/** * @author renej * NURBS utils * * See NURBSCurve and NURBSSurface. * **/ /************************************************************** * NURBS Utils **************************************************************/ THREE.NURBSUtils = { /* Finds knot vector span. p : degree u : parametric value U : knot vector returns the span */ findSpan: function( p, u, U ) { var n = U.length - p - 1; if (u >= U[n]) { return n - 1; } if (u <= U[p]) { return p; } var low = p; var high = n; var mid = Math.floor((low + high) / 2); while (u < U[mid] || u >= U[mid + 1]) { if (u < U[mid]) { high = mid; } else { low = mid; } mid = Math.floor((low + high) / 2); } return mid; }, /* Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2 span : span in which u lies u : parametric point p : degree U : knot vector returns array[p+1] with basis functions values. */ calcBasisFunctions: function( span, u, p, U ) { var N = []; var left = []; var right = []; N[0] = 1.0; for (var j = 1; j <= p; ++ j) { left[j] = u - U[span + 1 - j]; right[j] = U[span + j] - u; var saved = 0.0; for (var r = 0; r < j; ++ r) { var rv = right[r + 1]; var lv = left[j - r]; var temp = N[r] / (rv + lv); N[r] = saved + rv * temp; saved = lv * temp; } N[j] = saved; } return N; }, /* Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1. p : degree of B-Spline U : knot vector P : control points (x, y, z, w) u : parametric point returns point for given u */ calcBSplinePoint: function( p, U, P, u ) { var span = this.findSpan(p, u, U); var N = this.calcBasisFunctions(span, u, p, U); var C = new THREE.Vector4(0, 0, 0, 0); for (var j = 0; j <= p; ++ j) { var point = P[span - p + j]; var Nj = N[j]; var wNj = point.w * Nj; C.x += point.x * wNj; C.y += point.y * wNj; C.z += point.z * wNj; C.w += point.w * Nj; } return C; }, /* Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3. span : span in which u lies u : parametric point p : degree n : number of derivatives to calculate U : knot vector returns array[n+1][p+1] with basis functions derivatives */ calcBasisFunctionDerivatives: function( span, u, p, n, U ) { var zeroArr = []; for (var i = 0; i <= p; ++ i) zeroArr[i] = 0.0; var ders = []; for (var i = 0; i <= n; ++ i) ders[i] = zeroArr.slice(0); var ndu = []; for (var i = 0; i <= p; ++ i) ndu[i] = zeroArr.slice(0); ndu[0][0] = 1.0; var left = zeroArr.slice(0); var right = zeroArr.slice(0); for (var j = 1; j <= p; ++ j) { left[j] = u - U[span + 1 - j]; right[j] = U[span + j] - u; var saved = 0.0; for (var r = 0; r < j; ++ r) { var rv = right[r + 1]; var lv = left[j - r]; ndu[j][r] = rv + lv; var temp = ndu[r][j - 1] / ndu[j][r]; ndu[r][j] = saved + rv * temp; saved = lv * temp; } ndu[j][j] = saved; } for (var j = 0; j <= p; ++ j) { ders[0][j] = ndu[j][p]; } for (var r = 0; r <= p; ++ r) { var s1 = 0; var s2 = 1; var a = []; for (var i = 0; i <= p; ++ i) { a[i] = zeroArr.slice(0); } a[0][0] = 1.0; for (var k = 1; k <= n; ++ k) { var d = 0.0; var rk = r - k; var pk = p - k; if (r >= k) { a[s2][0] = a[s1][0] / ndu[pk + 1][rk]; d = a[s2][0] * ndu[rk][pk]; } var j1 = (rk >= -1) ? 1 : -rk; var j2 = (r - 1 <= pk) ? k - 1 : p - r; for (var j = j1; j <= j2; ++ j) { a[s2][j] = (a[s1][j] - a[s1][j - 1]) / ndu[pk + 1][rk + j]; d += a[s2][j] * ndu[rk + j][pk]; } if (r <= pk) { a[s2][k] = -a[s1][k - 1] / ndu[pk + 1][r]; d += a[s2][k] * ndu[r][pk]; } ders[k][r] = d; var j = s1; s1 = s2; s2 = j; } } var r = p; for (var k = 1; k <= n; ++ k) { for (var j = 0; j <= p; ++ j) { ders[k][j] *= r; } r *= p - k; } return ders; }, /* Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2. p : degree U : knot vector P : control points u : Parametric points nd : number of derivatives returns array[d+1] with derivatives */ calcBSplineDerivatives: function( p, U, P, u, nd ) { var du = nd < p ? nd : p; var CK = []; var span = this.findSpan(p, u, U); var nders = this.calcBasisFunctionDerivatives(span, u, p, du, U); var Pw = []; for (var i = 0; i < P.length; ++ i) { var point = P[i].clone(); var w = point.w; point.x *= w; point.y *= w; point.z *= w; Pw[i] = point; } for (var k = 0; k <= du; ++ k) { var point = Pw[span - p].clone().multiplyScalar(nders[k][0]); for (var j = 1; j <= p; ++ j) { point.add(Pw[span - p + j].clone().multiplyScalar(nders[k][j])); } CK[k] = point; } for (var k = du + 1; k <= nd + 1; ++ k) { CK[k] = new THREE.Vector4(0, 0, 0); } return CK; }, /* Calculate "K over I" returns k!/(i!(k-i)!) */ calcKoverI: function( k, i ) { var nom = 1; for (var j = 2; j <= k; ++ j) { nom *= j; } var denom = 1; for (var j = 2; j <= i; ++ j) { denom *= j; } for (var j = 2; j <= k - i; ++ j) { denom *= j; } return nom / denom; }, /* Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2. Pders : result of function calcBSplineDerivatives returns array with derivatives for rational curve. */ calcRationalCurveDerivatives: function ( Pders ) { var nd = Pders.length; var Aders = []; var wders = []; for (var i = 0; i < nd; ++ i) { var point = Pders[i]; Aders[i] = new THREE.Vector3(point.x, point.y, point.z); wders[i] = point.w; } var CK = []; for (var k = 0; k < nd; ++ k) { var v = Aders[k].clone(); for (var i = 1; i <= k; ++ i) { v.sub(CK[k - i].clone().multiplyScalar(this.calcKoverI(k, i) * wders[i])); } CK[k] = v.divideScalar(wders[0]); } return CK; }, /* Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2. p : degree U : knot vector P : control points in homogeneous space u : parametric points nd : number of derivatives returns array with derivatives. */ calcNURBSDerivatives: function( p, U, P, u, nd ) { var Pders = this.calcBSplineDerivatives(p, U, P, u, nd); return this.calcRationalCurveDerivatives(Pders); }, /* Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3. p1, p2 : degrees of B-Spline surface U1, U2 : knot vectors P : control points (x, y, z, w) u, v : parametric values returns point for given (u, v) */ calcSurfacePoint: function( p, q, U, V, P, u, v ) { var uspan = this.findSpan(p, u, U); var vspan = this.findSpan(q, v, V); var Nu = this.calcBasisFunctions(uspan, u, p, U); var Nv = this.calcBasisFunctions(vspan, v, q, V); var temp = []; for (var l = 0; l <= q; ++ l) { temp[l] = new THREE.Vector4(0, 0, 0, 0); for (var k = 0; k <= p; ++ k) { var point = P[uspan - p + k][vspan - q + l].clone(); var w = point.w; point.x *= w; point.y *= w; point.z *= w; temp[l].add(point.multiplyScalar(Nu[k])); } } var Sw = new THREE.Vector4(0, 0, 0, 0); for (var l = 0; l <= q; ++ l) { Sw.add(temp[l].multiplyScalar(Nv[l])); } Sw.divideScalar(Sw.w); return new THREE.Vector3(Sw.x, Sw.y, Sw.z); } };