 - 0.51 Band 5: 0.45 - 0.52 

Green Band 3: 0.53 - 0.59 Band 6 0.52 - 0.59 

Red Band 4: 0.64 - 0.67 Band 7: 0.63 - 0.69 

Near Infrared (NIR) Band 5: 0.85 - 0.88 Band 8: 0.77 - 0.89 

 

The greatest difference in spectral bandwidths between the two sensors are on the NIR 

band, but there are also significant differences in spectral response function (SRF) 

profiles between corresponding CBERS-4MUX and Landsat-8 OLI spectral bands 

(Pinto et al., 2016). 

2.3. Correlations Analysis between Landsat-8 OLI and CBERS-4 MUX 

First we selected a pair of MUX and OLI images, considering the time proximity 

between them. The characteristics of the two images are shown in Table 3. 

 
Table 3. Characteristics of the pair of MUX and OLI images used for correlation analysis. 

Satellite/Sensor Date 

Acquisition 

Time 

(UTC) 

Path/Row 
Sun 

elevation 

Sun 

azimuth 

Look 

Angle 

CBERS-4 MUX 
04 August 

2015 
13:26:11 155/124 43.37° 36.05° NADIR 

Landsat-8 OLI 
06 August 

2015 
13:03:18 219/75 40.61° 41.58° NADIR 

 

Considering the difference of spatial resolution between the images (30 meters for OLI 

and 20 meters for MUX), we resampled the MUX images to 30 meters, using a nearest 

neighbor approach. To deal with cloud contamination problems, we used the Fmask 

image to crop a free cloud region on both OLI and MUX surface reflectance images 

(Figure 2). 

 
(a)                                                                                    (b) 

Figure 2. Cropped images used on the correlation analysis. (a) Landsat-8 OLI EVI (06 
August 2015) and (b) CBERS-4 MUX EVI (August 4

th
, 2015).                                          

 

We analyzed the correlations between the cropped images, for each selected vegetation 

index (EVI and NDVI). In order to determine an equation to predict OLI reflectance 

from MUX reflectance, linear regressions were constructed.  
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2.4. Building the multi-sensor time series 

An algorithm was built to look to the nearest MUX image for each Landsat image, 

based on a user defined time span. Here, we used the time span of 8 days. Figure 3 

shows a general scheme of the proposed method.  

 

 
Figure 3. General scheme of the methodology used to build the integrated time series. 
On the left, a time series of EVI (the red line is the predicted time series using the 
equation to predict OLI reflectance from MUX and the blue line is the original Landsat 
time series); on the right is the integrated time series, with marks to illustrate the 
positions where the replacement has occurred. 

 

After detecting the nearest MUX images for each Landsat images, the algorithm checks 

for cloud and cloud shadow contaminated pixels on the Landsat time series, by a 

conditional expression using Fmask images. When a contaminated pixel is detected in 

the time series, it is replaced by a value calculated from the equation to predict OLI 

reflectance from MUX, if it is within the time window. 

 

2.5. Filtering the time series 

We also applied a combined filtering approach for noise removal on the Landsat time 

series in order to access the improvement of the classification results compared to the 

integrated time series. The approach was put forth by interpolating the noise values with 

the average between the nearest neighbors in time, considering the Fmask quality data 

(Equation 1) and negative outliers based on a threshold as recommended by Hamunyela 

et al. (2013) (Equation 2).  

 

   
         

 
                            (1) 
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                                          (2) 

where    is an observation of the time series at time t,      is the observation in the time 

series at time t-1, and     is the observation at time t+1. Observation    is replaced as 

an outlier with the average of      and      if the difference between    and     is less 

than -1% of     , and the difference between    and      is less than -1% of     . This 

method, however, is not capable of removing consecutive outliers. Figure 4 shows an 

example of how local outliers were removed from the NDVI and EVI time series. 

 

 
 

Figure 4. Example of how local outliers were removed from the NDVI time series. The 
cyan lines are the positions where cloud and cloud shadow were detected by Fmask. The 
black line is the integrated time series and the green line is the filtered integrated time 
series using Equation 2. 

 

2.5. Extracting phenological features for classification 
We selected 100 well-known polygon samples in the study area, considering the classes 

of annual agriculture (potato, corn, sugar beet, onion, bean and soybean), perennial 

agriculture (avocado and mango), semi-perennial agriculture (sugarcane), grassland and 

native forest.  

We extracted NDVI and EVI time series of pixels from each sample polygon in the 

study area. Phenological metrics in time series were obtained by the TIMESAT v3.2 

software (Jönsson; Eklundh, 2004), where seasonal data are extracted for each of the 

growing seasons of the central year (Figure 5). During a period of n years there may be 

n – 1 full seasons together with two fractions of a season in the beginning and end of the 

time series. So, to extract seasonality parameters from one year of data, the time series 

has been duplicated to span three years, as recommended by Jönsson and Eklundh 

(2015). For the phenological metrics extraction, the time series was smoothed 

considering the double logistic filter (Zhang et al., 2003; Jönsson; Eklundh, 2004). This 

function is recommended for smoothing image time series on cropland areas in the 

Brazilian Cerrado (Borges & Sano, 2014). 
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Figure 5 illustrates the schema of the seasonality parameters generated by TIMESAT. In 

this study, we assume that the seasonality parameters are the same of the phenological 

metrics. The time for the beginning of season (a), or start of the season (sos), and the 

end of season (eos) (b) is the time for which the left and right edge, respectively, has 

increased to a defined level (often a certain fraction of the seasonal amplitude) 

measured from the minimum level on the corresponding side. The length of the season 

(c) is the time from the start to the end of the season. Base value (d) is given as the 

average of the left and right minimum values. The middle of season (e) is computed as 

the mean value of the times for which, respectively, the left edge has increased to the 80 

% level and the right edge has decreased to the 80 % level. 

 

 

Figure 5. Some of the seasonality parameters generated by TIMESAT: (a) beginning of 
season, (b) end of season, (c) length of season, (d) base value, (e) time of middle of 
season, (f) maximum value, (g) amplitude, (h) small integrated value, (h+i) large 
integrated value. The red and blue lines represent the filtered and the original data, 
respectively. 

 

The maximum value (f), or the peak of the phenological cycle, is the largest data value 

for the fitted function during the season. The seasonal amplitude (g) is the difference 

between the maximum value and the base level. The left derivative is calculated as the 

ratio of the difference between the left 20% and 80% levels and the corresponding time 

difference. The right derivative (i.e. the rate of decrease at the end of the season) is the 

absolute value of the ratio of the difference between the right 20% and 80% levels and 

the corresponding time difference. The rate of decrease is thus given as a positive 

quantity. Large seasonal integral (h+i) is integral of the function describing the season 

from start to end. The small seasonal integral (h) is the integral of the difference 

between the function describing the season and the base level from start to end of the 

season (Jönsson and Eklundh, 2015). For more details see Jönsson and Eklundh (2002; 

2004). 

We subject the phenological metrics obtained on TIMESAT to data mining using the 

Random Forest (RF) algorithm (Breiman, 2001) considering each method:1) Original 

Landsat EVI time series; 2) Filtered Landsat EVI time series; 3) Integrated EVI time 

series; 4) Filtered Integrated EVI time series; 5) Original Landsat NDVI time series, 6) 

Filtered Landsat NDVI time series, 7) Integrated NDVI time series and 8) Filtered 
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Integrated NDVI time series. This RF algorithm is a classification technique in which 

the data set is randomly divided into several subsets of smaller size by means of 

applying bootstrap, and from each subset a decision tree is developed. All trees 

contribute to the classification of the object under study, by voting on which class the 

target attribute must belong. Random Forest algorithm has been widely used in remote 

sensing (Müller et al, 2015; Peña et al, 2015) because of its advantages in efficiently 

handling large databases, providing estimates on the most relevant variables, and  

allowing the identification of outliers (Rodriguez-Galiano et al., 2012). There were a 

total of 31 training pixels for the annual agriculture classes, 15 pixels for perennial 

agriculture class, 26 pixels for semi-perennial agriculture, 14 pixels for grassland class 

and 14 pixels for native forest. The results were evaluated by the confusion matrix 

index, global accuracy (Witten; Frank; Hall, 2011). The models were executed 

considering a 10-fold cross validation method. The classification results were obtained 

using the software package WEKA (Hall et al., 2009). 

 

3. Results and Discussion 
 

The results of the correlation analysis between the cropped images are shown in Figure 

6, for each selected vegetation index: a) EVI and b) NDVI.  

 

 
                                  (a)                                                                      (b) 
Figure 6. Scatterplot of the pair of cropped images used to determine the linear 
regressions equations to predict OLI reflectance from MUX reflectance. (a) EVI and (b) 
NDVI. 

 

The linear regressions equations to predict OLI reflectance from MUX reflectance are 

also shown. The regression coefficients for EVI and NDVI are respectively 0.8573 and 

0.7733. Figure 7 shows the results of different approaches for noise removal on an EVI 

time series. 
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Figure 7. Results of different approaches for noise removal on an EVI time series. On the 
left the black line is the original Landsat-8 time series, the blue line is the integrated time 
series and the black thin line is filtered integrated time series. On the right, the blue line 
is the filtered integrated and the black line is the Landsat-8 filtered time series. 

 

As we can see in Figure 7, the integrated time series can deal with noise, replacing 

cloud and cloud shadow contaminated pixels withclear pixels of MUX images, and 

allowing  improvement of the time series according to the phenological behavior of the 

vegetation, which is significant regarding the capability of TIMESAT on extracting the 

features. We found that concerning the 100 analysed pixels time series, an average of 

11.96% of cloud and cloud shadow contaminated observations were replaced using 

CBERS-4MUX images. 

A 10 fold cross-validation technique was applied within the different training sets 

(Original Landsat EVI time series; Filtered Landsat EVI time series; Integrated EVI 

time series; Filtered Integrated EVI time series; Original Landsat NDVI time series, 

Filtered Landsat NDVI time series, Integrated NDVI time series and Filtered Integrated 

NDVI time series). The accuracy of the different data set classifications are presented in 

Table 4. 

Table 4. Accuracy of classification for the different data set classifications. 

Time series Data sets NDVI EVI 

Integrated 68% 73% 

Filtered Integrated 64% 78% 

Filtered Landsat 70% 76% 

Original Landsat 60% 70% 

 

We found that concerning the NDVI time series, the multi-sensor approach accuracy 

was 64% when combined with the filtering approach (Equation 2), against 68% without 

the filtering step. When using only Landsat-8 data, the accuracy was 60%. But when 

combining the filtering approaches of Equation 1 and 2, the accuracy of the 

classification results with Landsat-8 time series was 70%. 
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The results using the EVI time series showed that when the multi-sensor approach was 

used, the accuracy was higher than when using the original Landsat-8 time series 

(respectively, 73% and 70%), as well as when combined to the filtering approaches. The 

classification accuracy using the filtered integrated time series was better than using the 

Landsat-8 time series (respectively, 78% and 76%). The best result was observed with 

the filtered integrated EVI time series. 

 

We can derive a hypothesis by that which was observed by Holden et al. (2016), 

whereby the effect of combining data from the two sensors (L7 ETM+ and L8 OLI), 

once L7 ETM+ has the same spectral bandwidths of CBERS-4 MUX. NDVI relies on 

the contrasting relationship between the near infrared band and the red band. They 

observed that there is a strong and consistent positive bias in NDVI, with Landsat-8 

having much higher NDVI. The EVI differs from NDVI by utilizing the blue band as an 

additional normalizing factor that corrects the red band for atmospheric influences. It 

appears that the bias in the blue band between Landsat-8 and Landsat-7 nullifies the bias 

in the red and near infrared band, resulting in a similar EVI across sensors (Holden et 

al., 2016).This is probably the reason explaining why the results with EVI, when using 

the integrated time series are better. We can see that small differences on the time series 

values leads to changes in the results of the smoothers improved by TIMESAT. 

Furthermore, differences on the extracted parameters can modify the results of 

classification. As the MUX NDVI values tend to be higher, it modifies the amplitude of 

the signal, resulting in significant changes on the smooth time series. We can also see in 

Figure 6 that the regression coefficient between the Landsat NDVI and MUX NDVI are 

significantly lower than in respect EVI. As observed by Pinto et al. (2016), the greatest 

difference in spectral bandwidths between the sensors are on the NIR band, but there are 

also significant differences in SRF profiles between corresponding CBERS-4MUX and 

Landsat-8 OLI spectral bands (Pinto et al., 2016). 

 

Thus, we can suggest that normalizing the SRF between the sensors would improve the 

results. We can also infer that the different methods of atmospheric correction may be 

affecting the results; as well problems of misregistration between the images and 

resampling can also be a source of errors. More studies are needed to better comprehend 

the effects of the different filtering approaches, as well to understanding these effects on 

the smooth improved by TIMESAT with double logistic functions. It is also suggested 

to test the other smooth approaches implemented by TIMESAT as the Asymmetric 

Gaussian functions and Savitzky-Golay.  
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