
J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

ABSTRACT: The software in satellite applications has become
increasingly larger, more complex and more integrated,
so its verification and validation require exploration of new
approaches. In this paper we present a Model-Based Testing
(MBT) approach applied to the Communication Module of
the ITASAT-1 university satellite. The models are Finite
State Machines (FSM) representing the software behavior.
In order to manage the difficulties to model the software
behavior the approach employs the Conformance and Fault
Injection (CoFI) testing methodology associated with the
JPlavisFSM tool in the real context of a satellite’s critical
software. The former advises the modularization of the
modelling into different types of behavior into different FSMs,
while the latter integrates several FSM-based methods to
derive test cases, provides facilities to design and to check
properties of the models and computes metrics. The main
result of this case study was the evaluation of the drawbacks
on the design of the testing models supported by CoFI
and JPlavisFSM. The models, test sets, metrics with the
application of our approach applied to the Communication
Module are presented. The paper discusses the benefits as
well as the points requiring new researches.

KEYWORDS: Finite state machine, Model-based testing,
Test-case generation methods, Testing methodology.

FSM-Based Test Case Generation
Methods Applied to Test the
Communication Software on Board the
ITASAT University Satellite: A Case Study
Arineiza C. Pinheiro1, Adenilso Simão1, Ana Maria Ambrosio2

INTRODUCTION

The increasing development of university satellites has
allowed researchers to experiment new approaches in space
area. In traditional satellite development, experimental methods
are usually avoided to prevent risks and cost increase, whereas
university satellites open an opportunity to explore new
approaches using a real system (Alencar, 2013).

The software for satellite applications has become increasingly
more complex, as it includes more functions and is more
integrated. The development of satellite-related software usually
requires a series of rigorous tests, along with all the satellite
development phases. The development tendency of this kind of
software points out the use of formal models for the designing
and testing. To adopt formal models, such as the Finite State
Machines (FSMs), not only does it benefit the identification
of ambiguities and gaps in the requirements (Morais and
Ambrosio, 2010; Morais, 2011; Pontes et al., 2012), but it also
makes the automatic generation of test cases feasible (Ambrosio
et al., 2005; Romero et al., 2012) by applying the vast theory of
automatic test case generation.

The specification of test cases for embedded software in
satellites should take into account characteristics such as:
real-time requirements, integration of technologies and fault
tolerance mechanisms. The occurrence of failures in this kind
of software may cause large losses, so they should be thoroughly
tested using systematic and rigorous approaches, in which

doi: 10.5028/jatm.v6i4.369

1. Instituto de Ciências Matemáticas e de Computação/USP – São Carlos/SP – Brazil 2.Instituto Nacional de Pesquisas Espaciais – São José dos Campos/SP – Brazil.

Author for correspondence: Ana Maria Ambrosio | Instituto Nacional de Pesquisas Espaciais | Avenida dos Astronautas, 1.758, CEP: 12.227-010 –São José dos
Campos/SP | Brazil | Email: ana.ambrosio@inpe.br

Received: 04/15/2014 | Accepted: 10/20/2014

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

448
Pinheiro, A.C., Simão, A. and Ambrosio, A.M.

various testing techniques are combined to exercise different
aspects of the system.

The Model-based Testing (MBT) is an approach that reduces
cost with the automation of test cases generation and with the
reuse of models created during the software designing and
testing activities; besides that, it provides high fault detection
and traceability. In MBT, the test designer can specify the
test model using different modeling notations, such as FSMs,
Labeled Transition Systems (LTS), Unified Modeling Language
(UML) state machines, etc. FSM is a formal modeling technique,
adopted due to its rigor and simplicity. FSM-based testing has
been studied for several decades (Moore, 1956; Chow, 1978) and
it has still presented contributions (Simão et al., 2009; Simão
and Petrenko, 2010; Yin et al., 2010; Pedrosa and Moura, 2010;
Hierons and Ural, 2010; Simão et al., 2005) such as a tool that
integrates different FSM-based methods into a single software
product named PLAVIS (PLAtform for Software Validation &
Integration on Space Systems); similar work is given in Santiago
et al. (2008).

In MBT, supporting tool plays an essential role, since the
cost of building the models for testing only should be balanced
by the possibility of generating and executing larger test suites
(Utting and Legeard, 2007). However, the difficulties still
remain to build the models. In our work, we have applied
the Conformance and Fault Injection (CoFI) methodology
(Ambrosio, 2005) in order to guide the tester to create the
models associated with the JPlavisFSM tool (Pinheiro, 2012).
CoFI was firstly proposed to lead a tester to understand the
problem well enough while creating a set of FSMs representing
normal and abnormal behavior of software on-board a satellite.
It defines detailed steps to apply FSM-based testing tools,
in a systematic way and it has been applied in several cases
(Ambrosio et al., 2007; Pontes et al., 2009; Anjos et al., 2011;
Mattiello-Francisco et al., 2013). JPlavisFSM tool comprises
not only four methods to automatically generate test cases
starting from a given specification in FSM but also the Mutation
Testing technique (Fabbri et al., 1994), that allows the adequacy
evaluation of a test cases set.

This paper presents a case study in which the CoFI
methodology and the JPlavisFSM tool are combined to
test the Communication Module of the ITASAT-1 satellite
(Sato et al., 2011). All the steps applied to design the models
have been illustrated. We employed the JPlavisFSM tool
to the test case generation, exploring all the FSM-based
methods available. The main result of this case study was the

identification of the drawbacks to create the testing models
that is the key activity to successfully apply MBT techniques
to satellite-related software. On the modelling work, we
found that the previous knowledge on the testing methods
theory had facilitated the modelling process, which took
16 days only. The length of time to understand the system
under test, to do the modeling and to generate the test cases
accounted for 33 days. We did not evaluate how the models
impacted on the quality of the tests, as the tests were not
executed against the implementation of the Communication
Module software, because the implementation was not
finished before the conclusion of this work. However, we
evaluated the quality of the test sets by mutation analysis
applied to FSM.

The remainder of this paper presents the background,
the CoFI and the JPlavisFSM tool, the case study, and finally,
discusses the MBT applicability and the conclusions.

BACKGROUND

In this section, we introduce the main concepts necessary
for understanding the results presented in this paper.

FINITE STATE MACHINES
Finite State Machines (FSMs) have been widely used for

modeling reactive systems, ranging from simple protocols to
complex embedded systems (Lai and Leung, 1995). Among
the main advantages of FSMs, there are the solid theoretical
background, the expressiveness power and the existence of
numerous methods to generate test cases. FSMs are hypothetical
machines composed of states and events, which correspond to
transitions between the states. A transition is associated to two
kinds of events: input and output. When an input event occurs
in a given state, the FSM responds with an output event and
may move to another state (Gill, 1962).

Formally, a Mealy FSM is defined as a tuple M = (S, s0, X,
Y, D, λ, δ), where: S is the nonempty finite set of states; s0 is the
initial state (s0 ∈S); X is the nonempty finite set of input symbols;
Y is the nonempty finite set of output symbols; D ⊆ (S × X) is
the specification domain; λ : D → Y is the output function; and
δ : D → S is the transition function.

Figure 1 shows an FSM example with 4 states and 8 transitions,
where s0 is the initial state, S = (s0, s1, s2, s3), X = (a, b) and Y = (0, 1).

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

449
FSM-Based Test Case Generation Methods Applied to Test the Communication Software on Board the ITASAT University Satellite: A Case Study

Given state s and input x, the transition (s, x) is defined if
(s, x) ∈D. An input sequence α = x1x2…xk is defined at state
s if there exists a sequence of states s1, s2, …, sk+1, so that s =
s1 and (si, xi) ∈D, δ (si, xi) = si+1, for 1 ≤ i ≤ k. The set of input
sequence defined at state s is denoted ΩM(si). The output and
transition functions are extended to defined input sequences
in the usual way; given a state s and the empty sequence
Є, we have that δ (s, Є) = s and λ (s, Є) = Є; given input
sequence α and input x, we have that δ (s, αx) = δ (δ (s, α), x)
and λ (s, αx) = λ(s, α)λ(δ (s, α), x). A set of input sequences
is initialized if it contains the empty sequence. An input
sequence α separates states s and s’, if λ(s, α) ≠ λ(s’, α). A set of
sequences is an identifier for state s, denoted Id(s), if for each
state s’ ≠ s, there exists a sequence in Id(s) which separates
s and s’. A set containing one identifier for each state is
harmonized, if for each pair of state s and s’, there exists an
input sequence α ∈Id(s) ∩ Id(s’) which separates them. An
input sequence α is a Unique Input/Output Sequence for state
s, denoted UIO(s), if {α} is an identifier for s. A set of input
sequence W is a characterization set for each pair of state s
and s’, if there exists an input sequence in W which separates
them. A preamble for state s is an input sequence α, so that
δ(s 0, α) = s, i.e., it takes the FSM from the initial state to s.
A state cover is a set containing preambles for each state.
A transition cover is a set P of input sequences, so that, for
each defined transition (s, x), there are α and αx in P, where
α is a preamble for s.

The FSM M is defined over X. Based on this definition,
some structural properties in FSM, which are important for
test case generation methods, are listed:

•	 Completely specified – an FSM is completely specified,
or complete if all states (S) have a transition for each
input event from the set of input symbols (X), so that
D = (S × X). Otherwise, the FSM is partially specified,
or partial;

•	 Strongly connected – an FSM is strongly connected if for
every pair of states (si, sj) there is a path that leads si to sj,
i.e., there is some input event sequence that performs a
path of transitions with source in si and destination of sj.
If all other states can be reached from the initial state, the
FSM is initially connected;

•	 Deterministic – an FSM is deterministic when there is only
one transition with a particular input event from any state
that allows transition to a next state. Otherwise, the FSM
is nondeterministic;

•	 Equivalent – one state si is considered equivalent to sj if there
is no input event sequence which, when executed from the
respective states, generates a different output sequence;

•	 Reduced – an FSM is reduced if there is no pair of
equivalent states. Otherwise, it is unreduced.

FINITE STATE MACHINE (FSM)-BASED TESTING
In the context of FSM-based testing, a finite sequence of

input events is a test case, or just a test. A set of test cases is a
finite set of sequences, so that there are no two sequences α and
β ∈T, where α is a proper prefix of β. (There are two sequences
α and β, α is prefix of β, if α ≤ β, such as αω = β, to any ω. And,
α is a proper prefix of β, if α < β, such as αω = β).

Given two FSMs M and I; two states s from M and t from I are
distinguishable if there is an input sequence γ ∈ΩM(s) ∩ ΩI(t),
called separating sequence, so that the same input event sequence
generates different output sequences for both FSMs, i.e.,
λ (s, γ) ≠ λ (t, γ). Two FSMs I and M are distinguishable if their
respective initial states are distinguishable.

A fault domain Γ(X) is the set of all possible implementations
of M defined over the set of input symbols X. Similarly, Γn(X)
denotes the set of all FSM defined over the set of input symbols
X with at most n states. The test set T is said n-complete, or just
complete, for the specification M if for all I ∈Γn(X), so that I
is distinguishable from M, there is at least one sequence α ∈T
that produces different output sequences when applied to M
and I in the respective initial states. In other words, a test set is
complete when it is possible to distinguish the specified FSM
with n states from all other distinguishable FSM with the same
set of input symbols and at most n states.

a / 1

b / 1

b
/ 1

b
/ 0

b / 0

a / 0

s0 s1

s2 s3

a / 0a /
 0

Figure 1. Example of FSM.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

450
Pinheiro, A.C., Simão, A. and Ambrosio, A.M.

The main objective of the FSM-based testing is to compare
a reduced FSM model M with n states to an implementation
of the FSM model, which is assumed to be represented by an
unknown FSM I. When a reduced FSM M which represents
the correct version of the specified FSM is compared to FSM
I, the following faults may be revealed (Chow, 1978):
•	 Output Error: I and M differ in the output of a transition;
•	 Transference Error: I and M differ in the final state. When

the final state achieved in both FSM is different after
applying a test case;

•	 Transition Error: it is the general term for output or
transference error;

•	 Missing States: I has fewer states than M;
•	 Extra States: I has more states than M.

Several methods have been proposed for generating set
of test cases which guarantee that the implementation does
not contain any of the above listed faults, that is, which
are complete regarding these faults. The completeness of
the generated test case is proved by showing that no faulty
implementation FSM would pass the test cases. The main
differences among them are the cost to generate the sequences
and the effectiveness (the power of the test cases to detect
faults). One of the first methods to be proposed was the W
(Chow, 1978), which is considered a precursor of the area,
since most of the following methods are based on it: UIO
(Sabnani and Dahbura, 1988), UIOv (Vuong et al., 1989),
Wp (Fujiwara et al., 1991), HSI (Petrenko et al., 1993) and
SPY (Simão et al., 2009).

MUTATION TESTING
The Mutants Analysis is one of the most popular criteria of

Defects-based testing, which aims at deriving test requirements
from knowledge about typical mistakes made by designers or
developers. Mutation Testing is a testing technique that can be
widely employed as a way of evaluating the test cases generated.
The criteria can be used as:
•	 Black-box testing, when we consider the specification as a

test artifact, or
•	 White-box testing, when the artefact considered is the

source code. In this context, the test artifact could be
represented formally by a model, as FSM.

The Mutants Analysis consists of assessing the adequacy
of a test set T for the test artifact P. First, you run the test set

T against P. If a fault occurs, a defect was found. Otherwise,
it is assumed that some defects already exist but cannot even
be detected.

The next step is to derive one or more products from the
original artefact P, which gives the new products P1, P2, ..., Pn,
also called mutants of P. Mutants are generated from mutation
operators, which are dependent on the programming language
and determine what types of syntactic changes can be made in
the artefact. The mutation operators’ aim:
•	 Inducing simple syntactic changes based on the typical

mistakes made by developers, such as changing the value
of a constant, or

•	 Forcing certain test goals, such as performing each node
or arc of the product (Delamaro et al., 2007).

The test set T is executed against each of the mutants
generated. The main objective is to “kill” all mutants. It is
expected that, due to the changes made, the mutants have
different behavior from the original product, featuring a defect.

Occasionally, when the artifact is a source code, a mutant
and the original product can still have the same result for any test
case in the set. In these cases, the tester has to check the code and
determine whether there is equivalence between the products.
If so, the mutant is called as equivalent. The equivalence
between programs is an undecidable problem and, therefore,
there is no automated solution to the problem and the manual
intervention of the tester is necessary. However, when the
product is a model, there is no equivalency problem, because
it could be determined automatically due to the formality of
the FSM.

After the mutants’ execution and equivalence analysis,
the mutation score is calculated. The aim is to determine the
adequacy of test cases used in a range from 0 to 1, providing a
quantitative measure of how efficient the test set is in revealing
the difference between the mutant and the original product.
The mutation score ms(P, T), to product P and the set of test
cases T is calculated as:

DM(P,T)ms(P,T)=
M(P)-EM(P)

where: DM (P, T): number of mutants killed by T; M (P): total
number of mutants generated from P, and EM (P): number
of generated mutants that are equivalent to P (Delamaro
et al., 2007).

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

451
FSM-Based Test Case Generation Methods Applied to Test the Communication Software on Board the ITASAT University Satellite: A Case Study

The mutation score is obtained from the ratio between
the number of mutants killed by the set T and the number of
mutants that could be killed, given by the difference between
the total number of mutants generated and the number of
mutants classified as equivalent.

THE JPLAVISFSM TOOL AND
THE CONFORMANCE AND FAULT
INJECTION METHODOLOGY

This section presents the main features of the JPlavisFSM
tool and the CoFI methodology which were combined to guide
the creation of FSMs, representing the system’s behavior.

JPLAVISFSM TOOL
In a joint cooperation project among Brazilian researchers,

the test platform named PLAVIS was conceived. This platform
integrated existing tools for automatic generation of test cases
starting from FSM, which had been developed by PLAVIS-project’s
members. PLAVIS was a web-based test platform providing
different functions to support FSM-based testing (Simão et al.,
2005). Years later, Pinheiro (2012) improved usability features
in the previous platform, now named JPlavisFSM tool.

The JPlavisFSM is a standalone software, whose graphical
user interface (GUI) is imported from the open source tool
JFlap (http://www.jflap.org/) to design the FSM. From the
GUI, one can easily draw states and transitions, edit and adjust
them before automatically generating a set of test cases as well
as evaluating the adequacy of a set of test cases.

The JPlavisFSM tool includes a function to analyze FSM
structural properties namely complete, strongly connected,
deterministic, etc. This kind of analysis is very important because
the applicability of the test methods depends on presence
or absence of some structural properties. For example, the
W method requires a FSM with the properties of complete,
strongly connected, deterministic, and reduced. One advantage
is to reduce the need of theoretical knowledge, particularly for
testers unfamiliar with such theory.

Other functionalities were implemented to assist test case
handling, such as test set execution, inclusion/exclusion and
enabling/disabling. Test sessions can be created, as shown in
Fig. 2. In this window, the user can visualize the FSM on the
left and the generated test cases on the right side (each line has

one test case). At the bottom, there is an option that helps the
tester to create particular test sets by himself.

One of the best features of the JPlavisFSM’s test session is to
support the construction of a test case set with a high probability
of finding defects in the System Under Test (SUT). In a test
session, the tester can import (or load) a set of test cases, which
was automatically generated through one of the testing methods
given by JPlavisFSM or manually generated by the tester. Once
imported, the set of test cases can be executed (i.e., applied against
the specification) and the mutation score obtained.

The JPlavisFSM releases the following testing methods to
generate test cases set: W, UIO, HSI and SPY. The W method
generates test cases as follows. First, an initialized transition
cover and a characterization set of the specification are
determined. Secondly, for each sequence of the transition
cover, each sequence of characterization set is appended.
The UIO generates test cases as follows. First, an initialized
transition cover is determined, as well as UIOs for each
state. Secondly, for each sequence of the transition cover,
the UIO of the state reached by that sequence is appended.
HSI method generalizes the W method, and can be applied
to partial FSMs. It first determines a transition cover and a
set of harmonized state identifiers. Then, for each sequence
of the transition cover, each of the sequence in the identifier
for the state reached by that sequence is appended. The SPY
method generalizes the HSI method; the main difference
is that both the transition cover and the harmonized state
identifiers are computed “on-the-fly”, i.e., during the execution
of the method, trying to minimize the number of test cases
which are required to obtain complete test cases. For the HSI
and SPY methods two versions are provided: the original

a / 1

b / 1

b
/ 1

b
/ 0

b / 0

a / 0

s0 s1

s2 s3
a / 0a /

 0

Figure 2. JPlavisFSM Tool.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

452
Pinheiro, A.C., Simão, A. and Ambrosio, A.M.

one and the auto-completed; the latter auto-completes the
FSM before applying the original method. New methods can
be incorporated in JPlavisFSM as plugins or be imported at
runtime (provided that the compatible input/output formats
are used) as well as providing more flexibility to the tool and
the possibility to explore all the other features for the test
set analysis.

Two different ways of evaluating a test cases set are provided:
•	 Mutation Analysis; and
•	 n-Completeness Analysis (Simão and Petrenko, 2010).

The Mutation Analysis, provided by JPlavisFSM, allows a test
set to be evaluated and also to be enhanced. This enhancement
can be achieved by expanding the test set with test cases targeted
at undetected mutations. The mutant operators (Fabbri et al.,
1994) were designed according to the classes of faults detected
on the FSM-based test models. When the user creates a test
session, the mutants are automatically created and the user can
access all the mutants to verify their statuses: alive, when the
ongoing test fails to reveal the defect of the mutant; or dead, the
other way around. This feature could help the user to upgrade
test sets since this criterion guides the user to create tests that
will run paths, which may contain defects. The n-Completeness
analysis provides another way to verify the quality of a given
test set, checking whether the test set is complete or not.

COFI METHODOLOGY
The CoFI methodology (Ambrosio, 2005) guides the

functional testing activity. It was proposed considering the
needs of space application’s validation and therefore defines
steps for creating test cases for software embedded on-board
of satellites in a systematic way in order to get as much
reusability in testing as possible. The main objective is to help
the tester to define FSM-based models which represent the
behavior of the SUT.

The SUT behavior’s decomposition into FSMs starts with the
identification of services, which can be a system function from
the user’s viewpoint. Each service shall be described by a set of
FSMs that map different classes of behavior. This classification
takes into account different kinds of input events:
•	 Normal (absence of faults);
•	 Exceptions (foreseen faults);
•	 Unexpected inputs (inputs occurring when they are not

expected); and
•	 Hardware faults.

In short, the CoFI methodology consists of three steps:
identification, modeling and test case generation. Figure 3
shows the three steps of CoFI methodology described hereafter.

(A) Identification
Based on a given specification, the tester has to understand

properly the external behavior of the SUT, as in the black-
box testing. The information to accomplish this step
can be extracted from textual specification documents,
requirements, use-cases, sequence-diagrams, and also from
interviewing experts in the SUT if necessary. In this step,
it shall be identified:
•	 Services that an user can recognize or execute in the SUT;
•	 Events and actions: it is necessary to identify all the

possible events and actions (or outputs) that can be,
respectively, commanded and trigged (or observed).
The selected events and actions will be abstracted as
inputs and outputs in the FSMs;

•	 Control and observation points: they are addresses or
mechanisms to input data and to obtain responses from
the SUT;

•	 Physical faults: faults occurring in hardware. They are
to be considered whenever the SUT includes embedded
software in a hardware and this software must have
mechanisms to treat the faults;

•	 Facilities and constraints: the tools and theirs commands
that supports the test execution against the SUT and the
events that cannot be activated during the test execution.

(B) Modeling
In this step, for each service, the tester should develop four

classes of behavior:
•	 Normal;
•	 Specified exceptions;
•	 Sneak path; and
•	 Fault tolerance.

IDENTIFICATION

S1
S2

TS1
TS2

MODELING
TESTE CASE

GENERATION

A B C

Figure 3. Main steps of the CoFI Methodology.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

453
FSM-Based Test Case Generation Methods Applied to Test the Communication Software on Board the ITASAT University Satellite: A Case Study

At least one FSM model shall be created representing the
partial system behavior.

The normal behavior model defines the sequence of events
that the SUT normally expects when it is executed. The tester
has to identify the normal mode the SUT will be subordinated
to and the events and actions expected for this case. For the
specified exceptions model the tester has to recognize the
exceptions mentioned in the documents, as timeouts and
unknown commands and thus define the events expected in
this context, called exception events. The sneak path model deals
with the correct inputs arriving in wrong time. The objective is
to predict the unexpected behaviors, i.e., to describe what the
machine should do if an input occurs in a state where it is not
defined. The tester can use the normal model as a basis, write it
in tabular form (event × state) and fill the blank cells with the
corresponding expected behavior. In some cases, there is no
possible behavior to model, and then the tester evaluates the best
option for the SUT. The transitions trigged by the unexpected
inputs should be designed based on the normal model. Finally,
the fault tolerance model shall map the possible physical faults
when the SUT implements mechanisms to tolerate hardware
faults. For each physical fault, the tester has to adapt the normal
model including the fault events. At the end of the modeling step,
the tester has a set of models representing the SUT’s behavior,
from which test cases may be automatically generated.

(C) Test Case Generation
This step can be supported by testing tools that automatically

generate a set of test cases (also named test sequences). In the
experiences about applying CoFI described in Ambrosio et al.
(2007), Pontes et al. (2009), Anjos et al. (2011) and Mattiello-
Francisco et al. (2013), the Condado tool was used to automate
the test cases generation. In our work, the JPlavisFSM tool
was used because it provides five different testing methods,
including some variations that can be applied in partial FSM.
Moreover, it has facilities to analyze the models’ properties and
the adequacy of test case sets.

CASE STUDY: ITASAT’S
COMMUNICATION MODULE

We now discuss the case study we have carried out applying
CoFI methodology and JPlavisFSM tool in a MBT approach

for a real system. The SUT is the Communication Module’s
software of the ITASAT-1 satellite. The ITASAT Mission (Sato
et al., 2011) is part of a program funded by the Brazilian Space
Agency (AEB) in the context of Action 4934 for Development
and Launching of Small Technological Satellites developed
by the Instituto Tecnológico de Aeronáutica (ITA) and other
Brazilian universities. ITA is the responsible member for
the project implementation and the Instituto Nacional de
Pesquisa Espacial (INPE) provides technical consulting and
laboratory infrastructure. The ITASAT-1 is a university satellite
planned to execute experimental payloads namely, Digital
Data Collection Transceiver, Heat Pipe Experiment, Micro
Electrical Mechanical System for attitude determination and
an Inter Satellite Link.

The satellite architecture is composed of five service
subsystems: Mechanical Structure (MSS), Thermal Control
(TCS), Electric Power (EPS), Attitude Control and Data
Handling (ACDH) and Telemetry & Telecommand (TMTC);
the last three subsystems are shown in Fig. 4. The functions of
the ACDH are commanded by the on-board computer (OBC).
The Communication Module (CM), located in the ACDH
subsystem, is in charge of the communication between the
OBC and the TMTC. Figure 4 highlights the Communication
Module and indicates that it is the System under Test (SUT),
the focus of this study.

The CM comprises not only two receivers and two
transmitters in redundancy, but also the software in charge
of receiving commands arriving from the ground stations
and transmitting telemetry collected from satellite pieces of
equipment to ground stations.

The CM Software performs critical functions so it has to
work properly for the space mission success. Its functions
are to receive the telecommands from ground stations and to
transmit the telemetries collected by the satellite’s payloads
and sensors, to manage the payloads status and to turn off the
pieces of equipment when a critical failure occurs leading the
satellite into survival mode.

Considering that the CM is one of the most critical parts
of this satellite, it was chosen as case study to experimentally
evaluate the proposed approach. The three main steps that
guided this study are illustrated in Fig.5.

(A) Identification
The first activity was to study the Requirements Document

of ITASAT-1 (Table 1 illustrates some of such requirements)

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

454
Pinheiro, A.C., Simão, A. and Ambrosio, A.M.

in order to understand the context and the behavior of the CM’s
software. The studies lasted 12 days, five to understand the ITASAT-1
satellite documentation; five to the CoFI guidelines and two to
identify the main elements required by CoFI, namely, services,
events, actions, faults, and so on.

We identified two services corresponding to the two main
functions of the Communication Module: (S1) receive commands
from ground and (S2) transmit the collected telemetries from
on-board equipment. These functions are implemented respectively
by the CM Receiver Software and by the CM Transmitter Software.

The events and actions extracted from the requirements are
those naming the transitions of the FSMs illustrated in Figs. 6 and
7. The events and actions are abstract representations, i.e., they

do not indicate a physical signal arriving. One example of a CM
Receiver’s event is CmdOBCOK, that indicates the presence of
one command to be executed. One action is StoreTC1wait, which
indicates that the just-arrived telecommand shall be stored on board.
Other examples are EndTimerB as event and StartTimerB as action
to be performed by the CM Transmitter. For the CM Receiver
Software, 12 events and 13 outputs were identified, while for the
CM Transmitter Software, 19 events and 12 outputs were identified.
Specified exceptions were identified in seven requirements, which
are listed in Table 1. Concerning the physical faults, although they
can occur, the Communication Module Software is not in charge
of dealing with them, therefore, for testing purposes, the fault
tolerance models were not created.

(B) Modeling
It was observed that on adopting the CoFI methodology’s

guidelines the state explosion problem was avoided. First, we
modelled the normal behavior of each service in the CM Receiver
FSM (R_N) and the CM Transmitter FSM (T_N), as shown in Figs.
6 and 7, respectively.

For the FSM models used here, namely the Mealy machine
(Mealy, 1955), all the transitions should be represented by a
pair of input-output, which means that each event should be

ACDH

TMTC

S
Band

S
Band

Hybrid

Diplex

Diplex

Transmiter

CM Transmiter

Receiver

CM Receiver

CM Transmiter

CM Receiver

Communication
Module (CM)

Communication
Module (CM)

Magnet
ometer

3x Sun
Sensor

3x Air
Coil

OBC

P
a
y
l
o
a
d
s

Transmiter

Receiver

SUT

EPS

Figure 4. ITASAT-1 satellite architecture.

IDENTIFICATION

CM Receiver
and

CM Transmitter

FSMs
• Receiver

• Transmitter
TS1
TS2

JPlavisFSM

MODELING
TESTE CASE

GENERATION

CoFI Methodology

Figure 5. Development of the case study.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

455
FSM-Based Test Case Generation Methods Applied to Test the Communication Software on Board the ITASAT University Satellite: A Case Study

associated with an action. Since in this software test some events
were not associated with an observed output (or action), the
output “Terminate” was used in the model to indicate the end
of a transition. Another modeling condiction was made up
to represent one transition requiring the occurrence of two
events or transitions with two outputs. Figure 6 illustrates the
ACKandStartTimerC output, which, in practice, indicates two
actions: “send an Acknoledge message” and “start the Timer C”.

Regarding the specified exceptions, the FSMs R_Ex13,
R_Ex2, R_Ex4 and R_Ex5 map the exceptions of the
CM Receiver, and T_Ex1 and T_Ex2 map those of the CM
Transmitter. Table 1 matches the FSMs to the ITASAT-1’s
requirements they model. For sake of space, not all FSMs
are shown in this paper. For more details see Pinheiro and
Ambrosio (2013).

The CM Software has to handle timers which trigger
timeout events needed for the communication timing.
On the first analysis, to handle timers seemed an issue,
because classical FSM does not treat time events. Therefore,
these events were abstracted away in the model. The CoFI

guides the definition of timers as external devices that are
started by an action and produce an event to the FSM when
the time is expired, indicating a timeout. For the normal
behavior, the software only signalizes the start of a timer,
as represented by StartTimerC and StartTimerA events. For
the specified exception models, it was needed to represent
events to indicate expired time, so we used the EndTimerC
and EndTimerA events.

The first CM Receiver’s FSMs were pointed out as
non-deterministic by the JPlavisFSM, because the event
INT2TC associated to StoreTC action occurred in several
states. On further analysis of the real software’s behavior
we defined two abstractions to solve this problem:
•	 A finite buffer to store at most three TCs, called TC1, TC2

and TC3; and
•	 Two actions to differentiate TC stored and TC sent.

Then, to create several actions (outputs): StoreTC1wait,
StoreTC1send, StoredTC2wait, and so on, instead of using only
the StoreTC action.

Table 1. ITASAT-1 Requirements vs. Specified Exceptions Models.

Specified exceptions

Requirement Description FSM

1 FRq11152000-12 “When the OBC does not send a request in TC seconds, the CM receiver finalizes the
communication routine” R_Ex13

2 FRq11152000-13
“The request of the OBC shall be one of the following: the transmission of TC or TC
error log from CM receiver to OBC, or the execution of a (correct) command from

OBC.” Obs.: Terminate execution if the command is not OK.
R_Ex2

3 FRq11152000-16 “If the CPU does not send the acknowledge in TA seconds (value TBD), the CM receiver
shall terminate the communication routine.” R_Ex13

4 FRq11152000-27
“The CM receiver shall check the first 16 bits, used for synchronization and packet

addressing, and shall discard the TC packet if its address data does not match with the
module address.”

R_Ex4

5 FRq11152000-29
“If the verification described in Frq11152000-2 (The CM receiver module shall check the
mod the repeated data and EDAC field) results in failure, the CM receiver shall store a

TC error log (as specified in [AD3]) in the TC buffer”
R_Ex5

6 FRq11152000-52 “When any analog channel verified present unexpected results, the CM transmitter shall
generate a pulse in the survival flag pin (which is read by the CM receiver). T_Ex1

7 FRq11152000-58 “When the OBC does not send a request in TC seconds, the CM transmitter finalizes the
communication routine.” T_Ex2

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

456
Pinheiro, A.C., Simão, A. and Ambrosio, A.M.

EndTimerVand AnChVerOK / StartTimerV

EndTimerB / Empty

q0
q1

q2

q3

q5

q4

EndTimerBandDB / StartTimerB

PackSurvTM / SendToTrans

O
BC

O
N

Re
sq

N
ot

Fr
om

C
PU

 /
Em

pt
y

O
BC

O
FF

 /
Em

pt
y

BeaconO
N

andTM
notC

on�g / C
on�gTM

TCTransm
BeaconO

FF / em
pty

BeaconO
N

andTM
C

on�g / C
on�g / A

nC
hD

tC
ollect

EndTimerB / Empty

BeaconOnandTMCon�g / Empty

BeaconO� / Empty

BeaconONeTMnotCon�g / Con�gTMTCTransm

OBCOFF / EmptyOBCONReqNotFromCPU / Empty

OBCONRequestFromCPU / ACK

TM / SendTMandACK

CmdOBC / SendDtToCPU

CmdCon�gFromOBC / TranscCon�g

OBCONReq
uest

From
CPU / A

CK

EndTimerB / AnChDicollect

Figure 7. T_N: Finite State Machine representing the normal behavior of the CM Transmitter.

INT1SurvFlag / O�deviceseBeaconON
INT2 DirectTC / Execute

INT1SurvFlag / O�deviceseBeaconON
INT2 DirectTC / Execute

INT1SurvFlag / O�deviceseBeaconON
INT2 DirectTC / Execute

Cm
dO

BC
O

K
 /

AC
K

St
or

e /
 N

oT
Cm

sg

Cm
dO

BC
O

K
 /

AC
K

Cm
dO

BC
O

K
/ T

er
m

in
at

e

Cm
dO

BC
O

K
/ T

er
m

in
at

e

Cm
dO

BC
O

K
/ T

er
m

in
at

e

StoredTC / TC1andStartTim
erA

StoredTC / TC2andStartTim
erA

StoredTC / TC3andStartTim
erA

Cm
dO

BC
O

K
 /

AC
K

Cm
dO

BC
O

K
 /

AC
K

N
CPSpin / ACK

 andStartTim
erC

N
CPSpin / ACK

 andStartTim
erC

N
CPSpin / ACK

 andStartTim
erC

N
CPSpin / ACK

 andStartTim
erC

INT1SurvFlag / O�deviceseBeaconON
INT2 DirectTC / Execute

INT1SurvFlag / O�deviceseBeaconON
INT2 DirectTC / Execute

INT1SurvFlag / O�deviceseBeaconON
INT2 DirectTC / Execute

INT1SurvFlag / O�deviceseBeaconON
INT2 DirectTC / Execute

INT2TC / StoreTC1wait
Wait0

ACK1

Send0

Bu�er

Send1

Bu�er

Send2

Bu�er

Send3

Bu�er

ACK2 ACK3

Wait1 Wait2 Wait3
INT2TC / StoreTC2wait

INT2TC / StoreTC2entre

INT2TC / StoreTC1send INT2TC / StoreTC2send INT2TC / StoreTC3send

INT2TC / StoreTC3wait

INT2TC / StoreTC3entre

INT1SurvFlag / O�deviceseBeaconON
INT2 DirectTC / Execute

INT1SurvFlag / O�deviceseBeaconON
INT2 DirectTC / Execute

INT1SurvFlag / O�deviceseBeaconON
INT2TC / StoreTCFullwait
INT2 DirectTC / Execute

INT1SurvFlag / O�deviceseBeaconON
INT2TC / StoreTCFullwait
INT2 DirectTC / Execute

Figure 6. R_N: Finite State Machine representing the normal behavior of the CM Receiver.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

457
FSM-Based Test Case Generation Methods Applied to Test the Communication Software on Board the ITASAT University Satellite: A Case Study

After concluding the normal behavior modeling, we
analysed all events presented in the normal model, in order
to create the sneak path models. However, because of the
logic implemented in the hardware design construction,
events never occur in an inappropriate state, so sneak path
models were not designed. The fault tolerant models were
not designed as well, because the CM is not in charge of
dealing with the hardware faults. In the end of the modeling
step, we had eight FSMs, as shown in Table 2.

The JPlavisFSM indicated incompleteness for all FSMs,
consequently the traditional W method could not be applied.
The completeness is a difficult property to be achieved
when modelling the behavior of real systems, that is why
the JPlavisFSM tool provides other methods, as HSI and
SPY that do not require this propriety.

Summarizing, the modeling steps accounted for 16 days,
being 8 days to create the normal and specified exception
models including reviews and re-work in order to adequate
the models to precisely represent the software behavior;
and generate the test cases through the methods. Three
adequacies were considered:
•	 Adequacy to the system – Do models represent the

system?
•	 Adequacy to the FSM concepts and generation

methods – How can one abstract the model to achieve
the FSM needs?

•	 Adequacy to the final model – Have the final models
achieved the system objectives and the methods needs?

(C) Test Case Generation
We applied all methods for the eight FSMs. The W method’s

applicability is restricted to complete, deterministic and
initially connected FSMs. As the FSMs were not complete
we used the JPlavisFSM’s function to auto-complete it before
using the W method. The auto-complete functionality adds

all the missing transitions in a given state as self-loops, i.e.,
transition that starts and ends in the same state. Althought
the auto-complete option leads to the generation of many
test cases, which are not significant in practice, it allows
the applicability of the W. One test case generated by W
starting from the CM Receiver FSM normal behavior
(Fig. 6) is given by the following sequence of inputs INT2TC,
StoredTC, NCPSpin, and its corresponding expected output
is StoreTC1wait,TC1andStartTimerA,ACKandStartTimerC.

The UIO method requires a strongly connected FSM,
whereas the SPY and the HSI can be applied into a
non-completed FSM. Thus, these methods have a wider
applicability in comparison to the others; moreover, the test
set generated by them is smaller than those genereted by W
and UIO methods. On the other hand, it is possible to apply
the UIO Method because it requires a separation sequence
defined for each state. One example of a test case generated
by UIO method starting from the CM Transmitter FSM
is BeaconONandTMnotConfig, OBCONRequestFromCPU,
CmdOBC, EndTimerVAndAnChVerOK.

The HSI and SPY are based on separating sequences by pair
of states (see Background section). Thus, each pair of states
must have a transition with an event in common with distinct
outputs. In the FSMs of the CM Transmitter software no event
occurs in more than one distinct state, so these methods were
applied neither to T_N nor to T_EX1 and T_EX2. One test
case generated by the SPY method is INT2TC, NCPSpin,
StoredTC, INT2DirectTC, INT2TC, INT2DirectTC, INT2TC
which starts with the same input as the example to W method,
but explores a valid sequence of events.

In general, all methods of the JPlavisFSM were applied
to the created models. Table 3 shows the test sets generated
by all methods for each FSM. The ‘-’ symbol indicates the
method could not be applied and ‘*’ symbol indicates the
use of auto-complete functionality.

Particularlly, the original W method did not generate any
test case for the non-complete FSM, so there is no column
for it. The original W was executed only thanks to the
auto-complete feature. This option increases the number of
transitions, leading to a large number of test cases.

The UIO method generated smaller sets, but the method
does not guarantee the generation of complete sets. The HSI
and SPY were successfully applied to CM Receiver FSMs
because there was a separating sequence that distinguished
their states. For CM Transmitter FSMs, it was not possible

Table 2. Summary of models design.

FSM models by classes of behavior

Services
Normal
Behavior

Exception
Specified

Sneak
Path

Fault
Tolerance

CM
Receiver 1 4 0 0

CM
Transmitter 1 2 0 0

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

458
Pinheiro, A.C., Simão, A. and Ambrosio, A.M.

to use the HSI and SPY methods, therefore using the auto-
complete feature they could be applied. The auto-complete
feature was executed in CM Receiver FSMs only to show
the increase in the number of test cases, caused by the extra
transitions artificially included in the FSM to enable the
application of the methods.

We have also explored the JPlavisFSM’s functionality to
calculate the minimal test set composed by test cases produced
by all the methods. After creating a test set comprising all test
cases, all the prefixed test-cases are discarded and the minimal
test set is generated by the tool. The test sets shown in the HSI*
and SPY* columns were not considered, since the original
methods, HIS and SPY, could be applied.

Table 4 illustrates the number of test cases derived from
each model (considering the total set and the minimal set), the
number of mutants created to each model and the mutation
score obtained with both sets of test case. The mutation scores
for the minimal and the total sets were the same, since only
prefixes are removed from the total set. The number of test
cases (total and minimal sets) includes the tests generated by
W*, UIO, HIS and SPY, but it does not include HIS* and SPY*
to FSMs from CM Receiver.

All the methods (except UIO) generate complete test
sets, but it is a theoretical concept which assumes that the
implementation can be represented by an FSM with the same
number of states of the specification.

In general, to apply FSM-based testing implies handling
a very huge number of test cases, so the tester must either
be prepared to automate the test execution or select and
prioritize the test cases. In our approach, we suggest a test
strategy that could be adopted: first is to select the smallest
test set generated by original methods; then, if there is
still enough time to the testing activity, other sets could
be applyed to improve the system’s reliability. In this case
study, the SPY and UIO methods should be selected for
CM Receiver FSMs and CM Transmitter FSMs, because the
Mutation Score of these sets were 1.0 for each one, and they
are complete sets as well.

The inputs and outputs represented in the models are
abstracted to enable the creation of FSMs, this fact led to the
generation of abstract test suites, so a post-processing of the
test sets will be necessary before the test execution. This allows
the test cases to be designed before defining some details of
implementation and before the implementation is ready.
Moreover, in the FSMs of the Comunication Module some

events shall be replaced by a set of others, as the case of the
INT2DirectTC, which corresponds to 23 different telecommands.

DISCUSSIONS AND RELATED WORKS

Various methods have been published to optimize the
number of test cases to minimize the efforts required to
obtain an acceptable level of software quality (Lai, 2002).
However, these methods and test tools are yet rarely used in
the software industry. Issues, such as ‘What are the hindrances

Table 4. Results of the generated Test Sets.

FSM

Number of test cases Mutation Analisys

Total Set
Minimal

Set

Mutants
Mutation

Score

R_N 342 285 1852 1.0

R_Ex1 460 408 1720 1.0

R_Ex2 286 264 1320 1.0

R_Ex4 286 263 1357 1.0

R_Ex5 284 265 1357 1.0

T_N 593 432 775 1.0

T_Ex1 593 432 775 1.0

T_Ex2 573 454 591 1.0

Table 3. Number of tests generated by method for each
Finite State Machine.

FSM W* UIO HSI HSI* SPY SPY*

R_N 234 48 38 78 22 40

R_Ex13 356 44 34 89 26 42

R_Ex2 201 37 27 67 21 40

R_Ex4 201 37 27 67 21 40

R_Ex5 201 37 27 67 19 37

T_N 316 21 - 184 - 72

T_Ex1 316 21 - 184 - 72

T_Ex2 335 19 - 158 - 61

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

459
FSM-Based Test Case Generation Methods Applied to Test the Communication Software on Board the ITASAT University Satellite: A Case Study

to the adoption of the generation methods based on FSM in the
industry?’ or ‘What is the gap between academic and industrial
testing methods?’ have been investigated in order to ease the
difficulties of employing FSMs in the real context. In this section
we discuss these questions in general speaking and concerning
our approach.

The fault domain, introduced in Background section, is
defined for general purpose FSM. That fault domain provides all
possible faults that can happen in the model. However, it may be
interesting to adapt the model to the real scenario that should be
tested. In Srivastava and Singh (2009) a fault model based on FSM
to embedded systems was proposed. The fault model provides
three kinds of errors that could occur among the connections
between the hardware and software components: unconnected
outputs, when the implementation should activate an output
but does not activate, in other words, there is no output after
a transition happens; unconnected inputs, when an input event
has no behavior effect, there is no transition to another state as
expected; and redirected inputs, which occur when an input is
redirected to an incorrect state and generates a wrong behavior.
The requirements for the construction of the test set were defined
according to the new fault domain. The main focus of Srivastava
and Singh is on the definition of the domain applied to embedded
systems; and a testing generation method is not applied.

In Santiago et al. (2008) a test environment that supports the
generation of test sequences based on Statecharts and FSMs is
presented. The simplicity of the model is considered the main
advantage of employing FSMs as a technique for modeling
reactive systems. Methods such as W and UIO were applied
in the context of embedded systems.

Although the applicability of MBT has been widely
investigated, there are some reasons for reluctance in adopting
academic methods for FSM-based testing. We have evaluated
some of the reasons presented in Lai and Leung (1995) and
Lai (2002), such as feasibility, that concerns the use of the
testing methods in real cases; extreme formalism, that gives
the impression of being too academic; need for training or
education in this area; and resistance to changing, because it is
not necessary the use of formal methods to do tests, according
to the current point of view of many industries acting in the
satellite-based software sector.

The difficulty in using MBT starts with the modeling phase.
Identifying the system inputs and outputs, as well as the system
behaviors, is not a trivial task. A broad knowledge about the
system and about FSM is necessary to understand how a

non-formal specification could be transformed into a formal
one. In our approach, CoFI methodology helped to deal with
these difficulties. The tester is guided, step by step, to model
the system behavior into several simple FSMs. Moreover, the
JPlavisFSM tool facilitated fitting the models to the testing
methods, automating the test cases generations, producing test
sets’ metrics allowing the tester to choose the best testing set.

The tester must yet interpret the generated test sets due to
the abstraction of the model, though the practicality of MBT
was improved by CoFI and JPlavisFSM. The formalism of the
FSM-based testing methods is transparent to the JPlavisFSM tool
user. The analysis of FSM properties is automatically generated.

Some validations with the use of FSM-based testing
techniques and CoFI methodology have been conducted
(Anjos et al., 2011; Pontes et al., 2012; Mattiello-Francisco
et al., 2013). In such cases the Condado (or ConData) (Martins
et al., 1999) was used as a tool to automatically generate test
cases. Condado tool does not have neither the facilities to
FSM structural analysis nor different methods to be chosen,
however the single FSM property it requires is the FSM be
connected. In the approach presented here, the FSMs have
more elaborated structures, so the facilities provided by
the JPlavisFSM tool allowed improving the application of the
CoFI. Besides that, it was applied to real embedded software
of satellite application.

Concerning the training aspect, JPlavisFSM tool can be used
to teach how the generation methods work. The tool has the
option to import extra methods. The user may implement his/
her own method and apply the n-Complete tool to analyze if the
method is correct. The JPlavisFSM may be used to support the
modeling phase too, since the GUI is simple, clean and it provides
functionalities for analyzing FSMs. The usability improvements
provided by JPlavisFSM and the guidelines of CoFI methodology
were tentative of reducing the gap between the good results
obtained in academia with testing methods and its use in practical
cases of industry as discussed in Lai and Leung (1995).

CONCLUSION

The gap between academic research and industrial practice
is still large. Thus, it is important to analyze the performance of
testing activity supported by FSMs in real systems, once FSM-
based methods are richly explored in the academic context.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

460
Pinheiro, A.C., Simão, A. and Ambrosio, A.M.

This paper has reported on the applicability of the FSM-based
testing in the real, developed Communication Module software
of the ITASAT university satellite. As testing is a costly activity,
automating the generation of test cases can help reduce the costs.
In this sense, MBT is an approach that derives test cases from a
formal model built to support the testing activity. On the other
hand, real systems like ITASAT software should be tested taking
into account requirements of timing and reactions to events.
In this context, the systematic approach of CoFI methodology
supported by the formalism implemented by JPlavisFSM could
be an alternative to test the system. We have observed restrictions
and benefits on applying this approach. Some observed limitations,
which should be issues for new investigations, are:
•	 The modeling phase is not trivial and some knowledge

about FSM is required to start the process. The tester has to
learn the basic concepts and structural properties of FSM;

•	 The applicability of the generation methods is highly
dependent on structural properties of FSM generated in
modeling phase. The tester has to know the basic theory
about the generation methods;

•	 The abstraction of the system is required to build models,
so the test set generated is an abstract set of inputs and
outputs, which needs to be interpreted before being
executed. So, the post-processing of test sets could
aggregate an extra cost to the test execution phase.

The observed benefits were:
•	 The CoFI methodology guides the modeling phase, which

helps the inexperienced testers start using the FSM technique;

•	 The FSM-based test generation was automated leading to
cost reduction of the test activity;

•	 The JPlavisFSM tool eliminates the need of profound
theoretical knowledge about FSM structural properties
and testing generation methods.

The MBT still has some practical limitation, but the initiatives
that were made in academia helps to reduce them. The definition
of new generation methods which do not require properties,
such as FSM minimality, has to be explored. At the same time,
the industry needs to step forward on the use of formal methods.
These initiatives will improve the efficiency and effectiveness
of testing activity.

As future work, we envision the following. The generated
test sets must be post-processed and executed against the
Communication Module implementation of ITASAT and
the complexity of these activities should be analyzed against the
obtained results.

ACKNOWLEDGMENTS

The authors would like to thank professors Emília Villani,
David Fernandez and Wilson Yamagutti for the opportunity
of applying the proposed approach in the ITASAT project.
The authors would also like to thank the financial support of
FAPESP, CNPq and CAPES. The authors are very thankful to
reviewers for their useful comments.

REFERENCES

Alencar, W.A.F., 2013, “Model checking aplicado a software
embarcado crítico do satélite universitário ITASAT”, Dissertação de
mestrado, ITA, São José dos Campos, Brazil.

Anjos, J.S., Gripp, J., Pontes, R. and Villani, E., 2011, “Applying the
CoFI testing methodology to a multifunctional robot end-effector”, São
José dos Campos, SP, Brazil.

Ambrosio, A.M., Martins, E., Vijaykumar, N.L. and Carvalho, S.V.,
2005, “Systematic generation of test and fault cases for space
application validation”, In Proceedings of the 9th ESA Data System in
Aerospace (DASIA), Edinburgh, Scotland. Noordwijk: ESA Publications.

Ambrosio, A.M., 2005, “CoFI: uma abordagem combinando teste
de conformidade e injeção de falhas para validação de software em

Aplicações Espaciais”, Tese de doutorado, INPE-13264-TDI/1031.
206p.

Ambrosio, A.M., Mattiello-Francisco, F., Santiago, V.A., Silva, W.P.
and Martins, E., 2007, “Designing fault injection experiments using
state-based model to test a space software”, Third Latin-American
Symposium on Dependable Computing (LADC), Morelia, México.
Lecture Notes in Computer Science (LNCS) series. Springer Editors:
Bondavali, A.; Brasileiro, F.; Rajsbaum, S. Springer, Berlin. pp. 170-
178. doi: 10.1007/978-3-540-75294-3_13.

Chow, T.S., 1978, “Testing software design modeled by finite-state
machines,” IEEE Transactions on Software Engineering, Vol. 4, No. 3,
pp. 178–187. doi: 10.1109/TSE.1978.231496.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.6, No 4, pp.447-461, Oct.-Dec., 2014

461
FSM-Based Test Case Generation Methods Applied to Test the Communication Software on Board the ITASAT University Satellite: A Case Study

Delamaro, M.E., Maldonado, J.C. and Jino, M., 2007, “Introdução ao
Teste de Software”, Elsevier.

Fabbri, S.C.P.F., Maldonado, J.C., Masiero, P.C. and Delamaro, M.E.,
1994, “Mutation analysis testing for finite state machines”, In Fifth
International Symposium on Software Reliability Engineering, Monterey,
California, USA, pp. 220-229.

Fujiwara, S., Bochmann, G.Von, Khendek, F., Amalou, M. and
Ghedamsi, A., 1991, “Test selection based on finite state models”,
IEEE Transactions on Software Engineering, Vol. 17, No. 6, pp. 591-
603. doi: 10.1109/32.87284.

Gill, A., 1962, “Introduction to the theory of finite-state machines”,
McGraw-Hill, New York.

Hierons, R.M. and Ural, H., 2010, “Generating a checking sequence
with a minimum number of reset transitions”, Automated Software
Engineering, Vol. 17, No. 3, pp. 217-250. doi: 10.1007/s10515-
009-0061-0.

Lai, R. and Leung, W., 1995, “Industrial and academic protocol
testing: the gap and the means of convergence”, Computer Network
ISDN System, Vol. 27, No. 4, pp. 537–547. doi: 10.1016/0169-
7552(93)E0110-Z.

Lai, R., 2002, “A survey of communication protocol testing”, The
Journal of Systems and Software, No. 62, pp. 21-46.

Martins, E., Sabião, S.B. and Ambrosio, A.M., 1999, “ConData: a
Tool for Automating Specification-based Test Case Generation for
Communication Systems”, Software Quality Journal, Vol. 8, No.4, pp.
303-319.

Mattiello-Francisco, M.F., Ambrosio, A.M., Villani, E., Martins, E.,
Dutra, T. and Coelho, B., 2013, “An experience of the technology
transfer of CoFI methodology to automotive domain”, LADC, Industrial
track. BDBComp Biblioteca Digital.

Mealy, G.H., 1955, “A Method for Synthesizing Sequential Circuits”.
Bell System Technical Journal, Vol. 34, No. 5, pp. 1045-1079.

Moore, E.F., 1956, “Gedanken–experiments on sequential machines”,
in Automata Studies. Princeton University Press, pp. 129-153.

Morais, M.H.E and Ambrosio, A.M., 2010, “A new model-based
approach for analysis and refinement of requirement specification
to space operations”, In Proceedings of the 10th Conference on
Space Operations. Huntsville, Alabama, USA. SpaceOps 2010.
American Institute of Aeronautics and Astronautics (AIAA). doi:
10.2514/6.2010-2231.

Morais, M.H.E., 2011, “Uma abordagem para a melhoria da qualidade
de requisitos baseada em modelos de estados”, Dissertação de
mestrado. INPE, 2011. São José dos Campos.

Pedrosa, L. and Moura, A., 2010, “Generalized partial test case
generation method”, In 4th International Conference on Secure
Software Integration and Reliability Improvement Companion (SSIRI-C
2010). Washington, DC, USA: IEEE Computer Society, pp. 70-77.

Petrenko, A., Yevtushenko, N., Lebedev, A. and Das, A., 1993,
“Nondeterministic state machines in protocol conformance testing”,
in Proceedings of the 6th International Workshop on Protocol Test
systems VI (IFIP TC6/WG6.1). Amsterdam, The Netherlands, The
Netherlands: North-Holland Publishing Co., pp. 363-378.

Pinheiro, A.C. and Ambrosio, A.M., 2013, “Modelagem do Módulo
de Comunicação do Satélite ITASAT – Segundo a metodologia CoFI”,
Relatório de Pesquisa, sid.inpe.br/mtc-m19/2013/10.04.19.58-

NTE. INPE, São José dos Campos. Retrieved in March, 19th 2014,
from http://urlib.net/8JMKD3MGP7W/3EUF338

Pinheiro, A.C., 2012, “Subsídios para a aplicação de métodos de
geração de casos de testes baseados em máquinas de estados”,
Dissertação de mestrado. ICMC. USP. São Carlos, Brazil.

Pontes, R.P., Morais, M.H.E., Véras, P.C., Ambrosio, A.M. and Villani, E.,
2009, “A comparative analysis of two verification techniques for DEDS:
Model checking versus model-based testing”, In 4th IFAC Workshop on
Discrete Event System Design (DEDS), Valencia, Spain, pp. 70-75.

Pontes, P.R., Véras, P.C., Ambrosio, A.M. and Villani, E., 2012,
“Contributions of model checking and CoFI methodology to the
development of space embedded software”, Empirical Software
Engineering – An International Journal, Vol. 10, No. 2, Springer. Online
FirstTM, doi: 10.1007/s10664-012-9215-y - ISSN 1382-3256.

Romero, A.G., Ambrosio, A.M. and Souza, M.L.O, 2012, “Finite state-
machine verification applied to hybrid systems”, 21st SAE BRASIL
International Congress and Exhibition, Expo-Center Norte, São Paulo,
Brazil. doi:10.4271/2012-36-0429.

Sabnani, K. and Dahbura, A., 1988, “A protocol test generation
procedure”, Computer Networks and ISDN Systems, Vol. 15, No. 4,
pp. 285-297. doi: 10.1016/0169-7552(88)90064-5.

Santiago, V., Vijaykumar, N.L., Guimarães, D., Amaral, A.S. and
Ferreira, E., 2008, “An environment for automated test case
generation from statechart-based and finite state machine-based
behavioral models”, In Proceedings of the 2008 IEEE International
Conference on Software Testing Verification and Validation Workshop.
Washington, DC, USA: IEEE Computer Society, pp. 63-72.

Sato, L.S., Saotome, O., Timm, C., Fernades, D. and Yamaguti, W.,
2011, “Itasat-1: Brazilian university microsatellite for payload test and
validation in low earth orbit”, In Proceeding of the 8th Symposium on
Small satellites for Eath Observation, Berlin, Germany.

Simão, A.S., Ambrosio, A.M., Fabbri, S.C.P.F., Amaral, A.S.M.S.,
Martins, E. and Maldonado, J. C., 2005, “Plavis/fsm: an environment
to integrate FSM-based testing tools”. In Simpósio Brasileiro de
Engenharia de Software - Sessão de Ferramentas. Universidade
Federal de Uberlândia. Uberlândia, Brazil.

Simão, A.S., Petrenko, A. and Yevtushenko, N., 2009, “Generating reduced
tests for fsms with extra states,” In Proceedings of the 21st IFIP WG
6.1 International Conference on Testing of Software and Communication
Systems and 9th International FATES Workshop, ser. TESTCOM ’09/
FATES ’09. Berlin, Heidelberg: Springer-Verlag, pp. 129-145.

Simão, A.S. and Petrenko, A., 2010, “Checking completeness of tests
for finite state machines”, IEEE Transactions on Computers, Vol. 59,
No 8, pp. 1023-1032. doi:10.1109/TC.2010.17.

Srivastava, S. and Singh, A., 2009, “Testing of embedded
system using fault modeling”, pp. 177-180. doi:10.1109/
ELECTRO.2009.5441142.

Utting, M. and Legeard, B., 2007, “Practical model-based testing: A
tools approach”, 1st ed. Morgan Kaufmann.

Yin, Y., Li, Z. and Liu, B., 2010, “Real-time embedded software test
case generation based on time-extended EFSM: A case study”, In
Proceedings of 2nd WASE International Conference on Information
Engineering (ICIE’10), pp. 272-275.

Vuong, S., Chan, W. and Ito, M., 1989, “The UIOv-Method for protocol
test sequence generation”, In Proceedings of the 2nd International
Workshop Protocol Test Systems, pp. 161-175.

