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ABSTRACT

Regarding practical applications of L3 of the Sun-Earth system, there are few
studies with the goal of placing a spacecraft at this point, or in orbit around it.
One of the main problems in placing a spacecraft near this equilibrium point is the
fact that it is located behind the Sun with respect to the Earth. The Sun would be
blocking direct communication between the spacecraft and the Earth. The present
research gives several options to solve this problem by using a solar sail to place one
or two spacecraft above and/or below the Ecliptic plane. This sail could also be
used for the mission itself, to collect energy or particles. By using an adequate size,
location and attitude of the solar sail, the equilibrium point can be moved from its
original location to allow communications between the spacecraft and the Earth. A
preliminary study of a solar sail that uses this strategy is shown here.

RESUMEN

En relación al punto L3 del sistema Sol-Tierra, hay pocos estudios para colocar
naves espaciales cerca de ese punto de equilibrio, debido a la difcultad de comu-
nicarse con la nave, pues ésta se encuentra detrás del Sol vista desde la Tierra.
Nuestro estudio proporciona varas opciones para resolver este problema, mediante
el uso de una vela solar para colocar una o dos naves arriba o abajo del plano de la
ecĺıptica. Esta vela también podŕıa servir para recolectar enerǵıa o part́ıculas. Con
un tamaño, localización y actitud adecuados para la vela solar, el punto de equi-
librio puede alejarse de su posición original para permitir la comunicación entre la
nave y la tierra. Se presenta un estudio preliminar que emplea esta estrategia para
la comunicación.

Key Words: celestial mechanics — occultations — planets and satellites: general
— space vehicles: instuments

1. INTRODUCTION

The L3 Lagrangian equilibrium point of the Sun-
Earth system is a strategic point to observe the Sun.
From there, it is possible to observe the opposite
face of the Sun with respect to the Earth. Due
to the rotation of the Sun, the observation of so-
lar activity on the opposite side of the Sun could
provide data to predict coronal mass ejections, of
the order of weeks in advance. Predictions of this
kind would be very important for many applications.
Other types of observations could also be done from
this point (Tantardini et al. 2010). Despite that,

1INPE, São José dos Campos - SP, Brazil.
2UNESP, Rio Claro - SP, Brazil.

there are few researches exploring the Lagrangian
point L3. Some reasons for this are the natural in-
stability of the point for long duration missions, the
perturbations from other planets and also the com-
munication problem mentioned before, due to the
location of the Sun, exactly between the Earth and
the point L3. The instability exists for the point it-
self, as well as for orbits around this point. But it is
important to remember that this type of instability
also occurs for the other two collinear equilibrium
points, L1 and L2. Despite this, many missions were
planned for those two points (Gomez et al. 1993;
Jorba & Masdemont 1999; Gomez et al. 1998; Koon
et al. 2000; Llibre et al. 1985). Stable points are
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350 DE ALMEIDA JR. ET AL.

usually better places to locate spacecraft, but un-
stable points are also an option. In most cases, un-
stable equilibrium points are better places to locate
a spacecraft, compared to a point with no equilib-
rium at all. Of course it is necessary to take care of
the instability of the point, and an adequate station-
keeping strategy needs to be implemented to control
this natural instability, as well as other perturbations
from other forces (Tantardini et al. 2010). For these
reasons, previous researches considered orbits near
those points (Barrabés & Ollé 2006), and even trans-
fer orbits to those points (Prado & Broucke 1995;
Hou, X., Tang, J., & Liu, L. 2007). The perturba-
tions from other planets, in particular Venus, may
be reduced using an adequate choice for the date for
the mission (if it is not too long) or by using control
techniques.

The present research aims to find some simple
alternatives to solve the communication problem for
a satellite equipped with a solar sail by shifting the
location of the equilibrium point from the Ecliptic
plane. Solutions are found in the plane perpendic-
ular to the Ecliptic plane of the Sun-Earth system
which contains the collinear Lagrangean points. This
is done by considering not only the Earth and the
Sun gravitational interactions with the satellite, but
also the force due to solar radiation pressure. With
this more complete model, new equilibrium points
appear, with locations different from the ones ob-
tained considering only gravitational forces. Thus,
a proper choice of the parameters of the solar sail,
like its size, attitude, reflectance properties, etc., can
achieve a location of the point away from the orbital
plane of the Earth. This out-of-plane component
can shift the point to ensure direct visibility from
the point to the Earth. This idea could also be used
to make measurements related to relativity theory,
by verifying the distortion of the light passing near
the border of the solar disk. Basically, new “artificial
equilibrium points” appear, which are points where
the resultant of the accelerations is zero in the non-
inertial frame of reference. They are new points,
because they are obtained with the inclusion of the
non-gravitational force given by the solar sail. This
concept was already used to study the possibility of
placing a mirror around the Earth to either increase
the temperature of our planet (Salazar et al. 2016),
or to decrease it (McInnes 2010). Other references
using this concept in different equilibrium points are
given by Morimoto et al. (2007) and McInnes et al.
(1994). Research in attitude and trajectory stability
of solar sails was done by Li (2015). One alternative
is to place a second satellite, also equipped with a so-

Fig. 1. Rotating frame of reference.

lar sail, at a new artificial equilibrium point near L1.
Another alternative is to place a spacecraft “below”
the traditional equilibrium point L3 on the ecliptic
plane. Out-of-plane displacements of these points
can also help the link between the satellite near L3

and the Earth, as we show in detail later. Thus,
three strategies are proposed to remove the problem
of visibility between L3 and the Earth, helping to
make this particular point available for astronauti-
cal applications.

2. MATHEMATICAL MODELS

According to the Coriolis theorem (Symon 1986),
the equation of motion of a spacecraft under the
gravitational influence of the Sun and the Earth and
subjected to a force due to the solar radiation pres-
sure over its sail, written in a non-inertial rotating
frame of reference that has the Sun fixed at its center
is given by:

d2~rs
dt2

+ 2~ω ×
d~rs
dt

+ ~ω × (~ω × ~rs) +
d~ω

dt
× ~rs =

−
µs

r3s
~rs −

µe

r3e
~re +

1

m
~fp, (1)

where: ~ω is the angular velocity of the rotating
frame, ~rs is the position of the spacecraft, ~re locates
the spacecraft with respect to the Earth, ~fp is the
force over the sail due to the solar radiation pres-
sure, µs is the gravitational parameter of the Sun
and µe is the gravitational parameter of the Earth.

The rotating frame of reference is shown in Fig-
ure 1, where the bodies involved (Sun, Earth and
spacecraft) and the new artificial equilibrium point
near L3 can be seen. The Sun is placed at the center
of the reference system, with the Earth in a circu-
lar orbit at radius R. The satellite equipped with a
solar sail - a flat one - remains fixed in the artificial
equilibrium point near L3. In particular, the out-of-
plane component of its location is noted, marked by
he. In order to obtain this equilibrium, the vector
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normal to the solar sail has to make an angle γe with
the direction of the solar rays. In this geometry, the
line Sun-spacecraft makes an angle α with the or-
bital plane of the Earth. The force due to the solar
radiation pressure on a flat solar sail with perfect
reflection is given by McInnes (2004) as:

~fp =
2peAR

2 cos2(γe)

r2s
~n, (2)

where R is a positive constant that represents the
Sun-Earth distance, pe is the solar radiation pressure
at a distance R from the Sun, A is the total area of
the sail, ~n is the vector normal to the flat sail and
γe is the angle between ~n and ~rs.

For the purpose of this study, the motion of the
Earth around the Sun is assumed to be circular and
non-perturbed by any force, i.e. a Keplerian orbit.
Thus, the angular velocity vector ~ω can be written
as:

~ω = (0, 0, ω) =

(

0, 0,

√

µs

R3

)

. (3)

According to Figure 1, the ~rs and ~re vectors can
be written as:

~rs = (xe, ye, he) , (4)

and

~re = (xe, ye, he)− (R, 0, 0) = (xe −R, ye, he), (5)

where xe, ye and he are the coordinates of the posi-
tion of the spacecraft.

The cross products of the third term on the left
side of equation (1) can be calculated through the
use of equations (3); and (4); the result is:

~ω × (~ω × ~rs) =
(

−
xeµs

R3
,−

yeµs

R3
, 0
)

. (6)

The equilibrium condition is defined as:

d~rs
dt

= 0. (7)

By using equations (7) and (3), equation (1) be-
comes:

~ω×(~ω × ~rs) = −
µs

r3s
~rs−

µe

r3e
~re+

1

m

2peAR
2 cos2(γe)

r2s
~n.

(8)

Equation (8) can be written in a column vector
form as:

A

m

2R2pe cos
2(γe)

r2s







n1e

n2e

n3e






=

µs

r3s







xe

ye
he






+

µe

r3e







xe −R

ye
he






−

µs

R3







xe

ye
0






, (9)

where n1e, n2e and n3e are components of the vector
~n, respectively, in the x, y and z directions.

Although artificial equilibrium points could be
searched for all over space, this work aims to search
for solutions of the artificial equilibrium points that
stay near L3 for the main spacecraft and near L1, L2

or L3 for an eventual assistant spacecraft. The loca-
tions are above or below the Sun-Earth line, only in
the (x, z) plane, which means searching for solutions
such that ye = 0. For this condition, the vector ~n
can be written as:







n1e

n2e

n3e






=











cos (α+ γe)
xe

|xe|
0

sin (α+ γe)
he

|he|











, (10)

where α = arctan

(∣

∣

∣

∣

he

xe

∣

∣

∣

∣

)

is the smallest angle be-

tween ~rs and the x axis, as shown in Figure 1.
Using equation (10), the two non-trivial equa-

tions left from the vector components of equation (9)
are written as:

(

A

m

)

2R2 cos2(γe)pe
r2s

cos (α+ γe)
xe

|xe|
=

µs

r3s
xe +

µe(xe −R)

r3e
−

xeµs

R3
, (11)

(

A

m

)

2R2 cos2(γe)pe
r2s

sin (α+ γe)
he

|he|
=

(

µs

r3s
+

µe

r3e

)

he, (12)

where rs=
√

(he)2+(xe)2 and re=
√

(he)2+(xe−R)2.

Table 1 shows the values for the respective pa-
rameters used in this research.

Using the values for the parameters given in Ta-
ble 1, there are four unknown variables left in equa-
tions (11) and (12). They are: xe, he, γe and the
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352 DE ALMEIDA JR. ET AL.

TABLE 1

PARAMETERS USED IN THE SIMULATIONS

R 1.496× 1011 m

pe 4.56× 10−6 N/m2

µs 1.3275412528× 1020 m3/s2

µe 3.98588738352× 1014 m3/s2

ratio A/m. By fixing two of them it is possible to
find the other two, such that all of them satisfy both
equations (11) and (12), if solutions exist.

This work presents three kind of solutions for the
communication problem. For the particular case of
Solution 3, the one shown in § 3.3, the angle between
the vector normal to the solar planar sail and the
solar rays is constrained such that the reflected rays
are in the direction of the z axis. This constraint
means that:

γe =
π

4
−

α

2
. (13)

The total force due to the solar radiation pres-
sure on the solar sail is given by the sum of each
of the photons’ flux pushing the solar sail, as shown
in equation (14), in the case of Communication So-
lution 3. Due to the geometrical symmetry of this
solution, both the incident rays coming directly from
the Sun and the ones coming from the Sun but re-
flected by the other spacecraft make the same angle
γe with the vector normal to the solar sail. The de-
tails of the solution are given in § 3.3.

~fp =
2peAR

2 cos2(γe)

r2s
~n+

2peAR
2 cos2(γe)

(rs + 2he)2
~n (14)

Therefore, if equation (14) replaces equation (2),
then equations (11) and (12) are replaced by:

(

A

m

)

2R2 cos2(γe)pe cos(α+ γe)

(

1

r2s
+

1

(rs + 2he)2

)

×

|xe| =
µs

r3s
xe +

µe(xe −R)

r3e
−

xeµs

R3
, (15)

and
(

A

m

)

2R2 cos2(γe)pe sin(α+ γe)

(

1

r2s
+

1

(rs + 2he)2

)

×

he

|he|
=

(

µs

r3s
+

µe

r3e

)

he, (16)

where α = arctan
(∣

∣

∣

he

xe

∣

∣

∣

)

and γe is given by equa-

tion (13).

Fig. 2. Black dots represent the solution sets for
A/m = 12m2/kg near L1. Red dots are also solutions.
The angles γe (in radians) of the normal to the sail rel-
ative to the rays of the Sun are shown. Solar rays come
from the left side of the figure. The brown straight lines
represent the inclination of the planar solar sail (not in
scale). The color figure can be viewed online.

A particular algorithm is used to find less accu-
rate solutions of equations (11) and (12), or equa-
tions 15 and 16, and the Newton method for two
variables is used to improve the accuracy, starting
from these less accurate solutions. Each solution set
presented in this research satisfies equations (11) and
(12) or equations (15) and (16), with a minimum ac-
curacy of the order of 10−10 for each of them.

3. RESULTS AND SOLUTIONS

A wide range of solutions sets (xe, he, γe and
the ratio A/m) that satisfy the equilibrium condi-
tion (equation 7) is found. For clarity purposes, Fig-
ures 2-4 show the solutions sets for A/m = 12m2/kg
near L1, L2 and L3, respectively. The three points
are considered, although the main goal of the pa-
per is to search for artificial equilibrium points near
L3, because the two other colinear equilibrium points
are also candidates to receive a second spacecraft to
complete the communication system. Thus, artifi-
cial equilibrium points near those points are useful
to attain the goal of the present research. In these
figures, the brown straight lines represent the solar
sail and its inclination (γe), which is the angle be-
tween the vector normal to the solar sail and the vec-
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SEARCHING FOR AEP “ABOVE AND BELOW” L3 353

Fig. 3. Black dots represent the solution sets for
A/m = 12m2/kg near L2. Red dots are also solutions.
The angles γe (in radians) of the normal to the sail rel-
ative to the rays of the Sun are shown. Solar rays come
from the left side of the figure. The brown straight lines
represent the inclination of the planar solar sail (not in
scale). The color figure can be viewed online.

tor in the direction to the rays coming from the Sun.
The solar radiation pressure comes from the left side
for the solutions sets near L1 and L2, and from the
right side for the solutions sets near L3. Figures 2-4
also show that, for γe = π/2, the only possible so-
lutions are the L1, L2 or L3 Lagrangian traditional
points, which are located very close to xe/R = 0.99,
xe/R = 1.01 and xe/R = −1, respectively. This
happens because the solar sail is assumed to be flat,
so there are no solar radiation pressure effects on
the sail when it is parallel to the rays of the Sun.
A physical analysis of the figures can be done to ex-
plain their behavior. The first fact we notice is that
the new equilibrium points are shifted towards the
Sun. This means a shift to the left for the points L1

and L2 and to the right for the point L3. Therefore,
the net result of adding the solar radiation pressure
is that it combines with the centrifugal force and the
gravity forces of the Sun and the Earth to reach the
equilibrium condition in another position. Another
fact, noted in Figures 2-4, is the behavior of the an-
gle γe, which defines the attitude of the solar sail.
It starts perpendicular to the rays of the Sun at the
original Lagrangian point, so as to have a zero effect
from the solar radiation pressure. Then, it decreases,

Fig. 4. Black dots represent the solution sets for
A/m = 12m2/kg near L3. Red dots are also solutions.
The angles γe (in radians) of the normal to the sail rel-
ative to the rays of the Sun are shown. Solar rays come
from the right side of the figure. The brown straight lines
represent the inclination of the planar solar sail (not in
scale). The color figure can be viewed online.

causing a stronger vertical component of the force.
Thus, he increases and a maximum value is reached.
After that, the solar sail rotates until it faces the
Sun. At this point there is no vertical component of
the force and the equilibrium point goes back to the
horizontal axis, at its minimum distance from the
Sun.

Similar patterns can be obtained for other values
of the ratio A/m, but other values for the maximum
he are reached, as shown in Figure 5. It is interest-
ing to note that different values of the maximum dis-
tance from the orbital plane of the Earth are reached
in each situation. The equilibrium points take into
account the effects of the gravity forces and the so-
lar radiation pressure. Near L3 the gravity forces
are weaker, because it is the point located far away
from the Earth. Therefore, it is the point where he

is larger, compared to the other points, for a given
value of the ratio A/m. At points L1 and L2, the
gravity forces of the Earth are quite relevant, but
the solar radiation pressure effects are weaker at L2.
Thus, the point L2 has the smallest values for the
maximum he and the middle of the two primaries is
the intermediate case for the value he reached. Of
course, the values of he increase with A/m for all the
points, as expected. These values are quantified in
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Fig. 5. Color dots represent the solution sets for the
maximum value of he reached for different values of the
parameter A/m (m2/kg) near L3 (black dots), L1 (red
dots) and L2 (blue dots). The color figure can be viewed
online.

Figure 5. In all the results presented here, the Earth
shadow is neglected, because the equilibrium points
of interest are not on the orbital plane of the Earth.

The next step is to combine those results to ob-
tain geometries that allow the communication be-
tween L3 and the Earth. Figure 6 represents the
solutions sets for the xe and he coordinates for dif-
ferent values of the ratio A/m. The red line at xe = 0
represents the size of the radius of the Sun. The blue
straight line connects the highest point near L3, the
point with maximum he, to the highest point reached
near the Lagrangian point L1. The green straight
line connects the highest point near L3 to the center
of the Earth. The values for γe are omitted from this
figure for clarity purposes, but each set of solutions
contains its respective value for γe.

Figure 5 shows an approximate linear relation be-
tween the maximum value for he reached near L1, L2

and L3 as a function of A/m. The results stem from
the data obtained by the algorithm used to solve the
set of equations that represent the equilibrium con-
ditions. The absolute value of the acceleration of the
solar radiation pressure is also proportional to A/m,
which means that the maximum he reached is pro-
portional to the absolute value of the force due to
the solar radiation pressure. If the reflection of the
solar sail is not perfect (a real solar sail), then the
resultant force of the solar sail would be smaller for

a given ratio A/m, and this linear relation should be
considered.

Note that exactly the same results presented in
this study could be obtained for z = −he, instead
of z = he, due to the symmetry of the problem be-
tween “above” and “below” the Ecliptic plane. In
fact, there is an infinite number of solutions with
the equilibrium point being visible just in the limit
of the solar disk, but in any direction (not in the x, z
plane). This gives different points of observation for
the spacecraft, which can be used to attain differ-
ent goals of the mission. Besides that, orbits around
those artificial equilibrium points are also an option,
but these cases are outside the scope of the present
paper.

The effects of the interference on the communi-
cation signals due to electromagnetic waves as they
pass near the Sun are ignored in this work. The cal-
culations are made taking into account that the ra-
dius of the Sun is approximately 6.96×108 m. Thus,
if the value for he near L3 is more than twice this
value, the spacecraft can communicate directly with
the Earth, and the Sun is no longer an obstacle.

3.1. Communication Solution 1

As mentioned before, three classes of solutions
are shown to solve the communication problem. The
first of them requires a spacecraft with a ratio area-
to-mass A/m = 16m2/kg or more, because the
spacecraft near L3 placed in the (x, z) plane must
have a coordinate in the z axis of at least 1.4×109 m
to communicate directly with the Earth, as can be
seen in Figure 5. Figure 6 (A/m = 16) shows that
the green straight line connects the solution point
with the highest value for he near L3 to the Earth.
This green straight line does not cross the radius of
the Sun, thus the spacecraft located in this solution
point can communicate freely with the Earth. Fig-
ure 7 shows a drawing for this solution.

The advantage of this solution is that it is sat-
isfied with just one spacecraft, at the expense of a
large area-to-mass vehicle. To have an idea of this
ratio, a spacecraft of 100 kg would require an area
of 1600m2, which means a square sail with each side
measuring 40 meters. The solar sail of the spacecraft
for the Ikaros mission had approximately a square
14× 14m sail (Tsuda et al. 2013).

It is important to mention that a large area for
the sail may have some advantages, depending on
the goal of the mission. It can be used to obtain
solar energy, so reducing or eliminating the need of a
power supply. There are also important observations
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Fig. 6. Black dots represent the solution sets for A/m = 8, 10, 12, 14, 16 and 18m2/kg, respectively. The red straight
line represents the radius of the Sun. The green straight line connects the maximum value of he reached near L3 to the
center of the Earth. The blue straight line connects the maximum value of he reached near L3 to the maximum value
of he reached near L1. Note that the solution sets near xe/R ≈ −1 form a black column near L3, the solution sets near
xe/R ≈ 0.99 form a black column near L1, and the solution sets near xe/R ≈ 1.01 form a black column near L2. These
columns are better detailed in Figures 2-4. The color figure can be viewed online.
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Fig. 7. Geometry of Communication Solution 1. The
electromagnetic waves path does not cross the radius of
the Sun.

Fig. 8. Drawing of Communication Solution 2. The
spacecraft 2 acts as a communication bridge between
Earth and spacecraft 1 near L3.

TABLE 2

PARAMETERS AND POSITIONS USED IN
COMMUNICATION SOLUTION 1

Spacecraft near L3

A/m 16 m2/kg

xe −1.48897776339213× 1011 m ≈ −0.995R

he 1.428× 109 m

γe 0.595011210480688

related to the flux of particles in space that require
a large collecting surface (Williams 2003). Thus, the
effort to build a large solar sail would be used not
only to shift the equilibrium point. The values of the
parameters and the position of the spacecraft near
L3 for this solution are given in Table 2.

3.2. Communication Solution 2

The second alternative to solve the problem uses
two spacecraft equipped with solar sails to satisfy
the equilibrium condition (equation 7) at very dif-
ferent positions. This kind of solution requires two
spacecraft with ratio A/m = 12m2/kg. One of them
is positioned at the solution point with maximum he

Fig. 9. Drawing of Solution 3. Solar rays that hit
each spacecraft are reflected in the direction of the other
spacecraft. The resultant force on the spacecraft due to
the solar radiation pressure is doubled.

near L3, and the other at the solution point with
maximum he near L1. The geometry of this solution
is shown in Figure 8.

The blue straight line of Figure 6 (A/m = 12)
represents the path of the electromagnetic wave used
for communication between both spacecraft. This
path does not cross the radius of the Sun; both space-
craft can communicate with each other freely. The
spacecraft near L1 can communicate with the Earth
directly; it works as a communication bridge between
the spacecraft located near L3 and the Earth.

This type of solution requires two spacecraft, but
each of them with a smaller A/m compared with the
first type. Having two spacecraft helps to make ob-
servations from two different points in space, which
can be interesting for the mission itself, not only to
reduce the A/m ratio. On the other hand, it requires
two equipments, increasing the costs and the risks of
failures. Of course, there is also an infinite number of
combinations of solutions of this type, because both
spacecraft may not have the same area-to-mass ratio.
The best combination depends on other constraints
of the mission. This flexibility is interesting for mis-
sion designers. The parameters and the position of
the spacecraft near L3 and L1 used for this solution
are given in Table 3.

3.3. Communication Solution 3

The third kind of solution involves two space-
craft with the same area and mass, both near L3,
positioned as shown in Figure 9. The spacecraft 1 is
located above the x axis with the z coordinate equal
to he, and the spacecraft 2 is located symmetrically
opposite below the x axis, with z coordinate equal
to −he. The angle γe of both spacecraft is such that
the reflected solar rays go vertically directly to the
other spacecraft, which stays symmetrically oppo-
site on the z axis, as shown in Figure 9. This is the
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TABLE 3

PARAMETERS AND POSITIONS USED IN COMMUNICATION SOLUTION 2

Spacecraft near L3 Spacecraft near L1

A/m 12m2/kg m2/kg

xe −1.49175472073972× 1011 m ≈ −0.997R 1.47905589503409× 1011 m ≈ 0.989R

he 1.051× 109 m 3.56× 108 m

γe 0.689928275818861 0.5150135706943621

reason why the parameter γe is not an independent
variable anymore. In this configuration, both space-
craft can interact through the reflected solar rays. In
this figure, the second spacecraft is subject to part of
the projected area of the first spacecraft over it (and
vice versa) and the total distance of the rays that
come from the Sun and are reflected from the other
spacecraft is

√

x2
e + h2

e + 2he. Then, the total force
due to the solar radiation pressure over each space-
craft is that coming from the rays reflected by the
other spacecraft plus the force from the rays com-
ing normally directly from the Sun. The resultant
force due to the solar radiation pressure is almost
doubled in each spacecraft, in comparison with the
configuration with a single spacecraft.

In comparison with the other kind of solutions,
Communication Solution 3 demands a considerably
smaller ratio A/m, just 9m2/kg, but it also requires
an almost perfect planar solar sail in order to achieve
a reflection over a distance equal to 2he in the direc-
tion of the other spacecraft. In comparison with the
first type of solution, for a fixed mass, the area of
the solar sail is almost halved. The angle γe must
be controlled almost perfectly to ensure that the re-
flected rays hit the other spacecraft. This kind of so-
lution requires high precision technologies. Table 4
shows the values for the positions and parameters for
spacecraft 1 and spacecraft 2, in the configuration of
by this third kind of communication solution. The
technology for such high accuracy may not be avail-
able now, but the idea of the present manuscript is to
show this potential possibility for the future, as well
as to compare this solution with the two solutions
previously shown.

The maximum value of he reached by a space-
craft for a given ratio A/m is significantly increased
(almost doubled) for the configuration of Communi-
cation Solution 3 in comparison with the previously
given solutions, as shown in Figure 10.

This kind of solution uses two spacecraft with the
same ratio A/m with symmetry in the z axis with
respect to the x axis on the (x, z) plane, enabling

Fig. 10. Color dots are the solution sets in the (x, z)
plane represented by the values he and xe/R, for differ-
ent values of the parameter A/m (m2/kg) near L3 for
the Communication Solution 3. The color figure can be
viewed online.

both spacecraft to communicate directly with Earth.
Solutions in the (x, z) plane with different ratio A/m
could also be obtained. For example, the main and
heaviest spacecraft (with smallest ratio A/m) could
be positioned on an artificial equilibrium point below
the x axis, but close to it, and the other spacecraft
positioned with a larger value for |he|, such that it
could serve as a bridge for communications between
the first spacecraft and the Earth. Of course, the
exactly positions would depend on all the parameters
of each spacecraft, including γe, but this can also
allow an interesting flexibility for mission design.

Additionally, this kind of solution is not re-
stricted to spacecraft placed near L3. As an exam-
ple of an extension of this idea, two spacecraft can
be placed around the Earth, one below the Eclip-
tic plane and the other one symmetrically opposite,
above the Ecliptic. The first would have a perma-
nent contact with the region of low latitude, near
the south pole, while the other would be in perma-
nent contact with the region of high latitude, near
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TABLE 4

PARAMETERS AND POSITIONS FOR SPACECRAFT 1 AND 2 USED IN COMMUNICATION
SOLUTION 3

Spacecraft 1 (above the x axis): Spacecraft 2 (below the x axis):

A/m 9m2/kg equal to spacecraft 1

xe −1.49110398621742× 1011 m ≈ −0.997R equals spacecraft 1

he 1.45241181117863× 109 m −1.45241181117863× 109 m

γe 0.780528060797507 equals spacecraft 1

the north pole. The idea of maintaining a space-
craft equipped with a solar sail in permanent con-
tact with high latitude regions of the Earth was first
presented and patented by Forward (1991), but the
kind of solution presented here takes advantage of
two spacecraft with smaller area-to-mass ratio rather
than just one, as presented by Forward. The maxi-
mum value for he reached is approximately linearly
dependent on the ratio A/m, as shown in Figures 5
and 10. The configuration presented in this kind of
solution almost doubles the resultant force due to
the solar radiation pressure, because equation (14)
replaces equation (2) for this configuration. There-
fore, the net effect is that the ratio A/m can be al-
most halved if the objective is to maintain the same
value for he, compared to the solutions with a single
spacecraft, like that of Forward or Communication
Solution 1 presented here. Besides, both spacecraft
can be useful, one to interact with regions near the
south pole and the other one with regions near the
north pole, simultaneously. Figure 11 illustrates the
extension of this kind of solution.

4. CONCLUSION

The main purpose of this research is to offer new
options of solutions for the communication problem
between a spacecraft orbiting the Sun in a point near
L3 and the Earth, in the Sun-Earth system.

The idea is to take advantage of a large solar sail
(which can also be used for other purposes of the mis-
sion) to find new artificial equilibrium points, which
are not hidden behind the Sun when looking from
the Earth. A large number of solutions for each given
value of the area-to-mass ratio is found. The results
show the exact locations and the attitude of the solar
sail for the three collinear equilibrium points.

Three types of solutions are proposed. The first
of them uses only one spacecraft, but it requires a
large area-to-mass ratio, in the order of 16m2/kg.
The second solution uses two spacecraft, each one

Fig. 11. The idea of Communication Solution 3 applied
to permanent observations of both poles of the Earth.

having a solar sail and located at the artificial equi-
librium points near L3 and L1. For this type of
solution a ratio A/m = 12m2/kg is enough to ob-
tain communication. The third kind of solution
requires a considerably smaller area-to-mass ratio
(A/m = 9m2/kg). This solution presents high pre-
cision technological challenges, but this manuscript
aims to show its potential for the future, not consid-
ering the details of implementations.

In this way, three options for solutions are shown.
Overcoming the negative aspect of the communica-
tion problem, the point L3 can be considered for
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practical applications, while the other two unstable
collinear points (L1 and L2) could be considered in
the future.

Of course, this is a preliminary study, and more
sophisticated models for the solar sail should also be
used to improve the results obtained here. Specific
models, including other perturbations, should also
be used to calculate new sets of solutions for the
three types of communication solutions presented in
this research.
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