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On transitions in levelings

Connected operators: enlarge the existing flat zones and produce

new ones. A connected operator transforms an image f into an

image g in such a way that ∀ (p, q) neighbors: gp "= gq ⇒ fp "= fq
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Levelings

Specialising the preceding relation yields levelings :

∀ (p, q) neighbors: gp > gq ⇒ fp ≥ gp and gq ≥ fq meaning that any
transition in the destination image g is bracketed by a larger

variation in the source image.

Such levelings are also characterized by f ∧ δg ≤ g ≤ f ∨ εg
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Do levelings level enough ?

Levelings simplify the images but preserve the contours. The

following algorithm transforms a marker image g progressively into

a leveling of f :

• On {g > f}, we replace g by f ∨ εg
• On {g < f}, we replace g by f ∧ δg

Often, even for strongly simplified marker images, the levelings

recontruct amazingly many details : they do not level enough.

A leveling producing larger flat zones would level more !
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On transitions in levelings

To gp > gq is associated to a transition fp > fq.

A leveling will level more if only a subset of all transitions in g are

linked with transitions in f.
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lambda levelings

If only the transitions gp > gq + λ.are associated with a transition

in f : gp > gq + λ⇒ fp ≥ gp and gq ≥ fq, we get the λ-levelings.
This is the first type of viscosity.

Such levelings are also characterized by

f ∧ [g ∨ (δg − λ)] ≤ g ≤ f ∨ [g ∧ (εg + λ)]
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ro levelings

Transitions are also less frequent by relaxing the relation gp > gq

either by lowering the higher term : γgp > gq or increasing the

lower term gp > ϕgq.

We combine the lower leveling γgp > gq ⇒ gq ≥ fq and the upper
leveling gp > ϕgq ⇒ fp ≥ gp into a ρ-leveling :
γgp > gq and gp > ϕgq ⇒ fp ≥ gp and gq ≥ fq
Such levelings are also characterized by f ∧ δγg ≤ g ≤ f ∨ εϕg
They give good results, but the computation is relatively heavy.
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Bilevelings

Less frequent transitions arise, if one compares the value of g at a

pixel with its value at two neighboring pixels :

An image g is a bileveling of the image f iff ∀ (p, q, s) being the
summits of an elementary triangle of the hexagonal grid.

Upper bilevelings : gp > gq and gp > gs ⇒ fp ≥ gp,
Lower bilevelings : gp < gq and gp < gs ⇒ fp ≤ gp.
A leveling being both an upper and a lower leveling

For (p, q, s) and (q, r, t) triangles :

[(gp > gq and gp > gs) and (gt > gq and gr > gq)]⇒ fp ≥ gp and
gq ≥ fq
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Characterization of upper bilevelings

The criterion for upper bilevelings [gp > gq and gp > gs ⇒ fp ≥ gp]
may be interpreted as

[gp ≤ gq or gp ≤ gs or gp ≤ fp]⇔ [gp ≤ fp ∨ (gq ∨ gs)].
As p and s may be any couple of neighboring pixels of p, we obtain

gp ≤ fp ∨
!

(q,s,p)=triangle

(gq ∨ gs)

Combining with gp ≤ gp, we get

gp ≤ fp ∨
"
gp ∧

!
(q,s,p)=triangle

(gq ∨ gs)
#
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Figure 1: The supremum is taken on each couple of adjacent neigh-

bors, and then the infimum of all these values
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Characterization of bilevelings

Bilevelings are boths upper and lower levelings. Both criteria are

equivalent :

fp ∧
"
gp ∨

$
(q,s,p)=triangle

(gq ∧ gs)
#
≤ gp ≤

fp ∨
"
gp ∧

!
(q,s,p)=triangle

(gq ∨ gs)
#

fp ∧
$

(q,s,p)=triangle

(gq ∧ gs) ≤ gp ≤ fp ∨
!

(q,s,p)=triangle

(gq ∨ gs)
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Construction of bilevelings

If g is not a bileveling of f , then the relation (6a) does not hold. So

we modify g until this relation becomes satisfied:

• On {gp > fp}, we replace gp by

fp ∨
"
gp ∧

!
(q,s,p)=triangle

(gq ∨ gs)
#
: this algorithms produces a

decreasing series of values bounded by fp, hence it converges

• On {gp < fp}, we replace gp by

fp ∧
"
gp ∨

$
(q,s,p)=triangle

(gq ∧ gs)
#
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Flatzones

Only marked transitions for g correspond to transitions for f : if

(q, s, p) = triangle, then gp > gq > gs ⇒ fp ≥ gp and gs ≥ fs.
The zones where g departs from f are partly flat : if for the same 3

pixels (q, s, p) forming a triangle we have fp > gp, fs > gs and

fq > gq,then it is not necessarily true that gp = gq = gs, but the

two lowest values are the same.



ADJONCTIONS adjonctions et anti-adjonctions 14!

"

#

$

Microviscosity reinterpretation of bilevelings
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Neighborhood relation of adjacency

u/h h/u

Figure 2: Each pixel ν is extremity of 6 edges; the neighboring edges

η of the central pixel appear as small (blue) dots; this neighboring

relation is written η/ν, meaning that ν is an extremity of the edge η.

Symmetrically, each edge has two extremities; this relation is written

ν/η.
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Neighborhood relation of opposition

u\hh\u

Figure 3: Each node has 6 opposing edges as neighbors ; this neigh-

borhood relation is written η\ν. And each edge η has as neighbors
two opposing summits of triangles. This relation is written ν\η.
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Notations

We consider the elements of the grid itself as operators. The

operator ν applied on the function f is the value taken by f on ν :

νf = f(ν). Similarly we define ηf = f(η). Let ν be the set of nodes

or pixels of the initial grid and η the set of edges.

Supremum, infimum, complementation of these operators are

classically defined as (we illustrate the case for η, the definition for

ν being similar):

* [η1 ∨ η2] (f) = η1 (f) ∨ η2 (f) = f (η1) ∨ f (η2)

* [η1 ∧ ∨η2] (f) = η1 (f) ∧ η2 (f) = f (η1) ∧ f (η2)

* −η1 (f) = η1 (−f)
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Adjunction between vertices and adjacent edges

The erosion εη/ν : Fun(ν,T )→ Fun(η,T ) applied to function f is
defined by its value at the edge ηi :

ηiεη/νf =
!

ηi/νj

f(νj) =
!

ηi/νj

νjf .

Its dual operator, δη/ν : Fun(ν,T )→ Fun(η,T ) is the dilation:
ηiδη/ν =

$
ηi/νj

νj .

Its adjunct operator maps Fun(η,T ) into Fun(ν,T ) and uses the
symmetrical neighborhood relation ν/η:

νjεν/ηg =
$

νj/ηi

g(ηi) =
$

νj/ηi

ηig.
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Adjunction between vertices and adjacent edges

In the following table each row represents 2 dual operators and

each column two adjunct operators:

Fun(ν,T )→ Fun(η,T ) ηiεη/ν =
!

ηi/νj

νj ηiδη/ν =
$

ηi/νj

νj

Fun(η,T )→ Fun(ν,T ) νjδν/η =
$

νj/ηi

ηi νjεν/η =
!

νj/ηi

ηi
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Introducing the center of the structuring element

By taking into account not only the adjacent edges for computing

the value at a node but also the node itself, we define the following

erosions and dilations :

η ∪ ν → ν νj
%&'(
δν/η = νj ∨ νjδν/η νj

%&'(
εν/η = νj ∧ νjεν/η

ν → η ∪ ν νj
%&'(
εη/ν = νj

ηi
%&'(
εη/ν = ηiεη/ν

νj
%&'(
δη/ν = νj

ηi
%&'(
δη/ν = ηiδη/ν
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Adjunction between vertices and opposing edges

In a similar way, adjunctions may be defined between nodes and

opposing edges.

In the following table each row represents 2 dual operators and

each column two adjunct operators:

Fun(ν,T )→ Fun(η,T ) ηiεη\ν =
!

ηi\νj

νj ηiδη\ν =
$

ηi\νj

νj

Fun(η,T )→ Fun(ν,T ) νjδν\η =
$

νj\ηi

ηi νjεν\η =
!

νj\ηi

ηi
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Introducing the center of the structuring element

By taking into account not only the adjacent edges for computing

the value at a node but also the node itself, we define the following

erosions and dilations :

η ∪ ν → ν νj
%&'(
δν\η = νj ∨ νjδν\η νj

%&'(
εν\η = νj ∧ νjεν\η

ν → η ∪ ν νj
%&'(
εη\ν = νj

ηi
%&'(
εη\ν = ηiεη\ν

νj
%&'(
δη\ν = νj

ηi
%&'(
δη\ν = ηiδη\ν
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Reinterpretation of the bilevelings

The four operators used to characterize and to build the bilevelings

can be now reinterpreted in terms of adjunctions between the nodes

and the edges of the hexagonal grid:

• !
(q,s,p)=triangle

(gq ∨ gs) =
!

νp\ηi

ηiδη/νg = νpεν\ηδη/νg

• $
(q,s,p)=triangle

(gq ∧ gs) =
$

νp\ηi

ηiεη/νg = νpδν\ηεη/νg

• gp ∧
!

(q,s,p)=triangle

(gq ∨ gs) = gp ∧
!

νp\ηi

ηiδη/νg =

νpg ∧ νpεν\ηδη/νg = νp
%&'(
εν\η δη/νg (anti-extensive)

• gp ∨
$

(q,s,p)=triangle

(gq ∧ gs) = gp ∨
$

νp\ηi

ηiεη/νg =

νpg ∨ νpδν\ηεη/νg = νp
%&'(
δν\η εη/νg (extensive)
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Micro-viscous morphology
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Pseudo-inverse operators

To each operator defined above, one may associate its

pseudo-inverse operator, obtained by concatenating in reverse order

the adjunct operators:

• εν\ηδη/ν → εν/ηδη\ν

• δν\ηεη/ν → δν/ηεη\ν

• %&'(εν\η δη/ν → εν/η
%&'(
δη\ν = εν/ηδη\ν

•
%&'(
δν\η εη/ν → δν/η

%&'(
εη\ν = δν/ηεη\ν
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micro-viscous filtering

Concatenating such an operator with its pseudo-inverse produces

for instance εν/ηδη\νεν\ηδη/ν : its construction introduces the
opening δη\νεν\η within the closing εν/ηδη/ν .

This operator is increasing, being the product of increasing

operators, but it is not a filter as it is not idempotent. However it

is an underfilter:

εν/ηδη\νεν\ηδη/νεν/ηδη\νεν\ηδη/ν ≤ εν/ηδη\νεν\ηδη\νεν\ηδη/ν =
εν/ηδη\νεν\ηδη/ν since δη/νεν/η is antiextensive and δη\νεν\η is
idempotent.

Similarly
%&'(
εν\η δη/νεν/ηδη\ν is an underfilter whereas

δν\ηεη/νδν/ηεη\ν and
%&'(
εν\η δη/νεν/ηδη\ν are overfilters.
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micro-viscous filtering 2

For instance, a pseudo-opening can be defined as δν\ηεη/νεν\ηδη/ν ,
the corresponding pseudo-closing is obtained as εν\ηδη/νδν\ηεη/ν ,
and mutatis mutandis other pseudo-openings and closings are

obtained with the other unitary micro-operations. Then, the

product of pseudo-openings and closings leads to more evolved

operators such as the pseudo-alternate sequential filters

(pseudo-ASF).


