// Author: Aleksandr Albert // Website: www.routter.co.tt // Description: A deep water ocean shader set // based on an implementation of a Tessendorf Waves // originally presented by David Li ( www.david.li/waves ) // The general method is to apply shaders to simulation Framebuffers // and then sample these framebuffers when rendering the ocean mesh // The set uses 7 shaders: // -- Simulation shaders // [1] ocean_sim_vertex -> Vertex shader used to set up a 2x2 simulation plane centered at (0,0) // [2] ocean_subtransform -> Fragment shader used to subtransform the mesh (generates the displacement map) // [3] ocean_initial_spectrum -> Fragment shader used to set intitial wave frequency at a texel coordinate // [4] ocean_phase -> Fragment shader used to set wave phase at a texel coordinate // [5] ocean_spectrum -> Fragment shader used to set current wave frequency at a texel coordinate // [6] ocean_normal -> Fragment shader used to set face normals at a texel coordinate // -- Rendering Shader // [7] ocean_main -> Vertex and Fragment shader used to create the final render THREE.ShaderLib['ocean_sim_vertex'] = { varying: { "vUV": { type: "v2" } }, vertexShader: [ 'varying vec2 vUV;', 'void main (void) {', 'vUV = position.xy * 0.5 + 0.5;', 'gl_Position = vec4(position, 1.0 );', '}' ].join('\n') }; THREE.ShaderLib['ocean_subtransform'] = { uniforms: { "u_input": { type: "t", value: null }, "u_transformSize": { type: "f", value: 512.0 }, "u_subtransformSize": { type: "f", value: 250.0 } }, varying: { "vUV": { type: "v2" } }, fragmentShader: [ //GPU FFT using a Stockham formulation 'precision highp float;', 'const float PI = 3.14159265359;', 'uniform sampler2D u_input;', 'uniform float u_transformSize;', 'uniform float u_subtransformSize;', 'varying vec2 vUV;', 'vec2 multiplyComplex (vec2 a, vec2 b) {', 'return vec2(a[0] * b[0] - a[1] * b[1], a[1] * b[0] + a[0] * b[1]);', '}', 'void main (void) {', '#ifdef HORIZONTAL', 'float index = vUV.x * u_transformSize - 0.5;', '#else', 'float index = vUV.y * u_transformSize - 0.5;', '#endif', 'float evenIndex = floor(index / u_subtransformSize) * (u_subtransformSize * 0.5) + mod(index, u_subtransformSize * 0.5);', //transform two complex sequences simultaneously '#ifdef HORIZONTAL', 'vec4 even = texture2D(u_input, vec2(evenIndex + 0.5, gl_FragCoord.y) / u_transformSize).rgba;', 'vec4 odd = texture2D(u_input, vec2(evenIndex + u_transformSize * 0.5 + 0.5, gl_FragCoord.y) / u_transformSize).rgba;', '#else', 'vec4 even = texture2D(u_input, vec2(gl_FragCoord.x, evenIndex + 0.5) / u_transformSize).rgba;', 'vec4 odd = texture2D(u_input, vec2(gl_FragCoord.x, evenIndex + u_transformSize * 0.5 + 0.5) / u_transformSize).rgba;', '#endif', 'float twiddleArgument = -2.0 * PI * (index / u_subtransformSize);', 'vec2 twiddle = vec2(cos(twiddleArgument), sin(twiddleArgument));', 'vec2 outputA = even.xy + multiplyComplex(twiddle, odd.xy);', 'vec2 outputB = even.zw + multiplyComplex(twiddle, odd.zw);', 'gl_FragColor = vec4(outputA, outputB);', '}' ].join('\n') }; THREE.ShaderLib['ocean_initial_spectrum'] = { uniforms: { "u_wind": { type: "v2", value: new THREE.Vector2(10.0, 10.0) }, "u_resolution": { type: "f", value: 512.0 }, "u_size": { type: "f", value: 250.0 }, }, fragmentShader: [ 'precision highp float;', 'const float PI = 3.14159265359;', 'const float G = 9.81;', 'const float KM = 370.0;', 'const float CM = 0.23;', 'uniform vec2 u_wind;', 'uniform float u_resolution;', 'uniform float u_size;', 'float square (float x) {', 'return x * x;', '}', 'float omega (float k) {', 'return sqrt(G * k * (1.0 + square(k / KM)));', '}', 'float tanh (float x) {', 'return (1.0 - exp(-2.0 * x)) / (1.0 + exp(-2.0 * x));', '}', 'void main (void) {', 'vec2 coordinates = gl_FragCoord.xy - 0.5;', 'float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;', 'float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;', 'vec2 K = (2.0 * PI * vec2(n, m)) / u_size;', 'float k = length(K);', 'float l_wind = length(u_wind);', 'float Omega = 0.84;', 'float kp = G * square(Omega / l_wind);', 'float c = omega(k) / k;', 'float cp = omega(kp) / kp;', 'float Lpm = exp(-1.25 * square(kp / k));', 'float gamma = 1.7;', 'float sigma = 0.08 * (1.0 + 4.0 * pow(Omega, -3.0));', 'float Gamma = exp(-square(sqrt(k / kp) - 1.0) / 2.0 * square(sigma));', 'float Jp = pow(gamma, Gamma);', 'float Fp = Lpm * Jp * exp(-Omega / sqrt(10.0) * (sqrt(k / kp) - 1.0));', 'float alphap = 0.006 * sqrt(Omega);', 'float Bl = 0.5 * alphap * cp / c * Fp;', 'float z0 = 0.000037 * square(l_wind) / G * pow(l_wind / cp, 0.9);', 'float uStar = 0.41 * l_wind / log(10.0 / z0);', 'float alpham = 0.01 * ((uStar < CM) ? (1.0 + log(uStar / CM)) : (1.0 + 3.0 * log(uStar / CM)));', 'float Fm = exp(-0.25 * square(k / KM - 1.0));', 'float Bh = 0.5 * alpham * CM / c * Fm * Lpm;', 'float a0 = log(2.0) / 4.0;', 'float am = 0.13 * uStar / CM;', 'float Delta = tanh(a0 + 4.0 * pow(c / cp, 2.5) + am * pow(CM / c, 2.5));', 'float cosPhi = dot(normalize(u_wind), normalize(K));', 'float S = (1.0 / (2.0 * PI)) * pow(k, -4.0) * (Bl + Bh) * (1.0 + Delta * (2.0 * cosPhi * cosPhi - 1.0));', 'float dk = 2.0 * PI / u_size;', 'float h = sqrt(S / 2.0) * dk;', 'if (K.x == 0.0 && K.y == 0.0) {', 'h = 0.0;', //no DC term '}', 'gl_FragColor = vec4(h, 0.0, 0.0, 0.0);', '}' ].join('\n') }; THREE.ShaderLib['ocean_phase'] = { uniforms: { "u_phases": { type: "t", value: null }, "u_deltaTime": { type: "f", value: null }, "u_resolution": { type: "f", value: null }, "u_size": { type: "f", value: null }, }, varying: { "vUV": { type: "v2" } }, fragmentShader: [ 'precision highp float;', 'const float PI = 3.14159265359;', 'const float G = 9.81;', 'const float KM = 370.0;', 'varying vec2 vUV;', 'uniform sampler2D u_phases;', 'uniform float u_deltaTime;', 'uniform float u_resolution;', 'uniform float u_size;', 'float omega (float k) {', 'return sqrt(G * k * (1.0 + k * k / KM * KM));', '}', 'void main (void) {', 'float deltaTime = 1.0 / 60.0;', 'vec2 coordinates = gl_FragCoord.xy - 0.5;', 'float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;', 'float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;', 'vec2 waveVector = (2.0 * PI * vec2(n, m)) / u_size;', 'float phase = texture2D(u_phases, vUV).r;', 'float deltaPhase = omega(length(waveVector)) * u_deltaTime;', 'phase = mod(phase + deltaPhase, 2.0 * PI);', 'gl_FragColor = vec4(phase, 0.0, 0.0, 0.0);', '}' ].join('\n') }; THREE.ShaderLib['ocean_spectrum'] = { uniforms: { "u_size": { type: "f", value: null }, "u_resolution": { type: "f", value: null }, "u_choppiness": { type: "f", value: null }, "u_phases": { type: "t", value: null }, "u_initialSpectrum": { type: "t", value: null }, }, varying: { "vUV": { type: "v2" } }, fragmentShader: [ 'precision highp float;', 'const float PI = 3.14159265359;', 'const float G = 9.81;', 'const float KM = 370.0;', 'varying vec2 vUV;', 'uniform float u_size;', 'uniform float u_resolution;', 'uniform float u_choppiness;', 'uniform sampler2D u_phases;', 'uniform sampler2D u_initialSpectrum;', 'vec2 multiplyComplex (vec2 a, vec2 b) {', 'return vec2(a[0] * b[0] - a[1] * b[1], a[1] * b[0] + a[0] * b[1]);', '}', 'vec2 multiplyByI (vec2 z) {', 'return vec2(-z[1], z[0]);', '}', 'float omega (float k) {', 'return sqrt(G * k * (1.0 + k * k / KM * KM));', '}', 'void main (void) {', 'vec2 coordinates = gl_FragCoord.xy - 0.5;', 'float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;', 'float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;', 'vec2 waveVector = (2.0 * PI * vec2(n, m)) / u_size;', 'float phase = texture2D(u_phases, vUV).r;', 'vec2 phaseVector = vec2(cos(phase), sin(phase));', 'vec2 h0 = texture2D(u_initialSpectrum, vUV).rg;', 'vec2 h0Star = texture2D(u_initialSpectrum, vec2(1.0 - vUV + 1.0 / u_resolution)).rg;', 'h0Star.y *= -1.0;', 'vec2 h = multiplyComplex(h0, phaseVector) + multiplyComplex(h0Star, vec2(phaseVector.x, -phaseVector.y));', 'vec2 hX = -multiplyByI(h * (waveVector.x / length(waveVector))) * u_choppiness;', 'vec2 hZ = -multiplyByI(h * (waveVector.y / length(waveVector))) * u_choppiness;', //no DC term 'if (waveVector.x == 0.0 && waveVector.y == 0.0) {', 'h = vec2(0.0);', 'hX = vec2(0.0);', 'hZ = vec2(0.0);', '}', 'gl_FragColor = vec4(hX + multiplyByI(h), hZ);', '}' ].join('\n') }; THREE.ShaderLib['ocean_normals'] = { uniforms: { "u_displacementMap": { type: "t", value: null }, "u_resolution": { type: "f", value: null }, "u_size": { type: "f", value: null }, }, varying: { "vUV": { type: "v2" } }, fragmentShader: [ 'precision highp float;', 'varying vec2 vUV;', 'uniform sampler2D u_displacementMap;', 'uniform float u_resolution;', 'uniform float u_size;', 'void main (void) {', 'float texel = 1.0 / u_resolution;', 'float texelSize = u_size / u_resolution;', 'vec3 center = texture2D(u_displacementMap, vUV).rgb;', 'vec3 right = vec3(texelSize, 0.0, 0.0) + texture2D(u_displacementMap, vUV + vec2(texel, 0.0)).rgb - center;', 'vec3 left = vec3(-texelSize, 0.0, 0.0) + texture2D(u_displacementMap, vUV + vec2(-texel, 0.0)).rgb - center;', 'vec3 top = vec3(0.0, 0.0, -texelSize) + texture2D(u_displacementMap, vUV + vec2(0.0, -texel)).rgb - center;', 'vec3 bottom = vec3(0.0, 0.0, texelSize) + texture2D(u_displacementMap, vUV + vec2(0.0, texel)).rgb - center;', 'vec3 topRight = cross(right, top);', 'vec3 topLeft = cross(top, left);', 'vec3 bottomLeft = cross(left, bottom);', 'vec3 bottomRight = cross(bottom, right);', 'gl_FragColor = vec4(normalize(topRight + topLeft + bottomLeft + bottomRight), 1.0);', '}' ].join('\n') }; THREE.ShaderLib['ocean_main'] = { uniforms: { "u_displacementMap": { type: "t", value: null }, "u_normalMap": { type: "t", value: null }, "u_geometrySize": { type: "f", value: null }, "u_size": { type: "f", value: null }, "u_projectionMatrix": { type: "m4", value: null }, "u_viewMatrix": { type: "m4", value: null }, "u_cameraPosition": { type: "v3", value: null }, "u_skyColor": { type: "v3", value: null }, "u_oceanColor": { type: "v3", value: null }, "u_sunDirection": { type: "v3", value: null }, "u_exposure": { type: "f", value: null }, }, varying: { "vPos": { type: "v3" }, "vUV": { type: "v2" } }, vertexShader: [ 'precision highp float;', 'varying vec3 vPos;', 'varying vec2 vUV;', 'uniform mat4 u_projectionMatrix;', 'uniform mat4 u_viewMatrix;', 'uniform float u_size;', 'uniform float u_geometrySize;', 'uniform sampler2D u_displacementMap;', 'void main (void) {', 'vec3 newPos = position + texture2D(u_displacementMap, uv).rgb * (u_geometrySize / u_size);', 'vPos = newPos;', 'vUV = uv;', 'gl_Position = u_projectionMatrix * u_viewMatrix * vec4(newPos, 1.0);', '}' ].join('\n'), fragmentShader: [ 'precision highp float;', 'varying vec3 vPos;', 'varying vec2 vUV;', 'uniform sampler2D u_displacementMap;', 'uniform sampler2D u_normalMap;', 'uniform vec3 u_cameraPosition;', 'uniform vec3 u_oceanColor;', 'uniform vec3 u_skyColor;', 'uniform vec3 u_sunDirection;', 'uniform float u_exposure;', 'vec3 hdr (vec3 color, float exposure) {', 'return 1.0 - exp(-color * exposure);', '}', 'void main (void) {', 'vec3 normal = texture2D(u_normalMap, vUV).rgb;', 'vec3 view = normalize(u_cameraPosition - vPos);', 'float fresnel = 0.02 + 0.98 * pow(1.0 - dot(normal, view), 5.0);', 'vec3 sky = fresnel * u_skyColor;', 'float diffuse = clamp(dot(normal, normalize(u_sunDirection)), 0.0, 1.0);', 'vec3 water = (1.0 - fresnel) * u_oceanColor * u_skyColor * diffuse;', 'vec3 color = sky + water;', 'gl_FragColor = vec4(hdr(color, u_exposure), 1.0);', '}' ].join('\n') };