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NO DOUBLE-GYRE HERE
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WHAT ARE COHERENT STRUCTURES? A WAY OF REDUCTION




WHAT ARE VORTICES?

* Regions of high vorticity?

e Circular motion?
* Convex shape?

* Persistent in time?



LAGRANGIAN AVERAGED VORTICITY DEVIATION

w =V X T =v(x,t)

W Instantaneous spatial mean vorticity

IVD(ZEjt) = |Ld(33} t) — G)(t)i. Instantaneous Vorticity Deviation (IVD)
In+T
LAVD;g”(xO):: / lw(x(s), s) — @(s)|ds.
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Source: Haller et al., JFM 795 (2016) 136



LAGRANGIAN AVERAGED VORTICITY DEVIATION

LAVD is invariant under Euclidean frame transformations of the form

x = Q(t)y + b(2),

where (O and b are arbitrary time-dependent rotation matrix and translation
vector, respectively. The transformed vorticity @ satisties

@y (5), 5) — ()| = |wx(s), s) —@(s)],

Source: Haller et al., JFM 795 (2016) 136



LAGRANGIAN AVERAGED VORTICITY DEVIATION
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LAGRANGIAN AVERAGED VORTICITY DEVIATION

Why LAVD?

1) It is simple
2) It was not listed as one of the worst tools in George's talk

3) It is new

4) It is easily adaptable to use in magnetic fields
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LAGRANGIAN AVERAGED VORTICITY DEVIATION

A Lagrangian vortex is an evolving flow domain that is filled with a
nested family of convex tubular level surfaces of LAVD with outward
decreasing LAVD values. For Eulerian vortices, use IVD instead.

Vo) Cty) -2 T)
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Source: Haller et al., JFM 795 (2016) 136



OBJECTIVE VORTEX DETECTION

* Compute the LAVD (IVD) field from a grid of initial
particles on a plane in the domain,

* Detect the initial positions of vortex centers as local
maxima of the LAVD (IVD) field,

* Seek vortex boundaries as outermost convex closed
contours of LAVD (IVD) that encircle vortex centers.

Source: Haller et al., JFM 795 (2016) 136



CONVEXITY DEEICIENCY

One may wish the following non-convex curves to be classified as convex:

(Q)Q (b)o (C)O

The outer line defines the convex-hull, the smallest convex set that contains the inner set.
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Source: Haller et al., JFM 795 (2016) 136



CONVEXITY DEEICIENCY

Convexity deficiency, €: the ratio of the area difference between the curve
and its convex hull to the area enclosed by the curve.

¢ = (Acc —Ach) / Acc

Acc — Area of the closed contour
Ach — Area of its convex-hull

15



LAGRANGIAN AVERAGED VORTICITY DEVIATION
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LAGRANGIAN AVERAGED VORTICITY DEVIATION

A sinkyz + cos kyy
UABC = ' sinkyx + cos kyz
V3 \ sin kry+ coskrx
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LAGRANGIAN AVERAGED VORTICITY DEVIATION

A sink sz + coskyy
UABC = S sinkyx + cos kyz
V3 \ sin kry+ coskyx




WHAIT IS AMAGNETIC FLUX ROPE?

10P Publishing

Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 56 (2014) 060301 (2pp) doi:10.1088/0741-3335/56/6/060301
Preface Guest Editor .
Vyacheslav S Lukin

Self-organization in magnetic flux ropes
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They can be as narrow as a few larmor radii or as wide as the Sun!
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WHAIT IS AMAGNETIC FLUX ROPE?

* A magnetic flux tube is a bundle of magnetic field lines; it is
a cylindrical region inside which the axial magnetic field is
much larger than the magnetic field outside (but what is the
threshold?).

* A magnetic flux rope is a twisted flux tube, with helical field
lines

* Flux tubes and ropes need not be straight, and their cross-
sections can be neither circular, nor uniform along their
lengths.

20



WHAIT IS AMAGNETIC FLUX ROPE?

10P Publishing Plasma Physics and Controlled Fusion

Plasma Phys. Control. Fusion 56 (2014) 060301 (2pp) doi:10.1088/0741-3335/56/6/060301
uest Editor
Preface G .
Vyacheslav S Lukin

Self-organization in magnetic flux ropes

There may not be a strict definition of a magnetic flux rope that everyone can
agree on. Nonetheless, the ingredient common to all magnetic flux ropes is that the
magnetic field lines that thread nearby plasma elements at one location along the
flux rope must wind around and not diverge away from each other over a
sufficiently long distance to look like a piece of an ordinary rope. In a way, it is
similar to turbulence—you know it when you see it.

21




ICMEs AS FLUX ROPES

Sources: SOHO ultraviolet image, https://apod.nasa.gov, Demoulin, SW 12 (2010)


https://apod.nasa.gov/

MAGNETIC FIELD LINES

B di
de dy
B, B,
dr B,
dl B
dy B,
dl B
dz B,
dl B

dz
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MAGNETIC FIELD LINES

Adopting dl = Bds

do_
ds dx n

d_y _ B # d_S — (x(S), ZLO)ar
ds 4

iz _B.

= =

X(So) = X0.
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INTEGRATED AVERAGED CURRENT DEVIATION (IACD)

We compute the IACD for B in essentially the same way as
LAVD, but fixing the time and using the current density in place of
the vorticity:

J =VX B/Mg
so+§

TACD?** (x):= / | (x(s), t0) — J (to)|ds

S0
J (ty) is the mean current density of the box and

x(s) is a solution of ;ﬁ = B(x(s), 1), x(sp) = xo.
)

IACD is invariant under changes of the form: x = QO(s)y + b(s)
25



MAGNETIC VORTICESIIN 2D MAD TURBULENCE

av

o = Vp—-V-(vwv—BB)
oB

a——V(VB—BV)
V.-v=0,

V.-B =0,

Periodic boundary conditions, 512 x 512,
Finite-differences, 4" order in time, 5" order
in space.

26

Thanks: C.C. Wu, UCLA



KINEMATIC VORTICES IN 2DIMHEAD TURBULENCE

Velocity field vortices, from t=300 to t=386

Third order interpolation in space and time. Fourth order Runge-Kutta for particles
Integration.
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MAGNETIC VORTICES IN 2D MAD TURBULENCE

Current density vortices at t=300




MAGNETIC VORTICES IN 2D MAD TURBULENCE

IACD vortices at t=300, & = 100, € ~ 10




MAGNETIC VORTICES IN 2D MAD TURBULENCE




NUMERICAL SIMULATION OF ANONLINEAR DYNAMO

We consider a compressible gas (V- u # 0) with constant sound speed ¢,

constant dynamical viscosity U, constant magnetic diffusivity 1,
. and constant magnetic permeability 1

Compressible, resistive MHD equations:

diInp + u-Vinp +V-u =0 (Continuity eq.)
diu+uVu=-c*Vinp+ I xB)/p+ u/p(Vzu +VV.u/3)+f (Momentum eq.)
dfA=uxB-nuJ (Induction eq.)

where J = VXB/u 1s the current density, B = VXA, and the gas 1s isothermal.

31

Pencil Code: third order in time, sixth order in space.



NUMERICAL SIMULATION OF ANONLINEAR DYNAMO
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t= 50.0

-0.01
t= 700.0
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Source: Rempel et al.,, MNRAS 466, L108-L112 (2017)

Bz

Bz

32



INSTANTANEOUS VORTICITY DEVIATION

t =700
e~ 107

33

Source: Rempel et al., MNRAS 466, L108-L112 (2017)



LAGRANGIAN AVERAGED VORTICITY DEVIATION

Third order interpolation in space and time. Fourth order
Runge-Kutta for particles Integration.

Source: Rempel et al.,, MNRAS 466, L108-L112 (2017)



LAGRANGIAN AVERAGED VORTICITY DEVIATION

35

Source: Rempel et al.,, MNRAS 466, L108-L112 (2017)
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t0=700
£ =10

OBJECTIVE MAGNETIC VORTICES

Source: Rempel et al., MNRAS 466, L108-L112 (2017)



OBJECTIVE MAGNETIC VORTICES
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Source: Rempel et al.,, MNRAS 466, L108-L112 (2017)



CONCLUSIONS

In magnetic fields, LCS identify regions of greater or
smaller dispersion of field lines;

The Integrated Averaged Current Deviation is an
objective way to define magnetic vortices.

Techniques for reconstruction of photospheric velocity
and magnetic fields from satellite data render the
method applicable to study magnetic reconnection

in observable solar plasmas.



CONCLUSIONS

Thank you, very much
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CURRENT VORTICES
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