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Abstract. The extensive search for deviations from Gaussianity in cosmic microwave back-
ground radiation (CMB) data is very important due to the information about the very early
moments of the universe encoded there. Recent analyses from Planck CMB data do not ex-
clude the presence of non-Gaussianity of small amplitude, although they are consistent with
the Gaussian hypothesis. The use of different techniques is essential to provide information
about types and amplitudes of non-Gaussianities in the CMB data. In particular, we find
interesting to construct an estimator based upon the combination of two powerful statistical
tools that appears to be sensitive enough to detect tiny deviations from Gaussianity in CMB
maps. This estimator combines the Minkowski functionals with a Neural Network, maximiz-
ing a tool widely used to study non-Gaussian signals with a reinforcement of another tool
designed to identify patterns in a data set. We test our estimator by analyzing simulated
CMB maps contaminated with different amounts of local primordial non-Gaussianity quan-
tified by the dimensionless parameter fnr. We apply it to these sets of CMB maps and find
= 98% of chance of positive detection, even for small intensity local non-Gaussianity like
fnL = 38 & 18, the current limit from Planck data for large angular scales. Additionally, we
test the suitability to distinguish between primary and secondary non-Gaussianities: first we
train the Neural Network with two sets, one of nearly Gaussian CMB maps (|fnr| < 10) but
contaminated with realistic inhomogeneous Planck noise (i.e., secondary non-Gaussianity)
and the other of non-Gaussian CMB maps, that is, maps endowed with weak primordial non-
Gaussianity (28 < fnr, < 48); after that we test an ensemble composed of CMB maps either
with one of these non-Gaussian contaminations, and find out that our method successfully
classifies ~ 95% of the tested maps as being CMB maps containing primordial or secondary
non-Gaussianity. Furthermore, we analyze the foreground-cleaned Planck maps obtaining
constraints for non-Gaussianity at large-angles that are in good agreement with recent con-
straints. Finally, we also test the robustness of our estimator including cut-sky masks and
realistic noise maps measured by Planck, obtaining successful results as well.
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1 Introduction

The spectacular advance in modern observational cosmology is mainly due, on the one side,
to the highly sensitive measurements of the cosmic microwave background radiation (CMB)
performed by the Wilkinson Microwave Anisotropy Probe (WMAP) [1-5] and the Planck
satellite [6, 7|, and, on the other side, to the several large and deep galaxy surveys, like the
2dFGRS [8], 6dFGRS [9], 2MASS [10] and SDSS [11] projects, which mapped the luminous
large-scale matter distribution. However, while large scale massive structures give information
regarding more recent times of the universe evolution, at redshifts up to z ~ 2, CMB is the
oldest cosmological observable, at z ~ 1100, with present-day technologies. The statistical
properties of the CMB temperature fluctuations provides unique cosmological information
from physical processes occurred in the early universe, such as those that may have produced
the primordial density perturbations that evolved gravitationally towards the presently ob-
served large scale structures (see, e.g., [12-14]).

In the standard model of cosmology, inflation is considered the dominant paradigm for
the generation of such primordial density perturbations regarded as the seeds for structure
formation. The analysis of Gaussian deviations in the CMB temperature fluctuations is con-
sidered a powerful probe to investigate the nature of these perturbations [14-25|. Present
and forthcoming CMB data seems to be sensitive enough to detect tiny Gaussian deviations
of the type and amplitude expected to be generated by small non-linear density perturba-
tions [22, 26]. In particular, the recently released Planck data [6] are considered one the most
precise data sets to investigate the physics of the very early universe.



The detection of primordial non-Gaussianity (NG) in the CMB data is crucial to discrim-
inate among inflationary models and also to test alternative scenarios (see, e.g., [12, 14, 18,
22, 27]). Since non-cosmological effects can introduce non-Gaussian contaminations in CMB
maps, the discrimination of a primordial non-Gaussian signal from non-Gaussian signals of a
non-primordial origin is a true challenge [26, 28|. It is well known that the theoretical CMB
bi-spectrum is an optimal estimator for fnr, [22, 29-31] and has been the most used tool for
this purpose. However, alternative statistical estimators have been intensively studied in the
last few years with diverse purposes such as to detect, to constrain, or simply to corroborate
previous results claiming the presence of NGs in CMB data (see, e.g., [32-34]). One of the
main reasons to employ other estimators is that one does not expect that any single statistical
estimator can be sensitive to all possible forms and levels of NG.

In the last years, the CMB data from WMAP has undergone rigorous scrutiny for Gaus-
sian deviations of any origin [28, 32, 33, 35-49|. In particular, efforts have been made to
constrain the level of primordial NG in the successive WMAP releases |28, 50], also using large-
scale structure data [30, 51-57]. Because it is expected that primordial and non-primordial
NGs are mixed in CMB data, the search for non-Gaussian signals in CMB maps includes
galactic and extragalactic foregrounds, as well as contributions from systematic effects. The
analyses of extragalactic foregrounds are mainly focused on secondary CMB anisotropies
like the Sunyaev-Zel’dovich and lensing effects [58-68|, along with point sources contami-
nation [5, 69]. In this scenario, the application of various algorithms is recommended to
discriminate between multiple forms of NG that could be present in CMB maps [70], or at
least to help to constraint their amplitudes [29, 31, 4247, 71-86].

Moreover, extensive works have been made by the WMAP team [5, 87| and other
groups [32, 33, 88-91], to produce a foreground-reduced CMB map after separating the diffuse
galactic foregrounds. Recently, the Planck collaboration released three high resolution, almost
full-sky, foreground-cleaned CMB maps [92]. Each of these CMB maps was released together
with realistic pixel’s noise map and also a cut sky mask, outside which the CMB signal is
considered statistically robust. The recent analyses performed by the Planck collaboration
showed that, despite the agreement of the Planck data sets with the Gaussian hypothesis,
they do not exclude the presence of NGs of small intensity [93].

In this work we present an efficient statistical estimator, based on two powerful statistical
tools, that proved to be sensitive enough to detect tiny primordial NGs of local type in Monte
Carlo CMB maps. Our estimator combines the Minkowski functionals [94], widely used to
study the statistical CMB properties (see, e.g., [53]), with an exhaustive analysis using a
Neural Network, a computational tool for identifying patterns in a data set [95]. For this
purpose we produced sets of simulated CMB maps combining Gaussian and non-Gaussian
maps containing different levels of local NG [96] (for a review see, e.g., [14, 22, 27, 30]). We
generate Monte Carlo CMB maps from the set of coefficients {ay,,} which were produced
according to the linear combination: ag,, = agGm—k FNL a%% where agGm (ayn? ) are the multipole
expansion coefficients of the CMB Gaussian (non-Gaussian of local type) map (see Figure
1). The scalar coefficient fyr, is the dimensionless parameter commonly used to describe
the leading-order of the NG. The Gaussian random sets {af’m}, satisfying the angular power
spectrum of the ACDM model, and the sets {agNTS’ } corresponding to a local type non-Gaussian
CMB maps were taken from [96]. According to the above linear combination of maps, one
simulates CMB maps with an arbitrary level of NG of local type, defined by any real value
of fNL-

One of the main challenges of an estimator is to discriminate between primordial and
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Figure 1. For illustration we show, in the upper panel, a simulated CMB map containing only a

low level of local NG, namely a,>"" = fn a5 with fyi, = 38. In fact, this level of NG is so low

that to emphasize it we define the temperature limits to [—0.005,0.005] mK in order to make the
contamination visible. In the lower panel we have a combined map made up by a Gaussian CMB map

plus the upper panel non-Gaussian map, i.e., af ™ = af, + a,>*", with the usual scale [—0.4,0.4]

mK. As can be realized, there is no a visible correlation of the NG present in both maps. Statistical
estimators to reveal tiny NG are required.

secondary (i.e., non-primordial) non-Gaussian signatures in a given CMB map. This is not
an easy task. For instance, an analysis using Minkowski functionals partially confuses signals
of these two different origins, introducing degeneracies in their diagnostic [93]. Another
important task for a statistical estimator is the effectiveness in the detection of tiny level of
non-Gaussian contamination in CMB maps. Clearly, the suitability of a given statistical tool
to perform these tasks deserves investigation.

To analyze the potentialities of our estimator to reveal the presence of non-Gaussian
signals in CMB data and to differentiate primary NG from secondary one, we produce several
sets of thousands of simulated CMB maps, where one of these is a set of Gaussian CMB maps,
and the other CMB maps are endowed with different amounts of primordial NG of local type.
Thus, section 2 contains the details of construction and operation of our combined statistical
estimator. In section 3 we apply our estimator to simulated non-Gaussian CMB maps, with
several levels of contamination in different fyr, intervals in the range [—10,80], as described
throughout the text, compatible with recent Planck constraints for local NG large angles.

Afterward, we perform robustness tests by applying our estimator to simulated maps
using the masks released by the Planck collaboration, and adding also realistic inhomoge-
neous pixel noise maps (released with the corresponding masks). In section 4, we analyze
three foreground-reduced, almost full-sky, maps released by the Planck collaboration: SMICA
(Spectral Matching Independent Component Analysis), NILC (Needlet Internal Linear Com-
bination), and SEVEM (Spectral Estimation Via Expectation Maximization). Finally, we
present our conclusions and final remarks in section 5.

2 The combined estimator: the Minkowski functionals and the Neural
Networks tools

The new estimator proposed to identify and quantify NGs in CMB data is a combination of
two statistical tools: Minkowski Functionals (hereafter MF) and Artificial Neural Networks
(NN). The MFs were introduced in cosmological studies as tridimensional statistics for the
analysis of the CMB and the matter distribution in the universe (see, e.g., [97-99|), Describing
the morphological properties of a given field, the MFs are being used as generic estimators



of NG in the 2-dimensional CMB field. The use of NNs [100] as a statistical tool for CMB
studies started to being applied more recently [81, 101, 102]. Specifically, regarding Gaussian
deviations in CMB data, as far as we know, there is just one reference in the literature that
make use of this tool, namely [72], where the authors combine the NN with wavelet analysis
in order to estimate the non-linear dimensionless parameter fyr, using the constraints found
in WMAP-9yr CMB data.

In the next subsections we give a brief description of these tools and how we combine
them to construct our estimator.

2.1 The Minkowski functionals applied to CMB maps

All the morphological properties of a d-dimensional space can be described using d+1 MFs [94].
In the case of a CMB map, a 2-dimensional temperature field defined on the sphere, AT =
AT (0, ¢), with zero mean and variance o, this tool provides a test of non-Gaussian features
by assessing the properties of connected regions in the map. Given a sky path P of the
pixelized CMB sphere S?, an excursion set of amplitude v is defined as the set of pixels in
P where the temperature field exceeds the threshold 14, that is, it is the set of pixels with
coordinates (0, ¢) € P such that AT(0,¢)/0c =v > v;.

In a two-dimensional case, for a region R; C S? with amplitude v; the partial MFs
calculated just in R; are: a;, the Area of the R; region, [;, the Perimeter (contour length) of
this Area, and n;, the number of holes in this Area. The global MFs are obtained calculating
these quantities for all the connected regions with height v > v;. Then, the total Area A(v),
Perimeter L(v) and Genus G(v) are [31, 53, 103, 104]

Alw) = Lr/zdsz:zai, (2.1)
L) = 417T‘11/32dl Y. (2.2)

11
kdl = Zgi = Nhot — Neold (2'3)

G(V) = E% s

where ¥ is the set of regions with v > 14, 9¥ is the boundary of ¥, and, d2 and dl are the
elements of solid angle and line, respectively. In the genus definition, the quantity s is the
geodesic curvature (for more details see, e.g., [31]). This last functional can also be calculated
as the difference between the number of regions with v > v, (number of hot spots, Np,) and
regions with v < v (number of cold spots, Neyq). As defined, the MF are calculated from a
given threshold v;.

The MFs are currently used to test the Gaussian nature of the CMB temperature
fluctuations data [34, 53, 103—108]. As they are sensitive to weak and arbitrary non-Gaussian
signals, e.g. small fnr, contaminations of different types, MFs are a complementary tool to op-
timal NG estimators based on the bispectrum calculations. Recently, the Planck Collaboration
performed successful validation tests of the MF estimator with three sets of simulated CMB
maps: Gaussian full-sky maps, full-sky non-Gaussian maps with noise, and non-Gaussian
maps with noise and mask [93]. Afterward, they used the MFs to quantify local NG in
the foreground-cleaned Planck maps [92], where some instrumental effects and known non-
Gaussian contributions, like lensing, were taken into account in the analyses using realistic
lensed and unlensed simulations of Planck data [93]. The constraints on local NG obtained
are quite robust to Galactic residuals and are consistent to those from the bispectrum-based



estimators. Moreover, these results, fny, = 38+ 18 for large angular scales, are basically equal
to those obtained using WMAP-9yr data, that is fnp = 37.2 £ 19.9 [93].

At this point we would like to emphasize that here we use the MFs in a different way. As
shown in section 3.2.1, we use the MFs as an intermediate tool: first we apply the MFs to a
CMB map to discover that the perimeter is the MF with the better capability to capture the
non-Gaussian signatures that, in a second step, are efficiently recognized by the NN. In this
sense, we do not use MFs to quantify NG in the map. Instead we use it just to reveal the non-
Gaussian imprints present in the maps, signatures that are then systematically recognized by
the trained NN.

2.2 The Neural Networks estimator

The NN are computational techniques inspired in the neural structure of intelligent organisms
(animal brains), which acquires knowledge through learning [95]. A NN is composed by a
large number of processing units (also called artificial neuron or nodes), configured to perform
a specific action, like pattern recognition and data classification.

Aiming to emulate the behaviour of the biological brain, the simplest and most popular
model for a NN for classification of patterns is the Perceptron [109, 110], consisting of a
single neuron. A generalization of this model is the Multilayer Perceptron (95, 100, 111],
consisting of a set of units (neurons) comprising each layer, from which the signal propagates
through the NN. These NN are usually composed by an input layer, an output layer and one
or more intermediate (or hidden) layers, as schematically depicted in Figure 2. The layers are
interconnected through synaptic weights (wy;) that relates the i-th input signal (x;) to the
k-th neuron, producing weighted inputs. Mathematically it is possible to represent a neuron
k by

n
U = Zwki . x; + b, (2.4)
i=1
where n is the number of input signals to the k-th neuron. by is the weighted bias input, an
external parameter of the artificial neuron k, which can be accounted for by adding a new
synapse, with input signal fixed at zp = +1 and weight wgo = b [95].
The output signal of the k-th neuron (yi) is generated through an activation function
g, which limits the amplitude of the output of a neuron

Yk = pr(ug) - (2.5)

The most commonly used activation function are non-linear functions, like sigmoid and hy-
perbolic tangent, that can simulate more precisely the neuron behaviour in order to better
emulate a real NN.

The suitable values for the weights and bias are achieved by using training (or learning)
algorithms. The most popular training algorithm is the backpropagation [112], where the
input signal feeds the first layer, propagating as input for the next layer, and so on until the
last layer. At the end of this process a value for each neuron of the output layer, together
with its corresponding error, is calculated. These values are returned to the input layer where
the synaptic weights are recalculated initiating another iteration of the training process. This
procedure aims to determine a suitable value for the weights of the network, and is repeated
until the error value drops below a given threshold value. The architecture of the NN, like
number of neurons, number of hidden layers and the specific training algorithm, can be



Figure 2. Multilayer Perceptron.

defined according to the problem the user wants to solve. Here we used a backpropagation
algorithm for the NN training with just one hidden layer, and the number of neurons was
chosen according to the number of classes considered in the training: 80 neurons for 2 classes
and 140 for 3 classes.

2.3 The classifier estimator

The combined MF+NN estimator here presented shall be termed the classifier estimator.
Regarding the MFs, they were calculated using the algorithm developed by [31] and [113].
This code calculate four quantities, namely Vo = A(v), Vi = L(v), Vo = G(v), and V3 =
Nejusters(v) the three usual MFs defined above plus an additional quantity called number of
clusters, Nepysters(V), for k = 3. The latter quantity is the number of connected regions with
height v greater (or lower) than the threshold v if it is positive (or negative), i.e., the number
of hot (and cold) spots of the map.

Consider a set of m simulated CMB maps. For the i-th simulated map, with i =
1,2,...,m, we compute the four MFs {Vi, k& = 0,1,2,3} = (W, V1, Vo, V3) for n different
thresholds v = v, v,, ... vy, previously defined dividing the range —v,44 t0 Ve in n equal
parts. Then, for the i-th map and for k-th MF we have not one element, but the vector

Ulif = (Vk(Vl)v Vk(VQ)? Vk(yn))|f0r the i-th map - (2'6)

In this work the values chosen for such variables are {vimq2, 1} = {3.5,26} [31, 114].

Once calculated the MFs vectors we define the training data set, T{z;,y;}, for the NN,
where z; is called input data and y; the output data, for i = 1,2, ...,m, and m is the number
of simulated CMB maps. This training set configuration is necessary in order to allow the
network to associate a certain kind of input pattern to a specific output. We set the i — th
input vector as the MF vector of the i — th simulated map, z; = v,i,, for just the k-th MF. The
output vector, y;, is defined according to the number of classes N5 Of the input data. For
example, if we use N classes of maps, corresponding to ensembles with different non-Gaussian
levels, we have N.uss = N. Then, our m output vectors have N elements, y; = (1,0, ...,0)
for class =1, y; = (0,1, ...,0) for class = 2, and so on, until y; = (0,0, ..., 1) for class = N.

After this training process, the NN should be able to identify the same pattern in a
different set of input vectors, e.g. the test data set {zj,y;}, for j = 1,2,...,1. That is,
providing to the already trained NN a data set with [ input vectors {z; = vi}, it returns [



output vectors {y;} with a specified classification. It means that the NN classifies each CMB
map ~whose MF information is contained in {z;}- according to the class it belongs, in other
words, the NN classifier estimator informs its non-Gaussian level (fnr,). After the calculation
of the output vectors {y;} for a given set of simulated CMB maps, we define a way to quantify
the efficiency of the NN through the counting of the number of successes (or hits) of the NN
in classifying each one. We find out two ways of counting the hits of the NN:

Mode-1: According to the limit value of 0.5 for each element of y; vector. In this case,
e.g. for Nygss = N, a vector with elements like y; = (> 0.5,< 0.5, ..., < 0.5) indicates the
class = 1, a vector like y; = (< 0.5,> 0.5,..., < 0.5) indicates class =2, and so on, until
yj = (< 0.5,<0.5,...,> 0.5) that indicates class = N.

Mode-2: Considering that the largest of the three elements of an output vector, y;, indicate
the class to which it belongs. For example, again for N.,ss = N, if the first element of the
vector is the largest, this output vector indicates class = 1, if the second is the largest, it
indicates class = 2, and so on, until class = N.

Thus, we quantify the hits of our NN by classifying each analyzed map according to its class,
in other words according to its fny, value.

3 Applying our estimator to non-Gaussian CMB maps

3.1 The Monte Carlo CMB maps

An optimal network training requires a large amount of simulated data. We produce simulated
maps, termed Monte Carlo (MC) CMB maps, cut off at 4,4, = 500, with Ng;4q. = 512, using
the HEALPix (Hierarchical Equal Area iso-Latitude Pixelization) pixelization grid [115], using
the publicly available set of 1000 linear, {agGm}, and 1000 non-linear (corresponding to NG of
local type), {aNG 1 spherical harmonics coefficients, produced by [96]'. We combine them as
follows

apm = a3, + fNLaNS (3.1)

and normalize the maps using a power spectrum generated by the CAMB? online tool using
the Planck concordance cosmological model [6].

To test the efficiency of our estimator we use MC CMB maps containing the degree of
contamination defined by the recent constraints found by Planck [93], that is, fnr, = 38 £ 18
at 68.3% confidence level. For this, we test our estimator with sets of MCs endowed with levels
of contamination in the ranges: fni, = [—10,10],[10,30], [28, 48], [30, 50], [40, 60], [60, 80], in
order to have normal distributions with mean 0, 20, 38, 40, 50 and 70, respectively.

3.2 Quantitative analysis of NG in CMB maps
3.2.1 Preliminary tests: sensitivity of the classifier estimator

We begin the tests using just two classes, corresponding to MC CMB maps constructed using
fnL = [—10,10] (class = 1) and fni, = [40, 60] (class = 2). We started using m = 1000 Area
vectors (v), for i = 1, ..., 1000) for training the NN, 500 of each class. The output vectors
were defined as, y; = (1,0) for class = 1 and y; = (0,1) for class = 2. After trained, the
NN was applied to a test data set, of the same size as the training one, [ = m = 1000 Area

"http://planck.mpa-garching. mpg.de/cmb /fnl-simulations/
http:/ /lambda.gsfc.nasa.gov /toolbox/tb camb form.cfm



Table 1. Results of the sensitivity tests.

fNL m 1 Neass MF Hits - Mode-1/Mode-2 * (%) MSE?
Area 59.4 / 63.7 0.240

[-10,10], [40,60] 1000 1000 2 Perimeter 85.5 / 87.1 0.106
Genus 78.5 / 81.0 0.146

Nclusters 74.5 / 81.5 0.146

Area 62.7 / 64.5 0.226

[-10,10], [40,60] 2000 1000 2 Perimeter 96.4 / 96.5 0.049
Genus 96.7 / 96.9 0.049

Nejusters 95.7 / 95.9 0.062

“The two ways to calculate the hits of NN (see sect. 2.3).
"Mean Square Error (see text for details).

vectors, with again 500 of each class. This procedure of training and test of NNs was repeated
for each one of the three other kinds of MFs (k = 1,2, and 3).

Analyzing the output returned by the NN when applied to test data set, for each sort
of MF, we had the results summarized in Table 1. The last two columns are the NN Hits,
indicating the percentage of correct indication (right pattern recognition) according to both
Modes 1 and 2, and the corresponding Mean Square Error (MSE), that measure the NN’s

ret

performance comparing the returned values (y7*) to those expected (y;™), defined as

MSE =

~| =

l
D WS - yph)?, (3.2)
j=1

for j =1,2,...,1, where [ is the number of MF vectors in the test data set. These preliminary
tests allow the comparison of sensitivities for each MF when used together with the NN
classifier estimator. From these results it is possible to infer that the sensitivity of MFs, from
the best to worst, is Perimeter 2 Genus 2 Ngysters > Area, very similar to what was
obtained by [31].

Using m = 2000 MF vectors to train our NN, each set of 1000 corresponding to the
same classes 1 and 2, it was possible to check their sensitivity when increasing the size of the
training data set. The results, also presented in Table 1, show a small improvement relatively
to the test using only 1000 MF input vectors. In the next subsection we show the results
from a second test, making clear how this feature improves the accuracy of our results.

3.2.2 Testing the estimator with lower non-Gaussian contamination level and
greater number of classes

We find out that the minimal separation between two neighbor classes, in order to guarantee
a successful classification of ~ 95% of tested maps, is Afyy ~ 35 which gives the 2-o error
of our method.

As recently obtained from Planck data, the current limit for the non-linear parameter is
fnL = 38418, at 68% confidence level. Our specific aim here is to test an estimator sensitive
enough to identify the presence of weak levels of NG within this constraint. Therefore, taking
into account the error of our method and the Planck constraint, we shall test our classifier
estimator using three classes, N5 = 3, of simulated maps: one of nearly Gaussian CMB
maps, fnr, = [—10,10] (class = 1, (fn1.) = 0), and the other made with two different levels
of local NG: with fnr, = [28,48] (class = 2, (fnr) = 38) and fnr = [60,80] (class = 3,
(fnL) = 70), all three ensembles having the variance equal to 7.5.
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Figure 3. Average Hits (above) and Mean Square Error (bellow) in estimating the fnr, range using
a NN previously trained with m Perimeter vectors (Gaussian and non-Gaussian MC CMB maps).

According to our results obtained in the last sub-section the size of the training set
appears to be a determinant factor in obtaining a good classifier, besides the fact that,
between the four MFs, the Perimeter appears to be the most sensitive to reveal the non-
Gaussian signal. Then, we started applying our estimator in m = 3000 Perimeter vectors,
[ = 1000 of each class. The same was repeated for m = 4500, 6000, 7500, 9000, 10500, 12000,
13500, 15000, 16500, 18000 and 19500, m/3 vectors of each class. For all applications we
carried out, it was used a set of [/3 = 500 input Perimeter vectors in order to test the trained
NN.

Figure 3 shows the average number of hits resulting of each NN training, considering
the two ways to count it, that is, Mode-1 and Mode-2. With this graph it is possible to verify
that the larger the training data set the better trained will be the NN and more precise the
classification. However, we can also identify a point (m/3 ~ 4500) where the hits do not
improve significantly even further increasing the training set. Hence, we stopped our test
with m = 19500, with an average hits of 99.6%, according Mode-1, and 99.9%, according to
Mode-2. The hits for each one of the classes 1, 2, and 3 are, respectively: 99.6%, 99.8% and
99.6%, according to Mode-1, and 100%, 99.8% and 100%, according to Mode-2.

3.3 Robustness analyses using Planck data
3.3.1 Additional products from foreground-cleaned Planck maps

The major challenge in making foreground-reduced CMB maps is to clearly understand all
the possible sources of contaminations contributing to the set of different frequency maps ob-
served in a given CMB survey. This is necessary to estimate their effects on the data in order
to subtract the foreground components from the raw maps and to leave the largest possible
amount of primordial cosmological signal. The Planck collaboration uses the suitable frame-
work for this task, that is, the component separation technique [92], which aims to identify the
sources of contaminating emissions that contribute dissimilarly to the set of nine frequency



bands, from 30 to 857 GHz, observed by Planck [6]. In fact, four distinct component sepa-
ration algorithms [92] were employed by the Planck collaboration to identify and remove the
signal coming from the various contaminants. At large angles, galactic foregrounds are domi-
nant, including diffuse emission (synchrotron, bremsstrahlung, thermal dust, and anomalous
microwave emission) and line emission from carbon monoxide. On the other hand, extragalac-
tic foregrounds dominate at small scales and can be classified into two categories: discrete
detectable compact sources and the collective signal from unresolved sources (mainly radio
and infrared galaxies, but also from clusters of galaxies via the Sunyaev-Zel'dovich effect).
It is worth noticing that the Planck team just masked the bright cosmic objects to eliminate
extragalactic foregrounds.

As a result, the Planck collaboration has released three high resolution, almost full-
sky foreground-cleaned CMB maps® [92], termed SMICA (Spectral Matching Independent
Component Analysis) [116], NILC (Needlet Internal Linear Combination) [89], and SEVEM
(Spectral Estimation Via Expectation Maximization) [117]. These high resolution maps have
Ngige = 2048 and effective beam FWHM= 5 arcmin. The performance of the foreground-
cleaning algorithms has been carefully investigated with simulated maps. In particular, each
component separation algorithm processes differently the multi-contaminated sky regions
obtaining, as a consequence, different final foreground-cleaned regions for each procedure.
These regions are defined by the so-called Component Separation Confidence masks (briefly
termed CS-masks), which have fg, = 0.89,0.93,0.76, for the SMICA, NILC, and SEVEM
maps, respectively. Each CMB map was released with its own CS-mask, outside which the
corresponding CMB signal is considered statistically robust. Regarding the masks, it is worth
mentioning that the Planck team produced the U73 mask, which is the union of the above
mentioned masks, it is more restrictive since it has fg, = 0.73 and is used for evaluation
purposes [92]. In addition, the mapmaking of these foreground-cleaned maps produced an
estimative of the noise (mainly due to the non-uniform strategy for scanning the CMB sky) in
each pixel’s map, information that was also released jointly to its corresponding CMB map.

The availability of these CS-masks and pixel noise maps allows to test the NG statistical
estimators in non ideal situations, aiming to mimic some Planck data features. This is done
analyzing simulated maps which include both effects: masks and noise, in addition to local
NG. Nevertheless, this is a partial approach, because other contaminating contents, which are
not taken into account in the simulations, could be present in the data. The consequences of
this ignorance about unknown NGs in data maps will be discussed below.

3.3.2 Noise contamination and mask influence to the classifier estimator

The aim of the following tests is to verify the performance of our estimator in more realistic
situations, using for this different masks and realistic inhomogeneous pixel noise released by
Planck. Moreover, in all these tests we take into account the Planck effective beam, FWHM= 5
arcmin, in the construction of the MC CMB maps.

Since the previous tests (Figure 3) showed that for m/3 > 4500 Perimeter-MF vectors
the number of hits do not improve significantly, we decided to perform all the next tests
using m/3 = 5000 MC CMB maps. For the tests of all the following trained NN it was used
/3 = 500 Perimeter-MF vectors.

We divide the analyses in two steps: the first one serves to verify the impact of using
masks, with different f,, factors, and the other one to check the estimator performance when
the maps are contaminated by inhomogeneous noise, beside using masks.

3http://pla.esac.esa.int /pla/aio/planckProducts.html
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1. Sky cuts: the Planck masks

The firsts robustness tests of the NN classifier estimator consists on the analysis of MC
CMB maps with two sky cuts, given by two masks released by Planck Satellite: 1) the CS-
mask of the SMICA map, hereafter called SMICA-mask; and 2) the U73 mask. Therefore,
the test of the masks were performed applying the estimator to two sets of maps, each one
composed by a different sky fraction. Both tests used three classes of maps, composed by
a non-Gaussian signal such as fnr, = [—10,10] (class = 1), [28,48] (class = 2) and [60, 80]
(class = 3). The average hits resulting from these tests, that is the rate of successfully
detection cases, are shown in Table 2.

Comparing the values presented in the second and third columns of Table 2 with the
values of Table 1 we conclude that the use of masks does not influence the efficiency of the
NN classifier estimator, and the average hits remains larger than 99%.

2. Inhomogeneous noise and masks

A second set of robustness analyses consists on the application of our estimator to MC
CMB maps contaminated with real non-Gaussian inhomogeneous noise from Planck data. In
order to exhaustively test our combined estimator, various combinations of noise maps and
different masks were applied to the MC CMB maps before calculating the input Perimeter
vectors. These pixel noise maps are those corresponding to the SMICA, NILC, and SEVEM
Planck maps, and the masks are the same used in the previous tests. Again it was used three
classes of synthetic maps, constructed using the same ranges of fyr, values used in previous
analysis, that are: fnr, = [—10,10], [28,48] and [60,80]. Then, it was performed a total of
four tests of the estimator, in four different sets of synthetic maps, that are: two sets of maps
contaminated by SMICA noise, using 1) the U73 mask and 2) their own CS-mask, to analyze
the influence of the two kinds of masks in the presence of the same noise, and two sets of
maps contaminated with 3) SEVEM and 4) NILC noises, but using the same mask, U73,
testing the impact of these two kinds of noise even with a rigorous sky cut.

In addition, we still tested the efficiency of our estimator when applied to MC CMB
maps whose primordial non-Gaussian signal corresponds to contiguous fnr, ranges, namely,
[—10,10], [10,30] and [30, 50]. This test was carried out just in the case of using the SMICA
noise as contaminant and the U73 mask.

The hits numbers for each test, as well as the corresponding MSE values, are presented
in Table 2. Again, there is no impact in using different masks, but the inclusion of inho-
mogeneous noise makes the number of hits become slightly lower. These results allow us
to conclude that our combined estimator is, basically, equally efficient in both situations
analyzed, namely applying a mask but not noise and using a mask plus a pixel noise map.

The last point to discuss are the results obtained in Table 2 when using input maps
endowed with primordial non-Gaussian signal in contiguous ranges of fnr, values, namely
[—10,10], [10,30] and [30,50]. In this case the hit’s numbers are even lower, with higher
MSE value. This fact evidences the difficulty of the NN to identify non-Gaussian patterns
when trained with sets of MCs having contaminations whose intensities fnr, belong to three
adjacent intervals.

4 Analysis of Planck CMB maps

The purpose, and natural consequence, of the development of a new statistical tool, after
exhaustive tests in synthetic data, is its application to real data. As discussed before, the
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Table 2. Results of the robustness analysis.

Fai® NN reference MC CMB map Hits® (%) MSE

NN™e-1 noiseless + SMICA-mask 99.4 / 99.7 0.01

NN™¢-2 noiseless + U73 99.6 / 99.7 0.01

[~10,10], [28,48],[60,80] ~ NN"°-3  SMICA noise + SMICA-mask  98.4 / 99.1 0.03
NN™-4 SMICA noise + U73 97.3 / 98.5 0.02

NN"c-5 SEVEM noise + U73 98.1 / 98.9 0.03

NN™“-6 NILC noise + U73 98.6 / 99.3 0.03

[~10, 10, [10, 30], [30, 50] NN°-7 SMICA noise | U73 96.5 / 97.2 0.05

¢ Contiguous (c¢) and not contiguous (nc) intervals of the parameter fni, in the MC simulations.
b Hits corresponding to Mode-1/Mode-2.

robustness tests presented here were done using Planck data, like real pixel noise maps and
cut-sky masks, because our aim is to know the impact of these effects on our estimator for
a posterior application of our trained NN to corresponding CMB data. For each foreground-
cleaned Planck CMB map we used the suitably trained NN, that is, that one trained using
MCs CMB maps to which we added pixel noise contamination and to which we apply a sky-
cut mask. Thus, the analysis of the three Planck CMB maps were performed according to
the following correspondence:

NN"¢-3 = SMICA map + SMICA-mask (4.1)
NN"¢-4 = SMICA map + U73 (4.2)
NN".5 = NILC map + U73 (4.3)
NN".6 = SEVEM map + U73 (4.4)
NN¢7 = SMICA map + U73 (4.5)

where the indices 3-7 indicate the trained-NN used in each case (according to the input maps
used for each one), and ¢ (nc) refers to the contiguous (not contiguous) intervals employed in
the analyses, as specified in Table 2.

As discussed before, the expected output of a NN is a vector whose elements are O(0) or
O(1), where O(0) (O(1)) means that the numerical value is very near to zero (to one). That
is, in our case, using Nejgss = 3, Yplanck map = (O(1)7 0(0)7 0(0»; OT Yplanck map — (0(0), 0(1)7
O(0)), Or Ypranek map = (O(0), O(0), O(1)), indicating the class of a given map. However, the
NN returned y vectors with elements different from those expected, presenting values of order
O(10), or even higher. These kind of discrepancy occurs when using training and test data
sets with very different characteristics. Then the NN response is totally comprehensive when
comparing a Perimeter vector from Planck CMB map to that ones obtained from the MC
CMB maps, which are visually different, as shown in Figure 4.

It is worth to emphasize that the MFs are sensitive to the resolution scale of the tem-
perature map in analysis [118]. In this sense, a possible explanation for the difference in the
Perimeter’s amplitudes observed between synthetic and Planck maps (left panel of Figure 4) is
that, even performing MC simulations using the Planck effective beam of FWHM= 5 arc-min,
the smoothing scales of these maps are still not fully compatible. Aware of this problem, and
attempting to solve it, we analyze the effect of using a smoothing tool in all the MC CMB
maps (training and test data sets), as well as in the Planck maps, before the calculation of
the MFs. It was verified that this procedure makes the characteristics of these maps a bit
more consistent, obtaining more compatibles Perimeter’s vectors (right panel of Figure 4).
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20

Figure 4. Plot of the Perimeter-MF calculated from the MC CMB maps (multicoloured lines) and
from SMICA Planck map (red thick line). Left: Perimeter vectors calculated from the original maps
after applying the U73 mask. Right: The same as in the left, but all the maps is smoothed with
FWHM= 3 arcmin before calculate the Perimeter.

The Gaussian beam used for smoothing all the maps was FWHM= 3 arcmin. This value was
chosen as a compromise: it is large enough in such a way that synthetic and real maps became
more consistent, and it is small enough to not decrease the amplitude of the non-Gaussian
signal, under the condition that does not modify the angular power spectrum of the maps.
It is worth to point out that this procedure does not influence the results of applying the
NN to the test data set, still obtaining hits numbers as those presented in Table 2 for all the
cases. Moreover, when applying the NN, trained using Perimeter vectors from these slightly
smoothed maps, to those obtained from the smoothed Planck CMB maps, we verify a signif-
icant improvement of the output vectors. Following the same correspondences in 4.1-4.5, the
vectors obtained were, respectively:

Yanmes = (—0.45,0.99, 0.46) (4.6)
Ynmes = (—0.11,0.75,0.35) (4.7)
Ynmes = (—0.25,1.97, —0.72) (4.8)
Ynmes = (—0.37, —3.61,4.98) (4.9)
Ysner = (0.55,—2.11, 2.56) (4.10)

As observed, there is an improvement in the consistency of the output vectors y, but it is not
enough to give us a reliable result because the elements are still quite different from those
expected.

We interpret these results in the sense that, under these circumstances, the NN is not
able to recognize the full pattern of NG appearing in the Planck maps. These circumstances
means that even including noise, using masks and running a smoothing procedure, in such a
way to let the MC CMB maps more similar to Planck CMB maps, the synthetic maps will
not mimic them well enough, since we do not have a total knowledge about the full contents
of these maps. Moreover, and complementing this idea, the imprecision of the NN could be
indicating that the NGs present in the Planck maps are not only of local type. In this case,
since the simulated data do not have contributions apart from the local non-Gaussianity,
the estimator shows that the synthetic and Planck non-Gaussianities contents are, indeed,
different.

Nevertheless, even when the results from the application of our NNs into Planck CMB
maps reveal certain imprecision of the NN, one can still verify that the output vectors indi-
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cate a level of non-Gaussian contamination that agree with the recent results obtained with
WMAP-9yr and Planck data. Analysing these output vectors in the sense that its higher
element denote the class of the corresponding map (as in Mode-2), that is, the range of
fnL values that the NN indicates for the non-Gaussian contamination, we get the ranges:
fNL = [28,48] for the output vectors of relations (4.6) to (4.9), and [30,50] for the output
vector of the relation (4.10). It is worth mentioning that in some approaches it is not possible
to exhibit the results in the form: average value (or most probable value) £ one standard de-
viation, i.e., X & AX. In such a case, alternative ways are employed to measure the efficiency
of a method (as e.g. in [34, 44-46]). For this reason, here we use the MSE value, which is
the standard criterion often used to measure the performance of a NN (as well as RMSE,
the squared root of MSE), and, therefore, an appropriate error measurement to evaluate our
estimator (see, e.g., [100, 119-121]).

5 Conclusions

The standard inflationary model predicts a Gaussian distribution of CMB anisotropy, while
other theories predict the existence of deviations from the initial Gaussian condition. The
detection, or not, of non-Gaussian (NG) signatures on CMB data can help to exclude many
inflationary models and discriminate between different mechanisms for generating cosmo-
logical perturbations. Therefore, the search for non-Gaussian signals in new CMB data
sets has become the target of several working groups, analyzing so far mainly the WMAP
data [28, 32, 33, 3749, 88]. Currently, with the recent release of Planck data, analyses
following different approaches are being done to confirm independently the constraints on
primordial NG found by the Planck team, taking into account that many estimators are
needed to identify diverse types of NG, their intensities, and corresponding angular scales
dependences [26, 31, 34, 44, 93|.

We presented here an estimator developed to improve the determination of constraints
on the primordial NG, gathering a tool already widely used to study non-Gaussian signal, the
Minkowski Functionals, and another one complementary and very new in this context, the
Artificial Neural Networks. The joint use of these tools provide a classifier estimator which
performs a comparison analysis, as described throughout the text. The estimator was applied
to a large amount of MC CMB simulations divided in classes according to the non-Gaussian
level of contamination, that is, the fni, value. One conclusion was that the higher the number
of maps (MF vectors) used as input the better the performance of the estimator, but with a
limit in which the results stop to improve (Figure 3). We also tested the joint use of each of
the four kinds of MF with the NN, and from the results of each case it was possible to verify
that the Perimeter-MF is the most sensitive to non-Gaussian signal, providing a pattern more
easily recognized by the NN (see Table 1).

A large number of tests were performed in order to evaluated the performance of the
estimator in different configurations, and to verify what can influence the results. We notice
that the use of masks have no impact, and the inclusion of inhomogeneous noise does not
affect significantly as well. Moreover, the performance of the estimator can be influenced by
the number of classes and the degree of NG. When using just two classes, corresponding to
MC CMB maps constructed using fni, values more widely spaced, it is not necessary to use
a very large number of neurons, whereas using three classes require a larger number of them
in order to train the NN.
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As a matter of fact, the capability to recognize primary and secondary CMB NGs, besides
having a good performance in capturing weak NG contaminations in the data are essential
features in a statistical estimator. For this, we analyzed the capacity of our combined estima-
tor to distinguish between primary and secondary NGs. Training the Neural Network with
two sets, one of nearly Gaussian CMB maps (|fn1| < 10) endowed with realistic inhomoge-
neous Planck noise (i.e., secondary non-Gaussianity) and the other of CMB maps with weak
primordial NG (28 < fni, < 48), we then test an ensemble composed of CMB maps with
contaminations of one of these types: half of them have primordial NG and the other half
have secondary non-Gaussian contaminations. The results show that our method successfully
classifies ~ 95% of the tested maps as being Gaussian plus inhomogeneous noise CMB maps
or CMB maps with primordial NG.

All these tests show that the method is very efficient when applied to data similar to
which the NN was trained on. The best performance shown by our estimator occurs when
the type of NG present in the data is known, so that the training of the NN with MCs
contaminated with such NG is effective. This means that, when applied to data containing
non-Gaussian components with which the NN have been not trained the estimator become
imprecise. A similar situation was recently verified by [34], who pointed out that simulated
CMB maps, on large angular scales, with diverse levels of NG of local type cannot repro-
duce the anomalous outcomes found in the ILC-7yr full-sky WMAP map. Nevertheless, the
results of our analyses of the foreground-cleaned Planck maps are in good agreement with
last constraints, for large angular scales, from WMAP-9yr and Planck data analyses, i.e.,
fnL = 38 £ 18 [93]. Summarizing, our conclusions point to the following approach: by con-
sidering a given type of contamination in the training data set, here the local NG, the NN
recognizes satisfactorily = 98% of the examined maps. This means that, adding contributions
of other non-Gaussian types to simulated maps, in order to suitable instruct the NN’s training
data set, would let to an improved analysis of a CMB map. In this context, our results show
that this estimator can be considered a useful tool to detect and constrain primordial, as well
as secondary, non-Gaussian effects possibly present in CMB data.
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