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ABSTRACT

Studies that investigate and evaluate the quality, limitations and uncertainties of
satellite rainfall estimates are fundamental to assure the correct and successful use
of these products in applications, such as climate studies, hydrological modeling
and natural hazard monitoring. Over regions of the globe that lack in situ obser-
vations, such studies are only possible through intensive field measurement cam-
paigns, which provide a range of high quality ground measurements, e.g., CHUVA
(Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to
cloud resolVing modeling and to the GlobAl Precipitation Measurement) and GoA-
mazon (Observations and Modeling of the Green Ocean Amazon) over the Brazil-
ian Amazon during 2014/2015. This study aims to assess the uncertainty of the
Global Precipitation Measurement (GPM) satellite constellation in representing the
main characteristics of precipitation over different regions of Brazil. The Integrated
Multi-satellitE Retrievals for GPM (IMERG) (level-3) and the Goddard Profiling
Algorithm (GPROF) (level-2) algorithms are evaluated against ground-based radar
observations, specifically, the S-band weather radar from the Amazon Protection Na-
tional System (SIPAM) and the X-band dual polarization weather radar (X-band
CHUVA radar) as references. The space-based rainfall estimates, based on active
microwave (e.g., TRMM-PR and GPM-DPR [at Ku-band] radars) are also used as
references. The results for the CHUVA-Vale campaign suggest that GPROF has
relatively good agreement (spatial distribution and accumulated rainfall), especially
for convective rain cases, due the significant presence of ice scattering. However,
the intensity and volume of light/moderate rains is overestimated and performance
related to light/heavy rains (underestimated) are intrinsically linked to convective-
stratiform rainfall occurrences over the study region. For the study over the Central
Amazon Region (CHUVA-GoAmazon), results showed that during the wet season,
IMERG, which uses the GPROF2014 rainfall retrieval from the GPM Microwave
Imager (GMI) sensor, significantly overestimates the frequency of heavy rainfall
volumes at around 00:00–04:00 UTC and 15:00–18:00 UTC. This overestimation is
particularly evident over the Negro, Solimões and Amazon rivers due to the poorly-
calibrated algorithm over water surfaces. On the other hand, during the dry season,
the IMERG product underestimates mean precipitation in comparison to the S-band
SIPAM radar, mainly due to the fact that isolated convective rain cells in the af-
ternoon are not detected by the satellite precipitation algorithm. The study based
on verification of GPM level 2 by traditional and object-based analysis shows that
although volume and occurrence of heavy rainfall are underestimated, a good agree-
ment of GPROF2014 for TMI and GMI versus TRMM PR and GPM DPR (Ku
band) rainfall retrievals, respectively, was noted. Such most evident good perfor-
mances were found through continuous and categorical analyses, especially during
the wet season, where the number of objects and larger areas were observed. The
larger object area seen by GPROF2014(GMI) compared to DPR (Ku band) was
directly linked to the structure of vertical profiles of the precipitanting systems and
the presence of bright band was the main source of uncertainty on the estimation
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of precipitation area and intensity. The results via error modeling, through the Pre-
cipitation Uncertainties for Satellite Hydrology (PUSH) framework, demonstrated
that the PUSH model was suitable for characterizing the error from the IMERG
algorithm when applied to S-band SIPAM radar estimates. PUSH could efficiently
predict the error distribution in terms of spatial and intensity distributions. How-
ever, an underestimation (overestimation) of light satellite rain rates was observed
during the dry (wet) period, mainly over the river. Although the estimated error
showed a lower standard deviation than the observed error, they exhibited good
correlations to other, especially in capturing the systematic error along the Negro,
Solimões and Amazon rivers, especially during the wet season.

Keywords: Satellite Rainfall Estimation. Error Modeling. Uncertainty Quantifica-
tion. Radar Rainfall Estimation. Validation.
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CARACTERÍSTICAS E MODELAGEM DE ERRO NAS
ESTIMATIVAS DE PRECIPITAÇÃO DO SATÉLITE GPM
DURANTE AS CAMPANHAS DO CHUVA NO BRASIL

RESUMO

Estudos que investigam e avaliam a qualidade, limitações e incertezas das estima-
tivas de precipitação de satélites são fundamentais para assegurar o uso correto e
bem-sucedido desses produtos em aplicações, como estudos climáticos, modelagem
hidrológica e monitoramento de desastres naturais. Em regiões do globo que não
possuem observações in situ, esses estudos apenas são possíveis através de cam-
panhas intensivas de medição de campo, que oferecem uma gama de medições de
superfície de alta qualidade, por exemplo, CHUVA (Cloudprocesses of tHe main
precipitation systems in Brazil: A contribUtion to cloud re-solVing modeling and
to the GlobAl Precipitation Measurement) e GoAmazon (Observations and Model-
ing of the Green Ocean Amazon) sobre a Amazônia Brasileira durante 2014/2015.
Este estudo tem como objetivo avaliar as incertezas provenientes da constelação
de satélites do Global Precipitation Measurement (GPM) em representar as prin-
cipais características da precipitação em diferentes regiões do Brasil. Os algorit-
mos Integrated Multi-satellitE Retrievals for GPM (IMERG) (level-3) e Goddard
Profiling Algorithm (GPROF) (level-2) são avaliados em contraste as observações
de radares meteorológicos, especificamente, do Sistema Nacional de Proteção da
Amazônia (SIPAM) e o radar meteorológico banda X de dupla polarização (X-band
CHUVA radar) como referência. As estimativas de precipitação, baseadas em radares
de microondas ativos (por exemplo, radares TRMM-PR e GPM-DPR [na banda Ku])
também são utilizadas como referência. Os resultados da campanha CHUVA-Vale
sugerem que o GPROF possui uma boa concordância (distribuição espacial e precip-
itação acumulada), especialmente para casos de chuva convectiva, devido à presença
significativa de espalhamento por gelo. No entanto, a intensidade e volume de chu-
vas leves/moderadas é superestimada e um desempenho (subestimado) relacionado
às chuvas fracas/intensas diretamente ligado às ocorrências de chuvas convectivas-
estratiformes na região do estudo. Para o estudo da região da Amazônia Central
(CHUVA-GoAmazon), os resultados mostraram que, durante a estação chuvosa, o
IMERG, que utiliza as estimativas de precipitação do GPROF2014 a partir do sensor
GPM Microwave Imager (GMI), superestima significativamente a freqüência de chu-
vas intensas em torno de 00:00-04:00 UTC e 15:00-18:00 UTC. Essa superestimativa
é particularmente evidente nos rios Negro, Solimões e Amazonas devido ao algo-
ritmo apresentasse erroneamente calibrado sobre as superfícies de água. Por outro
lado, durante a estação seca, o produto IMERG subestima a precipitação média em
comparação com o radar banda-s do SIPAM, principalmente devido ao fato de que
células convectivas isoladas à tarde não são detectadas por tal algoritmo. O estudo
baseado na verificação das estimativas do GPM Level 2 por abordagens tradicional
e baseada em objeto mostra que, embora a subestimiativa do volume e ocorrência
de chuvas intensas, foi observada uma boa concordância do GPROF2014 (TMI e
GMI) versus TRMM PR e GPM DPR (Ku band), Respectivamente. Tais evidentes
melhores desempenhos foram encontrados através de análises contínua e categórica,
especialmente durante a estação chuvosa, onde o maior número e maiores áreas de
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objetos foram observados. As maiores áreas, observadas pelo GPROF2014 (GMI)
comparada ao DPR (banda Ku) esteve diretamente ligada à estrutura de perfis ver-
ticais dos sistemas de precipitantes e a presença de banda brilhante foi a principal
fonte de incerteza na estimativa da área e intensidade de precipitação. Os resultados
referentes à modelagem do erro, através da ferramenta Precipitation Uncertainties
for Satellite Hydrology (PUSH), as análises demonstraram que o modelo PUSH foi
adequado para caracterizar o erro do algoritmo IMERG quando aplicado às estima-
tivas de radar banda S do SIPAM. O modelo PUSH pôde prever eficientemente a
distribuição de erro em termos espaciais e de intensidade. No entanto, observou-se
uma subestimativa (superestimativa) das taxas de chuva fracas do satélite durante
o período seco (chuvoso), especialmente ao longo do rio. Embora o erro estimado
tenha apresentado menor desvio padrão do que o erro observado, eles apresentaram
boas correlações entre si, especialmente na captura do erro sistemático ao longo dos
rios Negro, Solimões e Amazonas, especialmente durante a estação chuvosa.

Palavras-chave: Estimativa de Precipitação por Satélite. Modelagem de Erro. Quan-
tifição de Incertezas. Estimativa de Precipitação por Radar. Validação.
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1 INTRODUCTION

1.1 Introduction and context

The forecast and quantification of rain with the highest possible accuracy, especially
for severe weather situations, over various temporal and spatial scales, are extremely
important to society because they are directly linked to the economy through agricul-
ture, natural resources, transportation, and the prediction and detection of natural
disaster occurrences. However, it is known that precipitation varies both spatially
and temporally, as well as in its intensities, thus making its accurate measurement
difficult to perform with only the use of rain gauges, which provide point surface
measurements, in many cases providing only daily records, and depending on the re-
gion, may present low density (for example over the Amazon, mountainous regions,
ocean and others).

In this context, the remote sensing of precipitation has played a fundamental role in
the improvement and complementarity of spatial and temporal characteristics. Tech-
nologically sophisticated instruments, located on the surface (such as radars [e.g.,
single and double polarizations]) and on-board orbital platforms (such as active and
passive microwave sensors) have been expanding our temporal-spatial vision, pro-
viding detailed information on both precipitation and microphysical characteristics
across the distinct regions of the globe.

Satellite rainfall estimates have been widely used for various purposes (e.g., real-
time weather monitoring and forecasting, hydrological modeling and climate studies,
among others). The quality of satellite rainfall products has improved significantly
in recent decades, especially with the advent of satellites/missions such as the Trop-
ical Rainfall Measuring Mission (TRMM) (KUMMEROW et al., 1998) and the Global
Precipitation Measurement (GPM) (HOU et al., 2014), as reported by Levizzani et al.
(2007). However, such algorithms require validation studies using observational rain-
fall data, preferably at high spatial-temporal resolution. In this context, the Program
to Evaluate High Resolution Precipitation Products (PEHRPP), established within
the International Precipitation Working Group (IPWG) (IPWG, 2017), was a col-
laborative effort to evaluate, intercompare and validate the several high-resolution
precipitation algorithms (level-2 and level-3) currently available and operational,
e.g., Ebert (2007), Turk F.J. (2008), Sapiano e Arkin (2009), Di Paola et al. (2012),
Casella et al. (2012) and Mugnai et al. (2013a).

Analogous to this, various efforts to quantify the error characteristics and uncertain-
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ties of satellite based precipitation estimation have emerged, for example, through
the GPM field measurement campaigns in distinct regions of the globe. The CHUVA
project (Cloud processes of tHe main precipitation systems in Brazil: The contribu-
tion to cloud resolving modeling and to the GPM [Global Precipitation Measure-
ment]) is a research project that aims to study clouds and precipitation processes
through six field experiments in different precipitation regimes in Brazil. One of
the major goals of the CHUVA project is to evaluate and improve the quality of
satellite-based precipitation estimates of the GPM constellation (MACHADO et al.,
2014).

In general, validation studies have focused on the evaluation of the performance of
certain products of satellite precipitation estimates, in general based on infrared (IR)
or microwave observations and their combinations (MUGNAI et al., 2013b). Typically
the comparisons are made using rain gauges (e.g., Vila et al. (2009) and Puca et al.
(2014)). However, studies using other data sources have been widely used, e.g., active
microwaves (AONASHI et al., 2009), dual polarization weather radars (e.g., Liao et
al. (2001), Chandrasekar et al. (2008), Cimini et al. (2013), disdrometers (MORALES

et al., 2013), among others. Extensive information on actual, ongoing and future
activities/plans regarding precipitation measurement (observational, modeling and
from satellites) and its performance and applications are given by Michaelides et
al. (2009), Levizzani et al. (2007), Kidd e Levizzani (2011), Tapiador et al. (2011)
and Kucera et al. (2013). Applications, as well as pros and cons, of various verifica-
tion techniques and point to point (pixel-based) validation through traditional and
spatial (e.g., object-oriented approaches) techniques are shown in Ebert (2007).

1.2 Problem description, motivation and scientific questions

Satellite rainfall estimation (microwave, infrared, hybrid, etc.) has been widely used
in Brazil for various purposes, e.g. for monitoring natural disasters, hydrological
purposes and climatic applications. Although the quality of satellite rainfall esti-
mate products has improved significantly in recent decades, such algorithms require
careful validation studies, which aim to provide information about their qualities,
limitations and associated uncertainties.

The uncertainties in satellite rainfall estimates arise from different factors, including
the sensor itself, retrieval error, and spatial and temporal sampling, among others
(HONG et al., 2006; TANG et al., 2015). However, the definition and quantification of
uncertainty are directly and indirectly based on the error model definition (TIAN et

al., 2013). In general, two types of error models are commonly used for uncertain-
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ties in precipitation measurements (satellite and radar estimates): i) the additive
error model and ii) the multiplicative error model. However, according to Tian et
al. (2013), the multiplicative error model better separates systematic and random
errors, is applicable to the wide range of variability in daily precipitation and pro-
duces superior predictions of the error characteristics. Considering this, Maggioni et
al. (2014) proposed an error model framework called Precipitation Uncertainties for
Satellite Hydrology (PUSH) in order to provide an estimate of the error associated
with high-resolution satellite precipitation products for each grid point and time
step. The probability density function (PDF) of the actual rainfall is modeled dif-
ferently, decomposing the error in satellite rainfall estimates in each of the following
four steps (of rain and no-rain cases): i) correct no-precipitation detection, ii) missed
precipitation, iii) false alarm and iv) hit. The resulting error estimates, provided by
the PUSH framework, could be applied to any corresponding high-resolution satel-
lite precipitation products and other regions of the globe, if it is well adapted and
adjusted to the study region and local characteristics (i.e., surface type, seasonality
factor, among others).

Thus, the understanding and quantification of errors are extremely important for
successful applications of satellite rainfall estimate products in hydrological model-
ing, data assimilation systems, climate studies and water management policy. Such
analyses also contribute by providing arguments for algorithm developers and as-
sist in improving precipitation estimation over a given location and surface type. In
parallel, they support better algorithm efficiency in detecting precipitation type and
monitoring precipitation system life cycles over certain regions, which are among
the main gaps to be filled by the GPM and CHUVA projects.

Given this background, the main question that motivated this research is: How can
the GPM constellation contribute to improve over-land precipitation characteriza-
tion by understanding its associated uncertainties? To support this general scientific
question, this study seeks to answer the following specific questions:

• What are the main characteristics (performance) of GPROF (version 2004)
over-land rainfall retrievals in representing different classes of instanta-
neous rain rates (from light to heavy rainfall) over the Southeast region of
Brazil? (Chapter 3)

• What is the current performance of the two official GPM rainfall algorithms
(GPROF and IMERG) in characterizing the diurnal cycle of precipitation
over the central Amazon region? (Chapter 4)
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• How well can GPM PMW rainfall retrievals (GPROF2014 for TMI and
GMI) represent the main physical characteristics of precipitating systems
(e.g. numbers, total area, position distributions, among others) over the
Brazilian Amazon? (Chapter 5)

• What are the characteristics and distribution of uncertainties of GPM
satellite rainfall estimates over the different regions of Brazil via error mod-
eling? How those uncertainties can be minimized for correct applications?
(Chapter 6)

1.3 Objectives

The main objective of this study is to evaluate the capability of the GPM constel-
lation of satellites to reproduce the characteristics of over-land precipitation over
different regions of Brazil. This study also investigates the error characteristics of
the main GPM rainfall algorithms in order to minimize the associated uncertainties
over different regions of Brazil. To achieve the main goal of this research, the follow
specific objective are addressed:

• Evaluate the efficiency (strengths and limitations) of GPROF (version
2004) over-land rainfall retrievals in representing the different classes of
instantaneous rain-rates (from light to heavy rainfall) over the Southeast
region of Brazil.

• Evaluate the ability of two official GPM rainfall products (GPROF and
IMERG) to reproduce the main characteristics and diurnal cycle of pre-
cipitation observed over the central Amazon region.

• Evaluate the performance of the actual GPM PMW rainfall retrievals in
representing the main physical characteristics of precipitating systems over
the Brazilian Amazon using distinct statistical approaches, such as tradi-
tional and object-based techniques.

• Investigate and characterize the uncertainties of GPM satellite rainfall es-
timates over the central Amazon region via error modeling.

1.4 Thesis structure

The thesis is structured in seven chapters. Figure 1.1 presents a general overview of
the topics covered in each chapter and how they are linked to each other.
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A brief introduction to the thesis theme is provided in Chapter 1. The main scien-
tific questions that motivated this research are also shown in this chapter. Chapter
2 presents a literature review, which provides a general overview of satellite precip-
itation estimation techniques, statistical verification/validation analysis, and error
modeling methods applied to satellite precipitation products. This chapter serves as
a theoretical basis for the methodology developed here. A brief description of the
GPM and CHUVA Projects is also included in this chapter. The research developed

Figure 1.1 - Overview of the thesis and its main addressed points.

Theme

Chapter 1 Chapter 2

Chapter 7

Chapter 3 Chapter 4 Chapter 5

Chapter 6

Characteristics and error modeling of GPM satellite rainfall 
estimates during CHUVA campaign in Brazil

Introduction Literature Review and Considerations

Error Modeling

Main conclusions and future work

Main question: How can the GPM constellation 
contribute to improve the over-land precipitation 
characterization by understand its uncertainties?

- Overview of satellite based rainfall estimation and GPM
- Uncertainties in satellite rainfall estimation
- Error Modeling applied to satellite precipitation

An over-land GPROF evaluation 
during the Brazilian CHUVA-
VALE field campaign.

Characteristics and diurnal cycle 
of GPM rainfall estimates over the 
central Amazon region.

A general statistical evaluation of 
GPM level-2 rainfall retrievals 
over the Brazilian Amazon.

Error modeling applied to GPM rainfall estimates 
over the central Amazon region

Characteristics and Uncertainties of GPM rainfall estimates

SOURCE: Author’s production.

in this thesis is divided into 4 chapters. Chapter 3, 4 and 5 aim to better un-
derstand the uncertainties in satellite-based rainfall estimates over different regions
of Brazil. Chapter 3 statistically evaluates the performance of over-land GPROF
rainfall retrievals over the Southeast region of Brazil during the CHUVA-VALE
campaign (rainy season). Chapter 4 analyzes the characteristics and the diurnal
cycle of GPM rainfall estimates over the central Amazon region, making a perfor-

5



mance contrast between the dry and rainy seasons. In Chapter 5, the performance
of GPM-Level 2 rainfall retrievals over the Brazilian Amazon are performed using
three complementary methods (i.e., traditional, spatial and object-based verification
approaches). Lastly, in order to improve the GPM-Level 3 rainfall estimates over the
continent by understand and minimizing its associated uncertainties, Chapter 6 is
focused on the adjusted and validated error model for the central Amazon region,
for a better precipitation characterization.

Finally, the main conclusions and the future works are given in Chapter 7.

Thus, in order to answer the thesis objectives, a series of studies have been developed
that are presented in chapters 3 to 6 in the form of articles, written based on the
following publications:

Chapter 3: OLIVEIRA, R. A.; BRAGA, R. C.; VILA, D. A.; MORALES, C. A. Evalu-
ation of GPROF-SSMI/S rainfall estimates over land during the brazilian CHUVA-VALE
campaign. Atmospheric Research, v. 163, p. 102 – 116, 2015. ISSN 0169-8095. Impact
Factor: 3.377.

Chapter 4: OLIVEIRA, R.; MAGGIONI, V.; VILA, D.; MORALES, C. Characteristics
and diurnal cycle of GPM rainfall estimates over the central Amazon region. Remote
Sensing, v. 8, n. 7, 2016. Impact Factor: 3.036.

Chapter 5: OLIVEIRA, et al. Performance of GPM-Level 2 rainfall retrievals over the
Brazilian Amazon using Traditional and object-based methods. In preparation.

Chapter 6: OLIVEIRA, et al. Error modeling applied to GPM-Level 3 rainfall estimates
over the central Amazon region: characteristics and validation. In preparation.
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2 LITERATURE REVIEW AND CONSIDERATIONS

2.1 Overview of satellite based rainfall estimation and GPM

Methods for precipitation estimates from satellite radiance measurements have
evolved from methods based on visible (VIS) and infrared (IR) observations for
active and passive (MW) microwave techniques and approaches considering a com-
bination of IR and MW (blended techniques).

The Tropical Rainfall Measuring Mission (TRMM) satellite (lunched in November
1997) (KUMMEROW et al., 1998), has made a major contribution to the advancement
of satellite precipitation estimation by providing simultaneous high resolution obser-
vations, through its microwave imager (TMI) and precipitation radar (PR) sensors.
The TRMM PR version 7 (V7) precipitation estimates (2A25 product), described
in Iguchi et al. (2000), provides 3D reflectivity and 2D rain rate fields at the ground
for both land and ocean surfaces throughout the tropics.

As TRMM’s successor, the Global Precipitation Measurement (GPM) mission (HOU

et al., 2014; NASA, 2017), is an effort of the National Aeronautics and Space Adminis-
tration (NASA) and the Japan Aerospace Exploration Agency (JAXA) and open to
other meteorologic and space agencies, which includes the Centre National d’Études
Spatiales (CNES), the Indian Space Research Organization (ISRO), the National
Oceanic and Atmospheric Administration (NOAA), the European Organization for
the Exploitation of Meteorological Satellites (EUMETSAT), among others). GPM
aims to monitor and better understand the global precipitation through its constel-
lation of satellites at high spatial and temporal resolutions based on its quasi-global
high quality and fine resolution rainfall estimates, both at the sensor level (Level-2),
in terms of active and passive microwave (PMW), and at the final gridded level
(Level-3). This is possible thanks to several instruments on board the GPM core ob-
servatory, i.e., a dual-frequency precipitation radar (DPR; Ku-band at 13.6 GHz and
Ka-band at 35.5 GHz) and a conical-scanning multichannel GPM Microwave Imager
(GMI; frequencies range between 10 and 183 GHz), and to its other constellation
satellites (e.g., the Defense Meteorological Satellite Program (DMSP) F16, F17 and
F18 satellites; the National Oceanic and Atmospheric Administration (NOAA)-18
and 19 satellites; among others). The DPR has an improvement in the detection of
weak rains, in the information on the distribution of particle size of precipitation
and snow, as well as in the identification of vertical structure consistent to the par-
ticles in the mixed, ice and liquid phase (IGUCHI et al., 2002). The two official GPM
era algorithms are the Level-2 Goddard Profiling Algorithm (GPROF2014) and the
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Level-3 Integrated Multi-satellitE Retrievals for GPM (IMERG).

The monitoring of precipitation from the passive microwave (PMW) is made using
the atmospheric transmittance windows below 20 GHz, from 30 to 40 GHz, and
around 90 GHz (BARRETT; KNIVETON, 1995), although the high-frequency channels
above 100 GHz have been shown to be very useful for this purpose (e.g., Ferraro et
al. (2005)).

Below 20 GHz, rainfall absorption and emission are predominant and, over ocean
surfaces, where emissivity, ε, is low (ε ∼0.4–0.5) and consstant, the PMW algorithms
take advantage of the contrast between the raindrops and the ocean surface. Other-
wise, land surfaces are characterized by presenting high emissivity values (ε ∼0.9).
In addition, land surfaces present high emissivity variability (spatially and tempo-
rally), which is associated with the soil property and vegetation (the variability is
dependent on the soil moisture and surface roughness). Thus, it becomes difficult to
distinguish the emission by liquid water suspended aloft over land surfaces. There-
fore, PMW algorithms must estimate rainfall above land surfaces from the scattering
of high-frequency microwave radiation (>60 GHz) from the precipitation-sized ice
crystals in convective clouds (EBERT, 2007). Between 20–60 GHz, a combination of
absorption/emission and scattering processes are present. The absorption and scat-
tering of ice and water particles are clearly dependent on their size relative to the
microwave frequency. For frequencies in the region of 22 GHz to 31 GHz, ice crystal
scattering is negligible, so that the ice clouds are transparent to these microwave
frequencies. For example, at around 22.3 GHz and between 50-60 GHz, maximum
attenuation is due to water vapor and oxygen absorptions, respectively. At 37 GHz
(Ka band) a mixture of emission and scattering is depicted. Since this channel is
more appropriate for ocean surface applications, on the continent it is necessary to
jointly use the horizontal and vertical polarizations in order to reduce the effects of
emissivity of non-uniform surfaces. An additional technique is to combine it with
other channels (e.g., 85.5 GHz). An example of 37 and 85.5 GHz horizontal and
vertical polarization applications is the polarization-corrected temperature (PCT)
method, introduced by SPENCER (1986) and SPENCER et al. (1989). This method
makes it possible to delineate areas of rainfall in convective systems and over varying
surface types (KIDD, 1998).

The use of scattering methods for rainfall estimation have the advantage of being
potentially applicable over both ocean and land surfaces, as well as coastal regions.
The sensitivity to ice scattering occurs at 85.5 GHz, which is the most appropriate
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channel for estimating precipitation over land (when there is ice present in the cloud).
However, the measurement of precipitation through the high-frequency channels
is an indirect approach, which is based on the implicit relationship between the
presence of large particles (ice scattering) aloft and the precipitation below.

One of the most widely used techniques for rainfall retrieval using passive microwave
radiometers on board low-orbiting satellites (e.g., through the TMI, Advanced Mi-
crowave Scanning Radiometer for EOS [AMSR-E], Special Sensor Microwave/Imager
[SSM/I] and Special Sensor Microwave Imager/Sounder [SSMIS] sensors) is the God-
dard Profiling Algorithm (GPROF), originally proposed by Kummerow et al. (1996)
and OLSON et al. (1999). GPROF 2004 is a multichannel physical approach for re-
trieving both the instantaneous rainfall and rainfall vertical structure information
by using a Bayesian approach to match the brightness temperatures to hydrome-
teor profiles derived from cloud resolving models (CRM). A radiative transfer model
based on a onedimensional Eddington approximation (KUMMEROW, 1993) is used
to compute brightness temperatures from the CRM hydrometeor profiles at the ob-
served satellite frequencies (KUMMEROW et al., 1996; KUMMEROW et al., 2001; OLSON

et al., 2007; VILA et al., 2010; VILA et al., 2013).

The GPROF 2004 algorithm, which was originally developed for SSM/I (Kummerow
et al., 2001) was adapted for the Defense Meteorological Satellite Program (DMSP)
SSMI/S (see Vila et al. (2013)) for use with the F-16, F-17, and F-18 satellites. The
SSMI/S is a conically scanning passive microwave radiometer that combines and
extends the imaging and sounding capabilities of SSM/I, using three separate DMSP
microwave sensors (SSM/T, SSM/T2, and SSM/I), with a 53.1 ◦ Earth incidence
angle, sensing upwelling microwave radiation in 24 channels from 19 - 183 GHz. The
SSM/I operates in the frequency range from 19.3 to 85.5 GHz. The SSMI/S imaging
channels maintain similar resolution and spectral frequency to the SSM/I, except
91.655 GHz on SSMI/S versus 85.5 GHz on SSM/I. Vila et al. (2013) showed a very
good agreement of the SSMI/S version of GPROF2004 for all analyzed variables,
such as over land rain rate, total precipitable water and liquid water path, when
compared with the SSM/I version, during the period when both satellites were flying
together. In its current version (2014, Version 1.4), GPROF is applicable to different
PMW sensors (imagers and sounders) and scan types (conical and cross-track),
such as SSMI/S sensor on the DMSP(F16/F17/F18) satellites; Advanced Microwave
Scanning Radiometer 2 (AMSR2) on board the Global Change Observation Mission-
Water 1 (GCOMW1) satellite; GMI on board the GPM core observatory; TMI on
TRMM satellite; Sondeur Atmosphérique du Profil d’Humidité Intertropicale par
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Radiométrie (SAPHIR) on Megha-Tropiques 1 (MT1); Microwave Humidity Sounder
(MHS) on board the European Meteorological Operational A and B (METOP(A/B))
and the NOAA 18 and 19, as described by Kummerow et al. (2015) and Kidd et al.
(2016).

On the other hand, given the pros and cons VIS/IR observations, as well as PMW
and AMW (e.g., the limited temporal resolution of two overpasses per day over a
specific location on globe), several algorithms have been elaborated over the years,
based on the combination of VIS/IR and PMW (blended techniques), focused on
global real time monitoring. As described in Levizzani et al. (2007) and Michaelides
et al. (2009), the blended techniques can be divided into two main categories: i)
methods that use auxiliary products from other PMW sensors to adjust as precip-
itation intensities derived from PMW (e.g., Huffman et al. (2007)), and ii) those
using auxiliary data, such as VIS/IR observations, to advect rain maps from the
PMW sensor overpasses to others (JOYCE et al., 2004). Among the several algorithms
are: TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42 (Version 7) and
3B42RT (Real Time) (HUFFMAN et al., 2007; HUFFMAN et al., 2010); The Climate
Prediction Center (CPC) Morphing-Kalman Filter Lagrangian time interpolation
scheme (CMORPH-KF) (JOYCE et al., 2004; JOYCE; XIE, 2011); The Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-
Cloud Classification System re-calibration scheme (PERSIANN-CCS) (HONG et al.,
2004); the Global Precipitation Satellite Mapping (GSMaP) (KUBOTA et al., 2007),
among others.

Currently, the IMERG (HUFFMAN et al., 2014), the GPM’s official algorithm, takes
into account its precipitation estimates from other products, at level 2 and 3, such as
the GPROF2014 algorithm, as well as the TMPA, CMORPH-KF and PERSIANN-
CCS algorithms, as well as rainfall observations from the Global Precipitation Cli-
matology Project (GPCP). IMERG offers precipitation fields at spatial-temporal
resolution of 0.1 degrees every 30 minutes. More about the IMERG algorithm are
found along the chapters.

2.1.1 The CHUVA project

The CHUVA Project, as part of the GPM Project GPM-Brazil, is a research project
to study cloud processes and precipitation through six field experiments in different
precipitation regimes in Brazil, such as Alcântara-MA, Fortaleza-CE, Belém-PA, São
José dos Campos-SP, Santa Maria-RS and Manaus-AM (Figure 2.1). The objective
of the CHUVA field campaigns is to collect information about the cloud processes

10



of the main precipitating systems over Brazil (e.g., squall lines in the Amazon;
Mesoscale Convective Complexes [MCCs], cold fronts, middle latitude squall lines
and the South Atlantic Convergence Zone [SACZ] in the South region) in order
to evaluate and improve quality satellite-based precipitation estimates and knowl-
edge of cloud microphysical processes (MACHADO et al., 2014). In addition, the ob-
servations from these regions provide a representative set of cases to evaluate the
performance of the algorithms for these types of events. The last CHUVA field ex-
periment, held in Manaus (Amazon, Brazil) in 2014, was organized in cooperation
with another research project named GoAmazon (Observations and Modeling of the
Green Ocean Amazon). The GoAmazon experiment was motivated by the need for
gaining a better understanding of aerosol-cloud-precipitation interactions and pro-
cesses over the largest tropical rain forest on Earth (MARTIN et al., 2016; GOAMAZON,
2017). More about the CHUVA Project and its field campaign can be accessed at
http://chuvaproject.ctec.inpe.br/ (CHUVA, 2017).

Figure 2.1 - Schematic map describing the CHUVA field campaigns, illustrating the main
precipitation regimes over different regions of Brazil and, the reference mea-
surement strategy adopted during the field campaigns by distinct instruments.

Location of the CHUVA field campaigns over the different regions of Brazil and its
main precipitation regimes (left). The reference measurements during the field campaigns
(right).

SOURCE: Machado et al. (2014).
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As an example of the available satellite from GPM database, Figure 2.2 shows
all the satellite/sensors overpasses from the GPM constellation over the central
Amazon region (within a 60 km radius of the X-band CHUVA radar), during the
CHUVA/GoAmazon (1st and 2nd Intensive Operating Periods [IOPs], March and
September 2014, respectively). It is important to note that both the conical and
cross-track PMW satellite sensors from GPM constellation have a quasi-total daily
coverage, with certain preferential hour times by each satellite/sensor (up to two
sampling overpasses per day) over the central Amazon region.

Figure 2.2 - Satellite/sensors overpasses from the GPM constellation database over the
central Amazon region, during the CHUVA/GoAmazon (IOP1 and IOP2).

Overpasses within a 60 km radius of the X-band CHUVA radar (on right).
SOURCE: Author’s production.

2.2 Uncertainties in satellite rainfall estimation

Many recent studies have evaluated the accuracy of satellite precipitation prod-
ucts, for example against ground-based radar rainfall estimates and/or rain gauges
as a reference (PETKOVIĆ; KUMMEROW, 2015; GUO et al., 2015; TANG et al., 2015;
AGHAKOUCHAK; MEHRAN, 2013; PRAKASH et al., 2016a; TANG et al., 2016; PRAKASH

et al., 2016b). The performance of satellite based precipitation estimates is generally
evaluated using traditional error metrics, based on continuous and/or categorical
statistical metrics (HONG et al., 2004; AMITAI et al., 2009; SAPIANO; ARKIN, 2009;
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JOYCE; XIE, 2011). To quantify the error between the estimate and the reference
and their linear agreement, the following continuous verification statistics are usu-
ally adopted: correlation coefficient (COR), mean error (bias), root mean square
error (RMSE), and standard deviation (SD). The categorical analyses are based on
a 2x2 contingency table (Table 2.1) and defined for the estimate (A) and reference
(B) pairs, for a total number of cases N, and considering a minimum threshold (e.g.,
thr = 0.2 mm h −1).

Table 2.1 - Contingency table 2x2 for radar and satellite rainfall (A) evaluations under its
rainfall references (B), considering a specific minimum threshold (thr).

B ≥ thr B <thr
A ≥ thr H F
A <thr M Z

The categorical statistical scores include: i) probability of detection (POD), which
measures the fraction of precipitation events that are correctly detected by A; ii)
false alarm ratio (FAR), which gives the fraction of events that were misinterpreted
as events; iii) success ratio (SR), which is the ratio of hits to the total number of
estimated events; iv) critical success index (CSI) that measures the fraction of all
estimated events that were correctly diagnosed; v) and bias score (BIAS), which
gives the ratio of the estimated/observed rain pixels (WILKS, 2006; EBERT, 2007).
Equations and perfect values of these metrics are listed in Table 2.2.

Continuous and categorical analyses can also be graphically consolidated through
the Taylor (TAYLOR, 2001) and Performance (ROEBBER, 2009) diagrams. The Taylor
diagram provides a way to summarize how closely a set of patterns matches obser-
vations, using COR, RMSE, and SD. In Taylor diagram analysis interpretation, the
SD increases with the radial distance from the origin and is normalized by the ref-
erence datasets, where 1.0 is the best reference value. Bias values are also included
in the Taylor diagram. The performance diagram utilizes the geometric relationship
between SR, POD, BIAS, and the CSI to display all four metrics simultaneously,
with a perfect forecast lying in the upper right region of the diagram.
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Table 2.2 - List of the statistical metrics by continuous and categorical analysis used for performance evaluations ∗.

Statistic metrics Equation Perfect value
Continuous verification statistics:
Correlation Coefficient (COR) COR =

∑N

i=1(Ai−Ā).(Bi−B̄)√∑N

i=1(Ai−Ā)2.

√∑N

i=1(Bi−B̄)2
1

Mean error (bias) bias = 1
N

∑N
i=1(Ai −Bi) 0

Root mean squared error (RMSE) RMSE =
√

1
N

∑N
i=1(Ai −Bi)2 0

Standard deviation (SD) SD =
√

1
N−1

∑N
i=1(Ai −Bi)2 0

Categorical verification statistics:
Probability of detection (POD) POD = H

H+M
1

False alarm ratio (FAR) FAR = F
H+F

0
Success ratio (SR) SR = 1− FAR 1

Critical success index (CSI) CSI = H
H+F +M

1
Bias score (BIAS) BIAS = P OD

SR
1

* Notation: A means the rainfall product under evaluation and B means the reference dataset; N is the total numbers of cases. COR and the categorical scores are dimensionless,

bias RMSE and SD are in mm h −1.
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In this context, recent studies have investigated the characteristics of satellite rainfall
uncertainties and their high spatial and temporal variability for different precipita-
tion rates and over distinct surface types. PetkoviĆ e Kummerow (2015) showed
that the GPROF2014 PMW rainfall retrievals provide sufficient sampling and cov-
erage to reproduce the rainfall rate and its accumulation over the central Balkan
region during a flood event in 2014. Despite the good agreement between satellite
estimates, ground radars and rain gauges, the PMW rainfall estimates significantly
underestimate the accumulated rainfall, due the differences between the expected
and observed ice-scattering signals. Tang et al. (2016) and Prakash et al. (2016a)
evaluated IMERG over Mainland China and India, respectively, and found that
its performance depends on the study region, precipitation regime and topography.
Even though IMERG outperformed other satellite rainfall products, improvements
are still recommended, particularly for regions at high altitudes.

In addition, probability distribution functions (PDFs) of rainfall have been largely
used for satellite-based precipitation evaluation (AMITAI et al., 2012; KIRSTETTER

et al., 2013; OLIVEIRA et al., 2015; OLIVEIRA et al., 2016). Specifically, PDFs of both
occurrence (PDFc) and rain volume (PDFv) can be used to easily identify the occur-
rence and magnitude of extremes, i.e., light and heavy rain rates (WOLFF; FISHER,
2009). For instance, Kirstetter et al. (2013) investigated differences in various as-
pects between V7 and the previous version 6 (V6) of the PR 2A25 product, including
rainfall rate distributions, systematic biases and random errors. They concluded that
V7 is considered superior over land areas due to improvements in the attenuation
correction of the radar signal and a recalibrated Z-R equation for use over land ar-
eas, as well as a correction for non-uniform beam filling effects. However, despite the
improvement in the estimated rainfall rates, especially for the underestimated over
land rainfall, V7 still showed an underestimation for high rain rates seen by PDF
analysis (SETO et al., 2013; KIRSTETTER et al., 2013; RASMUSSEN et al., 2013), which
is associated with non-uniform beam filling effects (IGUCHI et al., 2009).

Recognizing the limitations of pixel-versus-pixel evaluation methods, analogously,
various sophisticated methods of verification have been developed over the years, as
well as described in Casati et al. (2008). Such methods considering the spatial struc-
ture (objects) and the presence of features in forecast fields, and that are specifically
designed for high-resolution forecasts (e.g., high-resolution numerical models, radars
and satellites).

In this context, several object-based verification methods have recently appeared
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in the literature (GILLELAND et al., 2009). Through the method proposed by Davis
et al. (2006), Davis et al. (2009), now called Method for Object-Based Diagnos-
tic Evaluation (MODE), it becomes possible to evaluate with more detail the er-
rors and performance of weather forecast models and satellite rainfall estimates, as
well as characteristics and evolution of clouds and precipitation, through a three-
dimensional grid to point and/or grid to grid, with high spatial and temporal reso-
lutions, by identifying objects in a given field/time. In summary, the MODE tool as
part of the Model Evaluation Toolkit (MET) program, from the National Center for
Atmospheric Research (NCAR), associates an identification characteristic not only
with an intensity threshold application to the field, but also through a convolution
procedure, initially through the spatially smoothed fields and then along a defined
threshold, also removing certain types of errors that will contaminate the low rainfall
values. Once the non-zero contiguous pixels (i.e., characteristics) are identified, they
are merged and followed by a fuzzy logic algorithm, using various attributes infor-
mation (e.g., centroid position, total area, overlapping area, intensity distribution,
orientation angle, among others).

Given all those verification approaches (i.e., via traditional, spatial, among others
techniques), other studies have been directed to estimate and characterize satellite
precipitation uncertainties via error modeling (e.g., Maggioni et al. (2014).

2.3 Error Modeling applied to satellite precipitation

As previously mentioned, the uncertainties in satellite rainfall estimates arise from
different factors including the sensor itself, retrieval error, and spatial and temporal
sampling, among others (HONG et al., 2006; TANG et al., 2015). However, the uncer-
tainty definition and quantification are directly and indirectly linked to the error
model definition (TIAN et al., 2013). An error model is a mathematical description
of a truth measure (reference) deviation. The performance and error model parame-
ters can be defined by validation studies and then the model can be used to predict
measurements and their associated uncertainties only when surface observations are
available as a reference or vice versa, namely inverse calibration (TIAN et al., 2009;
TIAN et al., 2013).

In general, two types of error models are commonly used for uncertainties in pre-
cipitation measurements (satellite and radar estimates): i) the additive error model
(e.g., (EBERT et al., 2007; AGHAKOUCHAK et al., 2012) and ii) the multiplicative er-
ror model (e.g., (HOSSAIN; ANAGNOSTOU, 2006; VILLARINI et al., 2009). However,
according to Tian et al. (2013) the multiplicative error model is a much better choice
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for better separate the systematic and random errors; applicability to wide range
of variability in daily precipitation and to produce superior predictions of the error
characteristics.

Therefore, to understand the nature of the error in satellite precipitation products,
a technique to decompose the total bias into hit, miss-rain, and false-rain biases can
be applied (TIAN et al., 2009). The hit error is then further analyzed based on a mul-
tiplicative error model (TANG et al., 2015). Considering this, Maggioni et al. (2014)
proposed an error model framework called Precipitation Uncertainties for Satellite
Hydrology (PUSH) in order to provide an estimate of the error associated with the
high-resolution satellite precipitation products for each grid point and time step.
The probability density function (PDF) of the actual rainfall is modeled differently
decomposing the error in satellite rainfall estimates in each of the following four
steps (of rain and no-rain cases): i) correct no-precipitation detection (bothe the
satellite and the observation are less than a previously defined minimum thresh-
old), ii) missed precipitation (the satellite records a zero, but the reference detects
precipitation), iii) false alarm (the satellite incorrectly detects precipitation, as the
reference observes no rain), and iv) hit (both satellite and reference detect precipita-
tion, but they disagree on the amount). The satellite error can be computed by the
difference or ratio between the satellite x and the expected value of the estimated
precipitation distribution. Thus, the PDF of the actual precipitation y is modeled
differently in each of the following four steps depicts in Figure 2.3.

Figure 2.3 - Schematic of the PUSH satellite precipitation error scheme.

SOURCE: Maggioni et al. (2014)

.

17





3 EVALUATION OF GPROF-SSMI/S RAINFALL ESTIMATES OVER
LAND DURING THE BRAZILIAN CHUVA-VALE CAMPAIGN

3.1 Introduction

The main objective of this chapter is to evaluate the performance of the GPROF
algorithm applied to SSMI/S (F16, F17 and F18 satellites) observations for instan-
taneous rain rates over land. The analyses were performed by comparing with other
remote sensing based estimates such as the 2A25-V7 algorithm from TRMM and
the X-band CHUVA radar, in the region of the CHUVA-VALE field campaign, in
particular in an area within a radius of 60 km and another limited by a 10 ◦ x 10 ◦

box from the X-band CHUVA radar location, which is centered at São José dos
Campos, SP–Brazil (Southeast Region of Brazil).

The main scientific question that this work seeks to answer is: What are the main
characteristics (performance) of GPROF (version 2004) over land rainfall retrievals
in representing the different classes of instantaneous rain rates (from light to heavy
rainfall) over the Southeast Region of Brazil?

This chapter is organized as follows. In Section 3.2, I briefly describe the study area.
Section 3.3 describes the data and methodology used in this study. In Section 3.4,
I present the results of the GPROF evaluation obtained for the X-band CHUVA
radar and extended areas by comparing with the X-band radar and the PR 2A25-
V7 algorithm as reference. Finally, a summary of the main results is presented in
the conclusion (Section 5).

3.2 Region of study

The first part of this work is focused on an area covered by the X-band CHUVA
radar. This region covers a circle of 60 km radius centered at São José dos Campos
(SJC, 23.2 ◦S, 45.95 ◦W), specifically at Vale do Paraíba University (UNIVAP). An
extended region, delimited by 41 ◦W–51 ◦W and 18 ◦S–28 ◦S (10 ◦ x 10 ◦ box), beyond
the X-band CHUVA radar range, was selected in order to obtain the largest number
of over land coincident overpasses between the TRMM and F16/F17/F18 satellites.
The study period is November 2011 - March 2012 (rainy season) during the CHUVA-
VALE campaign. Figure 3.1 shows both regions considered in the present study and
the in situ rain gauge network providing, originally, 1 minute rainfall measurements
within the X-band CHUVA radar range.

The precipitation over the region is associated with a range of spatiotemporal scales,
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ranging from the local to synoptic scale. Local factors such as the sea breeze and
topography (such as the Atlantic Ocean and the Mantiqueira and Serra do Mar
Mountains) are important local factors capable of intensifying severe weather in
this region. Synoptic scale weather systems associated with rainfall such as the
South Atlantic Convergence Zone (SACZ), low level jets, and frontal systems, are
also responsible for large scale rainfall patterns in this region (HERDIES et al., 2002;
CAVALCANTI; KOUSKY, 2003; SATYAMURTY et al., 2008; NASCIMENTO et al., 2016).

Figure 3.1 - Location of the study areas: a) Extended CHUVA-VALE region and b) X-
band CHUVA radar area.

SOURCE: Author’s production.

.
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3.3 Data and methodology

3.3.1 Data sources

To evaluate the rain rate estimates by GPROF 2004 (SSMI/S version) algorithm
over land, two sets of data were used in this study: i) rainfall rates from the X-band
dual polarization radar from the CHUVA project, named here the X-band CHUVA
radar, and ii) the near surface TRMM-PR 2A25 version 7 radar rainfall rate product
(2A25-V7). A brief description of the datasets used in this study is given as follows:

a) GPROF data

The over land instantaneous rain rates from the Goddard Profiling Algorithm
(GPROF) version 2004 (named here GPROF) developed as described by Kummerow
et al. (1996) and adapted for SSMI/S (for the F-16, F-17, and F-18 satellites) by Vila
et al. (2013) were used in this work. Nevertheless, GPROF version 2004 was orig-
inally developed for SSM/I and it was first described by Kummerow et al. (1996).
GPROF aims to retrieve the instantaneous rainfall rate and the rainfall vertical
structure by using the response functions for different channels peaking at different
depths within the raining column. In summary, considering Bayes’s theorem, in the
present retrieval method the probability of a particular profile R given Tb can be
written as:

Pr(R|Tb) = Pr(R) x Pr(Tb|R) (3.1)

where Pr(R) is the probability with which a certain profile R will be observed and
is derived using cloud-resolving models (CRM). The second term on the right-hand
side of Eq. (1), Pr(Tb | R) is the probability of observing the brightness temperature
vector, Tb, given a particular rain profile R. Pr(Tb | R) is obtained using radiative
transfer schemes to compute the brightness temperatures corresponding to the CRM
output. Together, the radiative transfer and the convolution of these temperatures
to the appropriate sensor resolution scheme comprise the forward modeling portion
of the retrieval algorithm. Detailed descriptions and information about the retrieval
algorithm is available in Kummerow et al. (1996), Kummerow et al. (2001).

It is important to mention that GPROF2004 for SSMI/S uses a histogram matching
technique to simulate the brightness temperature (Tb) from seven channels. The
approach considers the SSM/I dataset as reference in order to take advantage of
the 91 GHz-SSMI/S through the 85 GHz-SSM/I behavior (see Vila et al. (2013)).
In the histogram matching process by Vila et al. (2013), the cumulative histogram
is computed for each dataset (channel and sensor). For any particular Tbi value
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in the data that has to be adjusted, there is a cumulative histogram Tbj value as
reference. The input data value of Tbi is then replaced by its corresponding Tbj,
running operationally through lookup tables (LUTs).

b) X-band CHUVA radar

In particular, the reflectivity (Z) and rain rate (RRx) variables from the X-band
dual polarization weather radar of the CHUVA project (named here the X-band
CHUVA radar) for the CHUVA-VALE field campaign were used in this study. X-
band radars have been widely used for rainfall estimate purposes. However, the
attenuation is larger than for S- and C-band radars (GORGUCCI et al., 2002). To
reduce these limitations, the specific differential propagation phase (Kdp) was used
instead of the Z-R relation in order to attain more accurate retrievals (GORGUCCI et

al., 2002). Moreover, the reflectivity is heavily affected by attenuation of the radome
and the rain medium itself (SCHNEEBELI et al., 2012). In order to eliminate cases
with wet radome attenuation, data from the radar were only considered when no
precipitation was detected by the UNIVAP rain gauge (close to the radar location)
within about 3 minutes from the radar scan. In addition, in order to eliminate
spurious data (e.g., noise, ground clutter) the horizontal reflectivity and polarimetric
variable information was used. In this case, precipitation occurrences were only
considered if the reflectivity in the pixel was greater than or equal to 17 dBZ, in
order to equalize the minimum reflectivity threshold detectable by the TRMM PR.

As in Braga e Vila (2014), the Constant Altitude Plan Position Indicator (CAPPI)
at 2 km, which has a spatial/temporal resolution of 200 meters/6 minutes, was
used for the precipitation retrieval. The radar range was limited to 60 km for the
X-band radar. To take advantage of the X-band radar polarimetric variables for rain-
fall estimates for the CHUVA-VALE field campaign, the Dual Polarization Surface
Rainfall Intensity (DPSRI) algorithm from Bringi et al. (2007) was used. The DP-
SRI algorithm, which was originally proposed by Park et al. (2004), uses a combined
Z-KDP-R relation for X-band radars, considering the following equations:

for Z ≥ 35 and Kdp > 0.3 uses RRx = 19.63|Kdp| 0.823 (3.2)

otherwise, the follow relation is used (MARSHALL; PALMER, 1948):

Z = 200RRx 1.6 (3.3)
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Here, Z is the horizontal reflectivity (in dBZ), RRx is the radar rain rate (in mm
h −1), and Kdp is the specific differential phase (in deg km −1). Large Kdp values
(Kdp > 2 deg km −1) suggest the presence of large amounts of liquid water and/or
highly oriented (i.e., oblate) shapes. Moreover, Kdp is not impacted by attenua-
tion (unless the signal is completely attenuated) and therefore is an attractive vari-
able to use for attenuation correction and then quantitative precipitation estimation
(BRINGI et al., 2007).

The attenuation correction was performed using the Dual-Pol based Attenuation
Correction (DPATC) algorithm described in Bringi et al. (2007). The DPATC al-
gorithm performs a reflectivity (dBZ) correction and, if available, another correc-
tion on the differential reflectivity (ZDR) data. For dBZ attenuation correction the
so-called Rain Profiling Algorithm “ZPHI” (TESTUD et al., 2000) was used. ZPHI
(HITSCHFELD; BORDAN, 1954) is an attenuation correction method which basically
considers as a constraint the total attenuation through the reflectivity profile Z, de-
riving it from the total differential Phase data (PhiDP). For the ZDR-Correction the
Linear PhiDP method was used. For this latter, the amount of the ZDR correction
along the radar range r is proportional to PhiDP:

ZDR cor(r) = ZDR(r) + β.PhiDP (r) (3.4)

where the proportionality factor β is considered equal to 0.035 dB deg −1 for X-Band
radars (BRINGI et al., 2007).

The performance of the X-band CHUVA radar in quantitatively detecting precipi-
tation, through the DPSRI algorithm, was evaluated by comparing with rain gauge
observations. The comparison consists of using the radar pixel values and a mean of
the pixels within a radius of 500 meters at the rain gauge locations. Five rain gauge
platforms (seen in Figure 3.1) located within the radar coverage area (within a 60
km radius of the X-band CHUVA radar) were considered for this analysis. Given
the different measurement methods and distinct temporal resolutions between the
X-band CHUVA radar and the rain gauges (i.e., rain gauge: 1 minute and X-band
CHUVA radar: 6 minutes), the datasets were integrated hourly (e.g., 00, 01, ..., 23).

Figure 3.2 shows the scatterplots and PDFs of the X-band CHUVA radar hourly
rainfall rate estimates versus rainfall rates measured by all five rain gauges within
a 60 km radius of the radar location. In general, similar distribution patterns were
noted in the X-band CHUVA radar and rain gauges. The X-band CHUVA radar
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showed a slight underestimation of precipitation, as we can see in Figure 3.2a. It is
important to note that lower frequencies were registered by the radar than by the
rain gauges, especially for heavy rains (around 30 mm h −1).

The analysis of the rain gauge station situated at IEAv (Institute for Advanced
Studies) (Figure 3.3), which has a more complete time series (from November 1,
2011 to March 31, 2012), produces better results, mainly due to its location (about
10 km from the radar), that falls within the Beam-spreading concept, where the
outer bin is much larger than the inner (high-resolution) bin. This directly impacts
the CAPPI calculations and consequently the efficiency of rain rate estimates. Fig.
3.3 shows the scatterplot, PDFs, and time series of the instantaneous rain rate from
the Xband CHUVA radar versus the IEAv rain gauge. The X-band CHUVA radar
tends to slightly overestimate the intensity/frequency of light rains (less than 1.0
mm h −1) and underestimate light to moderate rains (between 1 and 5 mm h −1).
The frequency of rains of around 30 mm h −1 was correctly captured by the Xband
CHUVA radar (Figure 3.3a and b). Good values of COR, RMSE and BIAS of 0.926,
0.399, and 0.006, respectively, were found. It is important to note in Fig. 3c that
the X-band CHUVA radar (lower) correctly captured the precipitation occurrence
observed by the IEAv rain gauge (upper). The radar also captured in some cases the
observed intensities. This can be seen in the highlight box, which shows an example
of rain values of around 20 mm h −1 observed by both datasets.

c) PR-2A25 (V7) data

The TRMM PR is the first spaceborne rain radar and the only instrument on TRMM
that can directly observe vertical distributions of rain, providing 3D reflectivity and
2D rain-rate fields at the ground (over land as well as ocean). The frequency of
the TRMM PR is 13.8 GHz (Ku band), which provides high spatial resolution with
approximately 4.5 km horizontal and 0.25 km vertical resolution, ranging between
35 ◦N and 35 ◦S and with up to two sampling overpasses per day in a given region.
On the other hand, PR has a minimum reflectivity threshold of ∼17 dBZ, which
limits its ability to detect light rains (e.g., <0.4 mm h −1) (KUMMEROW et al., 1998;
IGUCHI et al., 2000).

In general, the rainfall estimates R from the 2A25 algorithm are calculated from the
estimated true effective reflectivity factor Ze (calculated using the Ze-R relation),
in which the parameters a and b are functions of the both the rain type and the
heights of the 0 ◦C isotherm and storm top. Moreover, the initial values of a and b
are modified according to the adjustment in a so that the k–Ze (where k denotes
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Figure 3.2 - (a) Scatterplots and quantitative statistics and (b) PDFs of the instantaneous
rain rate from X-band CHUVA radar versus rain gauges for CHUVA-VALE
field campaign, from Nov 2011–Mar 2012.

SOURCE: Author’s production.

.
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Figure 3.3 - (a) Scatterplot, (b) PDFs, and (c) time series of the instantaneous rain rate
from the X-band CHUVA radar versus the IEAv rain gauge for the CHUVA-
VALE field campaign, from Nov 2011–Mar 2012.

SOURCE: Author’s production.

.

the specific attenuation) and Ze–R relations are consistent with the assumed drop
size distribution (DSD) model.

Considering the range of variables within the TRMM PR 2A25 algorithm (e.g., Rain
Type, Near-Surface Rain and Near-Surface Z, among others), the instantaneous pre-
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cipitation is analyzed utilizing the high-spatial-resolution Near-Surface Rain data.
The Near-Surface Rain Rate is the rain intensity estimated utilizing the near surface
reflectivity assuming a rain drop size distribution (see Iguchi et al. (2000)).

Version 7 (V7) of the PR 2A25 algorithm was used in this work. According to
Kirstetter et al. (2013), the major changes between V6 and V7 address the quanti-
tative estimation of rainfall in 2A25 products rather than the detection of rainfall
itself. V7 includes improvements in the attenuation correction of the radar signal
and a recalibrated Z–R equation for use over land areas, as well as a correction for
non-uniform beam-filling effects, reintroduced in the new V7 product. A detailed
description of the 2A25 algorithm can be found in Iguchi et al. (2000), Meneghini
et al. (2000) and IGUCHI et al. (2009).

3.3.2 Evaluation methods

In order to assess the instantaneous-based rainfall estimation over land, comparisons
were made between the X-band CHUVA radar, GPROF rain rate algorithm, and
2A25-V7 near surface precipitation. Two different analyses were performed. The first
one evaluates the performance of GPROF over the X-band radar domain (GPROF
vs. X-band CHUVA radar). The second analysis is done over the extended region
described in the previous paragraph. In this case, GPROF is compared against 2A25-
V7 (GPROF vs. 2A25-V7). In order to compare both to ground truth estimates
(X-Band radar in the radar domain region and 2A25-V7 for the larger one), it is
important to compare the retrieval from the X-band CHUVA radar and 2A25-V7 to
assure that the satellite-based radar retrieval accurately represents the instantaneous
rain pattern observed by the ground radar. This comparison is done in the X-band
radar domain region.

In general, the analysis considers coincident overpasses/timesteps over the same
domain, specifically for cases with significant rain occurrence, during the CHUVA-
VALE campaign period (Nov. 2011 to Mar. 2012). Given the different temporal-
spatial resolutions of the products under study, such as the X-band CHUVA radar
with 6 minutes for each 200 meters and the GPROF and 2A25-V7 orbital datasets
with up to two sampling overpasses per day in a given region of 12.5 km and ∼5
km, respectively, the following procedures were used:

1 For comparisons considering the X-band CHUVA radar as reference, a
maximum time interval of 2 minutes was considered and for comparisons
considering the 2A25-V7 as reference (GPROF versus 2A25-V7), 5 minutes
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was used;

2 The data were resampled to similar spatial resolutions as follows:

i satellite projection: 12.5 and 5 km for GPROF and 2A25-V7 evalu-
ations, respectively, considering the X-band CHUVA radar as refer-
ence. A mean of the X-band CHUVA radar pixels inside the satellite
(GPROF and 2A25-V7) pixels were calculated. For this, a minimum
of 80% of the number of radar pixels with reflectivity greater than
or equal to 17 dBz (minimum reflectivity threshold detectable by the
TRMM PR, as mentioned before), inside the GPROF and 2A25-V7
pixels, was considered as condition and;

ii regular grid (through bi-linear interpolation): 12.5 km, for GPROF
evaluations considering the 2A25-V7 as reference. As in Rozante et
al. (2010) for using surface observations and satellite estimates, in
this step both the GPROF and 2A25-V7 precipitation estimates were
interpolated onto a regular grid using the Barnes objective analysis
method, which can be applicable for satellite and conventional data
(BARNES, 1973; KOCH et al., 1983). The total numbers of cases and
samples are shown in Table 3.1.

Table 3.1 - Number of coincident cases or overpasses and total number of pixels or samples
considered in this study for the combination of comparisons between GPROF,
X-band CHUVA radar, and 2A25-V7 rainfall products, during the period of
the CHUVA-VALE campaign (from Nov. 2011 to Mar. 2012).

GPROF 2A25-V7
No. of cases Sample No. of cases Sample

X-band CHUVA radar 65 1635 17 495
2A25-V7 8 9872

The ability of GPROF and 2A25-V7 to reproduce the spatial pattern of precipitation
was performed using Box & Whisker plot, Probability density function (PDF), scat-
ter plot, and Taylor diagram (TAYLOR, 2001) analyses. The evaluations were made
by comparing coincident estimates and reference datasets. In the Taylor diagram
analysis, the standard deviation (STD), which increases with the radial distance
from the origin, was normalized by the reference datasets (X-band CHUVA radar
and/or 2A25-V7), where 1.0 is the proper reference value. Analogous to this, the

28



quantitative analysis of the algorithms were also conducted from discrete evalua-
tion, through the following statistical parameters: linear correlation (COR), BIAS,
probability of detection (POD), false alarm (FAR), Heidke skill score (HSS), and
root-mean-square error (RMSE). Equations for the above scores are taken from
Wilks (2006), Ebert (2007), Sapiano e Arkin (2009) and Cimini et al. (2013).

Figures 3.4 and 3.5 are examples of cases among those studied with the method-
ologies employed in the X-band CHUVA radar and extended region domains, re-
spectively. The precipitation products under study in their native spatial resolution
(Figs. 4 and 5a–b) and after the interpolation process (Figs. 3.4 and 3.5c–d) are also
shown.

Figure 3.4 - Example of instantaneous rain rate (mm h−1) from the X-band CHUVA
radar (CAPPI-2km) and its (a) original and (b) satellite projections, and
(c) GPROF – satellite projection, for the X-band CHUVA-VALE radar area.

SOURCE: Author’s production.

.

3.4 Results

Figure 3.6 shows the scatter plots (mm h −1), box plots (mm h −1), and PDFs
(in %) of instantaneous rain rate for the coincident GPROF measurements versus
the X-band CHUVA radar reference database. GPROF shows an intensity pattern
(Fig. 3.6-a) with a prominent overestimation of weak and moderate rains and un-
derestimation of rainfall above 10 mm h −1 compared to X-band CHUVA radar
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Figure 3.5 - Example of instantaneous rain rate (mm h−1) from 2A25-V7 (left) and
GPROF (right) and its original (a–b) and regular grid interpolated (c–d)
data, for the extended CHUVA-VALE campaign region at 0014 UTC on 17
January 2014.

SOURCE: Author’s production.

measurements. Through the box plots of rain rate from X-band CHUVA radar in
comparison with GPROF (Fig. 3.6-b) measurements, note that the X-band CHUVA
radar shows substantially lower 25th, 50th, 75th percentiles, and upper adjacent
values than those found in GPROF. The GPROF 25th percentile, median, 75th
percentile, and upper adjacent values were around 0.1, 2., 3.5, and 8.4 mm h −1,
respectively, whereas the X-band CHUVA radar presented values of approximately
0.5, 1.0, 1.8, and 3.0 mm h −1, respectively. Through the PDF analysis (Fig. 3.6-
c), a bimodal distribution was found for the X-band CHUVA radar measurements,
similar to Morales et al. (2013), who used DSD measurements from the same study
area, which implies significant frequencies of stratiform and convective precipita-
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tion. GPROF can not represent very well the frequency of stratiform and convective
rains, underestimating precipitation around 1 mm h −1 and above 20 mm h −1. On
the other hand, the rain frequency was overestimated between 2 to 10 mm h −1, with
the maximum difference being 15% around 5 mm h −1.

Table 3.2 presents the statistical parameter (COR, BIAS, POD, FAR, HSS, and
RMSE) results of the GPROF validation analysis, considering the X-band CHUVA
radar as reference. The COR between both products is 0.4. As a result of the over-
estimation of light rains, mainly around 5 mm h −1 (seen in Fig. 3.6), the BIAS and
RMSE presented positive results, with values of approximately 0.7 and 3.5, respec-
tively. The results of GPROF POD, FAR, and HSS, with values of around 0.85, 0.5,
and 0.28, respectively, indicate a slight efficiency in detecting the occurrence/non-
occurrence of rain events.

Table 3.2 - Statistical evaluation summary for validating the GPROF precipitation mea-
surements considering the X-band CHUVA radar as reference. Here, COR is
the linear correlation, the BIAS, POD is the probability of detection, FAR is
the false alarm ratio, and RMSE is the root-mean-square error.

Sample: 1635 pixels COR BIAS POD FAR HSS RMSE
GPROF vs. X-band 0.40701 0.70090 0.84628 0.49812 0.28239 3.49177

As in Figure 3.6, Figure 3.7 shows scatter plots, box plots, and PDFs of instanta-
neous rain rate from the GPROF algorithm considering the 2A25-V7 product as
the reference database for an extended region beyond the X-band CHUVA radar
range (10 ◦ x 10 ◦ box), as previously mentioned. Fig. 3.6-a shows the scatter plot of
instantaneous rain rate from the GPROF rainfall estimate versus the 2A25-V7 ref-
erence. In general, there is good agreement between both products. Although there
is a pattern of general overestimation by GPROF compared with 2A25-V7 (mainly
between 0.5 and 8 mm h −1), the GPROF underestimated heavy rains (> 30 mm
h −1) relative to 2A25-V7.

Through the box plots of the rain rate between the GPROF and 2A25-V7 time
series (Fig. 3.7-b), it is possible to observe that PR 2A25 has a pattern with higher
concentrations of light rains, with a 25th, median, and 75th percentiles values of
around 0.3, 1.5, and 2.2 mm h −1, respectively. On the other hand, GPROF showed
an overestimated distribution pattern of the rain rate over all overpasses in com-
parison with the 2A25-V7 reference. The GPROF 25th, 50th, and 75th percentiles
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Figure 3.6 - Instantaneous rain rate (mm h−1) comparisons between GPROF and the X-
band CHUVA radar as reference. a) Scatter plot of X-band CHUVA radar
(x-axis) vs. GPROF (y-axis); b) Box & Whisker Plots of X-band CHUVA
radar (left) and GPROF (right); here each box represents the 25th, 50th
(median), and 75th percentiles, the upper adjacent values (farthest outlying
rain rate values that are no more than 1.5 times the interquartile range away
from the median), and the outliers (greater than upper adjacent values) of
the rain rate measurements and; c) PDF (in %) of the X-band CHUVA radar
(red line) and GPROF (black line).

SOURCE: Author’s production.
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were 0.9, 1.8, and 3.8 mm h −1, respectively. The upper adjacent values ranged from
5 to 8.4 mm h −1 from 2A25-V7 and GPROF, respectively.

Fig. 3.7-c shows the PDF (in %) for GPROF and 2A25-V7 over land. When we
compared the two rainfall estimate techniques over a larger area, it can be seen that
both PDFs have a very similar shape of rainfall distributions, with higher frequencies
in the range from 2-8 mm h −1. While GPROF has shown a slight overestimation
of moderate rainfall frequencies (between 2 and 10 mm h −1), as well as through
the GPROF vs. X-band CHUVA radar PDF comparison (seen in Fig. 3.6-c), an
underestimation of stratiform (less than 1.0 mm h −1) and convective (greater than
15 mm h −1) rain frequencies was observed compared to 2A25-V7.

Tables 3.3 and 3.4 summarize the analysis validation results of the GPROF eval-
uation, considering 2A25-V7 as reference. These statistics reveal a strong spatial
variation when considering a larger area. The GPROF BIAS, RMSE, and POD
parameters decreased, while FAR and HSS increased. The COR parameter still
maintained results around 0.4.

Table 3.3 - Same as Table 3.1, but for GPROF rainfall estimates versus 2A25-V7 precipi-
tation measurements as reference, and for the extended CHUVA-VALE region.

Sample: 9872 pixels COR BIAS POD FAR HSS RMSE
GPROF vs. 2A25-V7 0.41643 0.21676 0.72625 0.54857 0.49501 2.01018

Table 3.4 - Same as Table 3.1, but for 2A25-V7 rainfall estimates versus X-band CHUVA
radar as reference.

Sample: 495 pixels COR BIAS POD FAR HSS RMSE
2A25-V7 vs. X-band 0.44244 1.19624 0.92935 0.22273 0.19364 9.50375

In view of the GPROF performance in the comparisons with both 2A25-V7 and
X-band CHUVA radar as reference (seen in Figs. 3.6 and 3.7), an evaluation of
both databases was performed. The analysis was made in order to assess the perfor-
mance of the TRMM radar-based retrieval against high-quality ground radar data.
Fig. 3.8 shows the comparison between 2A25-V7 and the X-band CHUVA radar
ground reference. 2A25-V7 also shows a pattern with overestimation of weak and
moderate rains and underestimation of rainfall above 10 mm h −1, compared to
X-band CHUVA radar measurements (Fig. 3.8-a). Through the box plot analysis
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Figure 3.7 - Same as Figure 3.6, but for GPROF considering 2A25-V7 as reference, and
for the extended CHUVA-VALE region over land.

SOURCE: Author’s production.

(Fig. 3.8-b), note that 2A25-V7 presented substantially higher 25th, 50th, and 75th
percentiles, and upper adjacent values (∼2.0, 3.0, 7.5, and 15.8 mm h −1, respec-
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tively), than those computed by X-band CHUVA radar (∼1.0, 1.8, 4.0, and 7.8 mm
h −1). Despite the bimodal distribution and with the predominant moderate and
heavy rains found by X-band CHUVA radar measurements, an approximate pattern
was observed by 2A25-V7 (Fig. 3.8-c). High frequencies of rainfall around 10-20
mm h −1 of around 26% and 17% was observed by both 2A25-V7 and the X-band
CHUVA radar, respectively. However, the X-band CHUVA radar also showed high
frequencies of rainfall around 60 mm h −1 (∼18%).

Table 3.4 presents the results of the analysis validation of 2A25-V7, considering
the X-band CHUVA radar as reference. The COR between 2A25-V7 and X-band
CHUVA radar is 0.44. Good results of 2A25-V7 POD and FAR, with values of 0.93
and 0.22, respectively, were found. On the other hand, the 2A25-V7 BIAS and RMSE
presented higher positive results, greater than from GPROF, with values of 1.2 and
9.5, respectively, and a low value of HSS (0.19) was observed.

Figure 3.9 is the Taylor diagram of GPROF estimates versus both the X-band
CHUVA radar measurements and 2A25-V7 as reference databases and finally for
2A25-V7 versus the X-band CHUVA radar ground truth. Figure 3.9 summarizes
the performances of the different overpasses relative to a reference, by using the
linear correlation (COR) and standard deviation (STD) statistical parameters. The
presence of two groups with different performance is clearly evident. The first group,
with good performance, is clustered close to the reference point, with relatively low
RMSE (around 0.75) and showing COR (normalized STD) values ranging from 0.6
to 0.75 (close to 1.0). The second group shows poor performance, with high and
scattered values of RMS (greater than 1.25). The COR and normalized STD ranged
from 0.2 to 0.5 and 1.5 to 2.0, respectively. Table 5 presents the results of POD and
FAR obtained from certain cases with good and poor performance, shown in the
Taylor diagram. Mostly, the cases with good performance in the Taylor diagram also
showed higher (lower) values of POD (FAR) than the cases with poor performance.

These differences may be associated with the type of precipitation (stratiform and/or
convective) that occurred in each analyzed case, and the efficiency of the GPROF
algorithm in detecting and quantifying these types of precipitation and/or hydrom-
eteors, which results in larger random errors. The low rain rate values, produced
by stratiform rain, justify the good performance of GPROF seen in Taylor diagram
(through the COR, normalized STD, and RMSE analyses). On the other hand,
through the contingency information in terms of POD and FAR, GPROF fails to
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Figure 3.8 - Same as Figure 3.6, but for 2A25-V7 with the X-band CHUVA radar as
reference.

SOURCE: Author’s production.

spatially detect such light rains, with relatively low POD and high FAR. This result
is consistent with information revealed by the PDFs shown in Figures 3.6 and 3.7, by
comparing with both X-band CHUVA radar and 2A25-V7 references, respectively.

It is important to mention that the GPROF approach considers the presence of rain
based on ice scattering signatures (e.g., through the 85.5 and 91.6 GHz scattering
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Figure 3.9 - Taylor diagram of GPROF (green) and 2A25-V7 (blue) estimates normalized
by X-band CHUVA radar as reference and of GPROF (red) considering 2A25-
V7 as reference in the extended CHUVA-VALE region.

SOURCE: Author’s production.

channels), which is dependent on the size/intensity/type of the precipitation system
(e.g., mesoscale convective systems) (MOHR; ZIPSER, 1996). In this context, an ex-
ample for the case H (GPROF vs. 2A25-V7), which showed good performance with
high values of COR and low STD and RMSE (seen in Figure 3.9), also had low POD
and high FAR (seen in Table 3.5). These results can be analyzed in parallel with
Figure 3.10, which shows the spatial distributions of instantaneous rain rate from
GPROF and 2A25-V7, brightness temperature from GOES-12 Channel 4 and the
cloud classification, such as Warm Rain Cloud, Stratiform, and Convective (AWAKA

et al., 1997; SCHUMACHER; JR., 2003), from the 2A25-V7 product over the extended
CHUVA-VALE region at 1030 UTC on February 12, 2012. In general, over the entire
domain, low rainfall rates (around 1 mm h −1) were observed from both GPROF and
2A25-V7, which were associated with the type of precipitation (stratiform and warm
rain clouds) prevailing over the region, with warm brightness temperature (around
240 K).
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Table 3.5 - Results of POD and FAR for example cases with good and poor performance
as shown in Figure 3.9 (Taylor diagram).

Good cases POD FAR
Xb-Gp - 02 1.000 0.111
Xb-Gp - 14 1.000 0.353
PR-Gp - E 0.763 0.491
PR-Gp - H 0.607 0.724
Xb-PR - Z 1.000 0.148

POOR cases POD FAR
Xb-Gp - 05 1.000 0.592
Xb-Gp - 13 1.000 0.667
PR-Gp - B 0.710 0.545
PR-Gp - F 0.631 0.473
Xb-PR - U 1.000 0.231

3.5 Conclusions

This chapter evaluates the performance of the GPROF algorithm through the
SSMI/S (F16, F17 and F18 satellites) datasets for instantaneous rain rates over
land. The analyses were performed by comparing with other remote sensing based
estimates such as the 2A25-V7 algorithm from TRMM and the X-band CHUVA
radar, in the region of CHUVA-VALE field campaign, in particular in an area within
a radius of 60 km and another limited by a 10 ◦ x 10 ◦ box from the X-band CHUVA
radar location, which is centered at São José dos Campos, SP –Brazil.

The analyses demonstrated that GPROF showed similar rainfall behavior patterns
through the comparison with different datasets as reference, in this case, for the
X-band CHUVA radar and 2A25-V7. GPROF presented overestimated frequency
values, mainly for moderate rainfall (between 2 and 10 mm h −1) and an underes-
timation of light (weaker than 1 mm h −1) and heavy (heavier than 15 mm h −1)
rain frequencies, although not very pronounced when compared to the 2A25-V7 rain
reference. It was found that GPROF underestimates mainly the intensity of heavy
rains and overestimates the intensities of light and moderate rains, considering both
2A25-V7 and X-band CHUVA radar data references. However, GPROF is slightly
better correlated when compared with 2A25-V7 for an extended region than with
the X-band CHUVA radar, which may be due the greater coverage area, with more
rain no-rain situations in each case. On the other hand, for this reason, the GPROF
POD and FAR from the X-band CHUVA radar comparison shows better results
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Figure 3.10 - Case example of stratiform rain for the extended CHUVA-VALE region 1030
UTC on February 12, 2012. Instantaneous rain rate (mm h−1) from (a)
GPROF and (b) 2A25-V7, (c) brightness temperature (K) from GOES-12
Channel 4, and (d) cloud classification (Warm Rain Cloud, Stratiform, and
Convective) from 2A25-V7.

SOURCE: Author’s production.

than the GPROF versus 2A25-V7 comparison.

The GPROF2004 algorithm failed to detect some precipitation areas weaker than 2
mm h −1, mainly by comparing with 2A25-V7 over the extended region. In most cases
the precipitation was associated with warm rain and stratiform clouds, classified by
2A25-V7. Two groups of performance in Taylor diagram were found: the first (good
performance) with low RMSE (∼0.75), high COR (∼0.7), and normalized STD close
to 1 and the second (poor performance) showed high RMSE (∼1.5), low COR (∼0.4),
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and high values of SDT (normalized). The cases with good performance also showed
better POD and FAR results than the cases with poor performance.

This study focused on the GPROF2004 passive microwave (SSMI/S) rainfall re-
trieval algorithm for land surfaces. Since fewer channels contribute to rainfall re-
trieval over land (e.g., the 85.5 and 91.6 GHz scattering channels), more careful
analysis is needed for these cases, considering with more detail the surface types
and their characteristics (e.g., emissivity), in order to minimize error sources of the
rainfall retrieved by a passive microwave technique.
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4 CHARACTERISTICS ANDDIURNAL CYCLE OF GPMRAINFALL
ESTIMATES OVER THE CENTRAL AMAZON REGION

4.1 Introduction

The key goal of this chapter is to assess the characteristics of GPM satellite-
based precipitation estimates in representing the diurnal cycle over the Brazil-
ian Amazon. The IMERG (V03D, “final” run) precipitation product is evaluated
against the S-band SIPAM radar in the proximity of Manaus city, located in the
Brazilian Amazon region. The analysis is performed during two seasons (wet and
dry) from March–September 2014. Special attention is given to the March and
September months (i.e., IOP1 and IOP2), when the GoAmazon and the CHUVA-
ACRIDICON field campaigns took place. To better assess the limitations of IMERG,
the GPROF2014 PMW rainfall estimates are also analyzed.

The main scientific questions that this work seeks to answer are: (1) How good is the
ground-based reference for evaluating satellite precipitation products? (2) How well
are the main precipitation patterns over the Manaus region captured by ground-
based radars and satellite rainfall products? (3) Is the final IMERG product able to
reproduce the diurnal cycle of precipitation over the Manaus region?

This chapter is organized as follows. In Section 4.2, I describe the study region and
its precipitation regimes and atmospheric conditions. The datasets and the method-
ology are also presented in section 4.2. In Section 4.3, I assess the performance of the
S-band SIPAM radar, subsequently used as a reference, against the X-band CHUVA
radar. In the same section, I present results of the satellite algorithms’ (IMERG and
GPROF2014) validation, through statistical and diurnal cycle analyses, by focusing
on two distinct seasons (wet and dry), using the S-band SIPAM radar as a refer-
ence. Finally, a summary of the main results is presented in the Conclusion Section
(Section 4.4).

4.2 Study Area, Data and Methodology

4.2.1 Study Area

This work focuses on an area in the middle of the Amazon basin, around the city of
Manaus in the state of Amazonas, Brazil. The area covers a circle of 110 km in radius
centered at 3.15 ◦S and 59.99 ◦W, where the S-band weather radar from the Amazon
Protection National System (SIPAM) is located (Figure 4.1). The study period goes
from March–September 2014, which includes part of the two GoAmazon/CHUVA
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Intensive Operating Periods (IOPs): IOP1 (wet season) from February 1 to March
31, 2014 and IOP2 (dry season) from August 15 to October 15, 2014 (MARTIN et al.,
2016). The Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics
of Convective Cloud Systems (ACRIDICON) campaign was also held during I0P2.

The precipitation pattern over the study region is closely linked to the South Amer-
ican monsoon system (SAMS) (ZHOU; LAU, 1998; VERA et al., 2006; RAIA; CAV-

ALCANTI, 2008), which is related to several factors ranging from the local to the
synoptic scale. The first factor is local convection, triggered by forest-pasture con-
trast, river breezes, topography, and the urban heat island effect (SOUZA; ALVALÁ,
2014; DOSSANTOS et al., 2014; TANAKA et al., 2014). Secondly, mesoscale factors,
such as squall lines (COHEN et al., 1995; ALCÂNTARA et al., 2011), although most
frequent in the eastern portion of the Amazon basin, penetrate and propagate from
the northeastern region to the center of the basin and produce synoptic convec-
tive events, which are most common and intense during wet-to-dry and dry-to-wet
transitions. Thirdly, the synoptic scale Intertropical Convergence Zone (ITCZ) and
the influence of biomass aerosol (GONÇALVES et al., 2015) are the major weather
systems/conditions responsible for affecting the rainfall frequencies and intensities
and cloud cover (lowest in July and August and highest in February and March).
Thus, several precipitation systems and local factors are responsible for modulating
the diurnal cycle of precipitation (often leading to late night or early morning pre-
cipitation in Manaus) and for controlling the wet-dry seasons in the region around
Manaus (MACHADO et al., 2004; ANGELIS et al., 2004).

According to Martin et al. (2016), who used TRMM rainfall estimates (3B42-V7
product) from 2000-2014 over the Amazon basin, the 2014 wet season (IOP1) pre-
sented rainfall amounts greater than the fifteen-year mean (∼200 mm) around Man-
aus, except over the southern region, which presented values between 100 and 150
mm less than the mean accumulated precipitation. On the other hand, spatially-
distributed positive and negative anomalies of accumulated precipitation were ob-
served around Manaus during the 2014 dry season (IOP2), when precipitation pat-
terns are mainly associated with local characteristics.

4.2.2 Data Sources

Two GPM rainfall products, Level-3 IMERG and Level-2 GPROF2014, are evaluated
over the central Brazilian Amazon, considering the S-band SIPAM weather radar
in the city of Manaus as a reference. The S-band SIPAM is evaluated with respect
to the X-band dual polarization weather radar from the CHUVA project (X-band
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Figure 4.1 - Study area: (a) location and (b) radius of the S-band SIPAM (red) and X-band
CHUVA (blue) radars located near the cities of Manaus and Manacapuru.
Solid lines represent the radar original coverage. The dashed lines correspond
to the areas investigated in the present study.
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CHUVA radar). A brief description of the datasets used in this study is provided
next.

4.2.2.1 Radar Rainfall Estimates

The X-band CHUVA radar takes advantage of polarimetric variables for rainfall esti-
mates based on the Dual Polarization Surface Rainfall Intensity (DPSRI) algorithm
(PARK et al., 2004). The DPSRI algorithm uses a combination of reflectivity (Z), spe-
cific differential propagation phase (Kdp), and rain rate (R) variables (a Z-Kdp-R
relation), for X-band radars at a specific Constant Altitude Plan Position Indicator
(CAPPI) level. A detailed description of the precipitation retrievals technique used
by the X-band CHUVA radar and its performance in representing surface precipi-
tation compared to rain gauges can be found in Bringi et al. (2007) and Oliveira et
al. (2015).

The rainfall estimates from the SIPAM Manaus radar used in this study are pro-
cessed by Texas A & M University. The rainfall estimates are obtained through the

43



CAPPI product, based on the 240-km radial dataset. CAPPI products are available
for 0.5–20 km of vertical level. The vertical and horizontal resolutions are 500 m and
2 km, respectively. In order to eliminate spurious data (e.g., noise, ground clutter)
and improve the quality of the CAPPI products, a correction of the reflectivity field
is performed. A calibration constant is applied to the CAPPI files during the fol-
lowing periods: from 9 February 2014 to 27 August 2014 (+2.0 dB), from 28 August
2014 to 16 October 2014 (-3.0 dB) and from 17 October 2014 to 17 August 2015
(-6.0 dB). The calibration constants are derived based on a comparison with TRMM
PR data (SCHUMACHER; JR., 2000), providing the 56 dBZ baseline for IOP1, and a
study of ground clutter pixels to determine the stability of the radar dataset (SIL-
BERSTEIN et al., 2008). Calibration is determined using base scan information from
gridded Plan Position Indicator (PPI) scans.

The rainfall estimates are generated using the radar corrected reflectivity data at
the 2.5-km CAPPI level within a radius of 160 km of coverage. A power law re-
lation (Mismo relationship), which was found to be the most appropriate relation
for GoAmazon based on comparisons with rain gauge measurements, is used for the
conversion of radar reflectivity values to rain rates (Equation 4.1):

Z = 178RRx 1.44 (4.1)

where Z is the horizontal reflectivity (in dBZ) and RR is the radar rain rate (in mm
h −1). A final radar rainfall product with a spatial/temporal resolution of 2 km/10
min is then provided.

4.2.2.2 Goddard Profiling Algorithm

GPROF is a multichannel physical approach for retrieving both the instantaneous
rain rate and the vertical structure information using PMW radiometers on board
low-orbiting satellites. GPROF uses a Bayesian statistical approach to retrieve the
vertical structure of precipitation over land and ocean and has been developed
and enhanced for GPM. GPROF was originally developed for Special Sensor Mi-
crowave/Imager (SSM/I), but also applied to the TRMM Microwave Imager (TMI)
using the 2A12 algorithm (KUMMEROW et al., 1996; KUMMEROW et al., 2001) and
adapted for the Special Sensor Microwave Imager/Sounder (SSMI/S) for the F16,
F17, and F18 satellites (VILA et al., 2013).

GPROF aims to retrieve the instantaneous rainfall rate and the rainfall vertical
structure by using the response functions in different channels peaking at different
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depths within the raining column. According to Bayes’ theorem, the probability of
a particular rain profile (R) given the brightness temperature vector (Tb) is defined
as Equation 4.2:

Pr(R|Tb) = Pr(R) x Pr(Tb|R) (4.2)

where Pr(R) is the probability with which a certain profile R is observed and de-
rived using cloud-resolving models (CRM). The second term on the right-hand side
of Equation (2), Pr(Tb | R), is the probability of observing Tb, given a particu-
lar rain profile R. This conditional probability is obtained using radiative transfer
schemes to compute the brightness temperatures corresponding to the CRM output.
Together, the radiative transfer and the convolution of these temperatures to the
appropriate sensor resolution scheme comprise the forward modeling portion of the
retrieval algorithm. In its current version (2014, Version 1.4), GPROF is applica-
ble to different PMW sensors (imagers and sounders) and scan types (conical and
cross-track), such as the SSMI/S sensor on the DMSP(F16/F17/F18) satellites; Ad-
vanced Microwave Scanning Radiometer 2 (AMSR2) on board the Global Change
Observation Mission-Water 1 (GCOMW1) satellite; GMI on board the GPM core
observatory; TMI on board the TRMM satellite; Sondeur Atmosphérique du Profil
d’Humidité Intertropicale par Radiométrie (SAPHIR) on board Megha-Tropiques 1
(MT1); the Microwave Humidity Sounder (MHS) on board the European Meteoro-
logical Operational A and B (METOP(A/B)) and the NOAA 18 and 19 satellites,
as described by Kummerow et al. (2015) and Kidd et al. (2016). The GPROF2014
algorithm Version 1.4, applied to the GPM database (GPM, 2016), is analyzed in
this work. Table 4.1 lists some of the basic characteristics of the GPM constellation
PMW sensors and the respective satellites that carry them.
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Table 4.1 - Characteristics of the passive microwave (PMW) sensors used for the GPROF2014 (Version 1.4) rainfall retrievals ∗.

Satellite.Sensor No. of Channels Frequency (GHz) Scanning Sampling (km)
DMSP(F16/F17/F18).SSMI/S 24 19.35 - 183.31 Conical 12.5 x 12.5

GCOMW1.AMSR2 14 7 - 89 V/H Conical 10 x 7
GPM.GMI 13 10.65V/H, 18.7V/H, 23.8V, 36.5V/H, 89V/H, Conical 13.4 x 8

165.5V/H, 183.3±3V, 183±7V
TRMM.TMI 9 10.65V/H, 19.35V/H, 21.3V, 37V/H, 85V/H Conical 13.7 x 6
MT1.SAPHIR 6 183.31±0.2H, 183.31±1.1H, 183.31±2.7H, Cross-track 10 x variable

183.31±4H, 183.31±6.6H, 183.31±11H
METOP(A/B).MHS 5 89V, 157V, 183.3±1H, 183.3±3H, 190.3V Cross-track 15.88 x variable
NOAA(18/19).MHS 5 89V, 157V, 183.3±1H, 183.3±3H, 190.3V Cross-track 15.88 x variable

∗ Acronyms are defined in the text
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4.2.2.3 Integrated Multi-SatellitE Retrievals for GPM

IMERG is a Level-3 algorithm that is intended to intercalibrate, merge and interpo-
late all available PMW estimates of the GPM constellation (e.g., GMI, TMI, SSMIS,
AMSR2, and MHS), with PMW-calibrated IR estimates and gauge observations, to
produce a quasi-global (60 ◦N–S) 0.1 ◦ x 0.1 ◦ and 30 min dataset, from 1998 to the
present (HUFFMAN et al., 2014; HUFFMAN et al., 2015).

Rainfall estimates, initially retrieved by the PMW sensors through the GPROF2014
algorithm, are combined and inter-calibrated with three prior multi-satellite algo-
rithms: (i) TRMM Multi-satellite Precipitation Analysis (TMPA) (HUFFMAN et

al., 2007; HUFFMAN et al., 2010; HUFFMAN; BOLVIN, 2015), (ii) Climate Predic-
tion Center (CPC) Morphing-Kalman Filter Lagrangian time interpolation scheme
(CMORPH-KF) (JOYCE et al., 2004; JOYCE; XIE, 2011), and (iii) the Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks-
Cloud Classification System re-calibration scheme (PERSIANN-CCS) (HONG et

al., 2004). In parallel, CPC assembles the zenith-angle-corrected, intercalibrated
“even-odd” geo-IR fields and forwards them to the Precipitation Processing Sys-
tem (PPS) for use in the CMORPH-KF Lagrangian time interpolation scheme
and the PERSIANN-CCS computation routines. The PERSIANN-CCS estimates
are computed (supported by an asynchronous re-calibration cycle) and sent to the
CMORPH-KF Lagrangian time interpolation scheme.

The CMORPH-KF Lagrangian time interpolation (supported by an asynchronous
KF weights updating cycle) uses the PMW and IR estimates to create half-hourly
estimates. Then, the IMERG “Final” run combines the interpolated observational
precipitation data from the Global Precipitation Climatology Center (GPCC) Mon-
itoring Product (currently Version 4) at 1.0 ◦ spatial resolution. The Level-3 IMERG
Final Run (research) product at 0.1 ◦ x 0.1 ◦ and half-hourly resolutions, from March
to September 2014, is adopted in this study.

4.2.3 Evaluation Methods

4.2.3.1 Radar Rainfall Estimates as Reference

A validation analysis during March 2014 (CHUVA-GoAmazon, IOP1) is performed
to assure that those S-band SIPAM radar retrievals accurately represent the instan-
taneous rain pattern observed over the region and can be used further for satel-
lite evaluations. The S-band SIPAM radar evaluation is performed spatially (pixel-
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by-pixel), by comparison with the more accurate radar-based rainfall estimates by
the X-band CHUVA radar. The comparison between X-band CHUVA and S-band
SIPAM is performed over the X-band CHUVA radar coverage area (60 km radius).

Given the different spatial-temporal resolutions, the X-band CHUVA radar data are
resampled from their native 200-m resolution to the S-band SIPAM 2-km spatial
resolution. X-band CHUVA radar pixels are averaged within the S-band CHUVA
radar pixel. A maximum time interval of 2 minutes between both datasets is con-
sidered. A minimum threshold is set to 0.2 mm h −1, and 804 coincident time steps
(cases) are analyzed, with a total of 2,173,212 grid points. The S-band SIPAM radar
is chosen over the X-band CHUVA radar because of its longer record and larger area.
The S-band SIPAM radar is an operational weather radar, which provides real-time
monitoring. X-band CHUVA radar is only available during the specific IOPs, and it
is limited to 60 km due the attenuation effects.

4.2.3.2 Satellite-Radar Comparison

In order to evaluate the GPM satellite rainfall estimates over Manaus, IMERG and
GPROF2014 are compared to the S-band SIPAM radar rainfall estimates, for co-
incident (spatial and temporal) points during the period from March–September
2014. A radar coverage area of 30–110 km in radius is adopted because of radar
physical limitations in detecting signals directly above it (“cone of silence”) and far
at the constant altitude of 2.5 km. A minimum threshold of 0.2 mm h −1 for radar
and satellite datasets is used. Considering that IMERG is a half-hourly precipita-
tion product, with the precipitation being an average of all observations in the 30
min range, the S-band SIPAM radar estimates are integrated to the same tempo-
ral resolution. Such an integration criterion considers a minimum of 3 time steps
of S-band SIPAM radar for a 30 min radar final product. For the GPROF2014-
radar comparisons, the native (instantaneous) radar-rainfall estimates are used as
a reference, and a maximum time interval of 5 minutes between those datasets is
considered. Matching in space is performed by converting the S-band SIPAM radar
to the satellite product grid. Given that the total rain amount, the rain area, and/or
the PDF shape can be affected by the resampling technique (AMITAI et al., 2009),
the mean of the S-band SIPAM radar pixels inside the IMERG and GPROF2014
pixels is computed. Thereby, the original satellite rainfall estimates are preserved
in their native spatial/temporal resolutions: (i) the IMERG regular grid at 0.1 ◦ x
0.1 ◦ half-hourly and (ii) the GPROF2014 satellite projection (conical and cross-
track) with a spatial resolution varying depending on the sensor (Table 1) and up
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to two sampling overpasses per day in a given region. The total number of cases and
samples for each product are shown in Table 2.

Table 4.2 - Number of coincident time steps considered for the IMERG and GPROF2014
evaluations against the S-band SIPAM radar over the Manaus region during
Intensive Operating Period 1 (IOP1) and IOP2.

S-Band SIPAM radar
IOP1 IOP2 All seven months

Product Cases Sample Cases Sample Cases Sample
IMERG 826 185850 1324 297900 8578 1930050

GPROF2014 GMI 12(24) 5583 9(30) 3048
TMI 13(39) 6479 17(43) 8587
F16 ***(36) *** 16(42) 3461
F17 ***(37) *** ***(42) ***
F18 9(40) 2600 ***(40) ***

NOAA18 ***(42) *** 22(46) 1740
NOAA19 24(44) 1986 23(46) 1803
METOPA 19(35) 1648 18(43) 1638
METOPB 20(42) 1601 20(45) 1803
SAPHIR 38(93) 13445 32(107) 10787
GCOMW1 20(38) 18500 21(40) 18954

*** No satellite sensor overpasses over the study region during the investigated hour intervals; ( ) Total numbers

of GPROF2014 overpasses per satellite over the S-band SIPAM radar coverage.

4.2.3.3 Probability Distributions by Rainfall Volumes and Occurrences

In order to study the satellite precipitation error distributions, we looked at volumet-
ric (PDFv) and occurrence (PDFc) probability density function analyses (AMITAI

et al., 2009; WOLFF; FISHER, 2009; AMITAI et al., 2012; KIRSTETTER et al., 2013;
OLIVEIRA et al., 2015). The PDFv represents the relative contribution of each rain
rate bin to the total rainfall volume. Similarly, the PDFc provides the frequency
occurrences of each rain rate bin to the total number of occurrences. PDFc normally
tends to emphasize lighter rainfall rates, due its high frequency of occurrence. We
consider the following precipitation classes: 0.2–0.4, 0.4–0.8, 0.8–1.2, 1.2–1.6, 1.6–2,
2–5, 5–10, 10–20, 20–30, and ≥30 (in mm h −1). The analysis is performed monthly
from March to September and hourly for both wet (IOP1) and dry (IOP2) seasons
over the S-band SIPAM radar coverage.
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4.2.3.4 Statistical Analysis

The performance of satellite-based precipitation estimates is evaluated based on
continuous and categorical statistical metrics (SAPIANO; ARKIN, 2009; CIMINI et al.,
2013). To quantify the error between the estimate (A) and the reference (B) and their
linear agreement, the following continuous verification statistics are investigated:
correlation coefficient (COR), mean error (bias), root mean square error (RMSE),
and standard deviation (SD). On the other hand, the categorical statistical scores
include: (i) the probability of detection (POD), which measures the fraction of
precipitation events that are correctly detected by A; (ii) the false alarm ratio (FAR),
which gives the fraction of events that were misinterpreted as events; (iii) the success
ratio (SR), which is the ratio of hits to the total number of estimated events; (iv)
the critical success index (CSI) that measures the fraction of all estimated events
that were correctly diagnosed; and (v) the bias score (BIAS), which gives the ratio
of the estimated/observed rain pixels (WILKS, 2006; EBERT, 2007). For both the
continuous and categorical analyses, a minimum threshold of 0.2 mm h −1 for A-B
pairs is considered.

Continuous and categorical analyses can be graphically consolidated into the (TAY-

LOR, 2001) and performance (ROEBBER, 2009) diagrams. The Taylor diagram pro-
vides a way to summarize how closely a set of patterns matches observations, using
COR, RMSE and SD. In Taylor diagrams, the SD increases with the radial distance
from the origin and is normalized by the reference datasets, where 1.0 is the best
reference value. In this performance analysis, bias values are also included in the
Taylor diagram. The performance diagram utilizes the geometric relationship be-
tween SR, POD, BIAS and the CSI to display all four metrics simultaneously, with
a perfect forecast lying in the upper right region of the diagram.

4.3 Results and Discussion

In this section, we present and discuss the performance of IMERG and GPROF2014
rainfall algorithms over the Manaus region in the Brazilian Amazon, using the S-
band SIPAM radar as a reference. To ensure that the S-band SIPAM radar retrievals
accurately represent the instantaneous rain pattern observed over the region, a com-
parison with the X-band CHUVA radar is performed in Section 4.3.1. The abilities
of GPM IMERG and GPROF2014 to reproduce general precipitation characteris-
tics and rainfall diurnal cycles are both analyzed with respect to the S-band SIPAM
radar from March–September 2014.
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4.3.1 How Good Is Our Reference for Evaluating Satellite Precipitation
Products?

Figure 4.2 depicts a density scatterplot of the rain rate for S-band SIPAM radar
against the X-band CHUVA radar (coincident area within a 60 km radius of the
X-band CHUVA radar location). The corresponding PDFs and cumulative density
function (CDFs), both in terms of volumes and occurrences, are also shown for
March 2014. X-band CHUVA and S-band SIPAM radars show similar distribution
patterns. COR, BIAS, RMS, POD, and FAR recorded values of 0.7, 0.03 mm h −1,
0.71 mm h −1, 0.75, and 0.38, respectively.

Figure 4.2 - Comparative analysis between S-band SIPAM and X-band CHUVA radars:
(a) density scatterplot and (b) probability and cumulative density functions
of rainfall volume and occurrences. Note that the x-axis is in log scale.
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The S-band SIPAM radar presents a slight overestimation of precipitation, mainly for
light intensities (between 0.2 and 1 mm h −1), which are the most frequent, i.e., high
occurrence density (∼45%). On the other hand, an underestimation of heavy rainfall
volumes (greater than 10 mm h −1) is observed. In terms of CDF distributions, about
76% and 80% of CHUVA and SIPAM rainfall occurrences are from rain intensity
<1.0 mm h −1 and 96% and 98% from rain intensity <10 mm h −1. In terms of
volumes, about 20% and 25% (70% and 78%) for rain intensity <1 mm h −1 (<10
mm h −1) are observed by CHUVA and SIPAM radars. These results demonstrate a
good agreement between S-band SIPAM and X-band CHUVA radars, especially for
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the more frequent light events. The maximum differences in cumulative frequency
between SIPAM and CHUVA occurrence and volume distributions are about 4%
from light rain (<5 mm h −1).

In summary, the S-band SIPAM radar shows similar rainfall patterns when compared
to the X-band CHUVA radar in terms of PDF/CDF of rain occurrence and volume
and is therefore considered suitable to use as a reference for evaluating satellite pre-
cipitation products. Specifically, light to heavy rainfall volumes and occurrences are
well represented by S-band SIPAM, even though a slight overestimation in the fre-
quency of light rainfall volume/occurrence and an underestimation of heavy rainfall
volumes are observed. Such behavior might be related to the fact that S-band SIPAM
radar retrieval assumes a constant particle size distribution (see Equation (1)), which
may cause a misinterpretation of the correct drop size distribution (DSD) and, con-
sequently, a better quantification of instantaneous rain rate. However, the general
pattern of rainfall distribution proved to be consistent in representing the maximum
frequencies of occurrence and volume over distinct rainfall classes. A good alterna-
tive to investigate this effect is the assumption of more appropriate Z-R relationships
for SIPAM rainfall retrievals. Although the X-band CHUVA radar is resampled to
the same resolution of S-band SIPAM radar (2 km x 2 km), the accurate physical
capability of the X-band radar in capturing smaller and more intense rain cells is
limited over distances where attenuation is not major (BRINGI; CHANDRASEKAR,
2001).

4.3.2 Assessment of GPM-Based Products

Figure 4.3 summarizes the monthly performances of IMERG relative to the S-band
SIPAM radar, through continuous and categorical analyses using Taylor and perfor-
mance diagrams over the Manaus region for March–September 2014. Both Taylor
and performance diagrams show a seasonal dependence, which is strongly linked to
the precipitation regime in the region. The Taylor diagram, which uses a combina-
tion of COR, SD, RMSE, and bias parameters to represent the performance of the
product compared to the reference, shows an under-performance of IMERG dur-
ing all months (Fig. 4.3a). A slight wet-to-dry influence in monthly COR is noted,
with values ranging from 0.1 (dry) to 0.4 (wet). This wet-to-dry dependence is even
more evident in the RMSE, SD and bias, which vary from 1.0 to 2.0, 0.0–2.0, and
-0.18–0.15 mm h −1, respectively, going from the wet to the dry season. The wetter
(drier) months show higher (lower) RMSE and SD and positive (negative) bias. In
the performance diagram, optimal values of SR, POD, BIAS, and CSI score com-
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binations lie in the upper right region (Fig. 4.3b). The wetter months present the
highest CSI and the lowest FAR compared to drier months, which implies better
categorical performance during the wet months, compared to the drier months.

Figure 4.3 - (a) Taylor diagram and (b) performance diagram showing monthly met-
rics of IMERG (satellite) versus S-band SIPAM radar (reference) from
March–September 2014. Color dots indicate different months. On the Tay-
lor diagram, angular axes show COR, whereas radial axes show IMERG SD
(the centered RMS difference (solid gray line)) normalized against the refer-
ence. The triangle symbol and its direction (up/down) indicate the percent
bias (positive/negative). On the performance diagram, dashed lines represent
bias scores with labels on the outward extension of the line, while labeled solid
contours correspond to critical success index (CSI); the x- and y-axis repre-
sent the success ratio (SR) and POD, respectively; and sampling uncertainty
is given by the crosshairs.
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Figure 4.4 depicts monthly PDFs (both PDFv and PDFc) analysis for S-band SIPAM
radar and IMERG during March–September 2014. Overall, for both rainfall prod-
ucts, volumes between 5 and 20 mm h −1 largely contribute to the total rainfall accu-
mulated during the study period, representing about 20%–35% of the total monthly
rainfall. In terms of precipitation occurrences, the largest relative contribution is
provided by light rains (<1 mm h −1) at around 35%, with events between 2 and 5
mm h −1 also largely contributing (∼20%) to the total number of events. Distinct
seasonal characteristics are also observed over the Manaus region, especially in the
heavy rainfall classes (i.e., >20 mm h −1). Drier months are mainly characterized
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by volumes of rains above 20 mm h −1, whereas wetter months are characterized
mainly by events between 5 and 10 mm h-1. The frequency of light (0.2–0.4 mm
h −1) and heavy (i.e., >20 mm h −1) rainfall increases from March–September, while
an opposite behavior is observed for moderate rainfall (2–5 mm h −1) occurrences.

The shift in heavy rain frequency from wet to dry periods can be explained by
the increasing thermodynamic forcing, such as a reduction in the inversion layer
and an increase in the convective available potential energy (CAPE) and moisture
(MACHADO et al., 2004), which characterizes local and intense convective rain cells in
the region. During the wet season, besides higher rainfall amounts influenced by the
SAMS life cycle (RAIA; CAVALCANTI, 2008), rain volumes and occurrences are also
linked to synoptic/large-scale and mesoscale precipitating systems, e.g., squall lines
(COHEN et al., 1995). Thus, the interaction of systems from local to large scales and
from wet to dry periods strongly influences the amounts and occurrences of rainfall,
through the modulation of the diurnal cycle of precipitation.

Figure 4.4 - Monthly probability density functions of (a) S-band SIPAM radar, (b) IMERG
(V03D), and (c) their differences (IMERG-SIPAM) over the Manaus region
from March–September 2014 (wet to dry). Upper and lower panels indicate
the PDFv and the PDFc distributions, respectively.

a) b) c)

SOURCE: Author’s production.

As shown in Figure 4.4, IMERG presents an opposite pattern in PDFv and PDFc
distributions compared to S-band SIPAM radar, mainly at moderate and heavy rain
rates. During the wet season, IMERG tends to overestimate volumes of moderate
and heavy rain rates (>10 mm h −1). On the other hand, an underestimation in
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the volume frequency of moderate and heavy rainfall classes is observed during the
dry period, which is compensated by an overestimation in the frequency of light to
moderate rainfall (1–10 mm h −1) volumes. Moreover, IMERG tends to sample less
light rain rates than the radar (<1 mm h −1 for the wet season and 0.2–0.4 mm h −1

for the dry season), showing poor detection of light rain rates (<0.4 mm h −1) and
overestimating the 0.4–10 mm h −1 rainfall occurrences.

The wet-dry divergence in the IMERG ability of quantifying (PDFv) and detecting
(PDFc) heavy rainfall events may be attributed to: (i) PMW rainfall incursions
through the GPROF2014 algorithm; (ii) physical principles associated with the
rainfall inference through the IR channel, which relates the cloud top brightness
temperatures to the surface rain rate; (iii) errors in the integration among the
different retrieval algorithms (i.e., TMPA, CMORPH-KF and PERSIANN-CCS)
that generate the IMERG dataset; and/or (iv) bias adjustment with the GPCC
observational data usage.

4.3.3 Precipitation Diurnal and Seasonal Cycles

In this section, we evaluate IMERG’s ability to reproduce the diurnal cycle against
the S-band SIPAM radar. Figure 4.5a investigates the rain diurnal cycle by looking
at the mean and standard deviation (SD) of rain rates for the IOP1 (wet) and IOP2
(dry) periods by the S-band SIPAM radar. Both periods present high rain rates
during daytime, which is related to the thermodynamic conditions in the region.
During the wet period, the S-band SIPAM radar mean rainfall presents a primary
peak of 0.6 mm h −1 around 10:00–13:00 UTC, where maximum values of SD (2 mm
h −1) are also observed. A secondary SD peak (1.6 mm h −1) at around 00:00 UTC
is observed, which might be related to organized mesoscale convective systems over
the region.

In the dry period, the S-band SIPAM radar presents peaks of rain rate mean and SD
between 15:00 and 21:00 UTC, with values around 1 and 4.5 mm h −1, respectively.
Secondary rainfall mean (∼0.4 mm h −1) and SD (∼1.8 mm h −1) peaks are found
in the first hours of the day (from 00:00–08:00 UTC). The dry period is also charac-
terized by higher SD than the wet period, which suggests a larger spatial variability
of rainy events. During the dry period, local characteristics are more evident, and
preferential occurrence locations of convective rain cells are driven by local surface
types and thermodynamic conditions (GONÇALVES et al., 2015), which explain the
reason for the high mean and SD differences between IOP2 and IOP1.
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Figure 4.5 - (a) Diurnal cycles of the hourly mean and standard deviation (in mm h−1)
of rainfall measured by the S-band SIPAM radar; and (b) box plots of hourly
rainfall differences between IMERG (V03D) and S-Band SIPAM radar over
the Manaus region during IOP1 (upper panel) and IOP2 (lower panel). The
box plots show the median (horizontal bar), 25th and 75th percentiles (lower
and upper box bounds), and the maximum and minimum values (horizontal
upper and lower lines).
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The S-band SIPAM radar mean values and peak hours during the wet (dry) period
at 10:00–13:00 UTC (15:00–21:00 UTC) over the Manaus region corroborate the
results by Tota et al. (2000), Angelis et al. (2004), Machado et al. (2004), Tanaka
et al. (2014). Tota et al. (2000) attributed the maximum frequency around 19:00
UTC (15:00 Local Time) during the dry season to isolated convective activity and
the secondary (around 08:00 UTC) to organized mesoscale convective systems. An-
gelis et al. (2004), Machado et al. (2004), Tanaka et al. (2014) showed that rainfall
frequencies and intensities vary over the study region and that primary peaks may
change according to surface type (forest, city, among others).

Figure 4.5b shows box plots of rain rate differences (in mm h −1) between IMERG
and S-band SIPAM radar observations. During the wet season, IMERG presents
reasonable agreement with the reference, especially during the peak hour times (be-
tween 10:00 and 13:00 UTC), with the median differences close to 0 mm h −1, 25th,
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and 75th varying from -1 and 1 mm h −1 and minimum and maximum values varying
from -4 and 4 mm h −1. IMERG shows an overestimation between 00:00–04:00 UTC
and 15:00–18:00 UTC, especially at 03:00 UTC, which presents the highest values
of SD (12 mm h −1). On the other hand, IMERG fails to reproduce the diurnal cycle
structure during the dry season, showing an underestimation of hourly rainfall and
a poor representation of hourly peaks between 13:00 and 21:00 UTC. The IMERG-
SIPAM maximum negative differences during the dry period are observed at 18:00
UTC. At this time, which corresponds to the maximum values of rainfall mean and
SD observed by the SIPAM radar, large error bounds are observed, which suggests
that IMERG is not able to detect the large spatial variability of rainy events in the
region.

Figures 4.6 and 4.7, similarly to Figure 4.4, show the PDFv and PDFc distributions,
but at the hourly scale and focused on IOP1 and IOP2, respectively. The diurnal
cycle main pattern observed by the S-band SIPAM radar reveals distinct PDFv and
PDFc distributions between the two periods. During the wet period (Figure 4.6),
the rainfall between 5 and 20 mm h −1 shows high frequency (∼40% of the total
volume). A slight contribution of heavy rainfall (>20 mm h −1) around 00:00 and
12:00 UTC in terms of both volumes and occurrences is also observed. During the
dry period (Figure 4.7), the contribution of moderate and heavy rainfall (>5 mm
h −1) volumes/occurrences is more homogeneous than during the wet period. The
occurrence of light rain rates is more frequent (>50%) in the dry period than in the
wet period, except for 15:00–21:00 UTC, when the occurrence of heavy rain shows
high frequencies.

IMERG and the S-band SIPAM radar present similar distribution patterns, with
high frequencies (around 40%) of rainfall volumes between 5 and 20 mm h −1. How-
ever, IMERG tends to underestimate hourly light precipitation intensities and fre-
quencies (between 0.2 and 0.4 mm h −1). This corroborates what was observed by
Tang et al. (2016) over five distinct regions of mainland China. The positive (nega-
tive) biases during the wet (dry) period are mainly due to the overestimation (under-
estimation) of heavy rainfall volumes. In the wet period, overestimation (∼20%) of
heavy rainfall (>20 mm h −1) volumes (PDFv) is observed, especially at 00:00–03:00
and 15:00–21:00 UTC, clearly not related to the peak hours observed by the S-band
SIPAM radar. In the dry period, the underestimation of rain volume (∼40%) of
rainfall greater than 10 mm h −1 is recorded during the peak hours, between 13:00
and 21:00 UTC.
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Figure 4.6 - Hourly probability density functions of (a) S-band SIPAM radar, (b)
IMERG (V03D) and (c) their differences (IMERG-SIPAM radar) during the
GoAmazon-CHUVA IOP1 (wet season).

a) b) c)

SOURCE: Author’s production.

Figure 4.7 - Hourly probability density functions of (a) S-band SIPAM radar, (b)
IMERG (V03D), and (c) their differences (IMERG-SIPAM radar) during the
GoAmazon/CHUVA-ACRIDICON IOP2 (dry season).

a) b) c)

SOURCE: Author’s production.

IMERG performance dependence on seasonal and diurnal cycles is particularly evi-
dent when the contribution from different rainfall classes is analyzed. During the wet
season, precipitation in the Central Amazon is mainly dominated by large-scale sys-
tems (e.g., ITCZ and squall lines) and contributes with a high frequency of relatively
moderate rainfall (∼5 mm h −1) at any time of the day. IMERG shows a frequency

58



overestimation during the non-peak hours, which suggests a systematic error. On
the other hand, in the dry period, which presents more convective patterns that are
concentrated around 18:00 UTC, IMERG shows an underestimation. This may be
due to the satellite capability (e.g., spatial resolution) in detecting the presence of
intense and localized convective rain cells.

4.3.4 Investigation of Possible Sources of Inaccuracy

In order to investigate the source of IMERG inconsistencies in reproducing the
rainfall diurnal cycle, an evaluation of GPROF2014 over the Manaus region is per-
formed. Figure 4.8 shows the hourly overpasses of eleven satellite/sensors (conically
and cross-track scanning) in the GPM constellation and used in the GPROF2014
rainfall retrievals over the S-band SIPAM radar coverage during IOP1 and IOP2.
Figure 4.8 also shows the times at which IMERG overestimates and underestimates
the reference rain rates (shown in Figures 4.5-4.7). Conical and cross-track PMW
satellite sensors have a quasi-total daily coverage, with certain preferential hour
times by each satellite/sensor at specific times. For example, during the IOP1 and
IOP2 (shaded areas), the retrievals are based on the following sensors: SSMI/S
from F16 (for IOP2) and F18 (IOP1) satellites; AMSR2 (GCOMW1 satellite); MHS
from the METOPA, METOPB, NOAA18 (only in IOP2) and NOAA19 satellites;
SAPHIR (MT1); and TMI and GMI from the TRMM and GPM satellites.

Figure 4.8 - GPM satellite/sensors constellation overpasses by GPROF 2014 (Version 1.4)
over the Manaus region during the (a) GoAmazon/CHUVA IOP1 and (b)
GoAmazon/CHUVA-ACRIDICON IOP2.
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Figure 4.9 depicts the mean characteristics observed through PDFv and PDFc anal-
ysis from all of the GPROF2014 sensor/satellite overpasses against its coincident
S-band SIPAM radar time steps at 00:00–04:00 and 15:00–19:00 UTC during IOP1
and 13:00–21:00 UTC (IOP2). Overall, GPROF2014 has a good performance in
terms of PDFv and PDFc when compared to S-band SIPAM radar measurements.
However, GPROF2014 slightly overestimates the volume and occurrence of light
(<1 mm h −1) and heavy (>30 mm h −1) rainfall and underestimates moderate rain
(around 2 and 10 mm h −1) at 00:00–04:00 and 15:00–19:00 UTC during IOP1.
During IOP2 (13:00–21:00 UTC), when a convective PDFv distribution pattern is
expected, GPROF2014 strongly underestimates the frequency of heavy rainfall (>20
mm h −1) volumes, up to 20% less than those observed by S-band SIPAM radar. For
light rainfall (<1 mm h −1), GPROF2014 shows an overestimation in terms of vol-
ume (∼10%), but good agreement with S-band SIPAM radar in terms of occurrences
(i.e., PDFc distribution).

Figure 4.9 - Probability density function of rainfall volume (PDFv) and occurrences
(PDFc) from GPROF2014 (Version 1.4) over the Manaus region during (a)
the GoAmazon/CHUVA IOP1 (during 00–04 UTC and 15–19 UTC) and (b)
the GoAmazon/CHUVA-ACRIDICON IOP2 (during 13–21 UTC). The black
and gray lines represent the distributions from the S-band SIPAM radar and
GPROF2014 algorithm, respectively, while the solid and dashed lines rep-
resent the PDFv and PDFc distributions, respectively. The x-axis is in log
scale.
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The physical characteristics of the GPROF2014 PMW rainfall retrievals (e.g., sensor-
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based spatial resolution, representation of hydrometeors profiles, among others) may
be indicated as the main cause of the algorithm limitations. In addition, the sur-
face type factor (i.e., land, ocean, inland water, among others) and their different
emissivity signals may also have significant contributions in adopting a particular
hydrometeor profile and consequently in the final rainfall retrieval product. Figure
10 shows the GPROF2014 original over land differences, which emphasize the por-
tion of precipitation over the inland water (along the Negro, Solimões and Amazon
rivers, near Manaus, Amazonia, Brazil). Figure 4.10 presents differences between
each sensor and the S-band SIPAM radar during those times during which IMERG
performs poorly. The most prominent GPROF2014 original-overland differences are
found during the GPM GMI satellite sensor overpasses. GPROF2014 GMI presents
large overestimation (underestimation) of rain rate volume and occurrence greater
(less) than 10 mm h −1 up to 15%, during IOP1. Large overestimations around 13%
in PDFv and ∼15% in PDFc of rain rates between 5 and 10 mm h −1 are observed
on IOP2. However, an underestimation of light rain rate occurrence frequency is ob-
served by GPROF2014 for the GMI sensor. Evidence of the influence of the Amazon
River and the topography in local circulations, cloud cover and, consequently, pre-
cipitation in the region, are well reported by observational data, such as radar and
rain gauge and also by satellites, e.g., dosSantos et al. (2014), Tanaka et al. (2014),
GonÇalves et al. (2015), Machado et al. (2004), Negri et al. (2002). However, such
differences in IMERG, for both the wet and dry periods, appear more prominent
due to some systematic errors, which can emerge from a non-suitable adjustment
linked to the continent-ocean surface type adoption by the GPROF2014 algorithm
for GMI sensor.

4.4 Conclusions

In this study, the IMERG (V03D, “final” run) precipitation product is evaluated
against the S-band SIPAM radar in the proximity of Manaus city, located in the
Brazilian Amazon region. The analysis is performed during two seasons (wet and
dry) from March–September 2014. Special attention is given to the March and
September months (i.e., IOP1 and IOP2), when the GoAmazon and the CHUVA-
ACRIDICON field campaigns took place. To better assess the limitations of IMERG
in estimating the diurnal cycle of precipitation, during wet and dry periods, the
GPROF2014 PMW rainfall estimates are also analyzed, especially during times when
IMERG was not able to correctly quantify and/or detect rainfall.

The main conclusions of this work are:
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Figure 4.10 - Differences between the original PDFv (top) and PDFc (bottom) distribu-
tions and the over land only GPROF2014 rainfall retrievals over the Manaus
region during IOP1 (during 00–04 UTC and 15–19 UTC, left) and IOP2 (dur-
ing 13–21 UTC, right). Each bar and each line represent the contribution
of precipitation over inland water (along the Negro, Solimões and Amazon
rivers) for all sensor measurements used in the GPROF2014 algorithm.
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• As an important initial step for further satellite precipitation validation
analysis, S-band-SIPAM radar rainfall estimates are validated against an-
other radar-based precipitation (i.e., the X-band dual polarization radar
from the CHUVA project). Although a slight overestimation of light rain-
fall and an underestimation of heavy rainfall are observed in the PDFv and
PDFc analysis, SIPAM radar is considered suitable to use as a reference
dataset for validating satellite precipitation products.

• S-band SIPAM radar analyses revealed significant wet to dry contrast char-
acteristics over the Manaus region by PDFv and PDFc distributions. Dur-
ing the wetter (drier) period, the volume and occurrence contributions of
moderate (heavy) rainfall are clearly identified and strongly modulated by
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the diurnal cycle of precipitation.

• Statistical pixel-by-pixel analyses revealed a strong dependence of the
IMERG dataset performance on seasonality. The Taylor and Performance
diagrams indicate that IMERG performances were directly linked to the
monsoonal rainfall pattern over the region. The overestimation (underesti-
mation) of rain volumes is particularly significant for heavy rainfall classes
(>10 mm h −1) during IOP1 (IOP2).

• The diurnal cycle analysis during wet and dry periods presented certain
times with strong discrepancies between IMERG and the reference. During
IOP1, an overestimation between 00:00–04:00 UTC and 15:00–18:00 UTC
is observed, due to an overestimation of the occurrence and volume of heavy
rainfall. During IOP2, an opposite behavior with strong rainfall volume and
occurrence underestimation is found at 13:00–21:00 UTC, mainly due to
the non-captured isolated convective rain cells in the afternoon.

• Analysis of the GPROF2014 algorithm rainfall sensor retrievals explains
the IMERG’s poor performance. GPROF2014 slightly overestimates and
strongly underestimates heavy rainfall volume and occurrence, during
IOP1 and IOP2, respectively. GPROF2014 for the GMI sensor rainfall
retrievals presented the largest impact by inland water surface type, com-
pared to other sensors. Thus, a significant portion of rainfall volumes and
occurrences, observed by IMERG, comes from the GPROF2014-GMI rain-
fall retrievals, most prominent over the inland water surface type, along
the Negro, Solimões and Amazon rivers.

This study revealed important information regarding the IMERG and GPROF2014
quality and limitations over the Central Amazon region. This issue was observed
along the Negro, Solimões and Amazon rivers, but other regions of the globe and
surface types should be deeply investigated. Our findings are critical for the cor-
rect and successful applications of GPM rainfall estimates for applications, such as
natural disaster monitoring, data assimilation systems, hydrological modeling, cli-
mate studies, and for better understanding the physical processes of precipitating
systems over the region. These analyses also contribute to improving the GPM al-
gorithm. Future studies should be directed to investigating the characteristics and
distributions of uncertainties (systematic and random error components) for both
GPROF2014 and IMERG satellite rainfall estimates and exploring other regions in
Brazil and beyond.
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5 PERFORMANCE OF GPM-LEVEL 2 RAINFALL RETRIEVALS
OVER THE BRAZILIAN AMAZON USING TRADITIONAL AND
OBJECT-BASED METHODS

5.1 Introduction

This chapter evaluates the performance of GPM-level 2 PMW rainfall retrievals,
specifically the GPROF2014 algorithm for TMI and GMI against the more accu-
rate space-based active MW (PR and DPRKu sensors) rainfall retrievals, in repro-
ducing the main characteristics of precipitating systems and its uncertainties over
the Brazilian Amazon. The performance evaluations are made via traditional and
object-based techniques through Model Evaluation Tools (MET) toolkit.

The main scientific questions that this work seeks to answer are: (1) How is the
current performance of GPM’s PMW rainfall retrievals (GPROF2014 for TMI and
GMI) with regard to satellite-based active MW rainfall retrievals? (2) What are
the main physical characteristics of the precipitating systems (e.g. numbers, total
area, position distributions, among others) over the Brazilian Amazon through the
GPM-level 2 rainfall retrievals?

This chapter is organized as follows. In Section 5.2, I describe the study area and
its precipitation regimes and atmospheric conditions. The adopted datasets and the
methodology are described in section 5.3. In Section 5.4, results, I initially present
the pixel-based evaluations, following the spatial-based verification analysis. In Sec-
tion 5.5, a summary of the main results is presented.

5.2 Region of study, data, and methodology

This study is focused over an area, of 10 ◦ x 10 ◦, in the Brazilian Amazon
(55 ◦W–65 ◦W and 8 ◦S–2 ◦N). Such study area was selected in order to obtain the
largest number of coincident TRMM and GPM Core satellite overpasses over the re-
gion. This analysis is also made considering its different precipitation regimes along
the year, which may impact the performance of GPM Level-2 rainfall retrievals in
better detecting and quantifying the precipitating systems over the region. Table 5.1
depicts the numbers of coincident TRMM and GPM satellite overpasses from March
to September 2014 over the study area.

This study utilizes four sources of precipitation data from the near–real time GPM
constellation of satellites. The data are separated into two main groups: passive
and active MW rainfall estimates. The first group are the rainfall rates from the
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Table 5.1 - Number of coincident TRMM and GPM satellite overpasses over the study
area.

March April May June July August September
PR-DPR 17 0 8 0 8 4 4
PR-TMI 64 63 65 62 66 63 62
DPR-GMI 23 37 40 37 39 37 38

TRMM and GPM Microwave Imager (TMI and GMI) radiometers in addition to
the Goddard PROFiling 2014 (GPROF2014) (Version 2.0) algorithm. The second
group consists of the near surface rainfall retrievals from the Precipitation Radar
(PR, 2A25 Version 7) and the Dual Precipitation Radar (DPRKu) active microwave
sensors on board the TRMM and GPM Core satellites, respectively. A total of
41 coincident overpasses from March to September 2014 are studied. Figure 5.1
shows all the regions considered in the present study and the swaths of the PR
and DPRKu active microwave sensors from their correspondent TRMM and GPM
satellite overpasses.

The analyses were performed comparing the GPROF2014 algorithm applied to TMI
and GMI observations against the PR and DPRKu near surface rainfall products,
from their respective TRMM and GPM satellites. Given the different spatial reso-
lutions of the products under study, all the level-2 rainfall retrievals were resampled
to similar spatial resolutions. A mean of the pixels inside the regular grid at 0.12 ◦

x 12 ◦ resolution were computed.

Two types of analyses for the performance evaluation of GPM-level 2 rainfall es-
timates from the GPROF2014 against PR and DPRKu are adopted. In the first
part, such algorithms are evaluated spatially and temporally using point to point
(pixel-based) analysis, considering the use of traditional techniques of verification
through categorical events and continuous variables. Such analyses will be conducted
by discrete evaluation. Thus, the following continuous verification statistics are in-
vestigated: correlation coefficient (COR), mean error (bias), root mean square error
(RMSE), and standard deviation (SD). The distribution pattern of rainfall, from
light to heavy rain rates, are also assessed through the volumetric (PDFv) and oc-
currence (PDFc) probability density function analyses (AMITAI et al., 2009; WOLFF;

FISHER, 2009; AMITAI et al., 2012; KIRSTETTER et al., 2013; OLIVEIRA et al., 2015;
OLIVEIRA et al., 2016).

On the other hand, the categorical statistical scores include: i) the probability of de-

66



Figure 5.1 - Location of the study area. Lines inside each 10x10 degrees grid box (red)
represent an example of a single TRMM and GPM satellite overpass over
that area. Solid lines represent the swath width from TMI and GMI sensors.
The dashed lines correspond to the swath width from the PR and DPRKu
sensors.
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tection (POD), which measures the fraction of precipitation events that are correctly
detected by A; ii) the false alarm ratio (FAR), which gives the fraction of events
that were misinterpreted as events; iii) the success ratio (SR), which is the ratio
of hits to the total number of estimated events; iv) the critical success index (CSI)
that measures the fraction of all estimated events that were correctly diagnosed; and
v) the bias score (BIAS), which gives the ratio of the estimated/observed rain pix-
els (WILKS, 2006; EBERT, 2007). For both the continuous and categorical analyses,
a minimum threshold of 0.2 mm h −1 for A-B pairs is considered. Given all these
scores, the continuous and categorical analyses were graphically consolidated into
the (TAYLOR, 2001) and performance (ROEBBER, 2009) diagrams, respectively.

In the second phase, the evaluation products were made by the spatial verification
method through the Method for Object-Based Diagnostic Evaluation (MODE) tool
(DAVIS et al., 2006; DAVIS et al., 2009). Through the complete time series under study
(from March-September 2014), as well as the selected significant cases, the following
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attributes from the MODE method are obtained and evaluated: total number of
single objects (matched and unmatched), total number of cluster objects, total area
of objects, cluster pair centroid distance (minimum, 1st quartile, median, mean, 3rd
quartile, and maximum), cluster pair centroid displacement (minimum, 1st quar-
tile, median, mean, 3rd quartile and maximum), and the symmetric difference. The
symmetric difference is the total non-overlap area between the matched objects,
shaded in gray (smaller is better). The centroid distance is the difference between
the two centroids of the matched objects. The centroid displacement examines the
x (nominally east–west) and y (nominally north–south) offsets of the centroids of
two matched objects (WOLFF et al., 2014).

However, as a preliminary step, to assure that the satellite-based radar retrievals
from PR and DPRKu sensors accurately represent the instantaneous rain pattern,
given that these retrievals come from the same measurement principle, it is impor-
tant to compare the near surface rainfall retrievals from the 2A25-V7 and DPRKu
algorithms over the study domains. The comparison are made over the complete
Brazilian domain (30 ◦W–75 ◦W and 35 ◦S–5 ◦N), centered at Manaus city. Fig-
ure 5.2 depicts the scatterplot and the corresponding PDFs, both in terms of volumes
(PDFv) and occurrences (PDFc) of the near-surface rain variables for TRMM PR
(2A25-V7 algorithm) against the GPM DPR (Ku band) over the Brazilian domain.
The rainfall retrievals show similar distribution patterns. Despite the relatively low
COR (∼0.7), the different classes of rainfall, from light to heavy rainfall, are well
represented in terms of volume and occurrence, which shows higher volume contribu-
tion of rainfall around 10 mm h −1. The POD and FAR recorded values of ∼0.85 and
∼0.18, suggesting that events were correctly detected in both active-based rainfall
retrievals.

5.3 Results

5.3.1 Pixel-based evaluations

Figures 5.3 and 5.4 show the scatter plots (upper panels) and the PDFs of volume
and occurrence (in %) (lower panels) of the rain rate (in mm h −1) for the TRMM
PR versus GPROF2014 (TMI) and the GPM DPR (Ku band) versus GPROF2014
(GMI), respectively, over the 10 ◦ x 10 ◦ Brazilian Amazon area. A summary of
statistical indicators, such as COR, bias, RMS, POD, and FAR, are also included
in Figures 5.3 and 5.4.

GPROF2014 for both the TMI and GMI sensors presented good agreement in com-
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Figure 5.2 - Comparative analysis between TRMM PR and GPM DPR(ku) near surface
rainfall retrievals: (a) scatterplot and (b) probability density functions of rain-
fall volume and occurrences. Note that the rain rate distributions at y- and
x-axis are in log scale.
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parison with the TRMM PR and GPM DPR rainfall retrievals. An intensity pattern
with a prominent underestimation of heavy rainfall (>30 mm h −1) and overesti-
mation of moderate rainfall, around 10 mm h −1, were observed during the study
period. An underestimation in the occurrence and volume of light rainfall were ob-
served. Those results are in agreement with those obtained for Southeastern Brazil
through GPROF2004 for SSMI/S during the CHUVA-VALE campaign (OLIVEIRA

et al., 2015). The authors suggest that the performance is intrinsically linked to the
convective-stratiform rainfall occurrences over the study region. On the other hand,
over the Manaus region, Oliveira et al. (2016) observed that GPROF2014 (Version
1.4) tends to include non realistic values of rainfall over the river, which in fact are
corrected for this version used in this study (Version 2.0), as well observed through
the PDFv and PDFc in Figures 5.3 and 5.4.
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Figure 5.3 - Monthly (from March-September, 2014) scatterplots (upper panels) and PDFv and PDFc (lower panels) of the rainfall estimates
between TRMM PR and GPROF2014 (GMI) rainfall products. Note that the rain rate distributions at y- and x-axis are in log
scale.
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Figure 5.4 - As Fig. 5.3, but for the DPR and GPROF2014(GMI) rainfall retrievals.

  

SOURCE: Author’s production.
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Figure 5.5 depicts the Taylor and Performance diagrams, which summarize, through
the continuous and categorical variables, the relation between COR, RMSE, and SD
indexes and the categorical scores SR, POD, BIAS, and the CSI simultaneously to
show how closely a set of patterns matches observations. GPROF2014 for TMI pre-
sented slightly better correlation with TRMM PR than the GPROF2014 for GMI
against GPM DPR. However, the COR comparisons for all the months ranged from
0.46 to 0.65. The normalized SD for almost all the cases are encountered between
0.5 and 1.0. The RMSE for the cases are in between 0.7 and 1.0. Such relatively
low values of RMSE and normalized SD indicates a slightly underestimation of
GPROF2014 for both the TMI and GMI observations (Fig. 5.5a). A better categor-
ical performance was observed during the wetter months (placed in the upper right
region in Fig. 5.5b), with accurate rainfall detection, characterized by low confidence
intervals, with special attention for April by GPROF2014(TMI) against TRMM PR.

Figure 5.5 - (a) Taylor diagram and (b) performance diagram showing monthly metrics
of TRMM PR and GPM DPR (Ku) versus GPROF2014 for TMI and GMI,
respectively, from March–September 2014. The circle (rectangle) represents
the TRMM PR x GPROF2014(TMI) (GPM DPR x GPROF2014(GMI)) for
each month. The location in the performance diagram gives the value of per-
formance statistics (POD, BIAS, SR (1-FAR), and CSI) with cross hairs rep-
resenting the confidence interval.
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5.3.2 Spatial verification

Beyond the previously assessed pixel-versus-pixel evaluation methods, this section
compares, through the MODE object-based toolkit, the performance of both level-2
rainfall retrievals techniques in reproducing the physical characteristics (i.e., num-
ber, size) of precipitating systems over the Brazilian Amazon. MODE produced a
large number of attributes for single and matched pairs, for this case linking both the
rainfall retrieval fields, and these attributes can be used for more detailed compar-
isons of single storms and/or satellite overpasses. Figure 5.6 provides an illustration
of the MODE objects obtained from GPM DPR (Ku band) near surface rainfall
retrievals and GPROF2014 (GMI) rainfall retrievals valid at 0553 UTC 12 March
2014, both resampled to similar spatial resolutions (12-km). It is possible to ob-
serve that simple precipitation objects are identified and well represented by both
the satellite products. However, those precipitation objects differ from each other
in different aspects (e.g., centroid distance, area, angle, symmetry, among others),
which are investigated here during the seven months.

Given the variety of measures computed by MODE, the accuracy is evaluated
when objects are matched between the forecast field (GPROF2014 for TMI and
GMI) and observed field (TRMM PR and GPM DPR). The unmatched object
count represents misses/false alarms. The differences between the forecast and ob-
served numbers of precipitation objects, area, and location attributes are com-
puted. Table 5.2 depicts the total numbers (counts) and area of precipitation objects
(matched and unmatched) from the two pairs of dataset fields under comparison,
based on the period from March-September 2014. The total number of TRMM PR-
GPROF2014(TMI) objects are greater than those obtained from the GPM DPR-
GPROF2014(GMI), which can be explained by its number of overpasses considered.
However, the portion of unmatched TRMM PR object are considerable larger than
for GPM DPR and their respective fields. On the other hand, the total area of ob-
jects from GPM DPR-GPROF2014(GMI) are significantly larger than from TRMM
PR-GPROF2014(TMI). The portions of matched/unmatched total area of objects
indicate good performance of GPROF2014 for TMI and GMI in representing the
total area of objects, although GPROF2014 for GMI presented more misses/false
alarms than the GPM DPR. The TRMM PR presented a greater portion of un-
matched number and area of objects than all the products under study.

The statistical results (centroid distance and displacement) of the matched ob-
jects are analyzed separately for both the comparisons. Tables 5.3 and 5.4 de-

73



Figure 5.6 - An example illustrating the MODE output objects: (top) GPM DPR (Ku
band) near surface rainfall estimates (left) and GPROF2014 (GMI) rainfall
retrievals (right) valid at 0553 UTC 12 March 2014; (middle) the identified
simple matched objects; and (bottom) the object identification index. Both
the rainfall fields are on the 12 km domain. Similar colors between the fields
indicate matched objects. The black lines surrounding objects are the convex
hulls (clusters). Dashed lines indicate the coincident DPR Ku band and GMI
swaths. A summary of the main MODE object results are also shown.
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Table 5.2 - General statistics of the number and area of objects identified by the
MODE toolkit for the TRMM PR x GPROF2014(TMI) and GPM DPR
x GPROF2014(GMI) precipitation fields, based on the period from March-
September 2014.

Sensor Total No. of Obj. Matched Total Area of Obj. Matched
Unmatched Unmatched

PR 330 178 4719 3945
152 774

TMI 176 158 3052 2948
18 104

PR-TMI 506 7771

DPR 208 144 5158 4706
64 452

GMI 234 168 6262 5770
66 492

DPR-GMI 442 11420

pict the centroid distance and displacement for the matched cluster objects. Even
with the larger number of overpasses over the region (seen in Tab. 5.1), the to-
tal number clusters from TRMM PR-GPROF2014(TMI) are quite close to the
GPM DPR-GPROF2014(GMI) pairs. The centroid distances (Tab. 5.3) reveal an
opposite distribution pattern between those comparisons. For instance, TRMM
PR-GPROF2014(TMI) presented higher (lower) values of the median (maximum)
than the GPM DPR-GPROF2014(GMI) comparisons. Such behavior indicates that
although the centers of mass of the identified objects from GPM DPR are far-
ther apart (maximum), they are frequently closer (median) to those objects from
GPROF2014(GMI). Meanwhile, looking at the X (west–east) and Y (north–south)
displacements of the centroids (Tab. 5.4), the seven month summary statistics reveal
that GPROF2014 (TMI and GMI) tended to have a general easterly and northerly
bias in the location of objects in comparison with TRMM PR GPM DPR, explained
by their positive median/mean X and Y values.

Table 5.3 - Cluster pair centroid distance for the TRMM PR x GPROF2014(TMI) and
GPM DPR x GPROF2014(GMI) precipitation fields computed by the MODE
toolkit. The centroid distance is the difference between the two centroids of
the matched objects.

Pairs Clusters Min. 1st Qu. Median Mean 3rd Qu. Max.
PR-TMI 206 0.000 1.237 2.094 2.942 4.108 11.360
DPR-GMI 232 0.1224 1.1180 1.8740 2.6000 2.9150 12.3900
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Table 5.4 - Cluster pair centroid displacement for the TRMM PR x GPROF2014(TMI)
and GPM DPR x GPROF2014(GMI) precipitation fields from the MODE
toolkit. The centroid displacement examines the X (nominally east–west) and
Y (nominally north–south) offsets of the centroids of two matched objects.

Pairs Offsets Min. 1st Qu. Median Mean 3rd Qu. Max.

PR-TMI X -9.67900 -0.01786 0.83030 0.65080 1.74900 6.97300
Y -4.9190 -0.6613 0.3290 0.4712 1.4250 7.5830

DPR-GMI X -8.5000 -0.3390 0.3223 0.1768 1.0000 3.9010
Y -8.0100 -1.0720 0.5000 0.5117 1.4450 11.9700

Considering the general statistics, previously described for the whole period (from
March-September 2014), we now evaluate MODE attributes monthly through the
seven month study period, in order to investigate any seasonal dependency of the
GPM Level-2 precipitation products on the object identification/characterization.
Figure 5.7 shows the monthly time series of the number of total MODE objects
computed from both the TRMM PR-GPROF2014(TMI) (Fig. 5.7a) and GPM
DPR-GPROF2014(GMI) (Fig. 5.7b) comparisons. Furthermore, in Figure 5.7 we
can see the portion of matched and unmatched objects from each precipitation
product. A peak number of observed precipitation objects was found during the
wet season (from March to May), and a minimum number was found during the
dry period (June-September), observed in both of the comparisons. TRMM PR-
GPROF2014(TMI) presented a higher occurrence of identified objects than GPM
DPR-GPROF2014(GMI). The highest portion of number of precipitation objects
is from TRMM PR (solid blue dot/line) (Fig. 5.7a), contrasting with the highest
portion from GPROF2014(GMI) (Fig. 5.7b).

On the other hand, the monthly distributions of the number of matched objects (solid
light blue line) in both comparisons are quite close and substantially larger than the
unmatched number of objects. Such behavior is more prominent in the TRMM PR-
GPROF2014(TMI) monthly comparisons. It is worth mentioning that TRMM PR
also presented a higher occurrence of monthly misses/false alarms than the other
precipitation products, explained by its higher number of unmatched objects. During
the dry period the simple small objects (local convection) are not well detected in
either comparison.

In order to investigate the simple precipitation objects identified in each field,
the monthly time series showing the total area of precipitation objects identified
by MODE for TRMM PR x GPROF2014(TMI) (Fig. 5.8a) and GPM DPR x
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Figure 5.7 - Monthly time series showing the total numbers (counts) of precipitation ob-
jects identified by MODE for (a) TRMM PR x GPROF2014(TMI) and (b)
GPM DPR x GPROF2014(GMI).
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GPROF2014(GMI) (Fig. 5.8b) are assessed. The area of the identified precipitation
objects in both comparisons is consistent across valid months, with the largest object
areas during the wet season. The portion of matched/unmatched object area reveals
a good performance of those precipitation products in estimating the area of the pre-
cipitating systems. However, an opposite object area detection pattern between the
TRMM PR x GPROF2014(TMI) and GPM DPR x GPROF2014(GMI) comparisons
was found. The overall area of the TRMM PR (GPROF2014(GMI)) precipitation
objects was significantly larger than those identified in the GPROF2014(TMI) (GPM
DPR) fields, regardless of the month examined. For instance, the portions of matched
object areas from TRMM PR (GPROF2014(TMI)) in March and April are about
1192 and 946 km 2 (1006 and 860 km 2). For the GPM DPR and GPROF2014(GMI)
the portion of matched object areas for the same months are 913 and 747 km 2 and
1104 and 1052 km 2, respectively.

The larger area values of observed precipitation objects during the wet season is
related to the large scale climatological characteristics, with the action/interaction
of distinct precipitating systems over the study region (e.g., squall lines, Intertropical
Convergence Zone (ITCZ), among others). On the other hand, the lower values
during the dry season may be attributed to the local factors and the occurrence
of small and individual precipitating cells (and the nature of convective initiation)
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around that period.

Figure 5.8 - Monthly time series showing the total area (in km 2) of precipitation objects
identified by MODE for (a) TRMM PR x GPROF2014(TMI) and (b) GPM
DPR x GPROF2014(GMI).
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Figure 5.9 shows the monthly time series plot of the median centroid distances
(Fig. 5.9a) and displacements (Fig. 5.9b) for all the GPROF2014 (TMI and GMI)
objects compared to their matching observed TRMM PR and GPM DPR objects
aggregated from March-September 2014 The centroid distance reveals an opposite
monthly distribution between the comparisons. For example, the maximum median
values of the centroid distance in TRMM PR x GPROF2014(TMI) comparisons was
found in June 2014. In this month, GPM DPR x GPROF2014(GMI) presented the
minimum median distance between the matched precipitation objects, either due to
the impact of the object area size or location. However, during that period, for both
comparisons, the X and Y displacements of the centroids reveal that GPROF2014
(TMI-GMI) tended to have a general easterly bias in the location of objects dur-
ing almost all the months under study, except during September for GPROF2014
(GMI), which presented a westerly bias. For the Y displacements of the centroids, a
seasonal dependency was found. During the wet (dry) period, a northerly (southerly)
bias was noted in both comparisons, also except for GPROF2014 (GMI) in Septem-
ber. Although the active-based microwave retrievals seem to be more accurate than
the passive microwave rainfall retrievals, which in some cases take into account those
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Figure 5.9 - Monthly time series plot of the median centroid distances (black dot/line)
and displacements (in the X (solid) and Y (dash)) for all the GPROF2014
(TMI and GMI) objects compared to their matching observed TRMM PR and
GPM DPR objects aggregated from March to September, 2014. A positive
(negative) value in the X direction (CENTX) indicates an easterly (westerly)
bias and a positive (negative) value in the Y direction (CENTY) indicates a
northerly (southerly) bias.
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retrievals (i.e., GPROF2014 rainfall estimate approach), such information could nor-
mally vary given that those rainfall products are based on distinct approaches and
the nature of precipitation is treated differently physically. Furthermore, the satel-
lite overpasses under study do not necessarily capture the same object or stage of
the life cycle of precipitating systems. Nevertheless, another point to be considered,
which can be acquired from this section, is that the precipitation related to the low
cloud top brightness temperatures (i.e., retrieved from TMI and GMI besides the
GPROF2014 algorithm), may not precipitate at the surface, as well as that obtained
from the active microwave rainfall retrievals (i.e., the near surface rain rate variable
from the TRMM PR and GPM DPR). On the other hand, the identification of
rainfall in the surface (object) observed by active microwave and not by the passive
microwave rainfall retrievals may be associated with the presence of the bright band
of stratiform precipitating systems and/or to the occurrence of warm rain (defined
as liquid precipitation at the surface originating from pure liquid water clouds).
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5.3.3 Case study: Investigation of possible sources of GPM rainfall ob-
ject identification uncertainties

To investigate the observed differences in object characterization (e.g., object area)
between the PMW and active MW rainfall retrievals, I examine the same single case
study mentioned before (seen in Figure 5.6). The individual GPM overpass enables
the physical examination of the performance of DPRKu against GPROF2014 for
GMI rainfall retrievals in characterizing the object structures (spatial and vertical
distributions). Figure 5.10 depicts the case study with emphasis on the identified ob-
ject N.o 2 through both the rainfall retrievals. The object N.o 2 is also highlighted by
the Contoured Frequency by Altitude Diagram (CFAD) (YUTER; HOUZEJR., 1995),
computed by the DPRKu zFactorCorrected variable and constructed over the total
object area obtained from both the DPRKu and GPROF2014(GMI) rainfall fields.
The CFADs utilize all grid points and all available vertical levels inside the object
N.o 2 and enables the investigation of the precipitating system under question, dis-
criminating the convective and stratiform clouds by their vertical structures and also
the height of freezing level (presence of bright band). Analyzing the CFAD for the
N.o 2 precipitating system (total area object), in a gross sense, there is a mixed char-
acteristic of convective and stratiform precipitation profiles. The height of freezing
level was observed below 5 km, with maximum reflectivity values around 47 dBZ.
Although the vertical profiles are all most typically stratiform (high contribution of
20-30 dBZ at surface), a large concentration of high values of reflectivity (up to 50
dBZ) was observed. A notable concentration peak is also observed between 8 and 9
km, which suggests a possible influence of ice scattering on cloud top.

To better understand the behaviors seen in object N.o 2 by CFAD from DPRKu
zFactorCorrected, displayed in Figure 5.10, we now adopt the matched and un-
matched object area criteria, in order to separately analyze the possible influence
of the vertical profile structure on the rainfall object identification. The matched
portion assumes that both the DPRKu and GPROF2014(GMI) correctly agree in
identifying the object and the coincident overlapped object area is then analyzed.
The unmatched portion is the opposite consideration; it takes into account the ob-
ject area observed by GPROF2014(GMI) and not observed by DPRKu. Figure 5.11
depicts the bi-dimensional histogram (CFAD) of DPRKu zFactorCorrected for the
matched and unmatched object area profiles. It is clearly evident that the agree-
ment between DPRKu and GPROF2014(GMI) retrievals in object area identifica-
tion (matched profiles) presented good performance in the convective precipitation
situation (Fig. 5.11a). On the other hand, under the stratiform situation (unmatched
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Figure 5.10 - Case study, seen as an example in Fig. 5.6, from a single GPM overpass over
the central Amazon region: a) precipitation and object fields by GPMKu and
GPROF2014(GMI) and b) the N.o 2 object area bi-dimensional histogram
(CFAD), computed from DPRKu (zFactorCorrected variable)

  

GPM DPRKu - zFactorCorrected

Mixed VPs (Conv./Strat)

a) b)

SOURCE: Author’s production.

profiles), GPROF2014(GMI) tends to identify a larger object area than the DPRKu
(poor performance), possibly due the presence of the bright band (Fig. 5.11b).

Figure 5.12 illustrates, through the five most significant vertical profiles inside of
each unmatched and matched object area, the notable influence of the bright band
on the performance of the GPROF2014(GMI) rainfall retrievals. The reflectivity in-
creases downward to a maximum at the freezing level in both the convective and
stratiform profiles (around 40 dBZ near 5 km). However, below the freezing level,
the reflectivity decreases slightly and then remains constant down to the surface
in stratiform unmatched object area profiles, with values around 32 dBZ near the
surface. An opposite behavior in observed convective area profiles is seen. The re-
flectivity values significantly increase below the bright band, up to near 55 dBZ
near surface. These differences in vertical profiles suggest that the PMW rainfall
retrievals by GPROF2014 for GMI tend to overestimate the precipitation near the
surface due the presence of the bright band.

81



Figure 5.11 - Bi-dimensional histogram (CFAD) of DPRKu zFactorCorrected for the N.o 2
object areas: a) matched (convective profiles) and b) unmatched (stratiform
profiles).
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SOURCE: Author’s production.

5.4 Summary and conclusions

This study evaluates the performance of GPM-level 2 PMW rainfall retrievals, specif-
ically the GPROF2014 algorithm for TMI and GMI against the active MW (TRMM
PR and GPM DPRKu sensors) rainfall retrievals, in reproducing the main charac-
teristics of precipitating systems and its uncertainties over an area of 10 ◦ x 10 ◦

in the Brazilian Amazon. The performance evaluation is performed via traditional,
pixel-by-pixel, and object-based (spatial) techniques through the Model Evaluation
Tools (MET) toolkit.

Despite the underestimation of volume and occurrence of heavy rainfall, a good
agreement of GPROF2014 for TMI and GMI versus TRMM PR and GPM DPR
(Ku band) rainfall retrievals, respectively, was noted. The most evident good per-
formance was found through continuous and categorical analysis, which suggested
a seasonal dependency of GPROF2014 (TMI and GMI) in better quantifying high
amounts of precipitation over the region. The wet period presented a better corre-
lation than the dry period, slightly more notable in the TRMM PR x GPROF2014
(TMI) comparisons.
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Figure 5.12 - Five most representative matched and unmatched vertical profiles from
DPRKu zFactorCorrected.

  

bright band

SOURCE: Author’s production.

.

The total number and area of TRMM PR-GPROF2014(TMI) objects are greater
than those obtained from the GPM DPR-GPROF2014(GMI), which can be ex-
plained by the number of overpasses considered. However, TRMM PR presented
a large contribution of unmatched objects. Such behavior is repeated during the
seven months under study. The wet (dry) season received a large (small) portion
of matched object numbers and areas. The median distances and displacements of
the matched centroids reveal a general easterly bias in the location of objects dur-
ing almost all the months under study. During the wet (dry) period, a northerly
(southerly) bias was observed. However, an opposite behavior between both com-
parisons was found in terms of centroid distance, although the mean values are quite
similar during the seven months.

The structure of vertical profiles, as well the height of freezing level of precipitating
systems, was the main source of uncertainty of GPROF2014 for GMI, related to
the object area identification and its physical features. GPROF2014(GMI) tends to
overestimate the precipitation near the surface due the presence of the bright band
of precipitating systems.
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Future studies should be designed to investigate: i) the characteristic distributions
of other MODE variables, including other spatial techniques, such as the fractions
skill score (FSS) neighborhood method; ii) other sensors (i.e., conical and cross-
track scans) applied to the GPROF2014 algorithm; iii) exploring other regions in
Brazil, with different precipitating regimes, for a longer period; and iv) the relation
between the GPM MODE attributes and the precipitation type (i.e., convective and
stratiform) and/or the life cycle of convective systems (initiation, maturation, and
dissipation phases), i.e., provided by Forecast and Tracking the Evolution of Cloud
Clusters (ForTraCC) toolkit.
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6 ERROR MODELING APPLIED TO GPM-LEVEL 3 RAINFALL
ESTIMATES OVER THE CENTRAL AMAZON REGION: CHARAC-
TERISTICS AND VALIDATION

6.1 Introduction

This chapter aims to assess the characteristics and uncertainty distribution of GPM-
Level 3 rainfall estimates (IMERG) via error modeling over the central Amazon
region. The analysis considers the S-band SIPAM radar as a reference. The error
modeling evaluations consider the PUSH framework, originally proposed by Mag-
gioni et al. (2014). In this study, PUSH is well calibrated and validated for the study
region and takes into account some local factors, as well as seasonality and surface
types (i.e., land and river).

This work seeks to answer the follow scientific questions: (1) What are the char-
acteristics and uncertainty distribution of GPM satellite rainfall estimates over the
Brazilian Amazon via error modeling? (2) How can those uncertainties can be min-
imized for correct applications?

This chapter is organized as follows. In section 6.2, initially, the study area and
the precipitation regime observed by both the IMERG and SIPAM data sources,
previously investigated by Oliveira et al. (2016), are described. In the same section,
the dataset and methodology are also described. The results, regarding the model
characterization and calibration and its performance over the study region, are pre-
sented in section 6.3. In Section 6.4, a summary of the main results and conclusions
are presented.

6.2 Study area, data and methodology

As a continuation of the Oliveira et al. (2016) study, this work focuses on an area in
the middle of the Amazon basin, around the city of Manaus in the state of Amazonas,
Brazil. The area covers a circle of 110 km in radius centered at 3.15 ◦S and 59.99 ◦W,
where the operational S-band weather radar from the Amazon Protection National
System (SIPAM) is located (seen in Figure 4.1).

The performance of IMERG in representing the characteristics and the diurnal cy-
cle of precipitation over the study region is well presented by Oliveira et al. (2016).
During the wet (dry) period, the volume and occurrence contributions of moderate
(heavy) rainfall are clearly identified and strongly modulated by the diurnal cycle of
precipitation. A strong dependence of the IMERG dataset performance on season-
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ality is observed. Such performance is also prominent over the inland water surface
type (along the Negro, Solimões, and Amazon rivers). Such behavior is related to
the non-suitable adjustment linked to the continent-ocean surface type adopted by
the GPROF2014 algorithm (i.g., GMI retrievals).

The precipitation data used for this study, taking into account the methodology
here after described, consists of:

i one rain gauge located at Manaus city (at 3.1 ◦S and 60.0 ◦W) from Na-
tional Institute of Meteorology (INMET). The INMET rain gauge is an
automatic station, which provides hourly records. However, this study uses
a period of 30 years of daily accumulations (mm day −1);

ii the S-band SIPAM radar rainfall estimates, processed by Texas A & M
University. The rainfall estimates are obtained through the CAPPI prod-
uct at the 2.5 km vertical level. The spatial (horizontal) and temporal
resolutions of the radar rainfall estimates are 2 km and at every 12 min-
utes. However, the radar rainfall retrievals are integrated to 30 minutes, to
match the same temporal resolution of the satellite estimates;

iii the Integrated Multi-Satellite Retrievals for GPM (IMERG) - GPM Level-
3 rainfall estimates (“Final” run version). The Level-3 IMERG Final Run
(research) product is a quasi-global (60 ◦N–S) 0.1 ◦ x 0.1 ◦ and 30 min
dataset, which is available from 1998 to the present in its final version
(HUFFMAN et al., 2014; HUFFMAN et al., 2015).

A better description of the S-band SIPAM radar and IMERG rainfall retrievals and
its performance over the study region can be found in Oliveira et al. (2016) (see
chapter 4 for more details).

Thus, based on the currently available data, previously described, the sample period
adopted in this study ranges from 12 March 2014 to 17 August 2015 (17 months of
half-hourly resolution coincident radar-satellite dataset).

The methodological approach considered in this study for uncertainty characteri-
zation, via error modeling, consists of the adoption of the PUSH model, recently
developed by Maggioni et al. (2014). PUSH is a framework to estimate errors as-
sociated with satellite rainfall retrievals at each grid point and time step, given a
certain reference. In addition, based on an estimate of the probability density func-
tion (PDF) of the actual precipitation, PUSH evaluates several components of the
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satellite precipitation error, including: i) missed precipitation events (the satellite
records a zero, but the reference detects precipitation); ii) false alarms (the satel-
lite incorrectly detects precipitation, as the reference observes no rain); and iii) hit
biases (both satellite and reference detect precipitation, but they disagree on the
amount).

The uncertainty of IMERG rainfall estimates over the central Amazon region arises
based on the surface type and also the precipitation regime under study (OLIVEIRA

et al., 2016). Such characteristics lead to understand and seek how to minimize
the impact of these criteria on the performance of satellite retrievals. The surface
type factor consists of an assumption of a land cover map that distinguish the sur-
face types (in this case, over the central Amazon region, land and inland water).
The land-river and the S-band SIPAM radar limitation masks are combined with
each other and resampled to a 0.1 ◦ x 0.1 ◦ grid (Figure 6.1). On the other hand,
the seasonality factor (precipitation regimes), has be investigated for the Brazilian
Amazon through distinct approaches, e.g., Liebmann e Marengo (2001), Machado
et al. (2004), Satyamurty et al. (2010), among others. However, although the Ama-

Figure 6.1 - S-band SIPAM radar limitation mask and land-river mask combinations.

  

S-band SIPAM mask

Land-River + SIPAM mask

Land-River mask

SOURCE: Author’s production.
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Table 6.1 - Periods used for PUSH calibration and validation for both the wet and dry
seasons through the IMERG satellite rainfall estimates and S-band SIPAM
radar retrievals as a reference.

Calibration Time steps Validation Time steps
Dry 2014.06.15 - 2014.12.21 8043 2015.05.24 - 2015.08.17 3416
Wet 2014.12.22 - 2015.05.23 6641 2014.03.12 - 2014.06.14 3865

zon region presents a very well defined and regionalized dry and wet season pattern
(SANTOS et al., 2015), such behaviors may vary depending on the year under inves-
tigation and the interaction of certain remote and large-scale phenomena or their
joint acting (LIEBMANN; MARENGO, 2001; VILLAR et al., 2009). Considering this, in
view of the importance of a better definition of the rainy and dry seasons for dif-
ferent purposes (e.g., climatic, hydrological, agricultural, among others), Liebmann
e Marengo (2001) developed an objective method of onset and demise identifica-
tion of the rainy season, later used and adapted by Bombardi e Carvalho (2009)
and Coelho et al. (2016), and currently operational at the Center for Weather and
Climate Studies (CPTEC) (http://clima1.cptec.inpe.br/). In summary, according
to Liebmann e Marengo (2001), such methodology takes into account the relation
between the mean precipitation for the pentad (mm day −1) and the climatological
annual mean daily precipitation (mm day −1) to define the onset and demise of the
rainy season.

Thus, the errors associated with the satellite rainfall estimation by IMERG product,
for each grid point and time step, are characterized via the PUSH error model
framework (MAGGIONI et al., 2014). Such uncertainties (error estimates) and its found
parameters will be discriminated by surface type and according to the season (dry
and wet). The analyses will consider different precipitation thresholds, which provide
the assessment the distribution of error in their distinct rain categories/classes (from
light to heavy rainfall events). Initially, the Liebmann e Marengo (2001) criteria is
used to identify the onset and demise of the rainy and dry seasons in the dataset
period. The approach is applied to a single rain gauge station, located within the
radar coverage area (at Manaus city). Therefore, based on the 17 months of IMERG
and radar data (coincident time steps), four distinct periods were considered. The
time series for calibration and validation (independent period) were selected for both
the wet and dry seasons, and are listed in Table 6.1. For instance, corroborating with
Table 6.1, Figure 6.2 illustrates this initial step for the wet and dry definitions.

Given the IMERG satellite observation x and S-band SIPAM radar precipitation
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Figure 6.2 - Precipitation regime over Manaus city (INMET station) and study periods
for PUSH evaluations: calibration and validation for wet (blue) and dry (red)
periods. Shaded area represents the rainy season based on the Climatological
Normal (1961-1990), in black dot/line. The defined periods for PUSH are
based on the Liebmann e Marengo (2001) criteria, which takes into account
the actual observations (gray line/dot).
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retrievals as a reference (or “truth”) y, the framework provides an estimate of the
PDF of the actual precipitation y at 30 minute time scale and 0.1 ◦ spatial resolution.
The satellite error can then be computed as either the difference or the ratio between
the satellite x and the expected value of the estimated precipitation distribution.
The PDF of y is modeled differently in each of the following four cases, based on
the minimum threshold of 0.2 mm h −1: i) correct no-precipitation detection (case
00); ii) missed precipitation (case 01); iii) false alarm (case 10); and iv) hit (case
11) (MAGGIONI et al., 2014). Thus, PUSH parameters were first calibrated for both
the dry and wet seasons. Once calibration is completed, the goodness of fit of the
model is validated considering an independent period.

6.3 Results and discussion

The PUSH model is calibrated for three separate conditions (over land-river, over
river only and over land only), during the dry and wet seasons over the central
Amazon region. Based on the respective periods (seen in Table 6.1) of IMERG
precipitation estimates and S-band SIPAM radar rainfall retrievals (as reference),

89



the framework is applied to estimate the errors in IMERG and, in an independent
period, the model is then validated.

6.3.1 Model characterization and calibration

Figures 6.3 and 6.4 depict the probabilities of correct no-precipitation detection (P00)
and missed precipitation (P01=1-P00), for the over land-river, over river only and
over land only surface type conditions, during the dry and wet seasons, respectively,
considering the 0.2 mm h −1 threshold. Such probabilities allow the giving of a general
estimate of the false alarm (P10) and hit (P11) cases for each condition (season and
surface type). Overall, during the calibration period, IMERG precipitation and the
radar rainfall estimates both measured no-precipitation (RR < 0.2 mm h −1) greater
than 91% of the grids/half hours, except for the dry season over river only (90%).
The exponential curve shows less fit over river only, especially during the dry season,
which suggests the lower ability of IMERG in detecting local rain cells along the
river. During the wet season, although the values appear more scattered over river
only, no significant differences were found in its probabilities. Such behavior indicates
the influence of large scale rainfall amounts during the wet season, well defined by
both precipitation products.

Figure 6.5 shows the case 0, when the estimated PDF of the missed precipitation
amount y01 is modeled using a Gamma distribution (see Maggioni et al. (2014)).
The S-band SIPAM radar precipitation probability density histograms for the cal-
ibration period for IMERG estimates lower than the 0.2 mm h −1 threshold are
presented. The corresponding modeled distributions are also shown, and relatively
close in reproducing the reference precipitation distributions both in terms of shape
and magnitude for both the dry and wet periods and over the three surface types.
However, a slight overestimation of the error distribution at low values of satellite
precipitation are observed. The model parameters (shape a01 and scale b01) ob-
tained during the dry and wet calibration periods are shown in Table 6.2, and will
be applied to their respective validation periods.

Figure 6.6 shows cases in which the satellite estimates are larger than the threshold
(i.e., case 1) during all the calibration period. The PDFs are shown for the IMERG
satellite rain rates: 2.5 and 10 mm h −1. It can be noted how the model is able
to reproduce the observed error histograms for all precipitation ranges, in terms of
shape and magnitude, also contrasting both the dry and wet seasons and surface
types. In general, although the estimated density function adequately models the
observed distributions for all the criteria studied, with low density differences, a
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Figure 6.3 - Probability of correct no-precipitation detection (P00) / false alarm (P10) (left
panels) and probability of missed precipitation (P01) / hit (P11) (right panels)
for a 0.2 mm h−1 threshold over (a-b) land-river, (c-d) over river only, and
(e-f) over land only, during the dry season.
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SOURCE: Author’s production.

slightly overestimation (∼0.6), especially for light (observed) precipitation amounts,
are noted. Thus, the estimated distributions are very close and adjusted to the
observed values during the calibration period, suggesting future applications for an
independent period in terms of validation.
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Figure 6.4 - As in Fig. 6.2, but during the wet season.
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6.3.2 Model performance

Based on the model parameters, previously obtained during the calibration period,
such results are now applied for the independent dry and wet periods, in order to
validate the model. A first step to evaluate the performance of the PUSH model is to
compare the estimated PDF with the reference precipitation distribution for case 0
and case 1. As well as during the calibration period (seen in Figure 6.5), during the
validation period (Figure 6.7), a similar estimated distribution pattern in reproduc-
ing the reference precipitation distributions, both in terms of shape and magnitude,
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Figure 6.5 - Histogram of the correct no-precipitation detection error (case 0) and missed
precipitation distribution (case 01) for a 0.2 mm h−1 threshold over (a-b)
land-river, (c-d) over river only, and (e-f) over land only, during the dry (left
panels) and wet (right panels) seasons.
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is observed. The differences between estimated and observed precipitation PDFs,
which are normalized by the reference probability density, presented low positive
(negative) values around 0.2 for the first (second) class of observed precipitation
(between 0 and 0.2 mm h −1).

On the other hand, several satellite thresholds (from 1 to 15 mm h −1) are compared
to the observed precipitation distribution (i.e., case 1), for the validation period
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Figure 6.6 - PDF from observations (histograms) and simulated by the error model (black
lines) and its differences (estimated minus observed probability densities) for
the (a) dry (left panels, in red) and (b) wet (right panels, in blue) calibration
periods and over land-river (upper panels), over river only (middle panels),
and over land only (bottom panels). Examples for threshold values of satellite
rain rates of 2.5 and 10.0 mm h−1.
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(Figure 6.8). The dry-wet performance contrasts are clearly observed, indicating
great differences, especially for observed light precipitation distributions. In the dry
season, negative differences (between 0.4 and 0.6) are observed for satellite precip-
itation raging from 1 to 4 mm h −1, and positive difference values are about 0.5,
most visible for the over land only surface type. An opposite behavior, with a large
overestimation of the error distributions, for all satellite precipitation classes, is ob-
served during the wet period. In addition, Figure 6.8 also shows a more prominent
low performance over river only, which underestimated (overestimated) probability
densities by about 0.6 for almost all the satellite thresholds for the 0.5 mm h −1

reference rainfall, during the dry (wet) season.

In order to understand model performance over the distinct surface types, we now
individually examine through case studies the error spatial distributions during the
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Table 6.2 - PUSH model parameters (shape a01 and scale b01), obtained during the dry
and wet calibration periods over the three surface type conditions, to be applied
to their corresponding validation periods.

Parameter Over Land-River Over River Over Land

Dry a01 0.8635 0.8534 0.8696
b01 1.8909 1.7755 1.9341

Wet a01 1.0054 0.9823 1.0144
b01 1.3568 1.4091 1.3374

Figure 6.7 - As in Fig.6.4, but for the dry (left panels) and wet (right panels) validation
period.
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Figure 6.8 - PDF differences (estimated minus observed probability densities) for the (a)
dry (left panels, in red) and (b) wet (right panels, in blue) validation periods
and over land-river (upper panels), over river only (middle panels) and over
land only (bottom panels), for threshold values of satellite rain rates from 1.0
to 15.0 mm h−1.
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dry and wet periods. Figures 6.9 and 6.10 summarize the results of the validation
tests for two precipitation events, during the dry (06:30-06:59 UTC on 28 May 2015)
and wet (04:00-04:29 UTC on 12 March 2014) seasons, respectively. The observed
error (left panels), computed as the difference between IMERG and S-band SIPAM
radar; the estimated error (middle panels), computed as the difference between the
S-band SIPAM radar and the mean of the modeled distribution; and the scatterplots
of estimated versus observed errors (right panels), which also show their correlation
coefficients, are shown for each surface type condition.

The PUSH error model adequately reproduced the spatial intensity patterns of the
error in both precipitation events. Despite the poor performance in representing the
error from light precipitation, the error model clearly underestimates (∼-0.5 mm
h −1) those classes of precipitation for both the dry and wet seasons. The estimated
error also tends to overestimate the greatly underestimated observed errors, which
explain the poor ability in representing the satellite underestimations. On the other
hand, the model shows good performance in estimating the error for large amounts,
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when the satellite greatly overestimates the precipitation. The scatterplots confirm
the good agreement between observed and estimated errors, with some overesti-
mation of the error at low values of satellite rain rates. The correlation coefficient
presented values around 0.93 and 0.96, slightly varying depending on the surface type
conditions and seasons. However, no remarkable difference in the model performance
were found based on those criteria, since the model was calibrated separately.

To better illustrate the error estimated via the PUSH model against the observed er-
ror (IMERG-S-band SIPAM radar differences), previously exemplified in Figures 6.9
and 6.10, Figure 6.11 demonstrates the long term ability of PUSH to reproduce the
error in terms of intensity and spatial distribution. The standard deviation (SD)
of both the observed and estimated errors and their correlation coefficient (COR)
are assessed for both the validation dry and wet periods. In order to evaluate the
error distributions, the over river and over land errors are evaluated into a single
observed/estimated error map. It is clearly evident, for both periods, that the mod-
eled error produced lower SD values than the observed differences, indicating less
error variability. However, the spatial distribution pattern of the errors were quite
similar to each other, independent of the period, with higher values along the river,
most evident during the wet season. The wet period is also characterized by higher
SD than the dry period, when IMERG substantially overestimates the precipitation
against the S-band SIPAM radar. The maximum SD values for the observed (mod-
eled) error are about 2.2 mm h −1 (2.0 mm h −1) for the dry season and 3.0 mm
h −1 and 2.5 mm h −1 for the wet season. The spatial distributions of temporal COR
presented great results, with most of the values around 0.8 and 1, for both the dry
and wet periods, which implies in a good error estimation performance. However, a
large part of these results were concentrated along the river, more prominent during
the wet season. These results suggest that the PUSH error model could efficiently
capture the systematic error along the Negro, Solimões, and Amazon rivers, clearly
evident during the wet season as well as reported by Oliveira et al. (2016).

Finally, based on the error previously estimated via the PUSH model, I now apply
such estimated errors to the original IMERG product to verify the model perfor-
mance for the different conditions (surface type and seasons). The analysis is per-
formed through continuous and categorical scores. Figure 6.12 depicts: the Taylor
(Fig. 6.12a) diagram, which summarize how closely a set of patterns matches ob-
servations, using COR, RMSE, and SD indexes; and the Performance (Fig. 6.12b)
diagram, which utilizes the geometric relationship between SR, POD, BIAS, and
the CSI to display all four metrics simultaneously. A seasonal dependence, which is
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Figure 6.9 - Comparisons of observed and estimated errors during a single time step (06:30-
06:59 UTC on 28 May 2015) over land-river (upper panels), over river only
(middle panels) and over land only (lower panels), during the dry season (val-
idation period). The corresponding observed error is defined as the difference
between the IMERG satellite retrieval and the S-band SIPAM radar obser-
vation. The estimated error is defined as difference between the satellite and
the estimated reference precipitation (not shown). The scatterplots show the
estimated error vs. the observed error.

  

O
ve

r 
L

an
d-

R
iv

er
O

ve
r 

R
iv

er
O

ve
r 

L
an

d

DRY

110 km110 km

110 km110 km

110 km110 km

a) b) c)

d) e) f)

g) h) i)

SOURCE: Author’s production.

strongly linked to the precipitation regime in the region, is also observed in both the
Taylor and Performance diagrams, as well noted by Oliveira et al. (2016). The drier
period presents a clear under-performance in comparison with the wetter period,
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Figure 6.10 - As in Fig. 6.8, but for the wet validation period (04:00-04:29 UTC on 12
March 2014).
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especially noted through the categorical evaluations (Fig. 6.12b).

The modeled IMERG presents a slight better performance than the original IMERG.
The improvement was most evidently observed in the Taylor diagram, through the
continuous scores. The COR for all the conditions increased from ∼0.1 to 0.2 for
the dry period and ∼0.3 to 0.4 for the wet period. The most notable behavior was
observed in the normalized SD and RMSE scores, of which the original IMERG
presented higher values than the modeled IMERG. Such results indicate that the
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Figure 6.11 - Spatial distributions of the standard deviation of (a-d) observed and (b-e)
estimated errors and their (c-f) correlation coefficients over the dry (upper
panels) and wet (lower panels) seasons (validation period).
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rainfall estimates from the modeled IMERG were closer to the S-band radar rainfall
estimates (reference). On the other hand, despite the sight improvements in the con-
tinuous view, no significant improvements in the categorical analysis were observed,
which suggests that the ability to detect local characteristics, especially during the
dry season (i.e., local convection) are more dependent/linked to the physical ap-
proaches.

6.4 Summary and conclusions

In this study, the characteristics and uncertainty distribution of GPM-Level 3 rain-
fall estimates (IMERG V03D, “final” run) are assessed, via error modeling over
the central Amazon region. The S-band SIPAM radar are used as a reference. The
analysis is performed contrasting the dry and wet seasons, based on a period of 17
months, from March 2014 to August 2015. The error modeling evaluation considers
the PUSH framework, originally proposed by Maggioni et al. (2014). PUSH is cali-
brated and validated for the study region, taking into account the local factors, as
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Figure 6.12 - (a) Taylor diagram and (b) performance diagram showing dry and wet met-
rics of the IMERG original rainfall estimates versus IMERG modeled via the
PUSH model, for different surface types over the Manaus region and for the
validation period.
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well as seasonality and surface types (i.e., land and river).

The analyses demonstrated that the PUSH model was suitable for characterizing the
error from the IMERG algorithm when applied to S-band SIPAM radar estimates.
During the calibration period PUSH presented promissory results for estimating the
error for moderate to heavy rainfall thresholds. PUSH could capture the general dis-
tribution pattern of precipitation for both the seasons and surface types under study.
However, the model exhibited very limited characterization of the light precipitation
error distributions. For the case 0, PUSH slightly overestimated the threshold lower
than 0.2 mm h −1 during both the dry and seasons. The overestimation of light rain
rates was also observed for the case 1, although not significant for all the conditions
under investigation.

During the validation (independent) period, PUSH could efficiently predict the error
distribution, as well as for the case studies during the dry and wet periods. However,
an underestimation (overestimation) of light satellite rain rates was observed during
the dry (wet) period. Such behavior was clearly observed in case 0 (threshold lower
than 0.2mm h −1) and for case 1, especially over the river.

In general, the modeled error presented quite similar to the observed error in terms of
spatial and intensity distributions. Although the estimated errors had a lower stan-
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dard deviation than the observed error, they exhibited good correlations with each
other, especially in capturing the systematic error along the Negro, Solimões, and
Amazon rivers, especially during the wet season, previously reported by Oliveira et
al. (2016). Lastly, the modeled IMERG was compared to the original IMERG during
the independent period and a slight improvement was observed. The improvement
was more evident through the continuous than the categorical analysis. In addition,
future studies should be focused on investigating the random and systematic error
components and the performance of the modeled IMERG in the diurnal cycle of
rainfall distributions, also exploring other regions in Brazil and beyond.
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7 MAIN CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In the first section of the dissertation, published in Oliveira et al. (2015), the anal-
yses demonstrated that the GPROF passive microwave (SSMI/S) rainfall retrieval
algorithm showed similar rainfall behavior patterns through the comparison with
different datasets as reference, in this case, for the X-band CHUVA radar and 2A25-
V7. GPROF presented overestimated frequency values, mainly for moderate rainfall
(between 2 and 10 mm h −1) and an underestimation of light (weaker than 1 mm
h −1) and heavy (heavier than 15 mm h −1) rain intensities, although not very pro-
nounced when compared to the 2A25-V7 rain reference. It was found that GPROF
underestimated mainly the intensity of heavy rains and overestimated the intensities
of light and moderate rains, considering both 2A25-V7 and X-band CHUVA radar
data references. However, GPROF is slightly better correlated when compared with
2A25-V7 for an extended region than with the X-band CHUVA radar, which may be
due to the greater coverage area, with more rain no-rain situations in each case. On
the other hand, for this reason, the GPROF POD and FAR from the X-band CHUVA
radar comparison show better results than the GPROF versus 2A25-V7 comparison.
The GPROF algorithm failed to detect some precipitation areas weaker than 2 mm
h −1, mainly by comparing with 2A25-V7 over the extended region. In most cases
the precipitation was associated with warm rain and stratiform clouds, classified by
2A25-V7. Two groups of performance in the Taylor diagram were found: the first
(good performance) with low RMSE (∼0.75), high COR (∼0.7) and normalized STD
close to 1 and the second (poor performance) with high RMSE (∼1.5), low COR
(∼0.4) and high values of STD (normalized). The cases with good performance also
showed better POD and FAR results than the cases with poor performance.

Since fewer channels contribute to rainfall retrieval over land (e.g., the 85.5 and 91.6
GHz scattering channels), more careful analysis is needed for these cases, considering
with more detail the surface types and their characteristics (e.g., emissivity), in order
to minimize error sources of the rainfall retrieved by a passive microwave technique.

In the second section of the dissertation, through the published Oliveira et al. (2016)
article, as an important initial step for further satellite precipitation validation anal-
ysis, S-band-SIPAM radar rainfall estimates were validated against another radar-
based precipitation product (i.e., from the X-band dual polarization radar from the
CHUVA project). Although a slight overestimation of light rainfall and an underes-
timation of heavy rainfall were observed in the PDFv and PDFc analyses, SIPAM
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radar was considered suitable to use as a reference dataset for validating satellite
precipitation products. S-band SIPAM radar analyses revealed significant wet to
dry contrast characteristics over the Manaus region through the PDFv and PDFc
distributions. During the wetter (drier) period, the volume and occurrence contri-
butions of moderate (heavy) rainfall were clearly identified and strongly modulated
by the diurnal cycle of precipitation. Statistical pixel-by-pixel analyses revealed a
strong dependence of the IMERG dataset performance on seasonality. The con-
tinuous and categorical evaluations indicated that the IMERG performance was
directly linked to the monsoonal rainfall pattern over the region. The overestima-
tion (underestimation) of rain volumes was particularly significant for heavy rainfall
classes (>10 mm h −1) during IOP1 (IOP2). The diurnal cycle analysis during wet
and dry periods presented certain times with strong discrepancies between IMERG
and the reference. During IOP1, an overestimation between 00:00–04:00 UTC and
15:00–18:00 UTC was observed, due to an overestimation of the occurrence and vol-
ume of heavy rainfall. During IOP2, an opposite behavior with strong rainfall volume
and occurrence underestimation was found from 13:00–21:00 UTC, mainly due to
the non-captured isolated convective rain cells in the afternoon. Analysis of the
GPROF2014 algorithm rainfall sensor retrievals explained the IMERG’s poor per-
formance. GPROF2014 slightly overestimated and strongly underestimated heavy
rainfall volume and occurrence, during IOP1 and IOP2, respectively. GPROF2014
for the GMI sensor rainfall retrievals presented the largest impact by inland wa-
ter surface type, compared to other sensors. Thus, a significant portion of rainfall
volumes and occurrences, observed by IMERG, came from the GPROF2014-GMI
rainfall retrievals, most prominent over the inland water surface type, along the
Negro, Solimões and Amazon rivers.

This study revealed important information regarding the IMERG and GPROF2014
quality and limitations over the Central Amazon region. This issue was observed
along the Negro, Solimões and Amazon rivers, but other regions of the globe and
surface types should be deeply investigated. Our findings are critical for the correct
and successful applications of GPM rainfall estimates for applications, such as nat-
ural disaster monitoring, data assimilation systems, hydrological modeling, climate
studies and for better understanding the physical processes of precipitating systems
over the region. These analyses also contribute to improving the GPM algorithm.

In the third section of the dissertation, to be submitted, despite the underestimation
of volume and occurrence of heavy rainfall, good agreement of GPROF2014 for
TMI and GMI versus TRMM PR and GPM DPR (Ku band) rainfall retrievals,
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respectively, was noted. The most evident good performance suggests a seasonal
dependency of GPROF2014 (TMI and GMI) in better quantifying in particular the
high amounts of precipitation over the region of study. The wet period presented
better correlations than the dry period, slightly more notable in the TRMM PR
x GPROF2014 (TMI) comparisons. The total number and area of TRMM PR-
GPROF2014(TMI) objects were greater than those obtained from the GPM DPR-
GPROF2014(GMI) algorithm, which could be explained by its number of overpasses
considered. However, TRMM PR presented a greater contribution of unmatched
objects. Such behavior was repeated along the seven months under study. The wet
(dry) season received a large (small) portion of matched object numbers and areas.
The median distances and displacements of the matched centroids revealed a general
easterly bias in the location of objects during almost all the months under study.
During the wet (dry) period, a northerly (southerly) bias was observed. However,
an opposite behavior between both comparisons was found in terms of centroid
distance, although the mean values were quite similar along the seven months. The
performance of object area identification and its physical features were extremely
linked to the vertical profile structures. GPROF2014(GMI) tended to overestimate
the precipitation near the surface due the presence of the bright band in precipitating
systems.

Finally, in the fourth section of the dissertation, the analyses demonstrated that
the PUSH model was suitable for characterizing the error from the IMERG al-
gorithm when applied to S-band SIPAM radar estimates. During the calibration
period, PUSH presented promising results for estimating the error for moderate
to heavy rainfall thresholds. PUSH could capture the general distribution pattern
of precipitation for both seasons and the surface types under study. However, the
model exhibited very limited ability to characterize light precipitation error distri-
butions. For case 0, PUSH slightly overestimated the threshold lower than 0.2 mm
h −1, during both the dry and wet seasons. The overestimation of light rain rates was
also observed for case 1, although this overestimation was not significant for all the
conditions under investigation. PUSH could efficiently predict the error distribution
during the validation (independent) period, as well as for the study cases during the
dry and wet periods. However, an underestimation (overestimation) of light satel-
lite rain rates was observed during the dry (wet) period. Such behavior was clearly
observed in case 0 (threshold lower than 0.2mm h −1) and for case 1, especially over
the river.

In general, the modeled error was quite similar to the observed error in terms of
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spatial and intensity distributions. Although the estimated error showed a lower
standard deviation than the observed error, they exhibited good correlations to each
other, especially in capturing the systematic error along the Negro, Solimões and
Amazon rivers, especially during the wet season, previously reported by Oliveira et
al. (2016). Lastly, the IMERG modeled was compared to the original IMERG during
the independent period and a sight improvement was observed. The improvement
was more evident in the continuous than the categorical analysis.

7.2 Future work

The results obtained in this study suggest a list of points/recommendations for
further research:

• investigate the characteristic distributions of other MODE variables, in-
cluding other spatial techniques, such as the fractions skill score (FSS)
neighborhood method;

• include other sensors (i.e., conical and cross-track scans) applied to the
GPROF2014 algorithm;

• explore other regions in Brazil, with different precipitation regimes, for a
longer period; and

• examine the relation between the GPM MODE attributes and the precipi-
tation type (i.e., convective and stratiform) and/or the life cycle of convec-
tive systems (initiation, maturation and dissipation phases), i.e., provided
by Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC)
toolkit.

In addition, more studies need to be conducted to improve and assess PUSH applied
to distinct datasets and for different regions. Future studies should be focused on:

• investigating the characteristics and distribution of random and systematic
error components;

• evaluating the performance of modeled IMERG on the diurnal cycle of
rainfall distributions, also exploring other regions in Brazil and beyond.
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APPENDIX A - GPROF2014 UPDATES AND IMPROVEMENTS

This appendix shows the over Land x River rainfall representation improvement
of GPROF2014 algorithm from the updated version (from V1.4 to 2.0) over the
Brazilian Amazon.

A.1 GPROF2014 algorithm updates and improvements over the Brazil-
ian Amazon

Figure A.1 - An overview of the GPROF2014 V2.0 (GPM.GMI V04A) rainfall estimates
over the Brazilian Amazon

  

Normal distribution (R < 0.2 in white) Log distribution (R = 0 in white)

NaN NaN

R=0
Normal surf. (elev. + 
land/river) conditions

River breeze characteristics

GPROF2014 V2.0 (GPM.GMI V04A) - NRTPUB

The GPROF2014 V2.0 for GPM.GMI Near Real Time (NRT) seems to be corrected in relation to the non-
realistic rainfall fields along the Amazonas/Solimoes/Rio Negro river. However the occurrence of light rain (less 
than 0.2) is high over land, that may be related to the use of DPR Ku instead of DPR Ka+ku. According to the 
GPM Team, the DPR Ku product is more reliable than the DPR Ka+Ku combination. “...Ku product was 
validating significantly better than the other GPM products...”

SOURCE: Author’s production.
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Figure A.2 - An example of the GPROF2014(V1-4) GMI (V03B) (left) vs.
GPROF2014(V2-0) GMI (V04A) (right) over the Brazilian Amazon
Grid box of 10deg x 10deg centered in Manaus AM.

a) b)

SOURCE: Author’s production.

Through Figure A.3, the occurrence of light precipitation (here under the 0.1 mm
h −1 threshold) is higher in the new version (V2-0/V04D) than in the old version
(V1-4/V03B) of GPROF2014, over both surface types. However, if we look at rainfall
above the 0.2 mm h −1 threshold (Fig. A.4), the precipitation field now looks more
realistic. But of course, now the rainfall uncertainties are not well evident along the
river and over the continent, and the uncertainty investigation via error modeling can
clarify and explain the results related to meteorological conditions. For example: Are
the satellite errors more evident during the rainfall peak? Which period? Figure A.5
shows another evidence of the improvement of GPROF2014 for GPM.GMI over the
Amazon (Rio Negro, Solimões and Amazonas rivers).
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Figure A.3 - a) Unconditional PDFv and PDFc comparisons of the GPROF2014(V1-4)
GMI (V03B) vs. GPROF2014(V2-0) GMI (V04A), over the Brazilian Ama-
zon Grid box of 10deg x 10deg centered in Manaus AM.

a) b)

SOURCE: Author’s production.

Figure A.4 - As in Fig. A.3, but for the ≥0.2 mm h−1 threshold.

a) b)

SOURCE: Author’s production.
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Figure A.5 - An overview of the GPROF2014 V2.0 (GPM.GMI V04A) rainfall estimates
over the Brazilian Amazon

SOURCE: Author’s production.
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Special Issue 6th Workshop of the International Precipitation Working Group.
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One of themajor goals of the CHUVA project (Cloud processes of tHemain precipitation systems in Brazil: A con-
tribUtion to cloud resolVingmodeling and to the GPM [GlobAl PrecipitationMeasurement]) is to collect informa-
tion about the cloud processes of themain precipitating systems over Brazil in order to evaluate and improve the
quality of satellite-based precipitation estimates. Thus, this paper evaluates the performance of the Goddard Pro-
filing Algorithm (GPROF) version 2004 for the Special SensorMicrowave Imager/Sounder (SSMIS) sensor, carried
onboard the DefenseMeteorological Satellite Program (DMSP) F16, F17 and F18 satellites, for instantaneous rain
rates over land by comparingwith other remote sensing based estimates such asX-band dual polarization rainfall
retrievals from the CHUVA Project (named here X-band CHUVA radar) and TRMM (Tropical Rainfall Measure-
ment Mission) Precipitation Radar – version 7 (PR-V7) precipitation estimates (named here the 2A25_V7 prod-
uct) for the CHUVA-VALE campaign. The analyses were performed on an area within a radius of 60 km from the
X-band CHUVA radar, located at São José dos Campos, SP – Brazil (centered at 23.2°S and 45.95°W) and another
delimited by 41°W–51°W and 18°S–28°S (10° x 10° box). GPROF showed an overestimate of light/moderate rain
rate intensities, while underestimating the rainfall rates above 10mmh−1, considering the X-band CHUVA radar
as reference. The same behavior was observedwhen comparedwith the 2A25_V7 database. Through a PDF anal-
ysis, GPROFwas found to overestimate the frequencies of moderate rain rates (between 2 and 10mmh−1, above
15%), and underestimate the frequencies of light and high rain rates (b2mmh−1 and N10mmh−1, respectively)
when compared to both the X-band CHUVA radar and 2A25_V7 reference databases. The results for the studied
region suggest that GPROF has a relatively good agreement (spatial distribution and accumulated rainfall), espe-
cially for convective rain cases, due the significant presence of ice scattering. However, the intensity of light/mod-
erate rains is overestimated.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The forecast and quantification of rain with the highest possible ac-
curacy, especially for severe weather situations, over various temporal
and spatial scales, are extremely important to society because they are
directly linked to the economy through agriculture, natural resources,
transportation, and the prediction and detection of natural disaster oc-
currences. Alternatively, satellite rainfall estimation (microwave, infra-
red, hybrid, etc.) has been widely used in Brazil for various purposes,
e.g. for monitoring natural disasters, hydrologic purposes and climatic
applications. However, such algorithms require validation studies
using observational rainfall data, preferably at high spatial-temporal
resolution.

In this context, the international collaboration called the Program to
Evaluate High Resolution Precipitation Products (PEHRPP), established
within the International Precipitation Working Group (IPWG; see
http://www.isac.cnr.it/~ipwg/), was a collaborative effort to evaluate,
intercompare and validate the several high-resolution precipitation al-
gorithms currently available and operational (e.g., Ebert et al., 2007;
Turk et al., 2008; Sapiano and Arkin, 2009; Di Paola et al., 2012; Casella
et al., 2012;Mugnai et al., 2013a).Most studies have focused on the eval-
uation of the performance of certain products of satellite precipitation
estimates, in general based on infrared (IR) or microwave observations
and their combinations (Mugnai et al., 2013b). Typically the compari-
sons are made using rain gauges (e.g., Vila et al., 2009; Puca et al.,
2014). However, studies using other data sources have been widely
used, e.g., active microwaves (Aonashi et al. 2009), dual polarization
weather radars (e.g., Liao et al., 2001; Chandrasekar et al., 2008; Cimini
et al., 2013), disdrometers (Morales et al., 2013), among others. Exten-
sive information on actual, ongoing and future activities/plans regarding
precipitation measurement (observational, modeling and from satel-
lites) and its performance and applications are given by Michaelides

Atmospheric Research 163 (2015) 102–116
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Figure B.1 - First page of the manuscript published in Remote Sensing Journal, Special
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Abstract: Studies that investigate and evaluate the quality, limitations and uncertainties of satellite
rainfall estimates are fundamental to assure the correct and successful use of these products in
applications, such as climate studies, hydrological modeling and natural hazard monitoring. Over
regions of the globe that lack in situ observations, such studies are only possible through intensive field
measurement campaigns, which provide a range of high quality ground measurements, e.g., CHUVA
(Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing
modeling and to the GlobAl Precipitation Measurement) and GoAmazon (Observations and Modeling
of the Green Ocean Amazon) over the Brazilian Amazon during 2014/2015. This study aims to assess
the characteristics of Global Precipitation Measurement (GPM) satellite-based precipitation estimates
in representing the diurnal cycle over the Brazilian Amazon. The Integrated Multi-satellitE Retrievals
for Global Precipitation Measurement (IMERG) and the Goddard Profiling Algorithm—Version
2014 (GPROF2014) algorithms are evaluated against ground-based radar observations. Specifically,
the S-band weather radar from the Amazon Protection National System (SIPAM), is first validated
against the X-band CHUVA radar and then used as a reference to evaluate GPM precipitation. Results
showed satisfactory agreement between S-band SIPAM radar and both IMERG and GPROF2014
algorithms. However, during the wet season, IMERG, which uses the GPROF2014 rainfall retrieval
from the GPM Microwave Imager (GMI) sensor, significantly overestimates the frequency of heavy
rainfall volumes around 00:00–04:00 UTC and 15:00–18:00 UTC. This overestimation is particularly
evident over the Negro, Solimões and Amazon rivers due to the poorly-calibrated algorithm over
water surfaces. On the other hand, during the dry season, the IMERG product underestimates mean
precipitation in comparison to the S-band SIPAM radar, mainly due to the fact that isolated convective
rain cells in the afternoon are not detected by the satellite precipitation algorithm.

Keywords: satellite rainfall estimates; radar rainfall estimates; GPM; IMERG; GPROF; uncertainty
quantification; GoAmazon

1. Introduction

Satellite rainfall estimates have been widely used for various purposes (e.g., real-time weather
monitoring and forecasting, hydrological modeling and climate studies, among others). The quality
of satellite rainfall products has improved significantly in recent decades, especially with the advent

Remote Sens. 2016, 8, 544; doi:10.3390/rs8070544 www.mdpi.com/journal/remotesensing

SOURCE: Oliveira et al. (2016).
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