/** * @author miibond * Generate a texture that represents the luminosity of the current scene, adapted over time * to simulate the optic nerve responding to the amount of light it is receiving. * Based on a GDC2007 presentation by Wolfgang Engel titled "Post-Processing Pipeline" * * Full-screen tone-mapping shader based on http://www.graphics.cornell.edu/~jaf/publications/sig02_paper.pdf */ THREE.AdaptiveToneMappingPass = function ( adaptive, resolution ) { this.resolution = ( resolution !== undefined ) ? resolution : 256; this.needsInit = true; this.adaptive = adaptive !== undefined ? !!adaptive : true; this.luminanceRT = null; this.previousLuminanceRT = null; this.currentLuminanceRT = null; if ( THREE.CopyShader === undefined ) console.error( "THREE.AdaptiveToneMappingPass relies on THREE.CopyShader" ); var copyShader = THREE.CopyShader; this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms ); this.materialCopy = new THREE.ShaderMaterial( { uniforms: this.copyUniforms, vertexShader: copyShader.vertexShader, fragmentShader: copyShader.fragmentShader, blending: THREE.NoBlending, depthTest: false } ); if ( THREE.LuminosityShader === undefined ) console.error( "THREE.AdaptiveToneMappingPass relies on THREE.LuminosityShader" ); this.materialLuminance = new THREE.ShaderMaterial( { uniforms: THREE.LuminosityShader.uniforms, vertexShader: THREE.LuminosityShader.vertexShader, fragmentShader: THREE.LuminosityShader.fragmentShader, blending: THREE.NoBlending, } ); this.adaptLuminanceShader = { defines: { "MIP_LEVEL_1X1" : Math.log2( this.resolution ).toFixed(1), }, uniforms: { "lastLum": { type: "t", value: null }, "currentLum": { type: "t", value: null }, "delta": { type: 'f', value: 0.016 }, "tau": { type: 'f', value: 1.0 } }, vertexShader: [ "varying vec2 vUv;", "void main() {", "vUv = uv;", "gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );", "}" ].join('\n'), fragmentShader: [ "varying vec2 vUv;", "uniform sampler2D lastLum;", "uniform sampler2D currentLum;", "uniform float delta;", "uniform float tau;", "void main() {", "vec4 lastLum = texture2D( lastLum, vUv, MIP_LEVEL_1X1 );", "vec4 currentLum = texture2D( currentLum, vUv, MIP_LEVEL_1X1 );", "float fLastLum = lastLum.r;", "float fCurrentLum = currentLum.r;", //The adaption seems to work better in extreme lighting differences //if the input luminance is squared. "fCurrentLum *= fCurrentLum;", // Adapt the luminance using Pattanaik's technique "float fAdaptedLum = fLastLum + (fCurrentLum - fLastLum) * (1.0 - exp(-delta * tau));", // "fAdaptedLum = sqrt(fAdaptedLum);", "gl_FragColor = vec4( vec3( fAdaptedLum ), 1.0 );", "}", ].join('\n') }; this.materialAdaptiveLum = new THREE.ShaderMaterial( { uniforms: this.adaptLuminanceShader.uniforms, vertexShader: this.adaptLuminanceShader.vertexShader, fragmentShader: this.adaptLuminanceShader.fragmentShader, defines: this.adaptLuminanceShader.defines, blending: THREE.NoBlending } ); if ( THREE.ToneMapShader === undefined ) console.error( "THREE.AdaptiveToneMappingPass relies on THREE.ToneMapShader" ); this.materialToneMap = new THREE.ShaderMaterial( { uniforms: THREE.ToneMapShader.uniforms, vertexShader: THREE.ToneMapShader.vertexShader, fragmentShader: THREE.ToneMapShader.fragmentShader, blending: THREE.NoBlending } ); this.enabled = true; this.needsSwap = true; this.clear = false; this.camera = new THREE.OrthographicCamera( -1, 1, 1, -1, 0, 1 ); this.scene = new THREE.Scene(); this.quad = new THREE.Mesh( new THREE.PlaneBufferGeometry( 2, 2 ), null ); this.scene.add( this.quad ); }; THREE.AdaptiveToneMappingPass.prototype = { render: function ( renderer, writeBuffer, readBuffer, delta, maskActive ) { if ( this.needsInit ) { this.reset( renderer ); this.luminanceRT.type = readBuffer.type; this.previousLuminanceRT.type = readBuffer.type; this.currentLuminanceRT.type = readBuffer.type; this.needsInit = false; } if ( this.adaptive ) { //Render the luminance of the current scene into a render target with mipmapping enabled this.quad.material = this.materialLuminance; this.materialLuminance.uniforms.tDiffuse.value = readBuffer; renderer.render( this.scene, this.camera, this.currentLuminanceRT ); //Use the new luminance values, the previous luminance and the frame delta to //adapt the luminance over time. this.quad.material = this.materialAdaptiveLum; this.materialAdaptiveLum.uniforms.delta.value = delta; this.materialAdaptiveLum.uniforms.lastLum.value = this.previousLuminanceRT; this.materialAdaptiveLum.uniforms.currentLum.value = this.currentLuminanceRT; renderer.render( this.scene, this.camera, this.luminanceRT ); //Copy the new adapted luminance value so that it can be used by the next frame. this.quad.material = this.materialCopy; this.copyUniforms.tDiffuse.value = this.luminanceRT; renderer.render( this.scene, this.camera, this.previousLuminanceRT ); } this.quad.material = this.materialToneMap; this.materialToneMap.uniforms.tDiffuse.value = readBuffer; renderer.render( this.scene, this.camera, writeBuffer, this.clear ); }, reset: function( renderer ) { // render targets if ( this.luminanceRT ) { this.luminanceRT.dispose(); } if ( this.currentLuminanceRT ) { this.currentLuminanceRT.dispose(); } if ( this.previousLuminanceRT ) { this.previousLuminanceRT.dispose(); } var pars = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBFormat }; this.luminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars ); this.luminanceRT.generateMipmaps = false; this.previousLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars ); this.previousLuminanceRT.generateMipmaps = false; //We only need mipmapping for the current luminosity because we want a down-sampled version to sample in our adaptive shader pars.minFilter = THREE.LinearMipMapLinearFilter; this.currentLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars ); if ( this.adaptive ) { this.materialToneMap.defines["ADAPTED_LUMINANCE"] = ""; this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT; } //Put something in the adaptive luminance texture so that the scene can render initially this.quad.material = new THREE.MeshBasicMaterial( { color: 0x777777 }); this.materialLuminance.needsUpdate = true; this.materialAdaptiveLum.needsUpdate = true; this.materialToneMap.needsUpdate = true; // renderer.render( this.scene, this.camera, this.luminanceRT ); // renderer.render( this.scene, this.camera, this.previousLuminanceRT ); // renderer.render( this.scene, this.camera, this.currentLuminanceRT ); }, setAdaptive: function( adaptive ) { if ( adaptive ) { this.adaptive = true; this.materialToneMap.defines["ADAPTED_LUMINANCE"] = ""; this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT; } else { this.adaptive = false; delete this.materialToneMap.defines["ADAPTED_LUMINANCE"]; this.materialToneMap.uniforms.luminanceMap.value = undefined; } this.materialToneMap.needsUpdate = true; }, setAdaptionRate: function( rate ) { if ( rate ) { this.materialAdaptiveLum.uniforms.tau.value = Math.abs( rate ); } }, setMaxLuminance: function( maxLum ) { if ( maxLum ) { this.materialToneMap.uniforms.maxLuminance.value = maxLum; } }, setAverageLuminance: function( avgLum ) { if ( avgLum ) { this.materialToneMap.uniforms.averageLuminance.value = avgLum; } }, setMiddleGrey: function( middleGrey ) { if ( middleGrey ) { this.materialToneMap.uniforms.middleGrey.value = middleGrey; } }, dispose: function() { if ( this.luminanceRT ) { this.luminanceRT.dispose(); } if ( this.previousLuminanceRT ) { this.previousLuminanceRT.dispose(); } if ( this.currentLuminanceRT ) { this.currentLuminanceRT.dispose(); } if ( this.materialLuminance ) { this.materialLuminance.dispose(); } if ( this.materialAdaptiveLum ) { this.materialAdaptiveLum.dispose(); } if ( this.materialCopy ) { this.materialCopy.dispose(); } if ( this.materialToneMap ) { this.materialToneMap.dispose(); } } };