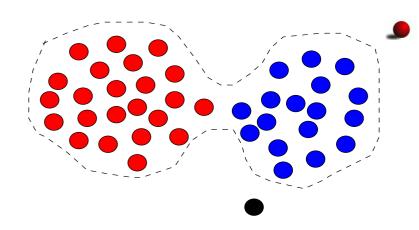
Design of robust pattern classifiers based on optimum-path forests

João P. Papa¹, Alexandre X. Falcão¹, Paulo A. V. Miranda¹, Celso T. N. Suzuki¹ Nelson D. A. Mascarenhas²

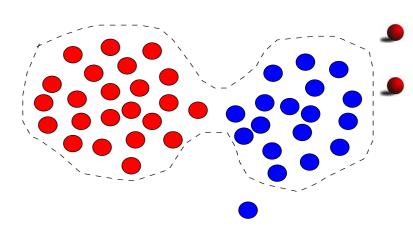
¹State University of Campinas, Institute of Computing, Campinas, Brazil
²Federal University of São Carlos, Department of Computing, São Carlos, Brazil

Presentation Overview

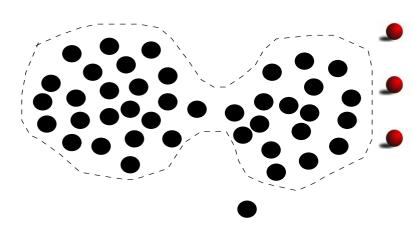
- Introduction
- OPF
- Experimental Results
- Conclusion and future work



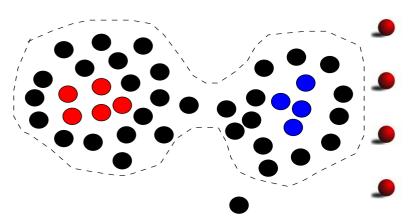
Problem (Z_1 and Z_2)



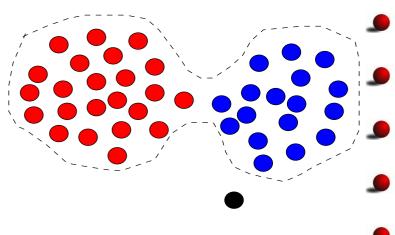
Problem (Z_1 and Z_2) Pattern classification



Problem (Z₁ and Z₂)Pattern classificationUnsupervised classification



Problem (Z₁ and Z₂)
Pattern classification
Unsupervised classification
Semi-supervised classification



- Problem (Z_1 and Z_2)
- Pattern classification
- Unsupervised classification
- Semi-supervised classification
- Supervised classification

Motivation

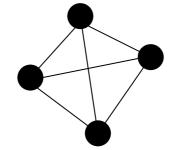
- To propose a new supervised classifier based on optimum path forest
- Support Vector Machines (SVM)
 - binary classifier
 - high dimensional space
- Artificial Neural Networks with Multilayer Perceptron (ANN-MLP)
 - unstable classifier
 - slow convergence

Optimum Path Classifier - OPF

Watershed computed by the Image Foresting Transform (IFT) with markers obtained from Z₁ (training set) in the feature space

Modeling the problem

- samples are the nodes of the graph
- adjacency relation: complete graph
- arc weight $w(s,t) = d(\vec{s},\vec{t})$
- path-cost function f_{max}
- prototypes (markers) set S.



Optimum Path Forest - OPF

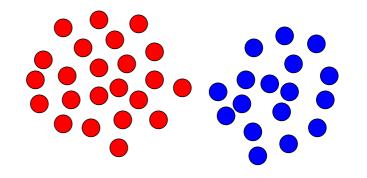
Supervised pattern classifier with 2 phases:

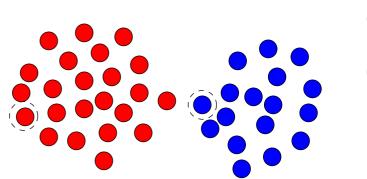
- Training: forest computation
- Unseen test: nodes are added to the forest, classified and removed

Main question in the training phase: how to choose the prototypes set *S*?

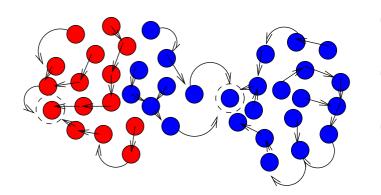
- random choice
- density choice
- minimum spanning tree (MST) choice

Samples

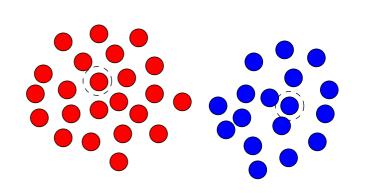




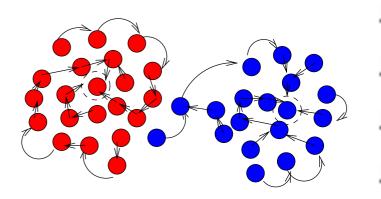
SamplesRandom choice



- Samples
 - Random choice
 - Random choice result

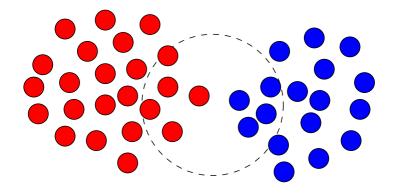


- Samples
 - Random choice
- Random choice result
- Density choice



- Samples
 - Random choice
- Random choice result
- Density choice
- Density choice result

Goal: to achieve zero error in the training set. How ??

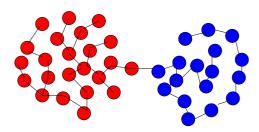


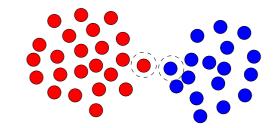
Problem region

To put prototypes inside the problem region! How can we identify them?

MST approach

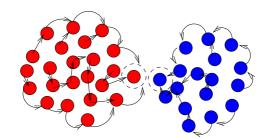
- sum of the weights of the edges is minimum
- each pair of nodes is connected by an optimum path





(a) MST

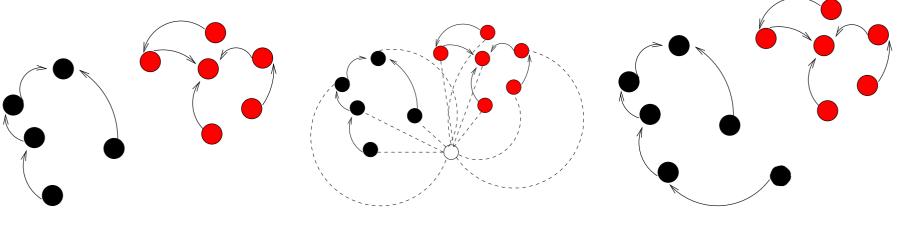
(b)Prototypes chosen by the MST



OPF nodes classification result

Test phase

unseen samples are tested individually



(a)Optimum path forest

(b)Test sample

(c)Classification result.

Experimental Results

We performed tests in 16 databases:

MPEG-7: shape database containing 1400 objects equally distributed in 70 classes.

Fish 2

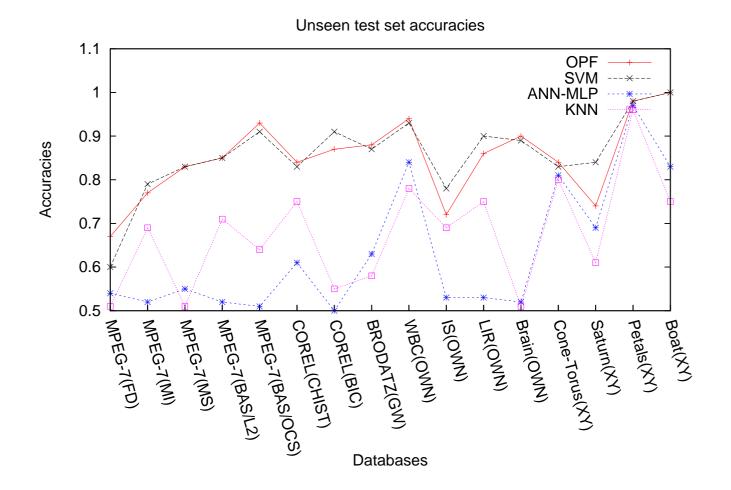
Fish 1

Chicken 1

Chicken 2

Corel: database containing 1607 images of several objects distributed in 49 classes.

Experimental Results



How can we make sure that a classifier can learns with its own errors without increasing the training set size?

 \blacksquare Z_2 : evaluation set

- Z_2 : evaluation set
- Learning algorithm: to identify more informative samples

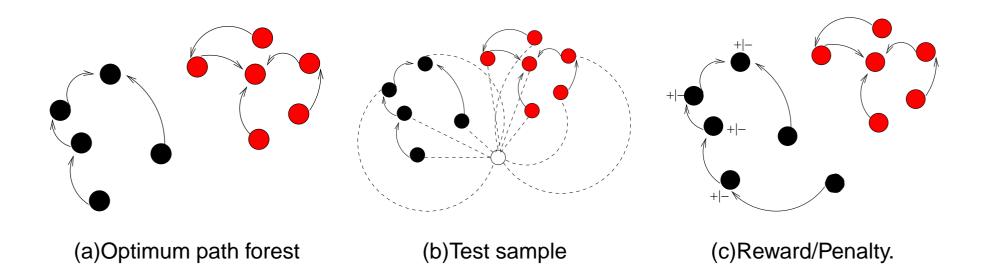
- \checkmark Z₂: evaluation set
- Learning algorithm: to identify more informative samples
- Replacements between samples and errors

- \blacksquare Z_2 : evaluation set
- Learning algorithm: to identify more informative samples
- Replacements between samples and errors
- OPF is designed in Z_1 (training set) and Z_2 (evaluation set) and tested in the unseen Z_3 (test set)

- \blacksquare Z_2 : evaluation set
- Learning algorithm: to identify more informative samples
- Replacements between samples and errors
- OPF is designed in Z_1 (training set) and Z_2 (evaluation set) and tested in the unseen Z_3 (test set)

Test phase

- unseen samples are tested individually
- relevance number
- irrelevant nodes

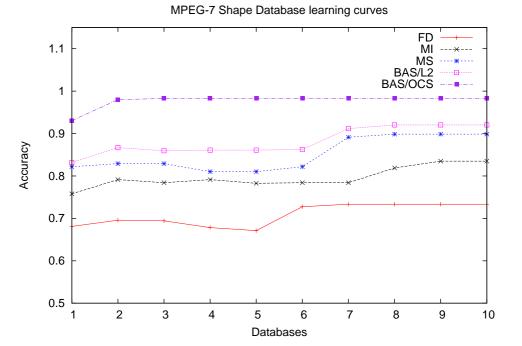


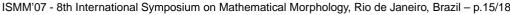
Learning algorithm

Algorithm:

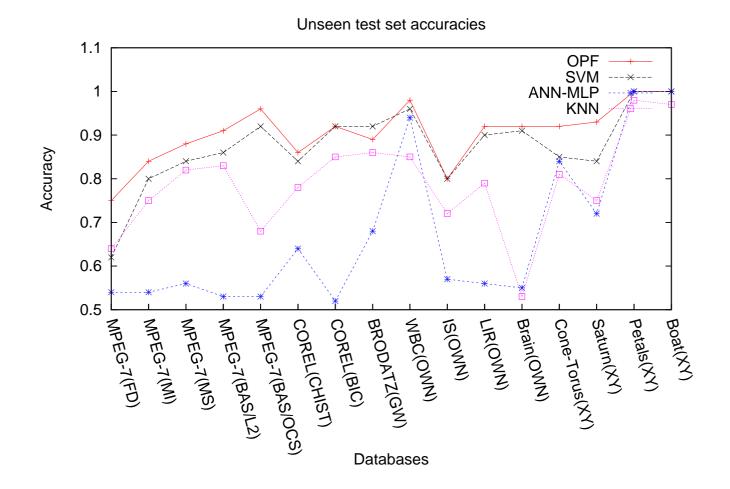
1. For $I \ {\rm from} \ 1$ to $N \ {\rm do}$

- 2. Build the classifier using the OPF algorithm (MST in Z_1).
- 3. Classify samples in Z_2 and compute the relevance number for each sample in Z_1 .
- 4. Replace misclassified elements in Z_2 by irrelevant (not prototypes) in Z_1 .
- 5. If there exists irrelevant elements in Z_1 , replace them by random samples from Z_2 .



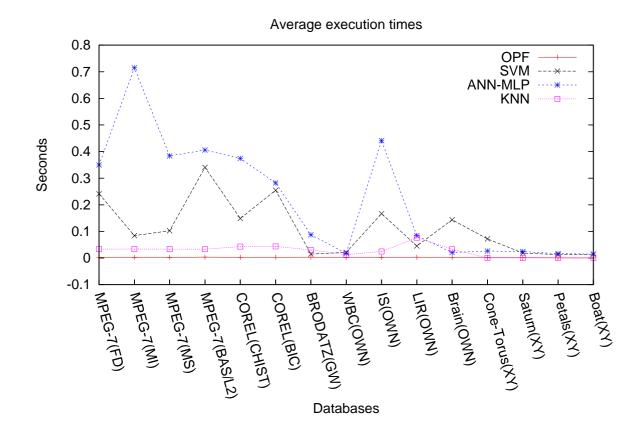


Experimental Results



OPF: 11 wins, 4 ties and 1 lose

Execution Times



The OPF was 47.21 times faster than SVM, 98.71 times faster than ANN-MLP and 7.81 times

faster than KNN.

Conclusion and future works

- OPF is a new promising tool for supervised pattern recognition
- Faster than the tested approaches
- Similar to SVM (at least)
- Descriptor combination by genetic programming
- New path-cost functions