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Abstract. Here, we present an extension of the classical steepest descent method for solving global continuous optimization
problems. To this end, we apply the concept of Jackson’s derivative to compute the negative of the q-gradient of the objective
function, used as the search direction. The use of Jackson’s derivative has shown to be an effective mechanism for escaping
from local minima. The q-gradient algorithm is complemented with strategies for selecting the parameter q and to compute
the step length. These strategies are implemented in a way such that the search process gradually shifts from global in the
beginning to local as the algorithm converges. For testing this new approach, we considered a set of multimodal test functions
and compared our results with those obtained by Evolutionary Algorithms (EAs) widely used in optimizing multidimensional
and multimodal functions. Overall, the q-gradient method performs well against the EAs arriving in forth position in a direct
comparison with them, for the dimensions 10 and 30.
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INTRODUCTION

The history of q-calculus dates back to the beginnings of the last century when, based on pioneering works of Euler
and Heine, the English reverend Frank Hilton Jackson developed its framework in a systematic way. His work gave
rise to generalizations of series, functions and special numbers within the context of the q-calculus [1, 2, 3, 4]. More
important, he reintroduced the concepts of the q-derivative [5] (also known as Jackson’s derivative) and introduced
the q-integral [6]. Here, we extend gradient-based descent methods to global continuous optimization problems using
Jackson’s derivative. For this, a q-analogue of the gradient vector of the objective function is computed for determining
the search direction. The new optimization method, called the q-gradient method, generalizes the well-known steepest
descent method. The algorithm is complemented with strategies to generate the parameter q and to compute the step
length. These strategies are implemented in a way such that the search process gradually shifts from global in the
beginning to local as the algorithm converges. In the end of the iterative procedure, the parameter q is approximately 1
and the q-gradient method reduces to the steepest descent method. This smooth transition from global to local search
avoids complex hybridization schemes with two or more optimization algorithms, and is the main characteristic of
the algorithm here proposed. This feature is well illustrated in Fig. 1, which shows the contour lines of the function
F(x1,x2) = 2− (e−(x21+x22) +2e−[(x1−3)2+(x2−3)2]) and the points sampled by the q-gradient algorithm.
Notice that the function F has a local minimum at (x1,x2) = (10,10) and a global minimum at (x1,x2) = (13,13).

For the Fig. 1a, the parameter q is different from 1 in the beginning and tends to 1 at the end of the search process.
For the Fig. 1b, the parameter q is fixed and close to 1 along all the iterative procedure. When the parameter q is close
to 1, the q-gradient method behaves as the steepest descent method and converges to the local minimum closest to the
initial point (x1,x2)0 = (11,11) (see Fig. 1b). However, for different values of the parameter q the search direction is
not only the steepest descent direction and can point to any region of the search space, which potentially allows the
q-gradient method to move towards the global minimum (see Fig. 1a). This simple example shows that the use of the
q-gradient offers a new mechanism to escape from local minima. Moreover, the transition from global to local search
might be controlled by the parameter q, provided a suitable strategy for generating q-values is incorporated into the
minimization algorithm.
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FIGURE 1. Global versus local search in the q-gradient method.

Q-GRADIENT METHOD

A formal definition of q-gradient is given as follows. Let f (x) be a differentiable function of one variable, the q-
derivative is defined as

Dq f (x) =
f (qx)− f (x)

qx− x
, (1)

where q is a real number different from 1 and x is different from 0. In the limit of q→ 1 (or x→ 0), the q-derivative
reduces to the classical derivative. Given a differentiable function of n variables F(x), the q-gradient is the vector of
the n first-order partial q-derivatives of F . Thus, the first-order partial q-derivative with respect to the variable xi is
given by [7]

Dqi,xiF(x) =

⎧⎪⎪⎨
⎪⎪⎩

F(x1; ...;qixi; ...;xn)−F(x1; ...;xi; ...;xn)
qixi− xi

, xi �= 0 and qi �= 1
∂F(x)

∂xi
, xi = 0 or qi = 1

, (2)

where the parameter q is a vector q = (q1, . . . ,qi, . . . ,qn) with qi �= 1, ∀i. Notice that when xi = 0 or qi = 1, ∀i, the
first-order partial q-derivative is the classical first-order partial derivative. This framework can be extended to define
the q-gradient of a function of n variables as

∇qF(x) = [Dq1,x1F(x) . . . Dqi,xiF(x) . . . Dqn,xnF(x)] (3)

with the classical gradient being recovered in the limit of qi→ 1, for all i= 1, . . . ,n.
A general optimization strategy is to consider an iterative procedure that, starting from x0, generates a sequence

{xk} given by xk+1 = xk+αkdk, where k is the iteration number, dk is the search direction and αk is the step length
or the distance moved along dk in the iteration k [8]. The search direction in the q-gradient method is the negative of
the q-gradient of the objective function−∇qF(x). Values of qi are drawn from a Gaussian probability density function
(pdf), with a standard deviation that decreases as the iterative search proceeds. In this sense, the role of the standard
deviation here is reminiscent of the one played by the temperature in a Simulated Annealing (SA) algorithm, that
is, to make the iterative procedure go from a very random (at the beginning) to a very deterministic search (at the
end). Starting from σ0, the standard deviation of the pdf is decreased by the "cooling" schedule σ k+1 = β ·σ k, where
0< β < 1 is the reduction factor. As σ k approaches zero, the values of qki tend to unity and the the q-gradient method
reduces to the steepest descent method. As in a SA algorithm, the performance of the minimization algorithm depends
crucially on the choice of parameters σ0 and β . A too rapid decrease of σ k, for example, may cause the algorithm to
be trapped in a local minimum.
Gradient-based methods usually perform a linear search along the descent direction. However, depending on the

value of q, the negative of the q-gradient may not point to the local descent direction. One way to circumvent this
problem is to use a step length αk that decreases with the iteration k. Here, the initial step length α0 is reduced
by αk+1 = β · αk, where, for the sake of simplicity, β is the same reduction factor used to compute σ k. As the
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step length decreases (and the values of qki , in parallel, tend to unity), a smooth transition to an increasingly local
search process occurs. Based on the definitions presented in this section, the q-gradient method for continuous global
optimization problems is described as follows. The algorithm stops when the appropriate stopping criterion is attained
and returns the xbest as the minimum value of the objective function F obtained during the iterative procedure, i.e.,
F(xbest)≤ F(xk), ∀k.

Given x0 (initial point), σ0 > 0, α0 > 0 and 0< β < 1:
1) Set k = 0
2) Set xbest = xk

3) While the stopping criteria are not reached, do:
a) Generate qkxk by a Gaussian distribution with σ k and μk = xk

b) Calculate the q-gradient ∇qF(xk)
c) Set dk =−∇qF(xk)/‖∇qF(xk)‖
d) Set xk+1 = xk+αk ·dk

e) If F(xk+1)< F(xbest) set xbest = xk+1

f) Set σ k+1 = β ·σ k and αk+1 = β ·αk

g) Set k = k+1
4) Return xbest and F(xbest).

COMPUTATIONAL EXPERIMENTS

We run the q-gradient method in a Core 2 Duo T7250 2.0GHz laptop with 4GB RAM using the Intel®Fortran Compiler
Professional Edition for Linux version 11.0.069. To evaluate the performance of our approach, we applied it on a
subset of multimodal test functions proposed at the CEC’2005 Special Session on Real-Parameter Optimization of the
IEEE Congress on Evolutionary Computation 2005 [9]. We compared our results with those published by the 11 EAs
participants of CEC’2005 (BLX-GL50 [10], BLX-MA [11], CoEVO [12], DE [13], DMS-L-PSO [14], EDA [15], G-
CMA-ES [16], K-PCX [17], L-CMA-ES [18], L-SaDE [19] and SPC-PNX [20]). The CEC’2005 benchmark includes
basic functions of the optimization area (such as the Rosenbrock’s, Griewank’s, Ackley’s and Rastrigin’s Functions),
expanded functions and hybrid composition functions for dimensions 10, 30 and 50. All the functions, except two, are
shifted and/or rotated to increase the difficult in reaching the global optimum. The comparison proposed by CEC’2005
offers a systematic manner of evaluating different methods by specifying a common termination criterion, size of
problems, initialization scheme, linkages/rotation, etc. The complete definition of the functions and the evaluation
criteria can be found in the technical report [9]. We considered in this work a representative subset of the multimodal
functions for dimensions 10 and 30 as can be seen in the Table 1. These were the only solved multimodal functions by
the 11 EAs and the q-gradient method. A function is considered solved by an algorithm if at least one successful run
is achieved over the 25 independent runs considered.

TABLE 1. Summary of the multimodal functions.

Function number Short description

F7 Shifted Rotated Griewangk’s Function
F9 Shifted Rastrigin’s Function
F10 Shifted Rotated Rastrigin’s Function
F11 Shifted Rotated Weierstrass Function
F12 Schwefel’s Problem 2.13
F15 Hybrid Composition Function

Results are presented in Tables 3 and 4. The corresponding values σ0, α0 and β , the only free parameters of the q-
gradient algorithm, are given in Table 2. The values of σ0 and α0 are normalized by L= (

√
n/n)∑n

i=1(xmax−xmin), the
largest linear length of the search space. Tables 3 and 4 present the final ranking attained by all algorithms (11 EAs plus
the q-gradient in bold) in accordance with their relative performance [21]. The numbers in the first row represent the
success performance (FEs) of the best algorithm calculated as FEs = mean(# f evals)× (#all runs /#successful runs),
where # f evals is the number of function evaluations and includes only successful runs. The table entries for each
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algorithm are the success performance (FEs) divided by the FEs of the best algorithm (first row) followed by the
number of successful runs in round brackets. For those algorithms that were not able to achieve at least one successful
run, a rank is presented in curly brackets according to the median function value after 1e5 · n function evaluations,
where n is the dimension. The column “Solved Function” refers to the number of solved functions by each algorithm;
the column “Success Rate” gives a measure of the overall performance of each algorithm over the solved functions.
The success rate is obtained by the summation of the successful runs of the function (the summation of the values in
round brackets) divided by the total number of runs. Notice that the algorithms are ranked by the column “Success
Rate” followed by the column “Solved Functions”. In the event of a tie, the average of the table entries is used. As in
the technical report [9], the algorithms were submitted to the same initialization strategy, number of independent runs
(25) and termination criteria in order to allow a direct comparison.

TABLE 2. Parameters of the q-gradient method used in the solved func-
tions for dimensions n= 10 and n= 30.

Functions σ0/L
n= 10
α0/L β σ0/L

n= 30
α0/L β

F7 2.5825 0.1001 0.999 0.6847 0.6390 0.99
F9 5.0596 0.1265 0.998 12.5976 0.2191 0.999
F10 15.8114 0.3479 0.996 24.6475 0.4930 0.999
F11 1.5811 3.1623 0.995 2.7386 3.8341 0.995
F12 0.3020 0.4530 0.999 0.2615 0.4359 0.999
F15 1.5811 0.1897 0.996 2.7386 0.2739 0.998

TABLE 3. Normalized success performance of multimodal functions with n= 10.

Algorithm
Solved

Functions
Success

Rate
F7

4,700
F9

17,000
F10

55,000
F11

190,000
F12

8,200
F15

33,000

G-CMA-ES 5 63% 1.0(25) 4.5(19) 1.2(23) 1.4(6) 4.0(22) {3}
L-SaDE 4 53% 36.2(6) 1.0(25) {6} {9} 3.9(25) 1.0(23)

DMS-L-PSO 4 47% 126(4) 2.1(25) {3} {8} 6.6(19) 1.7(22)
q-gradiente 5 41% 15.5(25) 2.3(19) 3.0(3) {2} 20.5(11) 6.0(3)

K-PCX 3 40% {10} 2.9(24) 1.0(22) {11} 1.0(14) {12}
DE 5 30% 255(2) 10.6(11) {10} 1.0(12) 8.8(19) 75.8(1)

L-CMA-ES 2 25% 1.2(25) {12} {11} {6} 11.6(12) {5}
BLX-GL50 3 17% 12.3(9) 10.0(3) {7} {5} 12.1(13) {9}
BLX-MA 2 15% {11} 5.7(18) {8} {10} {10} 8.5(5)

EDA 3 9% 404(1) {10} {5} 2.9(3) 4.3(10) {10}
SPC-PNX 2 1% 383(1) {9} {9} 5.8(1) {12} {4}
CoEVO 0 0% {6} {11} {12} {12} {12} {7}

TABLE 4. Normalized success performance of multimodal functions with n= 30.

Algorithm
Solved

Functions
Success

Rate
F7

6,100
F9

99,000
F10

450,000
F11

5,000,000
F12

180,000
F15

-

K-PCX 4 38% 2.5(10) 3.3(18) 1.0(14) {8} 1.0(5) {12}
G-CMA-ES 5 37% 1.0(25) 8.0(9) 5.3(3) 1.0(1) 1.3(8) {1}

L-SaDE 2 36% 21.3(20) 1.0(25) {5} {6} {4} {6}
q-gradiente 3 28% 3.2(25) 6.1(8) {3} {1} 16.4(2) {7}
DMS-L-PSO 2 22% 9.8(24) {7} {6} {7} 8.3(4) {4}

EDA 1 20% 21.3(25) {11} {10} {12} {8} {8}
BLX-GL50 1 20% 10.2(25) {6} {4} {5} {9} {3}

DE 1 20% 32.8(22) {8} {7} {11} {6} {10}
L-CMA-ES 1 20% 1.1(25) {12} {12} {4} {10} {2}
SPC-PNX 1 13% 60.7(16) {9} {8} {3} {11} {9}
CoEVO 1 9% 93.4(11) {10} {11} {10} {12} {11}

BLX-MA 1 7% {8} 6.7(9) {9} {9} {7} {5}
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CONCLUSIONS AND FUTURE WORK

This paper presents the first use of q-calculus in an optimization algorithm for multimodal and multidimensional
continuous global optimization problems. Overall, our novel approach performs well against the other well-known
evolutionary optimization algorithms, arriving in forth position in a direct comparison with them, for the dimensions
10 and 30. As a new optimization method, gains in its performance are expected with the implementation of several
improvements, such as inclusion of equality and inequality constraints, development of better step selection strategies
and others. The generalization using q-calculus of other well-known gradient-based optimization methods, such as the
conjugate-gradient and quasi-newton methods, is also under investigation.
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