CONSTRUÇÃO DE SUPERFÍCIE DE ENERGIA POTENCIAL DE ESPÉCIES DIATÔMICAS DE INTERESSE AMBIENTAL, ATMOSFÉRICO E ASTROFÍSICO

Vanderson Samuel dos Santos¹ (UNIVAP, Bolsista PIBIC/CNPq)
Patrícia R. P. Barreto² (LAP/INPE, Orientadora)

RESUMO

Este trabalho, tem como objetivo o estudo de propriedades espectroscópicas de moléculas diatômicas de interesse ambiental, astrofísico e atmosférico, via construção de superfícies de energia potencial. Foram utilizados dois códigos de estrutura eletrônica sendo eles; MOLPRO e GAUSSIAN, para o cálculo dos pontos ab initio, utilizando o método CCSD(T) e três diferentes conjuntos de bases, aug-cc-pVDZ, augcc-pVTZ, e aug-cc-pVQZ. Os pontos ab initio, são ajustados utilizando duas formas funcionais diferentes, Rydberg Generalizada de quinto grau e a forma funcional do Pirani, também conhecida como Improved Lennard Jones. Utilizando a técnica Dunham, é possível determinar de dezoito diferentes propriedades espectroscópicas, as quais são comparadas com a referência, quando possível. Foram selecionadas dezesseis espécies químicas do meio interestelar para o estudo, entre elas, espécies neutra e carregada, sendo: CH, CH⁺, CN, CO, CO⁺, CS, H₂, HF, NH, NO, NS, OH, OH⁺, SiO, SO, SO⁺. As propriedades espectroscópicas principais analisadas foram: energia de dissociação (D_e), energia de equilíbrio (R_{eq}), frequência harmônica (ω_e), e dados anarmônicos, tais como $\omega_e x_e$, $\omega_e y_e$, $\omega_e z_e$, α_e , β_e , γ_e , entre outros. Além da precisão química, em relação a base, também foram comparados os tempos computacionais e facilidade de uso dos códigos.

¹ Aluno do Curso de Engenharia Química - E-mail: vanderson_samuel@hotmail.com ²Pesquisador da Divisão de Física de Plasma - E-mail: patricia.barreto@inpe.br