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Abstract. Flight simulators are employed by civil and military pilots, as well by engineers, in 

order to increase the security in training of crew, and to find out the behavior of the aircraft 

under different operational conditions. However, it is necessary to calibrate the simulator 

software to have good adherence to real flight. In this process, parameters of the mathematical 

model of the flight simulation need to be identified, such that the simulation is as close as 

possible to the real flight dynamic. With appropriated values of these parameters, the simulator 

will be ready for training or assessing the aircraft dynamics. This can be described as an inverse 

problem or parameter identification, formulated as an optimization problem. The simulator is 

designed to represent the dynamics of the helicopter AS355-F2, for testing two types of 

maneuvers : a sinusoidal input and 3-2-1-1 pulse input. The 

estimation methodology is also known as quad-M scheme, since it involves 

Measurement, Maneuver, Model, and Methods of error minimization. 

The tested helicopter was equipped with the Aydin Vector Data Acquisition System (AVDAS) 

PCU-816-I, ATD-800 digital recorder The system measures a total of thirty-five different 

parameters. The calibration of a dynamic flight simulator is achieved by two meta-heuristics: a

Genetic Algorithm and a new approach named Multiple Particle Collision Algorithm

(MPCA). Preliminary results show a good performance of the employed 

optimization methods. 
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INTRODUCTION

The Helicopter flight is quite expensive as compared with other similar fixed wing 

aircrafts. Helicopter Flight Simulators (HFS) can provide a suitable alternative to real flight 

experience to increase the flight security through training of the crew, prior evaluation of flight 

tasks and data acquisition procedures to validate and certificate onboard aircraft systems. 

However, the HFS must convey high degree of realism in order to be truly effective. 

The area of parameter estimation and model identification have several applications in 

astronomy, aerospace, economics, biology, electrical, geological areas [1], [2], [3]. The strategy 

is to adjust the unknown model parameters in order to achieve the best fit between the 

predictions of the mathematical model and the experimentally observed system response. Tools 

and techniques of system identification have evolved to match the complexity of the models 

and the increasing need for correction and precision in the results. This methodology is more 

accurate than the corresponding values predicted by other methods such as analytical and 

numerical differentiation, [4], [5], [6].

The presence of noise such as state noise or measurement noise, [6], affect the 

identification methods, and this process becomes more difficult as the number of degrees of 

freedom (DOFs) and model parameters increase [7]. The identification of parameters 

methodology uses techniques such as the maximum likelihood method, equation error method, 

output error method, filter error method, and stochastic method [8], [9]. These methods require 

a mathematical model of the aircraft with a set of initial values for the parameters to begin the 

algorithm ([10], [11]). Concerning helicopter system identification techniques, very few articles 

have used stochastic method. One can cite [12], [13] in the longitudinal mode system 

identification of the Twin Squirrel helicopter and [14] in the identification of a small unmanned 

helicopter model. In this work, we used a well-known Quad-M methodology for parameters 

identification [15] as shown schematically in Figure 1. 

Figure 1: Adaptation Quad-M Method with MPCA.
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This methodology takes into account the main elements of rotorcraft system 

identification, including the rotorcraft excitation maneuvers, the aerodynamic 

data measurements, the mathematical model of the helicopter equations of motion, and the 

parameter estimation methods used to minimize the predicted output-error between the 

model and the real data. With respect to the 

, the method used was MPCA. Each one of these will be

discussed in the following sections. 

2 THE QUAD-M METHODOLOGY

The Quad-M or M4 methodology [15] takes into account the main elements of 

system identification, including the excitation maneuvers, the aerodynamic

measurements, the mathematical model of the equations of motion, 

and the parameter estimation methods used to minimize the output-error between the 

model and the real data . Each one of these functional elements 

discussed below. 

2.1 Maneuvers

The dynamic response of the helicopter in flight is excited by the application of 

different control inputs to the cyclic and collective flight commands including pulse 

signals, step, doublet, multistep, sinusoidal, and 3-2-1-1 pulse sequence, among others. 

H e n c e , a wide variety of manoeuvres can be specified to excite the specific modes of the 

aircraft.

The choice of a proper flight test maneuvers, by shaping the excitation signals, is very

important to minimize the uncertainties in the parameter estimation procedures and to maximize

the information in the flight test data content. The optimizationof the excitation signal can be realized

from a priori knowledge of the initial dynamic parameters of interest. However, since there

are no priori studies available for AS355-F2 helicopter, the experimental manoeuvres were

specified applying conventional flight test procedures and taking into account flight safety

constraints. Since this work focuses the determination of the lateral-directional flight derivatives

at forward and level flight, special sequences of sharp-edge pulses known as the 3-2-1-1 using 

the lateral cyclic and pedal inputs were used to excite the dutch-roll mode with 80 kts

indicated airspeed at 5,000 ft of altitude pressure.

The identification procedure used the 3-2-1-1 sequence with both lateral cyclic and pedal

inputs, while the validation procedure utilized two different sequences, one with lateral cyclic

inputs and pedal fixed and the other with pedal input and fixed cyclic control, [12].

2.2 Measurements

The helicopter flight test data was recorded with the Aydin Vector Data Acquisition 

System (AVDAS) PCU-816-I and the ATD-800 digital recorder, this system measures a total 

of thirty-five different flight parameters. Some of the measured data channels include fuel 
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quantity in each tank, nose boom static and dynamic pressures, external stagnation temperature, 

angular rates (p, q, r), load 

aircraft body attitudes, nose heading, and the flight 

command deflections, comprised of collective, longitudinal and lateral cyclic, and pedal 

command defle c b a p). 

The earth axis speeds (u, v, w) were obtained with the aid of a Z12 Differential Global 

Positioning System DGPS from Astech, whose antenna is fixed in the top of the helicopter 

vertical fin. The DGPS and AVDAS data synchronization was done inserting a simultaneous 

event in both systems. The DGPS data is represented with the same AVDAS data sampling rate 

by means of linear interpolation procedure. 

The wind direction and intensity were obtained comparing the body axis speeds with the 

aerodynamic speed from the flight-test air data system, mounted on a nose boom, at trim 

conditions. Consequently, the body axis speeds (u, v, w) are easily calculated adding wind 

vector to the Earth axis speeds [13]. 

2.3The Helicopter Model

The helicopter equations of motion are derived from Newton second law for the rigid 

body translational and rotational degrees of freedom, and are given by [16],[17], and [18] as:

where X, Y and Z represents the external force components (longitudinal, lateral and vertical); 

L, M and N are respectively, the roll, pitch and yaw moments; and I(index) stands for the 

moments and products of inertia of the aircraft rotating body. The kinematic relation for the 

pitch rate and roll rate about Y and X-axis are written as:

d /dt =  q cos (7)

d /dt =  p + q sin tan + r cos tan (8)

The helicopter equations of motion are nonlinear, but a meaningful analysis can be 

employed by converting them into linear differential equations, by considering only small 
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perturbations about a trimmed equilibrium point (represented by subscript 0) in the rotorcraft 

flight envelope. In matrix notation, a linearized dynamical model is given by [16], and [18], 

(9)

therefore, Equation 9 may also be written as:

here Xl and Xd represent the state space vector for the longitudinal and lateral movements,

respectively. 

In this work, it is considered the parameter estimation of the lateral dynamic motion, 

whose simplifies model is expressed by:

The parameter values of interest for system identification are the elements of matrix Ad

(stability derivatives), matrix Bd (control derivatives), and the delays associated with the aircraft 

response ( ). Furthermore, the parameters include the estimation of an unknown bias vector, 

xbias. This vector is introduced in the mathematical model to represent measurement errors and

noise produced by transducers and signal condition instrumentation [4]. 
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The model parameter vector ( ) is estimated by a minimization process of the cost function, 

J , related to the output error between the measured and predicted system response,

where n is the number of observed measurements. 

2.4The MPCA Optimization Method

The cost function to be minimized is the output error between the model prediction 

response and the actual measured response. This objective function depends on the parameters 

of the proposed dynamic model, such as the helicopter aerodynamic stability and control 

that minimizes the cost function given by Equation 14 can be seen as an optimization problem 

and will be solved by a new meta-heuristics, named the Multiple Particle Collision Algorithm 

(MPCA).

The MPCA optimization algorithm was inspired on typical physical phenomena 

related to neutron particle transport inside a nuclear reactor core, where during the

neutron travel multiple particles absorption and scattering are observed. The results obtained 

with MPCA in this study are compared to the ones obtained by Cruz ([13]) where a Genetic 

Algorithm (GA) was used to find the helicopter aerodynamic and control derivatives. 

The MPCA is a meta-heuristic optimization method based on the canonical PCA [19]. 

This version uses multiple particles in a collaborative way, organizing a population of candidate 

solutions. The PCA was inspired by the traveling process (with absorption and scattering) of a 

particle (neutron) in the core of a nuclear reactor. The use of the PCA was effective for several 

test functions and real optimization applications [20].

The PCA starts with a selection of an initial solution (Old-Config), and is modified by a 

stochastic perturbation (Perturbation{.}), leading to the construction of a new solution (New-

Config). The new solution is compared (function Fitness{.}), and the new solution can or cannot 

be accepted. If the new solution is not accepted, the scheme of scattering (Scaterring{.}) is used. 

The exploration around closer positions is guaranteed by using the functions Perturbation{.} 

and Small-Perturbation{.}. If the new solution is better than the previous one, this new solution 

is absorbed. If a worse solution is found, the particle can be sent to a different location of the 

search space, such that it enables the algorithm to escape from a local minimum [21]. 
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The implementation of the MPCA algorithm is similar to PCA, but it uses a set with N 

particles, where a mechanism to share the particle information is necessary. A blackboard 

strategy is adopted, where the best-fitness information is shared among all particles in the 

process. This process was implemented in Message Passing Interface (MPI), looking for 

application into a distributed memory machine [21]. The pseudo-code for the MPCA is 

presented by Table 1.

Table 1: MPCA: pseudo-code for the optimization algorithm.

Generate an initial solution: Old-Config

Best-Fitness = Fitness{Old-Config}

Update Blackboard

For n = 0 to # of particles

For n = 0 to # iterations

Update Blackboard

Perturbation{.}

If Fitness{New-Config} > Fitness{Old-Config}

IfFitness{New-Config} > Best-Fitness

Best-Fitness = Fitness{New-Config}

End If

Old-Config = New-Config

Exploration{.}

Else

Scattering{.}

End If

End For

End For

3. RESULTS

The computational results obtained with MPCA and GA are show in Figures 2, 3 and 4.

The GA and the MPCA have been implemented in the Matlab/Simulink environment. 

Computer tests were conducted under Linux operating system, in an Intel Core I5 2.27 GHz. 

the average of 4 experiments with seeds generate with different random numbers and 

experimental data generating artificially. The parameters used are: 2 particles; 10 iterations 

(exploration). The stopping criterion used was the total number of iterations (30) and the initial 

estimative were the derivatives of stability and control of BO105 improved by the GA 
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Figure 2 shows the lateral velocity as function of time. The red curve corresponds to the 

real data obtained during the test, the dotted blue is the result of the identification produced by the

GA, and the results achieved by the MPCA are represented by the dotted curve in magenta.

The results show that a small discrepancy between the measured data and the data obtained by

both algorithms.

Figure 2: Linear velocity variation along the Y-axis.

A similar behavior is observed for the roll rate and the bank angle attitude of the aircraft 

as shown by Figures 3 and 4. 

Figure 3: Angular velocity (roll rate) variation along the X-axis.
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Figure 4. Bank angle as function of time.

3 CONCLUSIONS

In this work, we compared two stochastic algorithms, GA and MPCA, for helicopter 

parameter identification. The techniques were applied only in the estimation of the aerodynamic 

parameters of the lateral motion. The problem is formulated as an optimization process. 

Different heuristic search algorithms (GA and MPCA) were employed to address the solution 

of the optimization problem. The results indicate that GA and MPCA present a good agreement, 

but the results are better with the MPCA implementation. Further work is suggested to apply 

MPCA in lateral-directional dynamic mode and in a more complex model which includes both 

longitudinal and lateral-directional dynamic modes of the helicopter.
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