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“Carry on my wayward son
For there’ll be peace when you are done

Lay your weary head to rest
Don’t you cry no more”

Kansas

in “Leftoverture”, 1976

v





To my loved ones, specially those who can’t read this anymore.

vii





ACKNOWLEDGEMENTS

First of all I would like to thank my family for all the support and incentive. Without
them I would not have gotten here. Without their unconditional love I wouldn’t be
who I am today. I also thank my friends for putting up with me.

I thank my advisors, Karine and Rafael, for all the help, corrections, and teachings.

I am grateful to Pedro Andrade, for showing me the basis of R.

This work was financially supported by CAPES (Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior).

ix





ABSTRACT

Spatiotemporal data are everywhere, being collected from different devices such as
Earth Observation and GPS satellites, sensor networks, vehicles and smartphones.
Data collected from those devices may contain valuable information about different
subjects, including environmental monitoring, weather as well as mobility. Of these
subjects, one of particular interest is moving objects’ trajectory data. In order to pro-
cess this kind of data, there is a need for high-level programming environments that
allow users to quickly and easily develop new algorithms. In this work, I propose a
framework that extends the R environment for big trajectory data mining. I designed
and developed two new packages that allow R users to efficiently deal with big trajec-
tory data sets and fast implement new mining algorithms over them. I also propose an
efficient method to discover partners in moving object trajectories. Such method iden-
tifies pairs of trajectories whose objects stay together during certain periods, based on
distance time series analysis. Finally, I validate both the framework and method via
case studies.

Keywords: R. Trajectory. Data-Mining.
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UM FRAMEWORK PARA MINERAÇÃO DE BIG DATA DE TRAJETORIAS

RESUMO

Dados espaçotemporais estão em todos os lugares, sendo coletados por diversos equi-
pamentos como satélites GPS e de Observação da Terra, redes de sensores, veículos
e smartphones. Dados coletados por esses equipamentos contêm informações valiosas
sobre diversas áreas como monitoramento ambiental, clima assim como mobilidade.
Dentro dessas áreas, uma de interesse especial é a de trajetórias de objetos móveis.
Para poder processar tais dados, existe a necessidade de um ambiente de alto ní-
vel que permite ao usuário desenvolver rapidamente e facilmente novos algoritmos.
Neste trabalho é proposto um framework para estender o ambiente R para a minera-
ção de grandes bases de dados de trajetória. Projeta-se e desenvolve-se dois novos
pacotes que permitem usuários R manipular eficientemente grandes conjuntos de da-
dos de trajetórias e a rápida implementação de novos algoritmos de mineração neles.
Propõe-se também um método eficiente para encontrar parceiros em trajetórias de
objetos móveis. Tal método identifica pares de trajetórias cujos objetos permanecem
juntos durante certos períodos, baseado em análise de series temporais. Finalmente,
valida-se tanto o método quanto o framework via estudos de caso.

Palavras-chave: R. Trajetória. Mineração de Dados.
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1 INTRODUCTION

Recent advances of sensors and communication technologies have produced massive
spatiotemporal data sets that allow scientists to observe the world in novel ways (FER-

REIRA et al., 2013). Earth observation satellites capture changes over time in cities and
forests; environmental sensors measure the variation of air pollution, temperature and
humidity in specific locations; and GPS (Global Positioning System) satellites and de-
vices collect locations of animals, vehicles and people over time. Mobile phones, sen-
sor networks, social networks and GPS devices create useful data for planning better
cities, capturing human interactions and improving life quality.

Mobility of people and goods is essential in the global economy (RENSO et al., 2013).
In GIScience (Geographic information science), moving object trajectories is a well-
known category of spatiotemporal data, and the gathering of such data has become
common in recent years (ALVARES et al., 2007). This work focuses on this category.
Moving objects are entities whose spatial positions or extents change continuously
over time (ERWIG et al., 1999). Examples of potentially moving objects are cars, aircraft,
ships, mobile phone users, polar bears, hurricanes, forest fires, and oil spills on the
sea.

Trajectories are countable journeys associated to moving objects (SPACCAPIETRA et

al., 2008). It can be semantically annotated, i.e. enriched with additional information,
to convey some sort of meaning about the trajectory or its segments. For example,
trajectories can be segmented accordingly to specific spatial locations or speed of the
moving objects, making possible to identify traffic lights or frequent stops for vehicles.
Semantic trajectories are those enriched with some sort of meaning. For instance,
the trajectory of an object that moves from a location A to a location B during the
week, might represent anything. Knowing that A is a company and B a house, such
trajectory can be enriched with meaning. In this case, such trajectory is probably a
commute to work.

Recently, the research area of trajectory data mining has grown a lot and many meth-
ods for trajectory pattern discovering have been proposed. Studies on this area consist
in analyzing the mobility patterns of moving objects and in identifying groups of tra-
jectories sharing similar patterns (ZHENG, 2015). I can mention, flocks (VIEIRA et al.,
2009) and convoys that look for clusters of moving objects (JEUNG et al., 2008). The
avoidance pattern (LOY et al., 2010) finds areas being avoided by objects, and so on.
The discovery of patterns is of great importance in a wide range of fields, for example
in automated surveillance and regulation control. Fishing can be monitored to verify
if it is being done according to regulation, in order to preserve marine life. Pattern
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discovery can also be used for the detection of anomalies (ETIENNE, 2011), or for
tourism applications, which generate revenue (RENSO et al., 2013). An example I can
mention is the identification of the favorite routes taken by tourists.

1.1 Motivation

Although there are many methods proposed in the literature for trajetory data mining,
there is a lack of software tools, high-level programming environments that allow
users to access big trajectory data sets and easily develop new algorithms to analyze
them. Two examples of software tools that handle trajectoy data are M-Atlas (RENSO

et al., 2013) and Weka-STPM (ALVARES et al., 2010).

M-Atlas implements a query language to work with trajectories exclusively in Post-
greSQL. Weka-STPM extends Weka by implementing the finding of stops and moves
in trajectories. Both M-Atlas and Weka-STPM are written in Java. They do not pro-
vide an environment with a scientific standard programming language (MÜLLNER et

al., 2013) to facilitate the development of new algorithms for application users. Besides
that, they are not able to access trajectories from different kinds of data sources, such
as KML files, other DBMS or web services. I believe, there is a need for high-level
scientific standard programming environments to handle trajectory data sets.

R is a software tool and a programming language widely used for data analysis (R

Development Core Team, 2011). It provides a broad variety of statistical methods (e.g.
time-series analysis, classification and clustering) and graphical techniques (e.g. plot).
R provides for instance the possibility to analyze spatial and spatiotemporal data.
Such variety in functions can be attributed to an ever-growing community, that fre-
quently creates and modifies packages to extend R. Currently, there are over 8000
packages available through CRAN (The Comprehensive R Archive Network). R pro-
vides a high-level programming language and is platform independent, allowing fast
developing of new algorithms with portable code. It is free and open-source. R can
be bound to other languages like C++, allowing high performance computing to be
executed.

Although there are many packages for spatial and spatiotemporal analysis such as
spacetime (PEBESMA, 2012), there are few R packages that work with trajectory data.
Some examples are SimilarityMeasures (TOOHEY; DUCKHAM, 2015), AdehabitatLT
(CALENGE, 2006) and Trajectories (KLUS; PEBESMA, 2015). SimilarityMeasures im-
plements trajectory similarity measures. AdehabitatLT analyzes trajectories of animals
specifically. Trajectories contains classes to represent a trajectory and some opera-
tions over them, such as calculating distances and returning Spatiotemporal bound-
aries. These packages do not share a standard representation for trajectories, limiting

2



therefore the users’ experience when analyzing trajectories. Besides the existing trajec-
tory packages do not offer data access methods, they focus solely in data processing.

Trajectory data sets can be stored in different sources, such as database systems (e.g.
PostGIS) and data files (e.g. KML - Keyhole Markup Language) (FERREIRA et al., 2015).
In R, there are packages like RPostgreSQL (CONWAY et al., 2012) and Rgdal (BIVAND et

al., 2013) that can access data from distinct sources. They can access spatial data, but
they are limited when it comes to temporal dimension. Moreover, these packages are
not able to access trajectory data by parts. Thus, they cannot handle big data sets.

According to Kane et al. (2013), R is not well-suited for working with data structures
larger than about 10–20% of a computer RAM memory. The authors argue that a data
set is considered large when its size is 20% or more of the computer RAM; and it is
massive when its size is 50% or more of the computer RAM. In this work I obtained
the empirical data regarding R packages in a Virtual Machine running Ubuntu 14.04.5
LTS with 3 processors and 3 GB of RAM. In this case, a 2 GB data set was already
challenging.

In the R environment, there is a need for packages that can access big trajectory
data sets from distinct types of sources and discover patterns, using a standardized
trajectory representation.

1.2 Objective

The goal of this work is to propose a framework for big trajectory data mining that
provides a high-level programming environment that allows users to efficiently deal
with big trajectory data sets and quickly develop new mining algorithms over them.
The framework is designed using the R environment and the GIS (Geographical In-
formation System) library and application called TerraLib and TerraView (CÂMARA

et al., 2008).

I chose R because it provides a high-level programming environment and language
that is suitable for fast developing and testing of new methods. Besides that, it is
extensible and provides many building blocks to boost the process of development.
Visualization of spatiotemporal data is possible in R, but it is not as dynamic and
effective as in a GIS. In the framework, I propose the use GIS tools to handle and
visualize trajectory data sets. In this way, users can use GIS typical methods over
trajecory data sets and combine such data sets with other kinds of geographical data,
such as Earth Observation (EO) satellite images.
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The developed framework is composed of two new R packages. The TrajDataAccess
is responsible for accessing big trajectory data sets from distinct types of sources. The
TrajDataMining contains a set of methods for trajectory data preparation, such as
filtering, compressing and clustering, and for trajectory pattern discovery.

To validate and test the proposed framework and its packages, I performed case stud-
ies using real trajectories of marine vessels; sea elephants; delivery trucks and a tra-
jectory provided within the package trajectories.

1.3 Contribution

The main contributions of this work are:

• A framework capable of loading and processing trajectory data made up of:

– A new R package called TrajDataAccess to access big trajectory data
sets from distinct types of sources;

– A new R package called TrajDataMining with a set of functions to pre-
pare trajectory data sets for further data mining processing, such as
filtering, compressing and clustering;

• A new method to detect a pattern called Partners in trajectories. This al-
gorithm identifies pairs of trajectories whose objects stay together during
certain periods. This method is available in the TrajDataMining package. It
differs from existing moving together patterns because its implementation
is highly parallelizable and its clustering method is based on distance time
series analysis.
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2 THEORY AND LITERATURE REVIEW

2.1 Moving objects trajectory

Moving objects are entities in an environment whose position evolve along the time.
These objects can be vehicles, human beings, animals, natural phenomena (ETIENNE,
2011). Every object has its own characteristics such as its geometry, its moving capa-
bility, and these characteristics influence their representation.

There are some ways to represent movement, for instance fields of vectors and flow
network (RENSO et al., 2013). However, one of the most relevant ways nowadays is
storing it as trajectories. According to Renso et al. (2013) trajectories are segments of
movement and while movement is inherently continuous, it cannot be captured as
such in computers where stored data is by definition discrete.

Alvares et al. (2007) states that moving object data are normally available as sample
points in the form (tid, x, y, t), where tid is an object identifier and x, y and t are
respectively spatial coordinates and a time stamp.

Other ways of representing trajectories exist, such as equations of motion (GEERTS,
2004), in which the trajectories per se are not stored, they are the solution to the stored
equations. Nonetheless, for this work I chose to work with the discrete representation
that is the most common.

2.2 Trajectory knowledge discovery and data mining

The knowledge discovery and data mining(KDD) process consists of more stages than
pure data mining. The process involves the selection of the data, cleaning and pre-
processing the data, followed by data reduction, data mining and analyses (FAYYAD et

al., 1996). This process is illustrated in figure 2.1.
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Figure 2.1 - An Overview of the Steps That Compose the KDD Process.

SOURCE: (FAYYAD et al., 1996)

2.2.1 Trajectory data selection

Data selection is important for the process of knowledge discovery, without it all
the other processes could be hindered. Without the means to properly select data,
worthless or excessive data might enter the process. Data selection makes possible to
focus solely on regions or objects of interest.

There are many ways we could select trajectories, we could select them by their unique
identifications. Trajectories could receive other information, such as the kind of mov-
ing object performing them, and have this extra information used as part of a filter.

A natural way to filter trajectories data is by using a spatiotemporal box (STBox). STBox
is a variant of a bounding box that takes into account not only the spatial boundaries
but the temporal extent as well. Using STBoxes, we can filter trajectories considering
their intersections in space and time, reducing the amount of data for further process-
ing.

2.2.2 Trajectory data preprocessing

Data preprocessing is a step in which the data is prepared to avoid problems such
as missing data, noise and inconsistencies, aiming to produce a better mining. One
technique that can be used to clean trajectory data from noise is a speed filter. This
filter analyses the speed presented in the data and compares it to a maximum speed
(ETIENNE, 2011) and removes data in which the the speed surpasses the maximum.
The maximum speed can be given by the user or calculated based on the average
speed. Ideally, when setting the filter, the user is aware of the dimension of the data.
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If the user sets the maximum speed too high nothing will be filtered, while if it sets
too low real data might be excluded.

Figure 2.2 shows an abnormality that should be filtered. It is unlikely that a vessel
could have a point so far from the rest of the path.

Figure 2.2 - Inconsistent trajectory detected by speed filter.

SOURCE: Edited from Etienne (2011)

2.2.3 Trajectory data reduction

In general, data reduction can be achieved through many different techniques. Such
as dimension reduction in which some variables are ignored; discretization that trans-
form continuous data into discrete data; data compression that tries to use fewer infor-
mation to represent the same data (BASKAR et al., 2013). I focus my work on the latter,
since trajectory data, in this work, is already discrete and minimally represented.

When using lossy compression techniques there is always a trade-off between com-
pression rate achieved and error allowed. It is important to notice that as compression
rate increase so does the error, however at a certain point neither compression nor
error will increase further (MERATNIA; BY, 2004). Because of the error produced when
using lossy compression techniques not all applications can be compressed.
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One well known and studied compression technique is the one proposed by Douglas
and Peucker (1973) and that has been studied and modified along the years in works
such as the one of Vaughan et al. (1991). This technique was designed for line sim-
plification, and can be used to compress trajectories, even though it is not designed
to keep the temporal aspects intact. This technique can be visualized in figure 2.3, in
which a trajectory is reduced.

Figure 2.3 - Exemplification of Douglas-Peucker algorithm for line simplification.

SOURCE: (ETIENNE, 2011)

In order to minimize the loss from Douglas and Peucker (1973) algorithm when deal-
ing with spatiotemporal data, Meratnia and By (2004) have proposed a new technique.
Their algorithm is built over an open-window compression one, exemplified in figure
2.4. It takes into consideration both speed and position when compressing data.

Figure 2.4 - Exemplification of open-window strategy.

SOURCE: (MERATNIA; BY, 2004)
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In their work, Meratnia and By (2004) demonstrate the differences between DP
(Douglas-Peucker) algorithm and theirs. They show that the compression rate of the
DP algorithm is higher. Specially at low distance thresholds (the gap narrows as the
threshold distance increases). However, the error on their algorithm, as they calculate
it, is substantially lower. Thus in applications in which compression is more important
than precision, DP might be more adequate. While applications in which accuracy is
the most valued attribute Meratnia and By (2004) algorithm should be considered, if
compression is necessary.

2.2.4 Semantic enrichment of trajectories

Recently the way trajectories are viewed changed and a new model, called stops and
moves, appeared to work with them. This model is especially interesting to add se-
mantic information to raw trajectories (SPACCAPIETRA et al., 2008). Aiming to enrich
trajectories semantically with such stops and moves, two algorithms were created to
identify stops and moves of trajectories without intersecting known stops. They are
CB-SMoT (PALMA et al., 2008) and DB-SMoT (ROCHA et al., 2010).

The algorithm DB-SMoT takes in consideration the change of directions in order to
find clusters with many direction changes. The other algorithm finds regions in which
the speed is below a set threshold and defines them as clusters. Those clusters will
then be considered the stops. In figure 2.5 the trajectory in item (1) is enriched only
with the known stops A, B and C and in item (2) the same trajectory is also enriched
with the calculated stops X and Y.

Figure 2.5 - Single Trajectory enriched semantically.

SOURCE: (PALMA et al., 2008)

Having knowledge of the stop points it is possible to semantically segment a trajec-
tory. That means we can divide the trajectories into smaller trajectories with some sort
of meaning, for instance a commute to work could be separated from the rest of the
trajectory.
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2.3 Trajectory pattern identification

Recently, the research area on trajectory data mining has grown a lot. Studies on this
area consist in analyzing the mobility patterns of moving objects and in identifying
groups of trajectories sharing similar patterns. In last years, many methods and tech-
niques for trajectory pattern discovering have been proposed to meet a broad range
of applications. Zheng (2015) presents a systematic survey on the major research into
trajectory data mining and classifies existing patterns in four categories: (1) Moving
together; (2) Clustering; (3) Frequent sequence; and (4) Periodic. In this work, I focus on
the first category.

2.3.1 Moving together patterns

Examples of patterns that discover a group of objects that move together for a cer-
tain period are flock (GUDMUNDSSON; KREVELD, 2006; VIEIRA et al., 2009; TANAKA et al.,
2015), group (WANG et al., 2006), convoy (JEUNG et al., 2008), swarm (LI et al., 2010), trav-
eling companion (TANG et al., 2012), gathering (ZHENG et al., 2013; ZHENG et al., 2014) and
co-movement (FAN et al., 2016). Moving together patterns are useful for a high number of
applications, such as monitoring of delivery trucks (JEUNG et al., 2008) and identifica-
tion of vessels that fish together.

The flock pattern has attracted a lot of interest from the community with many studies
being published over the years regarding this pattern. A flock is a group of objects that
stay together within a disk with a user-defined radius for at least K consecutive time
stamps. Vieira et al. (2009) propose a framework and polynomial-time algorithms,
called Basic Flock Evaluation (BFE), to discover such pattern in streaming spatiotem-
poral data. Tanaka et al. (2015) present variations of the BFE algorithm, employing
the plane sweeping technique, binary signatures and/or an inverted index. Similar
to flock, group pattern identifies moving objects that travel within a radius for certain
timestamps that are possibly nonconsecutive (WANG et al., 2006). The main difference
between both is that group considers relaxation of the time constraint.

According to Zheng (2015), a major concern with flock and group patterns is the pre-
defined circular shape, which may not well describe the shape of a group in reality.
Since they use a disk with rigid limits, they miss objects that are close to a group but
outside the disk limits. This drawback is called lossy-flock problem. The chosen disk
size has a substantial effect on the results of the discovery process. The selection of a
proper disk size is very difficult. Besides the lossy-flock problem, for some data sets,
no single appropriate disc size may exist that works well for all parts of the space and
time domain (JEUNG et al., 2008).
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The convoy pattern uses density-based clustering in order to capture groups of ar-
bitrary extents and shapes. Instead of using a rigid size disk as flock, such pattern
requires a group of objects to be density connected during k consecutive time points.
While both flock and convoy have a strict requirement on consecutive time period, Li
et al. (2010) propose a more general type of trajectory pattern, called swarm, which
captures the moving objects that move within arbitrary shape of clusters for certain
timestamps that are possibly nonconsecutive. Even though swarm and group patterns
consider relaxation of the time constraint, the group pattern definition restricts the
size and shape of moving object clusters by specifying the disk radius. Moreover,
redundant group patterns make the algorithm exponential (LI et al., 2010).

Aiming to overcome the limitations brought by the global consecutiveness of the con-
voy and aiming to be more selective than the swarm, Li et al. (2015) have proposed the
platoon. The platoon is not as restrictive as the convoy regarding the consecutiveness of
the timestamps, nor is as loose as the swarm on the same matter. It uses the concept of
local consecutiveness, in which objects can separate for a while, as long as the periods
in which they are together meet the minimum temporal requirements.

The traveling companion (TANG et al., 2012) proposes a data structure, called traveling
buddy, to improve the efficiency of the algorithms to find moving together patterns
from trajectories that are being streamed into a system. The concepts of convoy and
swarm patterns are similar to traveling companion. The main difference is that convoy
and swarm need to load entire trajectories into memory for a pattern mining. Hence
it is impractical to use them in a data stream environment. The traveling companion
pattern can be considered an online (and incremental) detection fashion of convoy
and swarm (ZHENG, 2015). The gathering pattern (ZHENG et al., 2013; ZHENG et al., 2014)
detects some incidents, such as celebrations and parades, in which objects join in and
leave an event frequently. This pattern loses the constraints of the aforementioned
patterns by allowing the membership of a group to evolve gradually (ZHENG, 2015).

Fan et al. (2016) propose a more general patterns, called co-movement, to unify those
to identify moving together patterns, such as convoy, swarm, flock and group. They
argue that co-movement pattern can avoid the loose-connection anomaly and can be re-
duced to any of the previous pattern by customizing its parameters. Loose-connection
anomaly refers to the problem in which clusters that are clearly too distant in time
are considered part of the same pattern. Moreover, the authors propose two types of
parallel and scalable frameworks to process the co-movement method and deploy them
on MapReduce platform.
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2.4 Software for moving object trajectories analysis

One software that allows manipulating trajectories is M-Atlas (RENSO et al., 2013),
which is mostly dedicated to urban mobility. It is written in Java and implements
a query language to work with trajectories exclusively in PostGIS. This software
presents a series of functions to deal with trajectory data and extract information
and knowledge of those. Examples of functions that can be found in this software are
the identification of stops in trajectories and the finding of flocks. However, the soft-
ware is unable to load a vessel dataset (used in this study and which will be further
explained in chapter 5) in the test machine at once. It is only able to deal with such
data in parts, relying on the user to select the parts manually, and if the user is not
careful the results of the newly analyzed data might replace the previous results.

Weka-STPM (ALVARES et al., 2010) is another tool to manipulate trajectory data. It
extends Weka by implementing the finding of stops and moves in trajectories. The
finding of stops and moves can be done through the use of some algorithms like CB-
SMoT and DB-SMoT, presented in (ALVARES et al., 2010). However, this program has
some limitations, like the necessity of naming the columns in a specific way, data can
only be read from database systems, and there are no other methods to deal with
trajectories in it, such as preparation methods and pattern identification.

Both M-Atlas and Weka-STPM are written in Java. They do not provide a high-level
scientific programming language to facilitate the development of new algorithms for
application users. Besides that, they are not able to access trajectories from different
kinds of data sources, such as KML files, other databases or web services.

2.4.1 R

R is a software tool widely used for data analysis (R Development Core Team, 2011). It
provides a broad variety of statistical methods (time-series analysis, classification and
clustering) and a high-level programming environment and language, suitable for
quickly developing new algorithms. However, R has a well-known limitation on han-
dling large objects. According to Kane et al. (2013), R is not well-suited for working
with data structures greater than about 10 - 20% of a computer RAM memory. The
authors argue that a data set is considered large when its size is 20% of the RAM
of the computer, and it is massive when its size is 50% of the computer RAM. There
are other programming languages, such as C/C++ or Fortran, that allow quick and
memory-efficient operations on massive data sets. Unfortunately, such languages are
not well-suited for users who have low-level programming skills.
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R is extended via packages, it has an ever-growing community, a good environment
for the development of new algorithms, and can be easily used by people with lit-
tle knowledge of programming (R Development Core Team, 2011). Even though it has
thousands of packages to expand its capabilities, some which are directed towards
spatiotemporal data mining, only few packages in R are developed to process tra-
jectory data. Some examples are SimilarityMeasures (TOOHEY; DUCKHAM, 2015),
AdehabitatLT (CALENGE, 2006) and Trajectories (KLUS; PEBESMA, 2015).

AdehabitatLT presents one of the first ways of representing animal trajectories, being
better suited for those kinds of data. The package SimilarityMeasures does not have
its own structure to represent trajectories, however it has methods to calculate the
distance of trajectories, like Frechet Distance and DTW. One of the most important
packages to mention in this topic is the Trajectories package. It has its own repre-
sentation of trajectory data, that will be better explained in 3.1, and has some methods
to work with trajectories, such as STBox identification.

These packages do not share a standard structure for representing trajectories (as can
b expected from R packages). Their structures are limited by the host memory and
can not support big data sets. Besides that, they focus on data processing and do not
provide methods to access trajectory data sets from distinct types of sources.

Trajectory data sets can be stored in different types of sources, such as database sys-
tems (e.g. PostGIS) and data files (e.g. KML - Keyhole Markup Language) (FERREIRA

et al., 2015). In R, there are packages like RPostgreSQL and Rgdal that can access data
from distinct type of sources. They can access spatial data, but they are unaware of
its temporal dimension. They do not work with the concept of trajectory and there-
fore lack when dealing with such data type. Moreover, these packages are not able to
access data from sources by parts. Thus, they can not handle big data sets.

2.4.2 Terralib and trajectory

Terralib is a free and open source GIS software library to support the development
of customized geographical applications. It is written in C++ language and provides
typical GIS functions, such as geometry and time handling, image processing and
spatial reference systems (CÂMARA et al., 2008).TerraView is a GIS built upon Terralib
and can be improved via plugins.

The new family of TerraLib and TerraView versions, called TerraLib 5 and TerraView
5, can deal with spatiotemporal data (FERREIRA et al., 2015). It contains a module, called
ST Module, which provides data types to represent spatiotemporal information and
functions to access such information from different kinds of data sources. It is built
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using other TerraLib 5 modules such as Geometry, Raster, Datatypes and DataAccess,
as shown in Figure 2.6.

Figure 2.6 - Terralib 5 ST module

SOURCE: Author’s production

In the TerraLib 5 ST Module, data types for spatiotemporal data representation were
developed based on the algebra proposed by Ferreira et al. (2014). Algebras describe
data types and their operations in a formal way, independently of programming lan-
guages. The proposed algebra is extensible, defining data types as building blocks for
other types, as shown in Figure 2.7.
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Figure 2.7 - Model used in part of Terralib 5 architecture.

SOURCE: (FERREIRA et al., 2014)

The proposed model takes observations as basic units for spatiotemporal data rep-
resentation and allows users to create different views on the same observation set,
meeting application needs. It defines three spatiotemporal data types as abstractions
built on observations: time series, trajectory, and coverage, as presented in Figure 2.7.
A time series represents the variation of a property over time in a fixed location. A
trajectory represents how locations or boundaries of an object change over time. A
coverage represents the variation of a property in a spatial extent at a time. It also
defines an auxiliary type called coverage series that represents a time-ordered set of
coverages that have the same boundary. Using these types, we can represent objects
and fields that change over time as well as events.

The TerraLib 5 ST Module also provides a set of functions to load spatiotemporal
data sets from different kinds of sources and to map such data sets into its spatiotem-
poral data types. Ferreira et al. (2015) present a proposal to access spatiotemporal
information from distinct kinds of data sources using Semantic Web techniques. This
approach consists in describing how data sources store spatiotemporal observations,
based on a RDF vocabulary.

To properly visualize spatiotemporal information, a plugin for TerraView 5 will de-
veloped. This plugin will provide graphical user interfaces (GUI) to allow users to
access spatiotemporal data sets, handle these sets and dynamically visualize them in
TerraView.
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In 2005, Andrade et al. (2015) proposed and developed an interface between TerraLib
and R, called aRT (R-TerraLib API) (ANDRADE et al., 2015). aRT provides access to
the TerraLib entities in an easy and transparent way for R users. Even though this
work is very interesting, aRT was built using TerraLib version 4 that did not have
spatiotemporal data types. Therefore, it can not handle spatiotemporal information,
including moving object trajectories.
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3 A FRAMEWORK FOR BIG TRAJECTORY DATA MINING

In this chapter, I describe the proposed framework for big trajectory data mining. This
framework provides a high-level programming environmet in R that allows users to
access big trajectory data sets from different kinds of data sources and to fast develop
new methods over them.

Big trajectory data mining is a relatively young topic, specially in R in which existing
tools might not always be enough. So, the framework extends the R environment
for users that need to handle big trajectory data sets and to fast and easily develop
and test new methods on them using a high-level programming environment and
language.

Before describing the framework, I present some important definitions, like the defi-
nition of trajectory and trajectory spatiotemporal box that are illustrated respectively
in figures 3.1 and 3.2.

Definition 1. (Trajectory) A trajectory Trji, in which i is the trajectory unique iden-
tifier, is represented by a set of observations τ temporally ordered in the form
{(x1, y1, t1), ..., (xn, yn, tn)}. Each observation τ also represented as (x, y, t) contains
the spatial location x and y of a moving object at a certain time t.

Figure 3.1 - Discrete Trajectory Representation of 4 moving objects

SOURCE: Author’s production
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Definition 2. (Trajectory bounding box) The bounding box (BBox) of a trajectory Trji,
BBox(Trji), is an entity defined in space. It is defined as the rectangular region that
contains all spatial locations of a trajectory. Such region is represented by two points
((xmin, ymin), (xmax, ymax)), which are the bottom-left and top-right corners, respec-
tively, of the rectangle given that all observations of Trji satisfy xmin ≤ x ≤ xmax,
ymin ≤ y ≤ ymax, ∀ (x,y) ∈ Trji.

Definition 3. (Trajectory period) The period of a trajectory Trji, P(Trji), is an entity
defined in time. It is delimited by (tmin, tmax) that are the minimum and maximum
time instants associated to a trajectory given that all observations of Trji satisfy tmin ≤
t ≤ tmax, ∀ (t) ∈ Trji.

Definition 4. (Trajectory spatiotemporal box) A spatiotemporal box (STBox) of a tra-
jectory Trji, STBox(Trji), is an entity defined in two domains, space and time. Spatially,
it is defined as the BBox(Trji). Temporally, it is given by P(Trji). Thus, the STBox of a
trajectory Trji can be represented as ((xmin, ymin, tmin), (xmax, ymax, tmax)) given that all
observations of Trji satisfy xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax and tmin ≤ t ≤ tmax, ∀
(x,y,t) ∈ Trji.

Definition 5. (Trajectory spatiotemporal box intersection) The intersection of
STBox(Trji) and STBox(Trjj), here represented as STBox(Trji) ∩ STBox(Trjj), happens
when |BBox(Trji)×P(Trji)|∩|BBox(Trji)×P(Trji)| 6= ∅

Figure 3.2 - Trajectories and their STBoxes.

SOURCE: Author’s production.

18



Figure 3.2 shows the trajectories of the four objects from figure 3.1 and their cor-
responding STBoxes. Considering the STBox of object 1, only the STBox of object 2
intersects it. STBox of object 3 intersects spatially the STBox of object 1, but not tem-
porally. And the STBox of object 4 intersects temporally the STBox of object 1, but not
spatially.

3.1 Framework architecture

I propose a framework which is composed of the GIS library and application TerraLib
5 and Terraview 5, two existing R packages, Trajectories and Rcpp, and two new R
packages developed in this work called TrajDataAccess and TrajDataMining.

Figure 3.3 - System architecture.

SOURCE: Author’s production.

TrajDataAccess allows R users to access big trajectory data sets from distinct types
of sources and to load them as objects of the Trajectories package (KLUS; PEBESMA,
2015).

Trajectories package provides three data types to represent trajectories, Track,
Tracks and TracksCollection. The class Track represents a single trajectory followed
by a person, animal or object. Tracks embodies a collection of trajectories followed
by a single person, animal or object. The class TracksCollection represents a collec-
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tion of trajectories followed by different persons, animals or objects. Besides that, this
package provides a set of operations over trajectories, such as computing the STBox of
trajectories and calculating the instantaneous euclidean distance between two tracks.

An object of the Track class is build with observations, that have minimally a spa-
tial position and a time of observation. A Track can carry other informations for
every observation, such as gasoline consumption, carbon emission, but those are not
mandatory. This matches the definition of trajectory presented in this work. This also
matches one of the ways trajectories are represented in TerraLib 5 ST Module, in
which a trajectory is made up of observations that have at least a position and the
instant of the observation.

TrajDataAccess is responsible for accessing trajectory data from different types of
sources, such as PostGIS database systems and KML files. It provides functions to
load big data sets based on spatiotemporal constraints. Such functions allow users to
effectively deal with big trajectory data sets by accessing them by parts. Examples of
spatiotemporal constraints that can be used in TrajDataAccess functions are filters
based on trajectories STBox, as shown in Figure 3.2. This package allows users to load
trajectory data sets by parts in a high-level way, regardless of its size or how it is
stored.

TrajDataAccess is an interface with TerraLib. In order to bind a C++ library with the
R environment, I used the Rcpp middleware, which facilitates the integration between
R and C++, working as a bridge (EDDELBUETTEL et al., 2011). It provides matching C++
classes for a large number of basic R data types. Hence, a package author can keep his
data in normal R data structures without worrying about translation or transferring
to C++. At the same time, the data structures can be accessed as easily at the C++
level, and used in the normal manner.

To deal with spatiotemporal data, TerraLib has two modules called ST and
STDataLoader (FERREIRA et al., 2015). The TerraLib ST module contains data types writ-
ten in C++ classes to represent spatiotemporal data, based on the algebra proposed
by Ferreira et al. (2014).

The TerraLib STDataLoader module is responsible for accessing different kinds of
data sources, loading spatiotemporal data sets from these sources and mapping them
into the data types of the ST Module. It accesses sources and load data using two
main concepts, Data Source and Data Set. Details about TerraLib ST and STDataLoader
can be found in (FERREIRA et al., 2015). Internally, the functions provided by the
TrajDataAccess package use the ones implemented in the TerraLib STDataLoader
module.
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In the framework, I propose the use of the GIS TerraView to dynamically visualize
and preprocess trajectories. To properly visualize and deal with spatiotemporal infor-
mation, a plug-in for TerraView will be developed. Visualization of spatiotemporal
data is possible in R, but it is not as dynamic and effective as in a GIS. Using a GIS
to handle and visualize trajectory data sets, their typical methods over such data sets
can be used and the data combined with other kinds of geographical data, such as
Earth Observation (EO) satellite images.

The TrajDataMining contains a set of methods for trajectory data preparation, such as
filtering, compressing and clustering, and for trajectory pattern discovery. The meth-
ods are important to prepare trajectory data sets before the data mining phase.

3.2 TrajDataAccess package

The TrajDataAcess R package contains functions (listed on annex A) to:

a) Calculate the maximum data size that R can load in the user environment;

b) Calculate the spatiotemporal bounding boxes (STBoxes) related to the maxi-
mum loadable data size;

c) Load trajectories from distinct types of data sources, such as PostGIS
database systems and KML files;

d) Load trajectories from data sources by parts, based on a given spatiotemporal
bounding box (STBox) restriction;

e) Load trajectories from data sources by their unique identifications (ID);

f) Load all trajectories from data source at once without restrictions when
memory is not a limitation.

Aiming the good usability of the package some of these functions are hidden from
the user and are only used by other functions, for instance function (a) is used by
the function (b), named getIdealSTBoxes, or are overloaded on a single function, for
example, function (f) is included in function (c). Beyond the functions, I also imple-
mented five classes: DataSourceInfo, TrajectoryDataSetInfo, Envelope, Period and
STBox.

The DataSourceInfo class represents information about a data source that contains
trajectories. There are three types of data sources: files, DBMS (Database management
Systems) and web services. Each type of data source is described by a specific set

21



of attributes. For example, to describe a DBMS data source, I have to inform its host
name, port number, database name, a user and its password. For file-based data sources
just the path where the files are stored needs to be provided.

The TrajectoryDataSetInfo class describes a data set that contains trajectory obser-
vations in a data source. A data source can have one or more data sets that contains
trajectories. In DBMS data sources, a trajectory data set can be a table or a view; in file
data sources, it can be an internal tag or a sub file. Using the TrajectoryDataSetInfo
structure, R users inform how the trajectories are stored in a data source. For example,
if the data source is a DBMS and the trajectory data set is a table of this DBMS, a user
has to inform which property of this table contains the spatial locations, the times and
the object and trajectory identification.

The STBox is related to both Envelope, and Period. Envelope is what I call a regular
bounding box in the package, and period is a class containing two instants that rep-
resent beginning and end. When joining both Envelope and Period the result is an
STBox (see definitions 2,3 and 4).

The getIdealSTBoxes calculates the regions for data retrieval that are neither over-
whelming to the RAM memory nor so small that require excessive access to the data
source. This method gets the available memory on the machine and the size of the
data to be loaded. In order to assess the number of needed divisions, getIdealSTBoxes
adopts both the previously mentioned limit of 20% of the RAM on the machine and
the empirically found 4 time increase in size of the data as factors. This process to
calculate the necessary divisions is shown in algorithm 1.

In line 4 of algorithm 1, the dataSetSize is the size of the dataset while stored in the
machine before being loaded into the R environment, it is multiplied by 4 in order
to represent its increase while stored in the R environment, and the availableMem
is multiplied by 0.20 in order to respect the memory limitation imposed by R. It is
important to note that this algorithm does not returns the divisions per se, it returns
the number of parts in which the data should be divided.

The next step is shown in the algorithm 2, from lines 3 to 5 it starts by loading the
number of divisions that will be used, checking how many rows each division will
have, and retrieving the STBox of the whole collection of data. Next, in line 6, the
algorithm is concerned about calculating the basic size of a division, it divides the
dimension that will be worked by the number of necessary divisions, this aims to
create at first regions that have the same size, it is important to note that the increment
will always be in the measurement system used by the data. Further in lines 7 and 8,
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the first attempt to create an STBox is made, in line 8 the higher bound is calculated
by incrementing the lower bound with the size of a division.

From line 15 and beyond it is when the fine tuning happens. The counter on line
15 tells how many times the operation of reducing the dimension has been done, so
that at each interaction the size of the worked divisions will be smaller. In line 16 the
amount of rows within the calculated STBox are retrieved. And in lines 17,20 and 23
the algorithm analyze the 3 possible cases of this amount of rows. It can determine
that the size is right and move to the next STBox. Alternatevely, it can say that the size
is not adequate, if the STBox is too big it will try to reduce it’s size by subtracting a
bigger piece at each interaction. If it is too small, it will try to double the increment.

Summarizing, The method starts with the STBox of the lowest division, then it starts
adjusting one of its dimensions (x,y or time), so it will have roughly the same amount
of data as all divisions should have. The process is repeated for all divisions (al-
ways altering the same dimension). Those calculated STBoxes are returned as a list of
STBox objects. After this process the user will have full access to the data, virtually
effortlessly using the getTrajectoryBySTBox method.

Table 3.1 - List of symbols and notations used in Algorithms 1 and 2.

GetComputerRAM Method that returns the total size of the RAM memory in
the computer

GetDataSetSize Method that returns the size in Bytes(or its multiples) of a
data set given a DataSetInfo

Ceiling Method that returns the lowest integer that is higher than
the argument

STB A set of STboxes
GetDivisions Method that returns the adequate number of divisions for a

dataset given a DataSetInfo
GetDataSetRows Method that return the number of rows in a data set given a

DataSetInfo
GetDataSTBox Method that returns the STBox of a data set given a

DataSetInfo
GetRowsInSTBox Method that return the number of rows in a data set given a

DataSetInfo, and the STBox of interest
∆dataSTBox.dim The size of one dimension of the STBox named dataSTBox.

This dimension may be either x,y or time
newSTBox.dim.max Highest value of one dimension in the STBox named

newSTBox. This dimension may be either x,y or time
newSTBox.dim.min Lowest value of one dimension in the STBox named

newSTBox. This dimension may be either x,y or time
error Previously defined acceptable error in the number of rows
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Algorithm 1 Find Needed Divisions
1: procedure getDivisions(DataSetIn f o)
2: availableMem← GetComputerRAM()
3: dataSetSize← GetDataSetSize(DataSetIn f o)
4: divisions← Ceiling((dataSetSize ∗ 4)/(availableMem ∗ 0.20))
5: Return divisions
6: end procedure

Algorithm 2 Find Ideal STBoxes
1: procedure getIdealSTBoxes(DataSetIn f o)
2: STB← ∅
3: divisions← GetDivisions(DataSetIn f o)
4: rowsPerDivision← GetDataSetRows(DataSetIn f o)/divisions
5: dataSTBox ← GetDataSTBox(DataSetIn f o)
6: increment← ∆dataSTBox.dim/divisions
7: newSTBox ← dataSTBox
8: newSTBox.dim.max ← newSTBox.dim.min + increment
9: for (i in 1:divisions) do

10: if (i 6= 1) then
11: newStBox.dim.min← newStBox.dim.max
12: newStBox.dim.max ← newStBox.dim.min + increment
13: end if
14: while (True) do
15: counter ← 1
16: rowsInStBox = GetRowsInSTBox(DataSetIn f o, newStBox)
17: if (rowsInStBox IN rowsPerDivision± error) then
18: STB← STB ∪ newSTBox
19: break
20: else if (rowsInStBox >rowsPerDivision + error) then
21: newStBox.dim.max = −(increment ∗ (1− 0.5/counter))
22: counter = counter + 1
23: else if (rowsInStBox <rowsPerDivision− error) then
24: newStBox.dim.max = +increment
25: counter = 1
26: end if
27: end while
28: end for
29: Return STB
30: end procedure
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The functions of the TrajDataAccess package that load a trajectory returns the most
adequate R objects of the Trajectories package. Internally, trajectories are loaded
from data sources as C++ TerraLib 5 Trajectory data types, using the TerraLib func-
tions. After that, TrajDataAccess package brings them to R, converting them into
R objects of the Trajectories package. Examples of the use of these methods and
classes are shown in chapter 5.

3.3 TrajDataMining package

The TrajDataMining contains a set of methods for trajectory data preparation, such as
filtering, compressing and clustering, and for trajectory pattern discovery. The meth-
ods for data preparation are important to prepare trajectory data sets before the data
mining phase. TrajDataMining contains the following methods:

a) A speed filter that filters out trajectory observations whose speeds are above
a user-defined maximum velocity (ETIENNE, 2011).

b) Two compression algorithms: (1) Douglas-Peucker which reduces trajectories
by preserving spatial precisions (DOUGLAS; PEUCKER, 1973), and (2) Open-
window Meratnia-By which reduces trajectories by preserving spatiotempo-
ral precisions (MERATNIA; BY, 2004).

c) Two algorithms to discover when objects stop and move, CB-SMoT (PALMA

et al., 2008) and DB-SMoT (ROCHA et al., 2010), which can be used to semanti-
cally enrich the trajectory data.

d) A method, named Partner, that identifies objects that are moving together.
I propose this method to recognize trajectories that stay together, based on
trajectory distance time series analysis.

TrajDataMining relies on the Trajectories package for some of its functions, for
instance the Partner method uses the function Compare from the Trajectories pack-
age, because this function automatically creates interpolation in the trajectories being
compared, since real trajectories will rarely have their times perfectly synchronized.
This allows the instantaneous distance to be calculated.

3.4 Comparison between proposed framework and related work

M-Atlas and Weka-STPM are two interesting platforms for the analysis of moving
object trajectories. Nevertheless, they do not supply solutions for R users, who are an
ever-growing community. Thus even though they are tools for trajectory analysis they
are not in direct competition with the proposed framework.
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Within R there is still much space for new implementations. One R package that
stands out regarding trajectories is the Trajectories package. I believe that the way
this package defines trajectories can be used as standard for future works. Since, their
minimal representation of trajectories matches my definition 1.

The Trajectories package defines a class to represent trajectories, however it does
not offer many methods to deal with them, this opposes my implementation that
focus mainly in methods to work with the available trajectories, therefore making the
packages complementary.

AdehabitatLT focus on the representation of animal trajectories, while my methods
are more general. And SimilarityMeasures focus, as the name says, on similarity
measures not mentioning other relevant methods such as compression of trajectories.
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4 AN ALGORITHM TO DISCOVER PARTNERS IN TRAJECTORIES

In this chapter, I present a new algorithm to detect partners in trajectories and the
main differences among it and existing ones for moving together patterns.

4.1 Method and definition

I define two trajectories as partners when they stay together within a maximum dis-
tance during a certain period. This pattern is useful for many applications that need
identity objects that are performing activities jointly, such as marine vessels that are
fishing together or trucks that are working in cooperation, as well as objects that are
moving or stationary close to others.

I propose a method to recognize partners based on distance time series analyzes. For
each pair of trajectories selected based on spatiotemporal boxes, the method calculates
its distance time series, that is, a time series that represents the euclidean distance
variation over time of these two trajectories. Then, the method analyzes such time
series regarding user-defined restrictions that define partnership.

Definition 6.(Trajectory distance time series) The distance time series of two tra-
jectories, symbolized here as ∆ Trjij, represents the euclidean distance variation
over time between the two trajectories Trji and Trjj, considering their positions at
the same instant. Further ∆ Trjij can be described as a set of tuples in the form
{(∆d1, t1), ..., (∆dn, tn)} in which ∆dn is the euclidean distance between the spatial
locations xn and yn of the trajectories Trji and Trjj at the instant t.

Definition 7.(Partner) Two trajectories Trji and Trjj are considered partners during
a certain period (tini, t f in) when the distance variation between these trajectories in
such period obeys two rules: (1) the distances between the two trajectories must be
less than a distance threshold (dmax) for, at least, a minimum period (pmin); (2) sep-
aration periods are allowed, that is, the distance between the two trajectories can be
more than a distance threshold (dmax) for a maximum period (pmax). The same pair of
trajectories may be considered partner more than once on detached periods. A partner
is represented by a tuple (i, j, tini, t f in), where i and j are the unique identifiers of Trji
and Trjj and tini and t f in are respectively the initial and final instants of the period
when such trajectories are partners.
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After selecting trajectories based on their STBoxes, the method calculates a distance
time series for each pair of trajectories and analyzes such times series regarding
user-defined parameters. These parameters represent a set of restrictions that define
when two trajectories are considered partners. The three parameters are: (1) a dis-
tance threshold (dmax), that is, a maximum distance that two objects can stay apart;
(2) the minimum period (pmin) that two objects must stay together, that is, the dis-
tance between the two objects must be under the distance threshold (dmax) during, at
least, the period ((pmin)); (3) a maximum period (pmax) that two objects are allowed to
stay apart, that is, over the distance threshold. The method analyses the distance time
series in order to verify whether they comply with the user-defined parameters.

Figures 4.1, 4.2, 4.3 present examples of distance time series extracted from two tra-
jectories. Figure 4.1 shows an example of two trajectories that are partners because all
their distances are less than the maximum distance threshold dmax. Figure 4.2 shows
two trajectories that are not partners, considering the parameter values pmax and pmin

showed in the picture. In this case, objects 1 and 2 go in different directions, not
matching the minimum time together requirement.

Figure 4.3 shows two trajectories that start and end together, however they stay apart
for a period during their paths. Even though they surpass the maximum distance
threshold dmax, they might be still considered partners depending on the user-defined
parameter values pmax and pmin showed in the picture. Considering the parameter
set (a) they are not partners. They are partners twice when the parameter set (b) is
considered, and once when considering the parameter set (c).

Figure 4.1 - Example of partner trajectories

time

SOURCE: Author’s production
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Figure 4.2 - Example of trajectories which are not partners

SOURCE: Author’s production

Figure 4.3 - Trajectories with three possible partner interpretations

SOURCE: Author’s production

4.2 Algorithm

In order to identify partners in a dataset, I developed the two algorithms shown in
Algorithm 3 and Algorithm 4. These algorithms identify possible candidates and then
verify whether the candidates are indeed partners. Candidates are trajectories whose
STBoxes have intersections. Symbols and notations used in both algorithms are shown
in Table 4.1.

The first algorithm is responsible for the overall analysis. The user must input a set
of trajectories T, and values for dmax, pmax and pmin. For each trajectory Ti of the set
T, the algorithm repeats the following steps. The line 4 of the Algorithm 3 creates a
STBox of the trajectory Ti (Definition 4) increased in all its BBox sides by dmax.
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Table 4.1 - List of symbols and notations used in Algorithms 3 and 4.

T A set of trajectories
[T] A set of trajectories whose STBoxes have

intersections
Ti The i-th trajectory of a set (T)
dmax Maximum distance that two objects can stay

apart
pmax Maximum time period that two objects can stay

apart
pmin Minimum time period that two objects must stay

together
DTS A distance time series calculated between two

trajectories
DTSi The i-th tuple of the distance time series DTS
DTSi.d The euclidean distance component of the i-th

tuple of the distance time series DTS
DTSi.t The time component of the i-th tuple of the

distance time series DTS
PP A set of time periods when two trajectories are

partners
PPi The i-th time period of the set PP
P A set of partners. Each partner is represented by

the identifiers of the two trajectories and the
period when they are close together

CreateSTBox Method that returns the STBox of a given
trajectory increased by dmax in both x and y
directions

GetTrajectories Method that returns the trajectories from a set
whose STBoxes intersect a given STBox

CreateDistanceTimeSeries Method that returns the distance variation
between two objects over time as a time series

PeriodAsPartners Method that returns the periods when two
trajectories are partners

A STBox is created to filter only the relevant trajectories to be analyzed further. The
parameter dmax is used to ensure that trajectories that are marginal to the STBox
will be considered. This filter reduces considerably the number of trajectories being
analyzed, which is important because this algorithm is computationally demanding.
Its complexity is O(n2m), in which n is the number of different trajectories and m the
number of observations in a trajectory. Ideally when using this algorithm, repeated
verifications should be avoided, for instance, there is no need to check both Ti against
Tj and Tj against Ti since the result should be the same.
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Algorithm 3 Partner Discovering
Require: T = {T0, ..., Tn},dmax ∈ Q, pmax ∈ Q, pmin ∈ Q

1: procedure DiscoverPartner(T,dmax,pmax,pmin)
2: P← ∅
3: for all Ti ∈ T do
4: sb← CreateSTBox(Ti, dmax)
5: [T]← GetTrajectories(sb, T)
6: for all Tj ∈ [T] parallel do
7: DTS← CreateDistanceTimeSeries(Ti, Tj)
8: PP← PeriodAsPartners(DTS, dmax, pmax, pmin)
9: if PP 6= ∅ then

10: ∀PPi ∈ PP : P← P ∪ (PPi, i, j)
11: end if
12: end for
13: end for
14: Return P
15: end procedure

After creating a STBox, line 5 of Algorithm 3 retrieves the trajectories from the set T
which intersect the STBox. Trajectories in T have their distance time series calculated
(Definition 3) and such time series are analyzed independently by the partners verifi-
cation algorithm (shown in Algorithm 4). Trajectories that are partners, according to
Definition 4, are then saved in the set P.

Algorithm 4 is responsible for the fine-tuning of the partner discovery. This algorithm
receives the distance time series DTS calculated between the two trajectories Ti and Tj.
It checks all tuples of DTS (Definition 3) and verifies if there are one or more periods
when the trajectories Ti and Tj can be considered partners, taking into account the
user-defined requirements through the input values dmax, pmax and pmin.

Algorithm 4 checks if the distance time series DTS verifies the two rules described in
Definition 4. Finally, it returns a list with all periods when the trajectories Ti and Tj

are partners.

The proposed algorithms identify pairs of trajectories that are partners, returning
the periods when they are nearby. Based on these pairs and periods, groups can be
inferred of trajectories that are moving together. For instance, if the pair of trajectories
Ti and Tj are partners from ti to ti+10 and the trajectories Ti and Tk are partners from
ti+5 to ti+15, then the trio is a group from ti+5 to ti+10.
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Algorithm 4 Partner Verification
Require: DTS = {DTS1, ..., DTSn}, dmax ∈ Q, pmax ∈ Q, pmin ∈ Q

1: procedure PeriodAsPartners(DTS,dmax,pmax,pmin)
2: PP← ∅
3: begin← NULL
4: end← NULL
5: timeAway← NULL
6: for all point DTSi ∈ DTS, from1:n do
7: switch DTSi do
8: case DTSi.d ≤ dmax and begin = NULL
9: begin← DTSi.t

10: case DTSi.d ≤ dmax and timeAway 6= NULL
11: timeAway← NULL
12: case DTSi.d ≤ dmax and begin 6= NULL and DTSi = LAST
13: if DTSi.t− begin > pmin then
14: end← DTSi.t
15: PP← PP ∪ {(begin, end)}
16: end if
17: case DTSi.d > dmax and begin 6= NULL and timeAway = NULL
18: timeAway← DTSi.t
19: case DTSi.d > dmax and begin 6= NULL and DTSi.t− timeAway > pmax
20: if timeAway− begin > pmin then
21: end← timeAway
22: PP← PP ∪ {(begin, end)}
23: end← begin← NULL
24: end if
25: case DTSi.d > dmax and begin 6= NULL and DTSi = LAST
26: if timeAway− begin > pmin then
27: end← timeAway
28: PP← PP ∪ {(begin, end)}
29: end if
30: end for
31: Return PP
32: end procedure

4.3 Partner algorithm parallelization

Parallel computing is one of the major techniques of High-Performance Computing
(HPC). The main idea of HPC is to solve large problems faster than it would be
possible using standard methods (KUMAR et al., 2003), and is a very desirable feature
of systems that must process high volumes of data.
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Among the many parallel computing techniques, Fork/Join parallelism is one of the
most well-know, easily implemented and effective design techniques of parallel com-
puting. Fork/Join algorithms are parallel versions of familiar divide-and-conquer al-
gorithms (LEA, 2000).

An important feature of the proposed method is the capability of the discovery pro-
cess being executed in parallel. Given the independent nature of time series analysis
and partners verification, Fork/Join algorithm can be used to increase processing
speed, since evaluation of one pair of trajectories does not have any influence on the
others.

Figure 4.4 shows how part of the partners discovery algorithm can be executed in
parallel. In this example, the distance time series for the trajectories are created and
analyzed separately. The analysis results are joined by saving the set of partners.

Figure 4.4 - Steps in Partner discovery.
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SOURCE: Author’s production

Another possible way to parallelize this algorithm is to do the task division on the first
loop of the algorithm (line 3 of Algorithm 3). In this case, the processes of selecting
trajectories, creating their STBoxes (function CreateSTBox) and filtering the trajecto-
ries whose STBoxes have intersections (function GetTrajectories) are executed in
parallel.
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Even though both parallelization alternatives are possible and can generally improve
the time of the algorithm, both have shortcomings. The adequate placement of the
parallel loop should be chosen according to the user needs.

When the parallelization is done on the second loop (line 6 of Algorithm 3), it might
bring no improvements in areas of low trajectory density. Such lack of improvement
occurs because in low density areas the trajectories generally do not have many pos-
sible partners. Therefore, in these cases, divide and conquer techniques are irrelevant.
On the other hand, if the parallelization is done on the first loop (line 3 of Algo-
rithm 3), it might consume too much memory, specially in high density areas where
there are many possible partners.

It is important to mention that the parallel version of the proposed partner method
may be useful only for large amounts of data. For smaller datasets the time to divide
and parallelize the tasks can make the total processing time larger and not smaller.

4.4 Comparison among the proposed pattern and related work

All methods to identify moving together objects presented in section 2.3.1 are based
on two steps: (1) cluster the objects of each snapshot and (2) intersect the cluster-
ing results to retrieve moving-together objects. Both clustering and intersection steps
involve high computational overhead. Differently from these methods, I propose a
new approach, called Partner, to detect moving together objects, based on trajectory
distance time series analysis. The method Partner does not use disk with predefined
circular shape, or density-based clustering, or cluster of objects. The method Partner
analyzes the distance time series of each pair of trajectories whose spatiotemporal
boxes intersect.

The main advantages of my approach are: (1) the distance time series analyses are
completely independent and so can be processed in parallel; (2) users do not have to
predefine either the shape and density of a group or the number of objects in a group.
From the resulting pairs of partners, users can easily extract all trajectories that stayed
together; (3) the method Partner finds objects that stayed together for a certain period,
including objects that were moving as well as stationary; (4) Partners are allowed to
stay apart for a maximum user-defined time; (5) the method Partner does not suffer
the loose-connection problem, since it verifies if two trajectories are not too far for too
long; (6) the method Partner does not suffer the lossy-flock problem, since it is not
based on a rigid circular disk; (7) As long as the time away period is adequate it is
noise resistant.
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5 CASE STUDIES

To test and validate the implemented algorithms and framework, I have used four
data sets: (1) Vessels in PostGIS, (2) Sea Elephants in KML, (3) a Track distributed
with the trajectories package and (4) a group of concrete delivery trucks from Athens.
I chose different datasets so that different functionalities would be well represented.
This does not mean that each functionality only works with a specific dataset, it only
means that the visualization is improved with different sets.

5.1 KML trajectory data access

I present a case study using a KML file that contains trajectories of eight sea
elephants in Antarctica during 3 years. These animals were monitored by a
project called MEOP - “Marine Mammal Exploring the Oceans Pole to Pole”
(http://www.inpe.br/crs/pan/pesquisas/telemetria.php). Figure 5.1 (above) shows
all sea elephant trajectories from the KML displayed in Google Earth as red lines.

Figure 5.2 presents the R script using the TrajDataAccess package to access the sea
elephant trajectories from the KML file. In this script, the user sets the path and the
name of the KML file through the structure DataSourceInfo. Then, he/she informs
how the trajectories are stored in this file, such as which properties contain geome-
tries and times, through the structure TrajectoryDataSetInfo. In this example, I are
loading the trajectories of two animals whose ids are 40 and 41, as informed in the
parameter objId.

The function getTrajectory is responsible for accessing these two trajectories from
the KML file and transforming them into objects of the Trajectories package. The
objects seaElephant 40 and seaElephant 41 are instances of the Track class. Fig-
ure 5.1 (below) shows the trajectory of the animal 40 (R plot of the object seaElephant
40) and Figure 5.3 (above) presents the trajectories of the two animals 40 and 41 (R
plot of the objects seaElephant 40 and seaElephant 41).

In the last line of the code shown in Figure 5.2, I use the function compare of the
Trajectories package. This function calculates the variation of the distance between
two trajectories over time and returns a time series. Figure 5.3 shows the result of
this code line. This figure shows a time series that represents the distance variation
between the trajectories of the two sea elephants 40 and 41.
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Figure 5.1 - (Above) R Plot of trajectories of sea elephant 40 and (below) Google Earth plot of
all sea elephant trajectories.

SOURCE: Author’s production

Figure 5.2 - R script using TrajDataAccess package to select trajectories from a KML file.

June 15, 2017

The results below are generated from an R script.

dsoik<-DataSourceInfo(path="/home/user/Documents/data/kml/t_40_41.kml")
dsetk<-TrajectoryDataSetInfo(dataSetName="40: locations",phTimeName="timestamp",

geomName="OGR_GEOMETRY",trajName="",objId="40",trajId="")
seaElephant40<-getTrajectory(dsoik,dsetk)

dsetk<-TrajectoryDataSetInfo(dataSetName="41: locations",phTimeName="timestamp",
geomName="OGR_GEOMETRY",trajName="",objId="41",trajId="")

seaElephant41<-getTrajectory(dsoik,dsetk)

timeseries<-compare(seaElephant40,seaElephant41)

The R session information (including the OS info, R version and all packages used):

sessionInfo()

## R version 3.2.2 (2015-08-14)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.3 LTS
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
## [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=pt_BR.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=pt_BR.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=pt_BR.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] knitr_1.13 spacetime_1.1-5 rgdal_1.1-3
## [4] sp_1.2-2 rgeos_0.3-17 TrajDataAccess_0.1.7.3
## [7] RPostgreSQL_0.4-1 DBI_0.5-1 trajectories_0.1-4
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.3 codetools_0.2-14 lattice_0.20-33 intervals_0.15.1 zoo_1.7-12
## [6] digest_0.6.9 packrat_0.4.6-1 grid_3.2.2 formatR_1.4 magrittr_1.5
## [11] evaluate_0.9 highr_0.6 stringi_1.1.1 xts_0.9-7 tools_3.2.2
## [16] stringr_1.0.0

Sys.time()

## [1] "2017-06-15 16:35:59 BRT"

1

SOURCE: Author’s production
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Figure 5.3 - (Above) R Plot of trajectories of sea elephants 40 and 41 (below) R Plot of their
distance time-series.

SOURCE: Author’s production

5.2 PostGIS trajectory data access

In this case study, I use trajectories of 993 vessels around the Brazilian coast collected
during 3 years, from 2008 to 2011. These trajectories are stored in a PostGIS database
that has over 2GB of data, in more than 22 million rows. Figure 5.4 presents the
trajectories of all vessels displayed in Terraview GIS.

All trajectories of all vessels are stored in a PostGIS table whose structure is shown in
Figure 5.5. Each row of this table contains an observation of a trajectory of a vessel.
Each observation contains a trajectory id (integer type), a vessel id (integer type), a
time (timestamp type) and a spatial location (geometry type). A vessel contains one
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Figure 5.4 - All data plotted against the map of Brazil.

SOURCE: Author’s production

or more trajectories associated to it. Every time the vessels leave the Brazilian coast
line, they start a new trajectory. And, every time they re-enter the coast, they end a
trajectory. Thus, a trajectory of a vessel consists in a path traveled during the period
when the vessel left the coast and re-entered the coast. The database contains 123,240
trajectories.

Figure 5.5 - Two trajectories from the same vessel.

SOURCE: Author’s production

The existing R packages for loading data from POSTGIS do not work with the concept
of trajectory and so are not able to access this database properly. In this case, I need
to load this database by parts because of its size and the R memory limitations. Thus,
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I propose the framework presented in this dissertation. I implemented the package
TrajDataAccess that can access big trajectory data by parts, based on spatiotemporal
constraints. Figure 5.6 presents a R script using the TrajDataAccess functions to select
only the vessel trajectories in the Rio de Janeiro state, using a filter based on a STBox,
as illustrated in Figure 3.2.

Figure 5.6 - R script using TrajDataAccess package to select trajectories from a PostGIS
database based on a spatiotemporal constraint.

June 16, 2017

The results below are generated from an R script.

dataSourceInfo<-DataSourceInfo(user="postgres",password="password",db="vessel_trajectory")
trajectoryDataSetInfo<- TrajectoryDataSetInfo(dataSetName="vessel_trajectories",

phTimeName="datahora",geomName="ponto",
trajId="traj_id_unique",
trajName="",objId="vessel_id")

envelope<-Envelope(xMax=-11.38,xMin=-44.38,yMax=-21.81,yMin=-25.03)
period<-Period(tMin="2008-01-21 06:10:37", tMax="2010-10-06 06:46:25")

acessedTracks<- getTrajectoryBySTBox(dataSourceInfo,trajectoryDataSetInfo,envelope,period)

## [1] 1

## NOTE: rgdal::checkCRSArgs: no proj_defs.dat in PROJ.4 shared files

## [1] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [13] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [25] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [37] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [49] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [61] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [73] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [85] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [97] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [109] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [121] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [133] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [145] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [157] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [169] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [181] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [193] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [205] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [217] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [229] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [241] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [253] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [265] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [277] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [289] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [301] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [313] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [325] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [337] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"

1

SOURCE: Author’s production

In the code shown in Figure 5.6, a user sets the necessary parameters to con-
nect to a PostGIS database, through the structure DataSourceInfo. Information
about the database table that stores trajectories is indicated through the structure
TrajectoryDataSetInfo. Then, a user utilizes the function getTrajectoryBySTBox to
load all vessel trajectories that intersect the spatiotemporal box defined by the struc-
tures Envelope and Period. Figure 5.7 shows the trajectories selected by this script in
the R environment.

The function getTrajectoryBySTBox is responsible for loading all trajectories from
the PostGIS database whose spatiotemporal boxes intersect the given envelope and
period as well as for transforming them into objects of the package Trajectories. In
this example, the object accessedTracks is an instance of the TracksCollection class,
containing trajectories of distinct vessels.

5.2.1 PostGIS trajectory data access by parts

Even though in the first case study I was already able to select the data in parts with
no technical problems. The question of how should the data be divided still exists.
Therefore, I continue the work with the vessel trajectory data set, aiming to create
adequate divisions. To create the list of adequate STBoxes, I input the DataSourceInfo
and TrajectoryDataSetInfo.
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Figure 5.7 - Selected trajectories (in the box) against all trajectories

SOURCE: Author’s production

Figure 5.8 - Code to get STBoxes of adequate size

June 16, 2017

The results below are generated from an R script.

dataSourceInfo<-DataSourceInfo(user="postgres",password="teste2ou3",db="vessel_trajectory")
trajectoryDataSetInfo<- TrajectoryDataSetInfo(dataSetName="vessel_trajectories",

phTimeName="datahora",geomName="ponto",
trajId="traj_id_unique",
trajName="",objId="vessel_id")

idealStBoxes <- getIdealSTBoxes(dataSourceInfo,trajectoryDataSetInfo)

Tracks<- getTrajectoryBySTBox(dataSourceInfo,trajectoryDataSetInfo,idealStBoxes[[1]])

## [1] 1

## NOTE: rgdal::checkCRSArgs: no proj_defs.dat in PROJ.4 shared files

## [1] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [13] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [25] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [37] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [49] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [61] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [73] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [85] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [97] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [109] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [121] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [133] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [145] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [157] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [169] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [181] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [193] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [205] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [217] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [229] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [241] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [253] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [265] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [277] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [289] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [301] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [313] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [325] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [337] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"
## [349] "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471" "6471"

1

SOURCE: Author’s production

Then I get as a result the list presented on figure 5.9 of 13 STBoxes that have approx-
imately 2 million rows, most of those STBoxes can be vizualized in figure 5.10. To
get the trajectories within any of those STBoxes the user can use a variation of the
getTrajectoryBySTBox method, in which the user inputs an STBox object instead of a
Period and an Envelope. Using this method leads to figure 5.11 in which the plot of
the Tracks from the first STBox from figure 5.9 can be seen.
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Figure 5.9 - Beginning of the list of obtained STBoxes

In each element of the idealStBox list tMin and tMax represent the temporal constraints within
the time zone tZone. xMin and xMax represent the spatial constraint in the x axis. yMin and
yMax represent the spatial constraint in the y axis. xMin, xMax, yMin and yMax all use the
SRID srid.

SOURCE: Author’s production
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Figure 5.10 - Some parts of the obtained STBoxes (horizontal black lines) against the trajecto-
ries

SOURCE: Author’s production

Figure 5.11 - Selected trajectories (in the box) against all trajectories

SOURCE: Author’s production
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5.3 Trajectory manipulation and analysis

In order to demonstrate the trajectory manipulation methods, I selected a trajectory
that comes within the package Trajectories. This trajectory was selected because it
contains a few curves, which allows for better visualization of the results.

Figure 5.12 - Original trajectory (above) and Douglas-Peucker compression (below), no visible
changes.

601 Connection Points

120 Connection Points

SOURCE: Author’s production.

I executed the Douglas-Peucker algorithm with a tolerance of 10 meters and at a
another moment the open-window Meratnia-By with a threshold of 10 meters and
1 m/s. As can be seen in Figures 5.12 and 5.13 the geometry of the trajectory is
maintained in both algorithms.
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Both algorithms presented an approximate reduction of at least 80% in the number
of points. It is important to notice that the open-window Meratnia-By algorithm pre-
serves not only the form of the trajectories but also the speeds of the vessels. This
results are similar to the ones obtained by Meratnia and By (2004).

I also compressed the trajectories selected by the STBox in the region of Rio de Janeiro.
This dataset originally occupied 7.5 MB on R and after the compression it was reduced
to 6.5 MB. This compression was not so efficient as the ones demonstrated by the
figures 5.12 and 5.13 because many of the selected trajectories were small. They only
had between 2 and 10 points.

Figure 5.13 - Original trajectory (above) open-window Meratnia-By compression (below), no
visible changes.

601 Connection Points

166 Connection Points

SOURCE: Author’s production.
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I also performed a speed filter in the same trajectory that the compression algorithms
were tested. In the speed filter the maximum possible speed was set to 20 m/s. As
this trajectory does not contain any anomalous points the filter only removed a few
points from the real trajectory, making it a bit straighter as seen in figure 5.14.

Figure 5.14 - Original trajectory (blue) filtered trajectory (red).

SOURCE: Author’s production.

This filtering process shows the importance of knowing what are reasonable speed
values for your data. Since the data in figure 5.14 and 5.15 clearly presents some
loss of information. This speed filter was tested using different values for the maxi-
mum speed, and their errors were calculated. To calculate the error I used the method
Compare from the Trajectories package, then I was able to calculate the instanta-
neous distance between filtered and original trajectory. I used this distance to obtain,
accumulated error, maximum error and average error. As the maximum speed was
reduced the error was increased as expected. The accumulated error for a maximum
speed of 25 m/s was 1.5 m, while this increased to 46 m to 10 m/s and 67 m to 5 m/s.
All error measurements followed the same pattern, increasing every time the speed
was reduced. The greatest increase happened from the average error from 25 m/s to
the 5 m/s one, this error increased 55 times, going from 0.002m to 0.1m.
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Figure 5.15 - Trajectory comparison of part of original trajectory (red crosses) and part of fil-
tered trajectory (clue circles).
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Comparison uses the method Compare from the Trajectories package, which uses a linear
interpolator.

SOURCE: Author’s production.

5.4 Partner discovery

I tested the partner algorithms with two different datasets, to validate the theory and
test the implementation in different scenarios.

5.4.1 Vessel partner

In the first case study, I used trajectories of over 1000 vessels around the Brazilian
coast collected during 6 months in 2008, these trajectories are a subset of the data
from section 5.2.
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Figure 5.16 - Code to find Partners in a DataBase.

June 16, 2017

The results below are generated from an R script.

dataSourceInfo <- DataSourceInfo(user="postgres", password="password",
db="vessel_trajectory")

tdsetvessel<- TrajectoryDataSetInfo(dataSetName="vessel_trajectories",
phTimeName="datahora",geomName="ponto",
trajId="traj_id_unique",trajName="",objId="vessel_id")

vesselsstbox<- getIdealSTBoxes(dataSourceInfo,tdsetvessel)

findBigPartnerDB(dataSourceInfo,tdsetvessel,1.5,3600,18000,vesselsstbox,2,
"vessels_partners1k5m_1h")

1

The numeric parameters in findBigPartnerDB are respectively dmax, pmax, pmin and the num-
ber of computer cores used for the operation. The string is the name of the DB in which
partners will be stored.

SOURCE: Author’s production.

On this data set, I executed the algorithm using the following parameters: dmax =

1.5Km, pmax = 1 hour, and pmin = 5 hours. This can be seen in figure 5.16 in which
the times are represented in seconds. As a result I obtained over 50 thousand partners.
Possibly, these partners are vessels that were fishing together.

Figure 5.17 shows, on the left side, all vessel trajectories observations and, on the right
side, two of these trajectories that are partners identified by the proposed method. On
the right side, the region bound by the rectangle is shown in detail, and on it I can see
two objects (identified by red and green dots) that are partners. The partners shown
in that figure have spent around 11 hours together.

5.4.2 Truck partner

The third dataset consists of 276 trajectories of 50 delivery trucks in Athens, Greece.
This dataset was obtained from chorochronos.org. Its structure is rather similar to the
one of the previous dataset, but since each truck has a different number of trajectories
I added an extra column to uniquely identify the pair object-trajectory.

On a first try, I examined the dataset for partners using the same dmax value used
on the first case study. However, this value is too large for this dataset. Using this
value, all trajectories were identified as partners, even the ones going on different
directions and different roads. Thus, I chose values that seemed more reasonable for
data collected within cities.
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Figure 5.17 - Vessels around the Brazilian coast. Blue dots/lines: original trajectories. Red and
Green Dots: partners identified by my proposed algorithm.

SOURCE: Author’s production

The number of discovered partners depends on the given parameters. I looked for
partners that were separated at most by 10, 50 and 100 meters. It is important to
reiterate that the analyzed area increases according to dmax (Algorithm 3 line 4), which
affects the running time of the algorithm.

For dmax = 10m, the algorithm identified only 31 partners. Since this value of dmax is a
lot more restrictive, trajectories like the one from Figure 5.18 are not completely iden-
tified as partners. For dmax = 50m, I found 863 partners (one is shown in Figure 5.18).
Intuitively the number of partners declined as the acceptable separation distance was
shortened, and increased as the acceptable separation distance was extended.

For dmax = 100m, the algorithm identified 1327 partners. I consider this distance as
the more meaningful for the city truck data. Nevertheless, since this value caused an
increase on the areas to be analyzed, the algorithm took longer to execute.

This dataset presents an ideal size to test the parallelization capabilities of the algo-
rithm. It is big enough to gain processing time from parallelization, but not too large
to be too much time-consuming. To measure performance gains, first I executed the
algorithm twice for each distance, using one, two, and three CPU cores.
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Figure 5.18 - Truck trajectories in Greece. Blue dots/lines: original trajectories. Red and Green
Dots: partners identified by my proposed algorithm.

SOURCE: Author’s production

Even though each increase in dmax made the algorithm more time consuming since
a larger area was analyzed, I verified that the speed-up was practically constant for
all distances, being 1.87 faster for 2 cores and 2.24 faster for 3 cores, when comparing
running time using only one core, this is shown on figure 5.19.

Later I also tested the parallelization on a second machine, equivalent to the other,
which was used on all previous case studies, except for the number of cores. This
second machine has one extra core. This second test involved running the code 64
times, changing number of cores, dmax and pmax. There was no difference in the time
results when pmax was altered. The results on both machines matched, and on figure
5.20, it is possible to see the improvement in speed getting smaller at each extra core
being used. The efficiency with 2 cores is 90% whereas with 4 cores it is 75%.
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Figure 5.19 - Speed-Up comparison with changing parameters and number of cores.

SOURCE: Author’s production

Figure 5.20 - Graph of second time comparison, with one extra core.
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SOURCE: Author’s production
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6 CONCLUSIONS AND FUTURE WORK

In this work, I present existing tools for trajectory analysis, highlight their advantages
and disadvantages and point out the need for a high-level programming environment
that allows users to access big trajectory data sets and develop new algorithms using
them. To meet this demand, I propose a framework for the R environment. I imple-
mented an R package for accessing big trajectory data by parts from different types
of sources, as a solution to work in memory limited environments. I discuss existing
moving object patterns and propose a new one. Finally I implemented the framework,
with the proposed functionalities and my proposed algorithm.

The Partner is useful for many applications that need to identify objects that are per-
forming activities jointly, such as marine vessels that are fishing together or trucks
that are working in cooperation, as well as objects that are stationary close to others.
I test and validate the proposed method through two case studies.

The algorithm can be executed in parallel, allowing the processing of large datasets,
but further analyses still need to be done to evaluate when parallelizing this algorithm
becomes advantageous.

Further implementations in R should be done in order to compare the efficiency of
my proposed algorithm compared to the existing ones.

As future work, I intend to add a new functionality to TrajDataAccess package to
store results of data analyses in data sources. Besides that, I expect to improve the
visualization of big trajectory data sets in TerraView, making use of smart sliders,
which show trajectories according to their locations in time, instead of showing all
points together. The algorithm that calculates the ideal STboxes maybe improved to
consider more than one dimension at once.

I intend to improve the visualization methods for partners in the TerraView 5 system
and the integration between this system and the R package TrajDataMining. Besides
that, I want to describe and implement algorithms for identification of bigger groups
of partners and to improve the data retrieval of the algorithm, so less data will be
required for in-memory analysis.

The concept framework, C++ library and R environment maybe extended to other
kinds of data that are not from trajectories, such as those from coverages and other
spatiotemporal data.
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I make my R implementations available on github at <http://github.com/dvm1607>.
To use the TrajDataAccess package, it is necessary to install Terralib 5, available at
<http://www.dpi.inpe.br/terralib5>. Some functions may not be available for all
operational systems.

52

 <http://github.com/dvm1607>
<http://www.dpi.inpe.br/terralib5>


REFERENCES

ALVARES, L. O.; BOGORNY, V.; KUIJPERS, B.; MACEDO, J. A. F. de; MOELANS, B.;
VAISMAN, A. A model for enriching trajectories with semantic geographical
information. In: ANNUAL ACM INTERNATIONAL SYMPOSIUM ON ADVANCES
IN GEOGRAPHIC INFORMATION SYSTEMS, 15th. Proceedings... [S.l.]: ACM, 2007.
p. 22–29. 1, 5

ALVARES, L. O.; PALMA, A.; OLIVEIRA, G.; BOGORNY, V. Weka-STPM: from
trajectory samples to semantic trajectories. In: WORKSHOP DE SOFTWARE LIVRE,
WSL, 11th., 2010. Proceedings... [S.l.], 2010. v. 10, p. 164–169. 2, 12

ANDRADE, P. R. d.; JR, P. J. R.; FOOK, K. D. Integration of statistics and geographic
information systems: the R/Terralib case. In: BRAZILIAN SYMPOSIUM ON
GEOINFORMATICS, 7th., 2005, Campos do Jordão, São Paulo, Brazil. Proceedings...
São José dos Campos: INPE, 2015. p. 139–154. ISSN 2179-4820. 16

BASKAR, S.; AROCKIAM, L.; CHARLES, S. A systematic approach on data
pre-processing in data mining. COMPUSOFT, An International Journal of
Advanced Computer Technology, v. 2, p. 335, 2013. 7

BIVAND, R.; KEITT, T.; ROWLINGSON, B. rgdal: Bindings for the geospatial data
abstraction library. R package version 0.8-10, 2013. 3

CALENGE, C. The package “adehabitat” for the R software: a tool for the analysis of
space and habitat use by animals. Ecological modelling, Elsevier, v. 197, n. 3, p.
516–519, 2006. 2, 13

CÂMARA, G.; VINHAS, L.; FERREIRA, K. R.; QUEIROZ, G. R. D.; SOUZA, R. C. M.
D.; MONTEIRO, A. M. V.; CARVALHO, M. T. D.; CASANOVA, M. A.; FREITAS,
U. M. D. TerraLib: An open source GIS library for large-scale environmental and
socio-economic applications. In: Open source approaches in spatial data handling.
[S.l.]: Springer, 2008. p. 247–270. 3, 13

CONWAY, J.; EDDELBUETTEL, D.; NISHIYAMA, T.; PRAYAGA, S. K.; TIFFIN, N.
RPostgreSQL: R interface to the PostgreSQL database system. R package version
0.3-2, 2012. 3

DOUGLAS, D. H.; PEUCKER, T. K. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and Geovisualization,
University of Toronto Press, v. 10, n. 2, p. 112–122, 1973. 8, 25

53



EDDELBUETTEL, D.; FRANÇOIS, R.; ALLAIRE, J.; CHAMBERS, J.; BATES, D.;
USHEY, K. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
v. 40, n. 8, p. 1–18, 2011. 20

ERWIG, M.; GU, R. H.; SCHNEIDER, M.; VAZIRGIANNIS, M. et al. Spatio-temporal
data types: An approach to modeling and querying moving objects in databases.
GeoInformatica, Springer, v. 3, n. 3, p. 269–296, 1999. 1

ETIENNE, L. Motifs spatio-temporels de trajectoires d’objets mobiles, de
l’extraction à la détection de comportements inhabituels. Application au trafic
maritime. PhD Thesis (PhD) — Université de Bretagne occidentale-Brest, 2011. 2, 5,
6, 7, 8, 25

FAN, Q.; ZHANG, D.; WU, H.; TAN, K.-L. A general and parallel platform for
mining co-movement patterns over large-scale trajectories. Proceedings of the VLDB
Endowment, v. 10, n. 4, 2016. 10, 11

FAYYAD, U.; PIATETSKY-SHAPIRO, G.; SMYTH, P. From data mining to knowledge
discovery in databases. AI Magazine, v. 17, p. 37–54, 1996. 5, 6

FERREIRA, K. R.; CAMARA, G.; MONTEIRO, A. M. V. An algebra for
spatiotemporal data: From observations to events. Transactions in GIS, Wiley Online
Library, v. 18, n. 2, p. 253–269, 2014. 14, 15, 20

FERREIRA, K. R.; OLIVEIRA, A. G. de; MONTEIRO, A. M. V.; ALMEIDA, D. B. de.
Temporal GIS and spatiotemporal data sources. In: BRAZILIAN SYMPOSIUM ON
GEOINFORMATICS, 16th., 2015, Campos do Jordão, São Paulo, Brazil.
Proceedings... São José dos Campos: INPE, 2015. p. 1–13. ISSN 2179-4820. Available
from: <http://urlib.net/8JMKD3MGPDW34P/3KP2RBP>. 3, 13, 15, 20

FERREIRA, K. R.; VINHAS, L.; MONTEIRO, A. M. V.; CÂMARA, G. Moving objects
and spatial data sources. Revista Brasileira de Cartografia, v. 64, n. 4, 2013. 1

GEERTS, F. Moving objects and their equations of motion. In: Constraint Databases.
[S.l.]: Springer, 2004. p. 40–51. 5

GUDMUNDSSON, J.; KREVELD, M. van. Computing longest duration flocks in
trajectory data. In: ANNUAL ACM INTERNATIONAL SYMPOSIUM ON
ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, 14th. Proceedings...
[S.l.]: ACM, 2006. p. 35–42. 10

JEUNG, H.; YIU, M. L.; ZHOU, X.; JENSEN, C. S.; SHEN, H. T. Discovery of convoys
in trajectory databases. Proceedings of the VLDB Endowment, VLDB Endowment,
v. 1, n. 1, p. 1068–1080, 2008. 1, 10

54

http://urlib.net/8JMKD3MGPDW34P/3KP2RBP


KANE, M. J.; EMERSON, J.; WESTON, S. Scalable strategies for computing with
massive data. Journal of Statistical Software, v. 55, n. 14, p. 1–19, 2013. 3, 12

KLUS, B.; PEBESMA, E. Analysing Trajectory Data in R. [S.l.], 2015. Available from:
<http://cran.wustl.edu/web/packages/trajectories/vignettes/tracks.pdf>. 2,
13, 19

KUMAR, V.; GRAMA, A.; GUPTA, A.; KARYPIS, G. Introduction to Parallel
Computing. 2nd. [S.l.]: Addison Wesley, 2003. 32

LEA, D. A Java fork/join framework. In: ACM 2000 CONFERENCE ON JAVA
GRANDE, San Francisco,California. Proceedings... [S.l.], 2000. p. 36–43. 33

LI, Y.; BAILEY, J.; KULIK, L. Efficient mining of platoon patterns in trajectory
databases. Data & Knowledge Engineering, Elsevier, v. 100, p. 167–187, 2015. 11

LI, Z.; DING, B.; HAN, J.; KAYS, R.; NYE, P. Mining periodic behaviors for moving
objects. In: ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE
DISCOVERY AND DATA MINING, 16th. Proceedings... [S.l.]: ACM, 2010. p.
1099–1108. 10, 11

LOY, A.; BOGORNY, V.; RENSO, C.; ALVARES, L. O. Um algoritmo para identificar
padrões comportamentais do tipo avoidance em trajetórias de objetos móveis. on
Geoinformatics, p. 158, 2010. 1

MERATNIA, N.; BY, R. A. Spatiotemporal Compression Techniques for Moving
Point Objects. Heraklion, Crete, Greece: International Conference on Extending
Database Technology, 2004. 765–782 p. 7, 8, 9, 25, 44

MÜLLNER, D. et al. fastcluster: Fast hierarchical, agglomerative clustering routines
for R and Python. Journal of Statistical Software, Foundation for Open Access
Statistics, v. 53, n. 9, p. 1–18, 2013. 2

PALMA, A. T.; BOGORNY, V.; KUIJPERS, B.; ALVARES, L. O. A Clustering-based
Approach for Discovering Interesting Places in Trajectories. [S.l.]: ACMSAC, 2008.
863–868 p. 9, 25

PEBESMA, E. spacetime: Spatio-temporal data in R. Journal of Statistical Software,
v. 51, n. 7, p. 1–30, 2012. 2

R Development Core Team. R: A Language and Environment for Statistical
Computing. Vienna, Austria, 2011. ISBN 3-900051-07-0. Available from:
<http://www.R-project.org>. 2, 12, 13

55

http://cran.wustl.edu/web/packages/trajectories/vignettes/tracks.pdf
http://www.R-project.org


RENSO, C.; SPACCAPIETRA, S.; ZIMÁNYI, E. Mobility Data. [S.l.]: Cambridge
University Press, 2013. 1, 2, 5, 12

ROCHA, J. A.; TIMES, V. C.; OLIVEIRA, G.; ALVARES, L. O.; BOGORNY, V.
DB-SMoT: A direction-based spatio-temporal clustering method. [S.l.]: 5th IEEE
International Conference Intelligent Systems, 2010. 114–119 p. 9, 25

SPACCAPIETRA, S.; PARENT, C.; DAMIANI, M. L.; MACEDO, J. A. de; PORTO, F.;
VANGENOT, C. A conceptual view on trajectories. Data & knowledge engineering,
Elsevier, v. 65, n. 1, p. 126–146, 2008. 1, 9

TANAKA, P. S.; VIEIRA, M. R.; KASTER, D. S. Efficient algorithms to discover flock
patterns in trajectories. In: BRAZILIAN SYMPOSIUM ON GEOINFORMATICS,
16th., 2015, Campos do Jordão, São Paulo, Brazil. Proceedings... São José dos
Campos: INPE, 2015. p. 56–67. ISSN 2179-4820. 10

TANG, L.-A.; ZHENG, Y.; YUAN, J.; HAN, J.; LEUNG, A.; HUNG, C.-C.; PENG,
W.-C. On discovery of traveling companions from streaming trajectories. In:
INTERNATIONAL CONFERENCE ON DATA ENGINEERING, 28th. Proceedings...
[S.l.]: IEEE, 2012. p. 186–197. 10, 11

TOOHEY, K.; DUCKHAM, M. Trajectory similarity measures. SIGSPATIAL Special,
ACM, v. 7, n. 1, p. 43–50, 2015. 2, 13

VAUGHAN, J.; WHYATT, D.; BROOKES, G. M. d. A parallel implementation of the
Douglas Peucker line simplification algorithm. SOFTWARE PRACTICE AND
EXPERIENCE, v. 21, p. 331–336, 1991. 8

VIEIRA, M. R.; BAKALOV, P.; TSOTRAS, V. J. On-line discovery of flock patterns in
spatio-temporal data. In: ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON
ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, 17th. Proceedings...
[S.l.]: ACM, 2009. p. 286–295. 1, 10

WANG, Y.; LIM, E.-P.; HWANG, S.-Y. Efficient mining of group patterns from user
movement data. Data & Knowledge Engineering, Elsevier, v. 57, n. 3, p. 240–282,
2006. 10

ZHENG, K.; ZHENG, Y.; YUAN, N. J.; SHANG, S. On discovery of gathering
patterns from trajectories. In: INTERNATIONAL CONFERENCE ON DATA
ENGINEERING, 29th. Proceedings... [S.l.]: IEEE, 2013. p. 242–253. 10, 11

ZHENG, K.; ZHENG, Y.; YUAN, N. J.; SHANG, S.; ZHOU, X. Online discovery of
gathering patterns over trajectories. IEEE Transactions on Knowledge and Data
Engineering, IEEE, v. 26, n. 8, p. 1974–1988, 2014. 10, 11

56



ZHENG, Y. Trajectory data mining: an overview. ACM Transactions on Intelligent
Systems and Technology (TIST), ACM, v. 6, n. 3, p. 29, 2015. 1, 10, 11

57





APPENDIX A - LIST OF FUNCTIONS OF TRAJDATAACCESS PACKAGE

getTrajectory Method, that given a DataSourceInfo and a
TrajectoryDataSetInfo, returns trajectories

getTrajectoryByTrack Method, that given a DataSourceInfo and a
TrajectoryDataSetInfo, returns trajectories that intersect
the STBox of a given Track

getTrajectoryBySTBox Method, that given a DataSourceInfo and a
TrajectoryDataSetInfo, returns trajectories that intersect a
given STBox

getTrajectoryByID Method, that given a DataSourceInfo, a
TrajectoryDataSetInfo and a Trajectory ID, returns the
trajectory whose ID matches the given Trajectory ID.

getNeededDivisions Method, that given a DataSourceInfo and a
TrajectoryDataSetInfo, returns the adequate number of
divisions for the dataset to be loaded in R

getIdealSTBoxes Method, that given a DataSourceInfo and a
TrajectoryDataSetInfo, returns the ideal STBoxes for the
data set to be loaded in R

findBigPartnerDB Method, that given a DataSourceInfo, a
TrajectoryDataSetInfo, dmax, pmax and pmin returns the
partners in the DataSet

SOURCE: Author’s production.
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APPENDIX B - LIST OF FUNCTIONS OF TRAJDATAMINING PACKAGE

directionCluster Method, that given a Track and maximum change
parameter, returns regions where direction changed
more than the defined parameter

douglasPeucker Method that reduces a trajectory spatially
partner Method to identify if two trajectories are partners
owMeratniaBy Method that reduces trajectories spatiotemporally
owMeratniaByCollection Method that reduces a set of trajectories

spatiotemporally
sendPartner Method that sends found partners to a PostGIS

database
speedCluster Method, that given a Track and minimum speed

parameter, returns regions where speed was lower than
the defined parameter

speedFilter Method, that given a Track and maximum speed
parameter, removes regions where speed was higher
than the defined parameter

SOURCE: Author’s production.
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