/** * @author aleeper / http://adamleeper.com/ * @author mrdoob / http://mrdoob.com/ * @author gero3 / https://github.com/gero3 * * Description: A THREE loader for STL ASCII files, as created by Solidworks and other CAD programs. * * Supports both binary and ASCII encoded files, with automatic detection of type. * * Limitations: * Binary decoding supports "Magics" color format (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL). * There is perhaps some question as to how valid it is to always assume little-endian-ness. * ASCII decoding assumes file is UTF-8. Seems to work for the examples... * * Usage: * var loader = new THREE.STLLoader(); * loader.load( './models/stl/slotted_disk.stl', function ( geometry ) { * scene.add( new THREE.Mesh( geometry ) ); * }); * * For binary STLs geometry might contain colors for vertices. To use it: * // use the same code to load STL as above * if (geometry.hasColors) { * material = new THREE.MeshPhongMaterial({ opacity: geometry.alpha, vertexColors: THREE.VertexColors }); * } else { .... } * var mesh = new THREE.Mesh( geometry, material ); */ THREE.STLLoader = function ( manager ) { this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager; }; THREE.STLLoader.prototype = { constructor: THREE.STLLoader, load: function ( url, onLoad, onProgress, onError ) { var scope = this; var loader = new THREE.XHRLoader( scope.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setResponseType('arraybuffer'); loader.load( url, function ( text ) { onLoad( scope.parse( text ) ); }, onProgress, onError ); }, parse: function ( data ) { var isBinary = function () { var expect, face_size, n_faces, reader; reader = new DataView( binData ); face_size = (32 / 8 * 3) + ((32 / 8 * 3) * 3) + (16 / 8); n_faces = reader.getUint32(80, true); expect = 80 + (32 / 8) + (n_faces * face_size); if ( expect === reader.byteLength ) { return true; } // some binary files will have different size from expected, // checking characters higher than ASCII to confirm is binary var fileLength = reader.byteLength; for ( var index = 0; index < fileLength; index ++ ) { if ( reader.getUint8(index, false) > 127 ) { return true; } } return false; }; var binData = this.ensureBinary( data ); return isBinary() ? this.parseBinary( binData ) : this.parseASCII( this.ensureString( data ) ); }, parseBinary: function ( data ) { var reader = new DataView( data ); var faces = reader.getUint32( 80, true ); var r, g, b, hasColors = false, colors; var defaultR, defaultG, defaultB, alpha; // process STL header // check for default color in header ("COLOR=rgba" sequence). for ( var index = 0; index < 80 - 10; index ++ ) { if ((reader.getUint32(index, false) == 0x434F4C4F /*COLO*/) && (reader.getUint8(index + 4) == 0x52 /*'R'*/) && (reader.getUint8(index + 5) == 0x3D /*'='*/)) { hasColors = true; colors = new Float32Array( faces * 3 * 3); defaultR = reader.getUint8(index + 6) / 255; defaultG = reader.getUint8(index + 7) / 255; defaultB = reader.getUint8(index + 8) / 255; alpha = reader.getUint8(index + 9) / 255; } } var dataOffset = 84; var faceLength = 12 * 4 + 2; var offset = 0; var geometry = new THREE.BufferGeometry(); var vertices = new Float32Array( faces * 3 * 3 ); var normals = new Float32Array( faces * 3 * 3 ); for ( var face = 0; face < faces; face ++ ) { var start = dataOffset + face * faceLength; var normalX = reader.getFloat32(start, true); var normalY = reader.getFloat32(start + 4, true); var normalZ = reader.getFloat32(start + 8, true); if (hasColors) { var packedColor = reader.getUint16(start + 48, true); if ((packedColor & 0x8000) === 0) { // facet has its own unique color r = (packedColor & 0x1F) / 31; g = ((packedColor >> 5) & 0x1F) / 31; b = ((packedColor >> 10) & 0x1F) / 31; } else { r = defaultR; g = defaultG; b = defaultB; } } for ( var i = 1; i <= 3; i ++ ) { var vertexstart = start + i * 12; vertices[ offset ] = reader.getFloat32( vertexstart, true ); vertices[ offset + 1 ] = reader.getFloat32( vertexstart + 4, true ); vertices[ offset + 2 ] = reader.getFloat32( vertexstart + 8, true ); normals[ offset ] = normalX; normals[ offset + 1 ] = normalY; normals[ offset + 2 ] = normalZ; if (hasColors) { colors[ offset ] = r; colors[ offset + 1 ] = g; colors[ offset + 2 ] = b; } offset += 3; } } geometry.addAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) ); geometry.addAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) ); if (hasColors) { geometry.addAttribute( 'color', new THREE.BufferAttribute( colors, 3 ) ); geometry.hasColors = true; geometry.alpha = alpha; } return geometry; }, parseASCII: function ( data ) { var geometry, length, normal, patternFace, patternNormal, patternVertex, result, text; geometry = new THREE.Geometry(); patternFace = /facet([\s\S]*?)endfacet/g; while ( ( result = patternFace.exec( data ) ) !== null ) { text = result[0]; patternNormal = /normal[\s]+([\-+]?[0-9]+\.?[0-9]*([eE][\-+]?[0-9]+)?)+[\s]+([\-+]?[0-9]*\.?[0-9]+([eE][\-+]?[0-9]+)?)+[\s]+([\-+]?[0-9]*\.?[0-9]+([eE][\-+]?[0-9]+)?)+/g; while ( ( result = patternNormal.exec( text ) ) !== null ) { normal = new THREE.Vector3( parseFloat( result[ 1 ] ), parseFloat( result[ 3 ] ), parseFloat( result[ 5 ] ) ); } patternVertex = /vertex[\s]+([\-+]?[0-9]+\.?[0-9]*([eE][\-+]?[0-9]+)?)+[\s]+([\-+]?[0-9]*\.?[0-9]+([eE][\-+]?[0-9]+)?)+[\s]+([\-+]?[0-9]*\.?[0-9]+([eE][\-+]?[0-9]+)?)+/g; while ( ( result = patternVertex.exec( text ) ) !== null ) { geometry.vertices.push( new THREE.Vector3( parseFloat( result[ 1 ] ), parseFloat( result[ 3 ] ), parseFloat( result[ 5 ] ) ) ); } length = geometry.vertices.length; geometry.faces.push( new THREE.Face3( length - 3, length - 2, length - 1, normal ) ); } geometry.computeBoundingBox(); geometry.computeBoundingSphere(); return geometry; }, ensureString: function ( buf ) { if (typeof buf !== "string") { var array_buffer = new Uint8Array(buf); var str = ''; for (var i = 0; i < buf.byteLength; i ++) { str += String.fromCharCode(array_buffer[i]); // implicitly assumes little-endian } return str; } else { return buf; } }, ensureBinary: function ( buf ) { if (typeof buf === "string") { var array_buffer = new Uint8Array(buf.length); for (var i = 0; i < buf.length; i ++) { array_buffer[i] = buf.charCodeAt(i) & 0xff; // implicitly assumes little-endian } return array_buffer.buffer || array_buffer; } else { return buf; } } }; if ( typeof DataView === 'undefined') { DataView = function(buffer, byteOffset, byteLength) { this.buffer = buffer; this.byteOffset = byteOffset || 0; this.byteLength = byteLength || buffer.byteLength || buffer.length; this._isString = typeof buffer === "string"; } DataView.prototype = { _getCharCodes:function(buffer,start,length) { start = start || 0; length = length || buffer.length; var end = start + length; var codes = []; for (var i = start; i < end; i ++) { codes.push(buffer.charCodeAt(i) & 0xff); } return codes; }, _getBytes: function (length, byteOffset, littleEndian) { var result; // Handle the lack of endianness if (littleEndian === undefined) { littleEndian = this._littleEndian; } // Handle the lack of byteOffset if (byteOffset === undefined) { byteOffset = this.byteOffset; } else { byteOffset = this.byteOffset + byteOffset; } if (length === undefined) { length = this.byteLength - byteOffset; } // Error Checking if (typeof byteOffset !== 'number') { throw new TypeError('DataView byteOffset is not a number'); } if (length < 0 || byteOffset + length > this.byteLength) { throw new Error('DataView length or (byteOffset+length) value is out of bounds'); } if (this.isString) { result = this._getCharCodes(this.buffer, byteOffset, byteOffset + length); } else { result = this.buffer.slice(byteOffset, byteOffset + length); } if (!littleEndian && length > 1) { if (!(result instanceof Array)) { result = Array.prototype.slice.call(result); } result.reverse(); } return result; }, // Compatibility functions on a String Buffer getFloat64: function (byteOffset, littleEndian) { var b = this._getBytes(8, byteOffset, littleEndian), sign = 1 - (2 * (b[7] >> 7)), exponent = ((((b[7] << 1) & 0xff) << 3) | (b[6] >> 4)) - ((1 << 10) - 1), // Binary operators such as | and << operate on 32 bit values, using + and Math.pow(2) instead mantissa = ((b[6] & 0x0f) * Math.pow(2, 48)) + (b[5] * Math.pow(2, 40)) + (b[4] * Math.pow(2, 32)) + (b[3] * Math.pow(2, 24)) + (b[2] * Math.pow(2, 16)) + (b[1] * Math.pow(2, 8)) + b[0]; if (exponent === 1024) { if (mantissa !== 0) { return NaN; } else { return sign * Infinity; } } if (exponent === -1023) { // Denormalized return sign * mantissa * Math.pow(2, -1022 - 52); } return sign * (1 + mantissa * Math.pow(2, -52)) * Math.pow(2, exponent); }, getFloat32: function (byteOffset, littleEndian) { var b = this._getBytes(4, byteOffset, littleEndian), sign = 1 - (2 * (b[3] >> 7)), exponent = (((b[3] << 1) & 0xff) | (b[2] >> 7)) - 127, mantissa = ((b[2] & 0x7f) << 16) | (b[1] << 8) | b[0]; if (exponent === 128) { if (mantissa !== 0) { return NaN; } else { return sign * Infinity; } } if (exponent === -127) { // Denormalized return sign * mantissa * Math.pow(2, -126 - 23); } return sign * (1 + mantissa * Math.pow(2, -23)) * Math.pow(2, exponent); }, getInt32: function (byteOffset, littleEndian) { var b = this._getBytes(4, byteOffset, littleEndian); return (b[3] << 24) | (b[2] << 16) | (b[1] << 8) | b[0]; }, getUint32: function (byteOffset, littleEndian) { return this.getInt32(byteOffset, littleEndian) >>> 0; }, getInt16: function (byteOffset, littleEndian) { return (this.getUint16(byteOffset, littleEndian) << 16) >> 16; }, getUint16: function (byteOffset, littleEndian) { var b = this._getBytes(2, byteOffset, littleEndian); return (b[1] << 8) | b[0]; }, getInt8: function (byteOffset) { return (this.getUint8(byteOffset) << 24) >> 24; }, getUint8: function (byteOffset) { return this._getBytes(1, byteOffset)[0]; } }; }