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ABSTRACT

Citizen science projects are those in which volunteers are asked to collaborate in scientific projects, usually
by volunteering idle computer time for distributed data processing efforts or by actively labeling or classifying
information – shapes of galaxies, whale sounds, historical records are all examples of citizen science projects in
which users access a data collecting system to label or classify images and sounds.

In order to be successful, a citizen science project must captivate users and keep them interested on the
project and on the science behind it, increasing therefore the time the users spend collaborating with the
project. Understanding behavior of citizen scientists and their interaction with the data collection systems
may help increase the involvement of the users, categorize them accordingly to different parameters, facilitate
their collaboration with the systems, design better user interfaces, and allow better planning and deployment of
similar projects and systems.

Users behavior can be actively monitored or derived from their interaction with the data collection systems.
Records of the interactions can be analyzed using visualization techniques to identify patterns and outliers.
In this paper we present some results on the visualization of more than 80 million interactions of almost 150
thousand users with the Galaxy Zoo I citizen science project. Visualization of the attributes extracted from
their behaviors was done with a clustering neural network (the Self-Organizing Map) and a selection of icon- and
pixel-based techniques. These techniques allows the visual identification of groups of similar behavior in several
different ways.
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1. INTRODUCTION

Some scientific projects require the analysis or collection of large data sets, and for some, the analysis or collection
itself is a task beyond the capabilities of the team assigned to that project. An approach to make these projects
feasible is the delegation of some aspects of it to volunteers1 – members of the public who participate as assistants
in scientific studies.2 The assistance is usually performed by collecting and organizing data or by labeling and
identifying features in already collected data. Such volunteers are most often not paid for their assistance, nor
are even necessarily scientists. This approach is called citizen science, and the volunteers are citizen scientists.

Practiced since at least the 1700s,3 recent citizen science projects use web resources to attract and involve
volunteers that will collect, access, review and analyse the data.

Data quality is one of the main issue at these projects. Scientific endeavors require data of high quality,
therefore, the fact that citizen science projects intentionally place responsibility for creating data into the hands
of non-experts4 requires that the science team be prepared to scrutinize the data carefully discarding suspect
or unreliable data.2 Mechanisms to enhance the quality and trust of citizen science data can be found at
literature,5–7 as well as, some researches which conclude that data produced by volunteers are as good as data
produced by professional scientists.3,8
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Researchers that use citizen scientists’ collaborations are concerned to find ways to persuade volunteers to
get and stay involved with the project until their objective is reached and reducing collaborators’ errors.9

Visualizing the interaction of citizen scientists through their collaborations with a citizen science project can
be used to shed light to some concerns of scientific community engaged with this approach, helping understand
how the collaborations are done, understanding the reasons that led volunteers to abandon the project, categorize
volunteers accordingly to some parameters with the aim to increase data quality by prioritizing or penalizing
some collaborations, and allowing better planning and deployment of similar projects and systems.9

In this paper we present an approach to visualize some features of interactions of citizen scientists with a
citizen science project using Kohonen Self-organizing Maps. Our approach was applied to a log of activities
with more than 80.000.000 collaborations produced by almost 150.000 volunteers of Galaxy Zoo I project,8,10 an
successful example of engagement success among scientists and volunteers to produce data with quality, which
asked volunteers to classify galaxies’ images.

This paper is organized as follow: Section 2 will present the Kohonen’s Self-Organizing Map and it charac-
teristic which made it a good visualization tool. Section 3 will describe the proposed approach, the data set used
and the results, and finally section 4 will present conclusions and directions for future work.

2. THE KOHONEN SELF-ORGANIZING MAPS

The Self-Organizing Maps (SOM)11 is a neural network algorithm based on unsupervised learning. It implements
an orderly mapping or projection of high-dimensional data into a regular low-dimensional grid, while preserving
the most important topological and metric relationships of the original data.

The SOM consist of M units (neurons) located on a regular low-dimensional grid which represent the map.
The grid is usually two-dimensional, particularly when the objective is to use the SOM for data visualization.
Each neuronal unit m is associated with a prototype or reference vector vm of dimension N located at rm grid
position.

The network is trained through of repeatedly presenting each input data vector xq to the network, finding the
reference vector in the SOM that is closest to the input data vector and adjusting this reference vector (called
the winning vector or best matching unit, BMU) so it will be even close to the input data vector. Neurons on the
SOM that are topologically close to the BMU (limited to an update radius) will also have their reference vectors
modified but weighted by the distance to the BMU measured on the grid through a neighborhood function h
which size will decrease during the training. The change to the reference vector of the BMU will also be weighted
by a learning rate η, which is usually a value that decreases during the training.

The basic SOM algorithm is shown in Algorithm 1 (adapted from Looney12). Prior to the execution of the
algorithm, its grid dimensions and lattice type (rectangular, hexagonal or even irregular) must be chosen, as well
as a learning rate η, a function to weight the distance of the neurons to the BMU to determine the size of the
update radius and other constraints that may be used to stop the training process.

Two interesting characteristics of this algorithm that are relevant to data visualization are quantization and
projection. Quantization refers to the grouping of similar data vectors in one neuron, while projection refers
to the organization of the data into neurons in lower dimensions that preserve the distances (or the order of
distances) between the originally high-dimensional data.13 The SOM algorithm has proved to be especially good
at maintain the trustworthiness of the projection, what mean that if two data samples are close to each other in
the grid, they are more likely to be close in the original high-dimensional space data.13

2.1 The Self-Organizing Map as Visualization Tool

Visualization is usually described as the mapping of data to a visual representation. A good visual representation
enables the analyzing of several items of information at the same time and maximize data comprehension.14

Tufte15 defines graphical excellence as one which shows complex ideas with clarity, precision and efficiency,
giving to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space,
telling the true and avoiding misinterpretation about data – these principles must be considered when devising
visualization tools and techniques.
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Algorithm 1 Basic Self-Organizing Map

Require: Grid of reference vectors vm, input data set xq, learning rate η
1: Randomize the order of {xq} . Randomize Data Vectors
2: q ← 1;
3: for m = 1 to M do
4: for n = 1 to N do
5: vmn ← random(0,1) . Draw Random Weights
6: end for
7: end for
8: while train do
9: Draw exemplar xq from the exemplar set;

10: for m = 1 to M do
11: Compute distance Dqm . Distance between xq and each vm

12: Find vm∗ with minimum distance Dqm . Find BMU
13: end for
14: Update neurons m mapped by the neighborhood function h with

vm ← vm + hη(xq − vm∗) . Reinforce/Reward neurons close to the BMU
15: q ← q+1
16: if q > Q then
17: q ← q −Q . Repeat polling the data vectors if needed
18: end if
19: Decrease h . May be done after n exemplars are presented
20: Decrease η . May be done after n exemplars are presented
21: end while

The challenges and issues of a good mapping are significant when the data to be visually represented is
complex. This paper consider as being complex data set those whose combination of dimensionality (attributes)
and size (amount of data items which comprise the data set) makes the mapping a hard task to produce a good
visual representation through well-established visualization techniques. Examples of these techniques and its
limitations are described by Oliveira and Levkowitz.16

The SOM algorithm, thanks its characteristic of quantization and projection, have been used as an effective
tool to visualization of data.13,17–20 Methods for visualizing data using SOM can be grouped in three categories
based on the purpose of the visualization:13 get an idea of the overall data shape and detect possible cluster
structure, analyze the prototype vectors and analysis of new data samples for classification and novelty detection
purposes. Some of these methods are presented by Vesanto.13

3. VISUALIZING VOLUNTEERS’ INTERACTIONS

Data from interactions between humans and on-line systems (logs) can be considered as complex datasets since
they usually contain a large amount of entries and even few attributes for each entry are enough to make its
visualization a hard task. In order to visualize the interaction of citizen scientists with the Galaxy Zoo website,
we propose the use of the Self-Organizing Map with visual representations of features extracted from the logs.
Entries on the log will be tabulated in order to collect data about a study object (e.g. a user or a session) and a
visual representation will be created from this data. The data will be processed by a SOM network and the result
will be graphically represented by assigning the visual representation of the features as a grid corresponding to
the grid of the SOM’s neurons.

It is expected that the general appearance of the distribution of the graphical components on the SOM
matrix will bring interesting visual clues about the nature of the data. Due to the SOM properties the visual
representation obtained will obey some of the principles posed by Tufte,15 particularly, show the data, induce
the viewer to think about the substance rather than about the methodology, avoid distorting what data has to
say, present many data in a small space, make large data sets coherent, encourage the eye to compare different
pieces of data and reveal the data at several levels of detail.
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3.1 Data used for visualization – The Galaxy Zoo project

For most of the twentieth century, morphological catalogues of galaxies were compiled by individuals or small
teams of astronomers. The modern surveys, like the Sloan Digital Survey (SDSS) which contain data from
millions of galaxies, make this approach impractical. Started in June 2007, the Galaxy Zoo I project has the aim
of delegate the classification of galaxies to volunteers,10 becoming a good example of engagement success among
scientists and volunteers to produce data with quality.

A website was designed to recruit citizen scientists and collect the data provided by them. Visitors to the site
were asked to register and read a brief tutorial, and after that were submitted to a simple multiple-choice test
with selected galaxies from the SDSS which were previously classified by astronomers. Visitors who correctly
classified 11 or more of the 15 galaxies on the test were allowed to become a citizen scientist.8

Through this website the citizen scientists were presented with images showing galaxies and had to answer
simple questions about the galaxies’ shapes (ellipse, spiral, merge or unknown) and orientation for the elliptical
ones (clockwise or counterclockwise). After clicking on the option they believe was the most appropriate, a new
galaxy image was automatically displayed and once again the system asked for a new classification. For each
classification, the system stored a log of activities with the volunteer identification, the galaxy identification, the
timestamps and the classification chosen by the volunteer.

This paper use the log of activities with the volunteers identification anonymized, precluding their identifi-
cation directly or indirectly. The log cover the period from the Galaxy Zoo site launch in July 8, 2007 until
July 7, 2012. During this interval 146,669 volunteers collaborated with the more than 80.000.000 classifications.
Some characteristics about the raw data are shown in Tables 1 and 2. Table 1 shows some arbitrary intervals
of the number of classifications a volunteer did on the site, showing, for each interval category, the number of
volunteers in that interval and the percentage of the total classifications on this interval.

Table 1: Interval of Classifications per Volunteer

Interval 1−10 10−100 100−1,000 1000−10,000 10,000−100,000 100,000−1,000,000 >1,000,000

Volunteers 15.880% 45.350% 29.740% 8.315% 0.688% 0.026% 0.001%

Classifications 0.128% 3.413% 17.733% 40.883% 26.676% 9.628% 1.539%

Table 2 shows arbitrary intervals of number of days the volunteers had recorded interactions with the website
and the percentage of total classifications done by users in each interval category.

Table 2: Number of days as Volunteer

Total of days 1 1-7 7-15 15-30 30-90 90-180 180-365 >365

Volunteers 64.161% 11.309% 3.563% 4.377% 4.436% 5.146% 3.704% 3.303%

Classifications 9.041% 7.303% 4.828% 7.158% 11.963% 14.750% 18.221% 26.735%

Since volunteers of the project joined it at different moments of the project’s running, in order to avoid bias
towards long-time users when extracting features from their collaboration records, we define a threshold of 600
days for collaborations for all volunteers. This means that for each volunteer we considered only the classifications
performed during the first 600 consecutive days computed from the day of the first recorded classification. By
using this threshold we discarded 3,69% of total classifications, and 4,90% of the total number of volunteers.

3.2 Features Selection

The Self-Organizing Map, as described at section 2, needs a collection of input data vectors to its training. This
input data can be any numerical data vector, and we explore this feature by selecting different input data vectors,
corresponding to features of the different objects being measured, to achieve different visualization results.

Our last study9 to investigate possible behavior profiles considered 7 attributes extracted from the users’
interactions (i.e. galaxy classifications) with the website. The attributes used are based on the following metrics:
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• Participation range in days (pui): the number of days counted from the first day volunteer ui interacted
with the website until the last recorded interaction of ui, so pui ≤ 600;

• Participation count in days (dui): the number of days for which there were recorded interactions of ui with
the website;

• Maximum classification (maximumui): the maximum number of classifications done in one single day by
volunteer ui;

• Total classifications (totalui): the number of classifications done by ui during the classification period.

The 7 attributes are computed as follows:

a1 =
pui

600

Attribute a1 is an absolute measure of how much the volunteer ui was interested in return to contribute to
the project. Values close to zero indicates the user joined and left shortly thereafter, while values close to one
indicate possible activity during all or almost all the 600 days.

a2 =
dui

pui

Attribute a2 is a relative measure of frequency of access to the website by ui. Values close to one means that
the volunteer accessed the website every day during his/her collaboration period.

a3 =
dui

600

Attribute a3 complements attributes 1 and 2, measuring the frequency in which ui accessed the website.

a4 =
maximumui

totalui

Attribute a4 is a measure of the spread of the classification effort by the days in which ui contributed. Values
close to one indicate volunteers who did the almost all classifications in a single day.

a5 =
totalui

average

Attribute a5 indirectly measure how close the volunteer ui is to the average of classifications done by all the
other volunteers.

a6 = dui

Attribute a6 is the unaltered value of dui . Reasons to use attributes that are redundant or derivable from
others are given below.

a7 = log10(totalui)

Attribute a7 is the log (base 10) of the total number of classifications done by dui .

Some of those attributes are redundant or may be derived from others, but at this point we want to elicit
visual patterns and not determine the best unique subset of attributes that describe volunteers’ categories or
groups. The visualization technique we’ve explored allow the use of similar, derived or inversely proportional
attributes so visual patterns may emerge.
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3.3 Experimental Results

As a visualization technique for the SOM results we chose the Parallel Coordinate technique.21 This technique
consists on mapping k-dimensional data to a two-dimensional surface by using k equidistant parallel axes where
each axis correspond to one dimension (attribute) and are linearly scaled (normalized) according to the minimum
and maximum value for that dimension. Each data point is represented as a polygonal line, which intersects
each axis at the point which corresponds to the value of the corresponding dimension.14

To each cell in the Self-Organizing Map matrix we will associate a Parallel Coordinate icon, which will be
drawn using the values associated to the reference vector vm in a thick gray line. All data vectors that can be
assignable to that reference vector (i.e. all the data vectors that would select that neuron as Best Matching Unit
when the network is trained) will be drawn in the background in light gray lines. The value over each icon shows
the number of data items (i.e. volunteers) which can be considered close (in feature space) to the respective
reference vector. The Parallel Coordinates icon will be drawn without titles, scales or any other information, in
order to reduce clutter.

Several different subsets of features were used to create and train the SOM and the Parallel Coordinate icons
associated to it. The next subsections present some experimental results.

3.3.1 Visualizing Volunteers’ Activity

Figure 1 shows the result of the training of a 6 × 6 SOM with the 7 attributes arranged in Parallel Coordinate
icons. Each parallel axis corresponds, from left to right, to the order in which they were described in section 3.2.

Figure 1: Visualization of volunteers’ activity with a SOM network and Parallel Coordinates

The advantages of our approach are the possibility of observation of generic behavior patterns in neighbor
SOM cells and concentrations and deviations on generic behavior by the spread of the lines in the Parallel
Coordinate icon (when compared with the reference vector corresponding to that neuron on the SOM grid). For
example, it is possible to visually identify the following four generic patterns9 in Figure 1:

• Groups of volunteers identified as “curious”: their visual representation have low values for attribute a1,
high values for attribute a2 (just because their period is very short, usually one single day) and low values
for attribute a4 – these are volunteers who joined the project and done most of the classification in one or
few days abandoning the project shortly afterwards. Icons shown near the top right corner of Figure 1 are
representative of this category.
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• Groups of volunteers that could be labeled “potentials”: their visual representation have features of cu-
rious but with high values for attribute a1 compared to the values for attribute a6 and medium to high
values for attribute a4. This combination of values indicate that they spent long periods without doing
any classifications, but come back eventually. Icons shown near the bottom left corner of Figure 1 are
representative of this category.

• Volunteers that could be labeled as “dedicated”, which visual representation have high values for at-
tribute a2 and predominantly high values for attribute a4. Icons shown near the top left corner of Figure 1
are representative of this category.

• Volunteers that cannot be identified as any of these groups.

It is also possible to observe some SOM cells in which the reference vector and data associated to that cell
are somehow heterogeneous – for example, the cell in line 6, column 5. This occurs because some of the “most
different” data vectors (i.e. outliers) get assigned to that cell, choosing it as the Best Matching Unit during the
training of the network. It is possible to reduce this heterogeneity by changing the network training parameters
and/or its dimensions.

3.3.2 Visualizing Volunteers’ Activity and Accuracy

The previous subsection showed how the Self-Organizing Map and the Parallel Coordinates can be used together
to visually classify volunteers’ activity in the Galaxy Zoo Project. We would like to investigate whether there
are different visual patterns when we consider also the quality of classification done by each user. In order to
get an estimate of the quality of classification (accuracy) per user, we used the data from the Galaxy Zoo data
release ∗, which provides a catalogue of galaxies and their respective classification (spiral, ellipse or uncertain).10

Basically the classification labels were extracted from many volunteers’ classifications, considering only the ones
with a certain amount of agreement in order to chose a label for it.

To simplify the analysis we consider only galaxies that were labeled as spiral or ellipse. For each volunteer we
compare their classification for each galaxy that was presented to them with the label for that galaxy, calculating
a total number of correct classifications, then calculating the percentage of correct classifications per user.

Figure 2 shows two 6×6 SOM grids with Parallel Coordinates icons: on the left side, only data from volunteers
who scored 25% or less of correct classifications are shown. On the right side of the Figure 2 only volunteers who
scored 75% or more of correct classifications are shown. The attributes used for the Parallel Coordinates icons
are the same ones described in Section 3.2. The percentage of correct classifications per user was not used as an
attribute for the Parallel Coordinates icons.

(a) Volunteers with 25% or less correct classifications (b) Volunteers with 75% or more correct classifications

Figure 2: Visualization of volunteers’ activity with a SOM network, filtered by percentage of correct classifications

∗Available at http://data.galaxyzoo.org/
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On the total we had 8,964 volunteers who did 25% or less correct classifications and 78,226 who classified
correctly 75% or more galaxies according to the Galaxy Zoo project – in other words, more users performed well
when considering the agreement between their classifications and the labels.

From these Figures it is possible to observe the predominance of volunteers labeled as “curious” – this
predominance is also visible in Figure 1, indicating that there is no apparent difference between the different
volunteers profiles accordingly to their correct classification score.

3.3.3 Visualizing Volunteers’ Activity by Sessions

Sessions are commonly referred as an arbitrary interval of time during which an user interacts with a website.
The definition is not precise since we cannot expect an user to have a easily measurable period of time during
which he/she is performing activities on the site and nothing else – other activities or the reason for a short pause
in the interaction can be caused by several different reasons. Nonetheless we define the interval that defines a
session as three minutes – sessions are consider all interactions done by the volunteers without any interruption
or inactivity longer than three minutes. All volunteers must have at least one recorded session, and it is expected
that some may have several sessions in a day.

From the definition of session, we calculate, for each volunteer, an input data vector containing the number
of sessions during his/her collaboration period (600 days or less), the average session length in seconds and the
average number of classifications per session. The percentage of correct classifications was also included as an
attribute for this example.

Figure 3 shows the result of a 6× 6 SOM trained with the sessions data, one record per user. The attributes
for each axis are in the same order they were described.

Figure 3: Visualization of volunteers’ sessions with by percentage of correct classifications

In Figure 3 we can also see some patterns on the Parallel Coordinates icons arranged by the SOM: the icons
shown near the top left corner of Figure 3 indicates that several volunteers had a few, short sessions, with few
collaborations but nonetheless with a good overall correct classification scores. This is the predominant visual
pattern: several similar patterns, with smaller classification scores are presented, and spread over the top and
right half of the SOM. On the bottom part of the SOM we see lots of volunteers that had lengthy sessions with
lots of classifications, also with good overall correct classification scores. The icon on the bottom right of Figure 3
suggest that most of the volunteers with very low correct classifications score had few sessions, with short session
lengths and few classifications per session.
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4. CONCLUSIONS

In this paper we presented an approach to visualize different sets of features as data vectors using a visual
representation of multidimensional data using Parallel Coordinates icons, organized in a Self-Organizing Map
grid. This approach allows the visualization of significant amounts of data and the visual identification of
interesting patterns.

The technique was used for visualization of patterns of interactions between citizen scientists with a citizen
science project. The results indicate that it is possible to get some indications on the behaviours of groups of
volunteers. More detailed analysis, applied to ongoing and future citizen science projects, may help guide the
projects’ organizers on selecting subsets of volunteers or deriving labels for the volunteers that describe different
aspects of their engagement with the project.
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