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ABSTRACT

SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) catalog, pro-
vides a set of tools that allows data access for astronomers and scientific education.
One of the available interfaces allows users to enter ad-hoc SQL statements to query
the catalog, and has logged over 280 million queries since 2001. To assess and inves-
tigate usage behavior, log analyses were performed after the 5th and 10th year of the
portal being in production. Such analyses, however, focused on the HTTP access,
and just simple information for the database usage. This work aims to apply text
mining techniques over the SQL logs to define a methodology to parse, clean and
tokenize statements into an intermediate numerical representation for data mining
and knowledge discovery, which can provide deeper analysis over SQL usage, and
also has a number of foreseen applications in database optimization and improving
user experience.
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MINERAÇÃO DE TEXTO APLICADO À CONSULTAS SQL: UM
ESTUDO DE CASO PARA O SDSS SKYSERVER

RESUMO

SkyServer, o portal de Internet para o catálogo Sloan Digital Sky Survey (SDSS),
fornece um conjunto de ferramentas que permitem acesso a dados para astrônomos
e para educação científica. Uma das interfaces disponíveis permite a inserção de
instruções SQL ad-hoc para consultar o catálogo, e já recebeu mais de 280 milhões de
consultas desde 2001. Para avaliar e investigar o comportamento de uso, análises de
log foram realizadas após o 5◦ e 10◦ ano de vida do portal. Tais análises, no entanto,
focaram no acesso HTTP, e apenas informações básicas de utlização do banco de
dados. Este trabalho tem por objetivo aplicar técnicas de mineração de texto sobre os
logs SQL com o intuito de definir uma metodologia para analisar, limpar e dividir
em símbolos tais declarações em uma representação numérica intermediária para
posterior mineração de dados e extração de conhecimento; possibilitando análises
mais profundas sobre o uso de SQL, e também aplicações previstas em otimização
de banco de dados e para melhora de experiência de usuário.
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1 INTRODUCTION

1.1 Context and Motivation

Long before the big data hype, astronomy projects had to deal with large amounts of
data being collected and generated. One such project is the Sloan Digital Sky Survey
(SDSS), the most influential astronomy survey to date (MADRID; MACCHETTO,
2009). In operation since April 2000, the program is in its fourth iteration (SDSS-I,
2000-2005; SDSS-II, 2005-2008; SDSS-III, 2008-2014; SDSS-IV, 2014-2020) and has
created a detailed three-dimensional map of the Universe, with images of over one
third of the sky, and spectra for more than five million astronomical objects (ALAM
et al., 2015).

Raw data collected by SDSS is processed for reduction, correction, calibration, and
feature extraction; which is then stored in an indexed database and eventually made
public (STOUGHTON et al., 2002; SZALAY et al., 2002). The Catalog Archive
Server, one of SDSS’s data distribution interfaces, was originally designed as an
object-oriented database, but during the first public data release faced too many
bugs and issues with performance and scalability as data increased. At the time,
an alternative easy-to-use, web-based version was also deployed using a relational
database that became known as SkyServer. Geared towards casual users with vi-
sualization tools and educational resources, it also included an ad-hoc SQL query
submission page, which for general surprise proved to be far more popular and re-
liable to get data out of the database, even with professional astronomers. This
fact eventually led to the original design being deprecated in favor of the alterna-
tive (THAKAR et al., 2003).

For astronomers to answer queries like ‘find gravitational lens candidates’ or ‘find
objects like this one’, they would have to download a subset of the binary data and
write their own programs to analyze such data, taking hours or days in the process.
The SQL-based SkyServer, however, allowed such queries to be quickly processed
through a simple SQL statement. The portal was built to serve as a data mining tool,
meaning users could simply and quickly query and analyze only the most relevant
and up-to-date data for their needs, without the need for any downloads or custom
development, representing a real productivity gain in their workflow (SZALAY et al.,
2002). In operation since 2001, SkyServer has proven to be extremely popular, with
an average of over 19 million page hits and almost 2 million SQL queries submitted
every month (SDSS, 2015).
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Since 2003, SkyServer has been logging every query submitted to the portal. Other
than the statement itself, it also collects other query information, such as timestamp,
target data release, origin (IP address and the tool used), query success or failure,
elapsed time, among others. This data can be used to generate summarized access
statistics, like queries per month or data release query distribution over time, as
presented by Raddick et al. (2014).

However, for a more in depth usage analysis, more complex approaches are required,
such as data processing and transformation. Thus, this work aims to apply text min-
ing techniques with the goal to define a methodology to parse, clean and tokenize
statements into a weighted numerical representation, which can then be fed into
regular machine learning algorithms for data mining. As proof-of-concept, we pro-
ceed with an exploratory analysis over part of the historical logs to uncover natural
groupings through clustering techniques.

1.2 Related Work

There are other works which also analyzed the historical SQL logs from SkyServer.
Singh et al. (2006) suggests that SQL queries with incorrect syntax can be compared
to the logs, so to recommend similar and correct ones back to the user. Zhang et
al. (2012) presents a visualization tool for the logs, color coding queries to easily
compare different length statements and plotting a sky map of popular searched
areas.

This thesis, in turn, specializes the parsing statements from the former and open
up analysis and mining opportunities from the latter by allowing the use of regular
machine learning algorithms.

SQL is also used in other scientific projects, such as the UCSC Genome
Browser (KENT et al., 2002), which features a web tool to build queries and di-
rect access to its database; and SQLShare (HOWE et al., 2011), a cloud-based tool
that allows scientists to update their data in plain files or spreadsheets and promptly
analyze them using SQL.

Hence, we expect lessons learned in this context could also be applied in any other
scientific database publicly available through SQL interfaces.
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1.3 Thesis Overview

This thesis is organized as follows. In Chapter 2 we review the field of text mining
and related disciplines, which brings together the set of techniques used in exploring
and analyzing the data. The methodology, explaining the steps taken towards our
objective, is presented in Chapter 3, with discussions of experimental results in
Chapter 4. Finally, Chapter 5 presents the conclusions and future directions.
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2 TEXT MINING

2.1 Introduction

Knowledge Discovery in Databases (KDD) is the nontrivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable patterns in
data (FAYYAD et al., 1996). Such process, with its underlying activities, is pre-
sented in Figure 2.1.

Figure 2.1 - An overview of the KDD process steps.

SOURCE: Fayyad et al. (1996)

Text mining, also known as Text Data Mining or Knowledge Discovery in Texts,
can be viewed as an extension to KDD, in which it pursues the same objective and
can be applied through the same process, but with specific techniques to deal with
the different type of data it targets: unstructured or semi-structured textual data,
such as emails, full-text documents and markup files (e.g., HTML and XML) (TAN,
1999; FAN et al., 2006).

KDD is the intersection of a number of research fields, including machine learning,
pattern recognition, databases, statistics, artificial intelligence, data visualization,
and high-performance computing (FAYYAD et al., 1996). On top of these, text min-
ing also draws on advances from other computer science disciplines concerned with
the handling of text and natural language, such as information retrieval, informa-
tion extraction and natural language processing (TAN, 1999; FELDMAN; SANGER,
2006).
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The discovery process, as depicted in Figure 2.1, is interactive and iterative, involving
many decisions made by the user, and can have significative iteration, sometimes
containing loops between any two steps. After developing an understanding of the
application domain and identifying a goal, Fayyad et al. (1996) broadly outline the
process to involve selection, preprocessing and transformation of the data to be
processed in order to create a target dataset, with noise removed from it, accounted
for missing values and properly reduced for the most useful features to represent
such data; application of data mining algorithms to extract patterns or models; and
evaluating the results to identify the subset of the enumerated patterns deemed
knowledge.

As surveyed by Fan et al. (2006), technologies of text mining include:

Information extraction. Refers to the ability of computers to analyze unstruc-
tured text and identify key phrases and relationships within text, by the
process of pattern matching. Serves as the basis for many of the various
other text mining technologies.

Topic tracking. The inference and prediction of other documents of interest for a
given user, based on his access and reading history.

Summarization. To reduce the length and detail of a document to its main points
and overall meaning, helping users assess whether a document meets their
needs.

Categorization. Refers to the identification of the main themes of a document and
assigning a predefined topic.

Clustering. Refers to the grouping of similar documents. The main difference with
categorization is that labels are not predefined.

Concept linkage. The ability to connect related documents by identifying their
shared concepts, sometimes helping users find information they perhaps
would not have found through traditional search.

Information visualization. To provide large textual sources in a visual hierarchy
or map. Like concept linkage, it often provides browsing capabilities, in
addition to search.

Question answering. Refers to the processing of queries in a natural language
form.
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We discuss below the supporting techniques in the related fields of information
retrieval and machine learning that are of particular interest for this work. By con-
sidering SQL statements as short documents, we can use such techniques to perform
a number of exploratory analyses over the historical logs of SkyServer, considered
here as our document collection.

2.2 Information Retrieval

Information Retrieval (IR) is the field of study interested in finding text documents
that satisfy an information need from within large collections. Much of its concepts
and technologies govern the basics of how search engines work, such as indexes
construction and compression, term vocabulary and spelling correction, boolean and
tolerant retrieval, scoring and relevance, among others (MANNING et al., 2009).

In the context of the Text Mining process, as illustrated in Figure 2.1, IR techniques
and concepts can be applied throughout the process, specially in the preprocessing,
transformation and evaluation steps. Some of which are explained below.

2.2.1 Vocabulary Construction

In Manning et al. (2009), some key definitions are made as follows: token is an
instance of a sequence of characters in some particular document that are grouped
together as a useful semantic unit for processing; type is the class of all tokens
containing the same character sequence; term, or word, is a type that is included in
the vocabulary; and vocabulary, also referred to as dictionary or lexicon, is the set
of terms.

Vocabulary construction could be as simple as splitting white space in text. This
process is known as tokenization: the task of chopping a given character sequence,
usually throwing away certain characters in the process, such as punctuation. This,
however, could lead to duplicate types that just have different letter cases, e.g.,
“Select” and “select”. Therefore, it is also common to run other preprocessing tasks
during vocabulary construction, such as token normalization, the process of canoni-
calizing tokens so that matches occur despite superficial differences in the character
sequences of the tokens; dropping common words, known as stop words; or stem-
ming, the process to reduce inflectional and derivationally related forms of a word
to a common base form. (MANNING et al., 2009).
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2.2.2 Term Distribution and Weighting

Zipf’s Law, a commonly used model of the distribution of terms in a collection
of documents, states that the product of the frequency of use of words and the
rank order is approximately constant. Let cfi be the collection frequency of the ith
most common term ordered by number of appearances, Zipf’s observation was that
cfi ∝ 1/i (RIJSBERGEN, 1979; MANNING et al., 2009). It is a power law that,
when plotted on a log-log scale, renders a straight line, such as the one depicted in
Figure 2.2.

Figure 2.2 - Frequency distribution of the top 5000 SQL terms from the SDSS SkyServer
SQL logs. The dashed line shows a −1 slope corresponding to Zipf’s Law.

SOURCE: Singh et al. (2006)

Luhn (1958) states that a set of significant words could be established by their rank
order based on term frequency, and, thus, this set could be used to discriminate the
contents of a document. Use of term frequency is one of the simplest approaches to
give a weight to a term, denoted as tft,d, with the subscripts denoting the term and
the document in order. This particular representation of a document is known as the
bag of words model, in which the order of appearance of a given term is irrelevant,
but the number of its occurrences are material (MANNING et al., 2009).
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However, not all terms have the same significance towards a document’s representa-
tion, as also devised by Luhn (1958), where a statistical approach could be used to
define “confidence limits” to remove terms that are too common or too rare, leaving
only those that have the most resolving power of significance.

An extremely popular approach on this matter was proposed by Jones (1972), and
consists in scaling down the weights of terms with high document frequency, dft,
defined to be the number of documents in the collection that contain a term t. With
N as the total number of documents in a collection, the scaling factor became known
as the inverse document frequency, denoted idft:

idft = log N

dft

Combining the definitions of term frequency and inverse document frequency gives
the tf-idf weighting scheme that assigns the largest weight to those terms which arise
with high frequency in individual documents, but are at the same time, relatively
rare in the collection as a whole (SALTON et al., 1975). Formally, for a term t, a
weight in document d is given by:

tf-idft,d = tft,d × idft

In this case, documents are represented as a vector of its terms weights, known as
the vector space model. In this model, a collection of vectors is denoted as a term-
document matrix, an M × N matrix, whose rows represent the M terms of the N
documents (MANNING et al., 2009). Note that in the context of IR M is usually
large, but also sparse, i.e., there is a large number of terms, but documents do not
have all of them.

2.3 Clustering

As introduced before, in a text mining context, clustering refers to the grouping of
similar documents, and can be used for example, to improve search performance by
narrowing the search space, to organize results by topic similarity and thus helping
exploration of relevant groups within the collection, or yet to summarize contents
of a given collection (LARSEN; AONE, 1999).

On a general perspective from data analysis, clustering is the exploratory procedure
that organizes a collection of patterns into natural groupings based on a given asso-
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ciation measure. Intuitively, patterns within a cluster are much more alike between
each other, while being as different as possible to patterns belonging to a different
cluster (JAIN et al., 1999). An example is given in Figure 2.3, where it is visually
clear the presence of three different clusters based on the density of the groups,
i.e., points within a cluster are closer to each other than to any other point in this
two-dimensional Euclidean plane.

(a) Input patterns (b) Labeled clusters

Figure 2.3 - Example of a clustering analysis shown as the color labeling of input patterns
intro three clusters.

Also referred to as unsupervised classification, clustering fundamentally differs from
discriminant analysis, or supervised classification, because there are no prior labels
in the data that define what the clusters should be (JAIN et al., 1999).

2.3.1 Measures of Association

Many of the clustering methods are based on a binary relationship between pat-
terns, with association measures quantifying in a numerical measure how similar or
dissimilar two patterns are between each other. If one considers patterns as objects,
such association could be the number of attributes they share, or considering pat-
terns as points in an Euclidean space, this relation could be described as how close
or distant they lie.

Recall from subsection 2.2.2 that documents can be either represented as a bag
of words, or vectors. For the first case, if we consider just the set of terms, it is
intuitive that two documents with similar bags are similar in content. Formally,
given sets X and Y , the similarity measure is a function sim(X, Y ) that increases as
the number of shared terms increases. The simplest measure |X ∩ Y |, known as the
simple matching coefficient, is the number of terms that are both in X and Y . For
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the case of a vector representation, lets consider the case of a boolean vector, with
n components (terms of the vocabulary) with 0s or 1s denoting absence or presence
of a term. Given vectors x and y, it is easy to devise that the simple matching
coefficient can be written as the sum of components in which both vectors are 1,
i.e., their inner product: ∑n

i=1 xiyi (RIJSBERGEN, 1979; MANNING et al., 2009).

Distances, or dissimilarity measures, can be defined as follows. Given a set of points,
called a space, a distance measure is a function d(x, y) that takes two points in the
space and produces a real number. It must also satisfy the following axioms, in which
case, it is also called a metric (RAJARAMAN; ULLMAN, 2011):

i. d(x, y) ≥ 0,

ii. d(x, y) = 0 if and only if x = y,

iii. d(x, y) = d(y, x), and

iv. d(x, y) ≤ d(x, z) + d(z, y), known as the triangle inequality.

2.3.1.1 Euclidean metrics

The most familiar distance measure for continuous features is the Euclidean distance

d(x, y) =
√√√√ n∑
i=1

(xi − yi)2 = ‖x− y‖2

Also known as the L2-norm, it is just a especial case (r = 2) of the Lr-norm, or
Minkowsky distance

d(x, y) =
(

n∑
i=1
|xi − yi|r

)1/r

= ‖x− y‖r

There are two other common cases for the Lr-norm. The L1-norm, or Manhattan
distance, which is just the sum of the absolute differences in each dimension, and
the L∞-norm, which is the limit as r approaches infinity. Formally, the L∞-norm is
defined as max(|xi − yi|) over all dimensions i, because as r gets larger, only the
dimension with the largest difference matters (RAJARAMAN; ULLMAN, 2011).

2.3.1.2 Cosine coefficient

The cosine coefficient is the angular separation of the vectors that two points make.
It is defined by the inner product of these vectors, divided by the product of their
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magnitudes (i.e., their L2-norms or Euclidean lengths) (RIJSBERGEN, 1979). Given
two vectors x and y, the cosine similarity is given by

simC(x, y) = x · y
|x||y|

=

n∑
i=1

xiyi√√√√ n∑
i=1

x2
i

n∑
i=1

y2
i

It considers vector directions, and, as such, a vector and its multiples are considered
the same. Thus, the cosine coefficient is vector-length invariant, which is specially
useful in cases that two documents with similar content, but different lengths can
have a significant vector difference considering their Euclidean distance (MANNING
et al., 2009). Another interesting property is that it can also be applied to discrete
versions of Euclidean spaces, where points are vectors with integer or boolean (0 or
1) components (RAJARAMAN; ULLMAN, 2011).

2.3.1.3 Jaccard coefficient

The Jaccard coefficient is a measure of overlap between sets. Given two sets X and
Y , the Jaccard similarity is given by

simJ(X, Y ) = |X ∩ Y |
|X ∪ Y |

,

with 0 when there is no overlap and hence total dissimilarity, and 1 when X = Y ,
meaning total similarity. This coefficient also has a heuristic interpretation, in which
it measures the probability that an element of at least one of two sets is an element
of both (LEVANDOWSKY; WINTER, 1971). Also note that 1 − simJ , known as
the Jaccard distance, is a proper distance metric, abiding to all four axioms defined
before (RIJSBERGEN, 1979).

As with the simple matching coefficient, the Jaccard coefficient can be generalized to
bit vectors and then further for continuous or discrete non-negative spaces, known
as the Extended Jaccard coefficient. Given two vectors x and y, Extended Jaccard
similarity is given by

simEJ(x, y) = x · y
|x|2 + |y|2 − x · y .

This version has the morphing property to behave like the Euclidean dis-
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tance for smaller vectors, and like the Cosine coefficient for larger vec-
tors (STREHL et al., 2000).

2.3.1.4 Discussion on the different measures

Rijsbergen (1979) states that, although there is a number of different coefficients, the
difference in retrieval performance achieved by them are insignificant, provided they
are appropriately normalized. As such, Jaccard and Cosine coefficients can be seen
as a normalized version of the simple matching coefficient, by considering the sizes
of the argument vectors. As expected, their performance is similar, as reviewed in
Strehl et al. (2000) and Haveliwala et al. (2002), and also preferred over Euclidean
distances for showing better results, as shown by Strehl et al. (2000) and Huang
(2008). In regards to Euclidean metrics, Gionis et al. (1999) states that there is no
clear difference between using L1 or L2 norms.

2.3.2 Methods and Algorithms

There is a large number of different clustering methods and algorithms in the lit-
erature, each with different processes and results. Tan et al. (2005) resumes these
differences in two categories, types of clusterings and types of clusters.

Clusterings can be hierarchical or partitional, in which the former produces a nested
structure of clusters, while the latter results in a flat set; exclusive, overlapping or
fuzzy, in which patterns belong to one, more than one, or to all (with different
degrees of membership between 0 and 1) clusters, respectively; and complete or
partial, which defines if all patterns have been assigned to a cluster or not.

Clusters, among others types, can be well-separated, in which patterns are closer
to each other in the cluster than to anyone of a different cluster; prototype-based,
or centroid-based, in which each pattern is closer to the prototype that defines the
cluster than to any other prototype; or density-based, in which a cluster is a dense
region of patterns, surrounded by a region of low density.

Below we discuss two methods popularly applied in text mining contexts.

2.3.3 K-Means

K-Means, also denoted as (hard) c-means (CHI et al., 1996), is one of the most popu-
lar clustering algorithms. It is a partitional, exclusive and complete approach, based
on minimizing the squared error criterion. Let C be the patterns set that are part of
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a cluster, K the number of clusters, and V the set of cluster centers (the centroids),
the squared error function is given as (JAIN et al., 1999; MANNING et al., 2009).

J(V ) =
K∑
k=1

∑
x∈Ck

||x− ck||2 ,

where ck = 1
|Ck|

∑
x∈Ck

x is the centroid of cluster k, calculated as the mean of all the

patterns member of that cluster.

Starting with K random initial partitions, it iteratively reassign the patterns to
centroids, until convergence, i.e., no reassignments of patterns were made in that it-
eration or the squared error ceases to decrease significantly (JAIN et al., 1999).
Its popularity is due to its implementation simplicity and linear complexity in
time (O(IKMN), with I iteractions, K clusters, M vector dimensions and N pat-
terns) (MANNING et al., 2009).

The general algorithm goes as follows:

i. Choose k cluster centers.

ii. Assign each pattern to the closest cluster center.

iii. Recompute cluster center using the current cluster memberships.

iv. If convergence criterion is not met, go to step ii.

Drawbacks, as listed in Berkhin (2006), include, but are not limited to, results
strongly depending on the initial guess of centroids, K not easily defined, sensi-
tiveness to outliers, not scalable and only applicable for Euclidean spaces. However,
given its widespread usage and popularity, a number of extensions and modifications
have been proposed, as reviewed by Jain et al. (1999), Berkhin (2006), Manning et
al. (2009) and Rajaraman and Ullman (2011), in regards to better centroids initial-
ization or choosing the right value of K, among others.

2.3.4 Fuzzy C-Means

Fuzzy C-Means (FCM), is one such extension of the k-means, and targets cases in
which clusters are not completely disjointed, therefore data could be classified as
belonging to one cluster almost as well as to another. Here, the difference is that
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each pattern belongs to all clusters with varying degress of membership between 0
and 1. The criterion function is updated as following (CHI et al., 1996):

J(U, V ) =
K∑
k=1

N∑
n=1

umkn||xn − ck||2

where:

• x1, . . . , xn are data sample vectors;

• V = c1, . . . , ck are cluster centroids, calculated as

ck = 1
K∑
n=1

umkn

K∑
n=1

umknxkn ;

• U = [ukn] is a K × N matrix, where ukn is the kth membership value of
the nth input sample xn, calculated as

ukn =

[
1

|xn − ck|2

]1/(m−1)

K∑
j=1

[
1

|xn − cj|2

]1/(m−1) ,

and the membership values satisfy the following conditions 0 ≤ ukn ≤
1, ∑K

k=1 ukn = 1, 0 < ∑N
n=1 ukn < n;

• m ∈ [1,∞) is an exponent weight factor;

Note how cluster centroids now consider every pattern, and contributions of samples
are weigthed by its membership value, which is defined according to its distance
to the corresponding centroid. The weight factor m reduces the influence of small
membership values. The larger the value of m, the smaller the influence of samples
with small membership values (CHI et al., 1996).

The FCM algorithm goes as following:

i. Choose the value of m, k cluster centers, and calculate U (0). Set the iteration
α = 1.

ii. Compute cluster centers. Given U (α), calculate V (α).
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iii. Update memebership values. Given V (α), calculate U (α).

iv. Stop the iteration if
max |u(α)

kn − u
(α−1)
kn | ≤ ε

else let α = α + 1 and go to step ii, where ε is the pre-specified small number
representing the smallest acceptable change in U .

2.3.5 Cluster validity

Since clustering is an unsupervised learning process, there is no information on labels
for the data, as opposed to supervised learning, in which results can be compared to
the correct label of a given pattern. Clustering results can then be assessed through
an expert, or by a particular automated procedure and relates to two issues: i)
interpretability, and ii) visualization (BERKHIN, 2006).

Assessment process depends on a number of factors, such as the method of initializa-
tion, the choice of the number of classes, and the clustering method. FCM provides
more flexibility than its hard counterpart, K-Means. Thus, we shall consider valid-
ity for FCM only, and specifically how to choose the number of clusters c, since
initialization requires a good estimate of the clusters and is application dependent.

Below we describe four of these validity measures: partition coefficient, partition
entropy, Fukuyama-Sugeno, and Xie-Beni (CHI et al., 1996; PAL; BEZDEK, 1995).

The partition coefficient vpc and partition entropy vpe both measure the “fuziness” of
the clustering result. The former by measuring the closeness of all input samples to
their corresponding centroids, and the latter by measuring the distance the matrix
U is from being crisp. They are given by

vpc(U) = 1
N

c∑
k=1

N∑
n=1

(ukn)2

and
vpe(U) = − 1

N

c∑
k=1

N∑
n=1

ukn log(ukn) .

If each sample is closely associated with only one cluster, i.e., for each n, ukn is large
for only one k value, then the uncertainty of the data is small, which corresponds to
a large vpc(U) value. And if all ukn’s are close to 0 or 1, vpe(U) is small and indicates
a good clustering result.
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The Fukuyama-Sugeno vfs index consists of the difference of two terms. The first
term combines the fuzziness in U with the geometrical compactness of the represen-
tation of X via the c prototypes V . The second term combines the fuzziness in each
row of U with the distance from the kth prototype to the grand mean of the data.
The index is defined as

vfs(U, V,X) =
c∑

k=1

N∑
n=1

(ukn)m(||xn − vk||2 − ||vk − v̄||2) ,

where 1 < m <∞.

The Xie-Beni index is the ratio of the total variation of the partition and the
centroids (U, V ) and the separation of the centroids vectors, and is given as

vxb(U, V,X) =

c∑
k=1

N∑
n=1

umkn||xn − vk||2

N(min
k 6=l
{||vk − vl||2})

Both Fukuyama-Sugeno and Xie-Beni indexes propose good partitions for their min-
imum values over the number of c’s.

2.3.6 The Curse of Dimensionality

When working with high-dimensional spaces, such as documents, a problem known
as the “curse of dimensionality” arises, in which almost all pairs of points are equally
far away from one another and almost any two vectors are almost orthogonal (RA-
JARAMAN; ULLMAN, 2011). One approach to deal with this problem is to apply
dimensionality reduction techniques (TAN et al., 2005).

In the context of IR and Text Mining, two common techniques are Latent Semantic
Indexing, which approximates the term-document matrix by one of lower rank using
Singular Value Decomposition (MANNING et al., 2009); and Minhashing, which
hash document vectors to the same bucket with equal probability of the similarity
between them (RAJARAMAN; ULLMAN, 2011).

2.3.7 Self-Organizing Maps

The Self-Organizing Maps (SOM) is a neural network algorithm that performs unsu-
pervised learning. It implements an orderly mapping of high-dimensional data into
a regular low-dimensional grid or matrix, extracting a latent structure of the input
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space while preserving topological and metric relationships. Thus, SOMs can be ap-
plied in dimensionality reduction, data visualization, clustering, and classification,
among other applications (KOHONEN, 1998; YIN, 2008).

The SOM consist of M neurons located on a regular, usually two-dimensional, grid.
Each neuron j is connected to the input and has a prototype vector wj = [wj1, ..., wjd]
in a location rj, with the same number of dimensions d as the input samples. Training
is based on a competitive learning model, in which, when presented with a stimulus,
neurons compete among themselves for the ownership of this input. The winner,
along with its neighbors, then strengthen their relationships with this input, even-
tually making the map localized, i.e., different local fields will respond to different
ranges of inputs.

The learning algorithm consists of first, initializing every prototype w to small num-
bers randomly, and then repeating the following steps (YIN, 2008):

i. At each time t, present an input x(t), select the winner,

v(t) = arg min
k∈Ω
||x(t)− wk(t)||.

ii. Update the weights of winner and its neighbors,

∆wk(t) = α(t)η(v, k, t)[x(t)− wv(t)].

iii. Repeat until the map converges,

where

• Ω is the set of neuron indexes;

• the coefficients {α(t), t ≥ 0}, termed adaptation gain, or learning rate, are
scalar-valued, decrease monotonically, and satisfy (i) 0 < α(t) < 1; (ii)
limt→∞

∑
α(t)→∞; (iii) limt→∞ α(t)→ 0; and

• η(v, k, t) is the neighborhood function, which can be the original stepped
type of neighborhood function (is one when the neuron is within the neigh-
borhood or zero otherwise), a Gaussian form is often used in practice, i.e.

η(v, k, t) = exp
[
−||v − k||2σ(t)2

]
, with σ representing the changing effective

range of the neighborhood.
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Note that winners, also called the best-matching unit (BMU), can also be calculated
using any measure of association, changing accordingly in case it is a similarity
measure to be the arg max of the similarity function.

The algorithm has two interesting characteristics that suggest its use for data vi-
sualization: quantization and projection. Quantization refers to the creation of a
set of prototype vectors which reproduce the original data set as well as possible,
while projection try to find low dimensional coordinates that tries to preserve the
distribution from the original high-dimensional data (VESANTO, 2002).

These features and the possible variations and parameters of the SOMmakes it an in-
teresting tool for exploratory data analysis, particularly for visualization (MORAIS
et al., 2014; VESANTO, 2002). There are three main categories of SOM applications
for data visualization: 1) methods that get an idea of the overall data shape and
detect possible cluster structures; 2) methods that analyze the prototype vectors
(as representatives of the whole dataset) and 3) methods for analysis of new data
samples for classification and novelty detection purposes.

One of the most traditional representations of the trained SOM is the unified distance
matrix, or U-Matrix, for short (GORRICHA; LOBO, 2012). It is formed by U-
heights, calculated over the distance of prototypes and their closest neighbors in the
map. Formally, let Ui = {nj|d(nj, ni) < u, nj 6= ni} for some small positive u, the
U-height of a neuron uh(ni) is given as

uh(ni) =
∑
nj∈Ui

d(ni, nj).

Typical visualizations are coloured contour plots on top of the SOM floor, and
delivers a “landscape” of the distance relationships of the input data in the data
space, allowing one to visually inspect for possible cluster structures, or even out-
liers (ULTSCH, 2003).
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3 METHODOLOGY

Recall from Figure 2.1, that the KDD process, here also used for the text min-
ing process, has 5 steps: selection, preprocessing, transformation, data mining and
interpretation/evaluation. Since our goal is to define a methodology to parse the
statements into a numerical representation, this work focus in the preprocessing and
transformation steps, with the outcome of a term-document matrix, as depicted in
Figure 3.1

Figure 3.1 - The methodology flowchart.

Thus, this chapter lays out and discuss the actions taken in such steps. We also
give an overview of the selection performed to build our target dataset, and the
data mining activity for our proof-of-concept experiments, with interpretation of
the results being discussed in Chapter 4.

3.1 Selection

Our document collection, as stated before, is the historic logs of SQL queries sub-
mitted to SkyServer. In this work, we make use of a normalized version of the raw
data made available by Raddick et al. (2014), which analyzed a 10-year span of log
data (12/2002 to 09/2012), amounting to almost 195 million records and 68 million
unique queries.

21



SkyServer has a number of different access interfaces, called requestors in the logs.
The two main form of access, however, are through the ad-hoc SQL submission page,
also known as the online version; and a batch version, called CasJobs. The online
version performs synchronous requests, and thus has a timeout of 10 minutes, limits
the total result to a maximum of 500.000 rows and only allows SELECT statements.
The batch version, on the other hand, to overcome such limitations, implements
an asynchronous request queue having no restrictions on running time or results
and also provides a personal database for temporary data storage and full SQL
capabilities, like personal stored procedures or function definitions.

With the intent to simplify our target dataset for validation of this methodol-
ogy, we filtered the queries coming from the last version of the online interface
(skyserver.sdss3.org requestor), with the assumption that due to the restrictions
applied in the search tool, would produce a set of queries with less variance and
complexity. This filter also restricted queries with errors and no rows returned.

SkyServer provides extensive documentation on the database and SQL for inexperi-
enced users, which includes a list of sample template queries. These are also part of
the target dataset, which we eventually want to correlate with similar queries from
the logs.

3.2 Preprocessing

The main objective of the preprocessing phase is to parse the text queries into a
vector representation, in which each dimension represents a token and its count of
occurrences in that query, or document.

Recall from subsection 2.2.1 that the tokenization process can be as simple as split-
ting white space in text. SQL however, as a programming language, has a formal
structure and syntax and can be more complex than that for tokenization purposes.
Consider function calls and parameters, for instance:

str(ISNULL(z2.photozerrd1,0),9,7) as photozerrd1

This expression is a select argument, made of two nested function calls, one
to return 0 in case the column has a null value, the second to convert nu-
meric data into character data based on total length and precision. On a sim-
plistic approach of splitting white spaces, this would render three different tokens
(str(ISNULL(z2.photozerrd1,0),9,7), as, and photozerrd1), with the first one
clearly grouping more tokens than it should.
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Consider now a second expression:

str(ISNULL(z2.photozerrd1, 0), 9, 7) as photozerrd1

This expression has the same validity and result as the first one, exactly due to
SQL syntax, which makes white space sometimes irrelevant. For this example, any
combination of white space before or after commas and parenthesis would have no
effect in the output. Still considering a white space only approach, we could have a
number of different tokens for the same syntatic expression.

Thus a proper parsing is warranted, that considers such syntax and can properly
accounts for cases like this.

Though SQL’s structure adds some complexity to the process, by using a parser
engine, we can also add a layer of metadata on top of each token according to its
semantics (whether it is a select, from or where argument; if its a column or table
name, function, expression, or constant), allowing a different processing according
to the token type. By knowing there is a formal structure also removes the need for
otherwise common steps both in text mining, like stop words removal (present in
natural language texts), as in data mining, such as handling missing values (every
term not present in a document has just a 0 count in the vector representation).

In the interest of extracting only the most representative tokens from each query,
the SQL parser performs the following:

• normalize all characters to lowercase;

• remove constants (strings and numbers), database namespaces and aliases;

• substitute temporary table names, logical and conditional operators for
keywords;

• qualify each token with its SQL group: select, from, where, group by, and
order by;

An example of an original statement and its normalized version is shown in Figure
3.2. Figure 3.3 shows the final feature vector.
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SELECT p.objid, p.ra, p.dec, p.u, p.g, p.r, p.i, p.z,
platex.plate, s.fiberid, s.elodiefeh

FROM photoobj p, dbo.fgetnearbyobjeq(1.62917, 27.6417, 30) n,
specobj s, platex

WHERE p.objid = n.objid AND p.objid = s.bestobjid
AND s.plateid = platex.plateid AND class = ‘star’
AND p.r >= 14 AND p.r <= 22.5 AND p.g >= 15
AND p.g <= 23 AND platex.plate = 2803

(a) Raw SQL query.

select objid ra dec u g r i z plate fiberid elodiefeh
from photoobj fgetnearbyobjeq specobj platex
where objid objid logic objid bestobjid logic plateid plateid

logic class logic r logic r logic g logic g logic plate
(b) Tokenized SQL.

Figure 3.2 - Example of a SQL query and its normalized version. Whitespace is included
for readability.

select_objid 1
select_ra 1
select_dec 1
select_u 1
select_g 1
select_r 1
select_i 1
select_z 1
select_plate 1
select_fiberid 1
select_elodiefeh 1
from_photoobj 1
from_fgetnearbyobjeq 1
from_specobj 1
from_platex 1
where_objid 3
where_logic 8
where_bestobjid 1
where_plateid 2
where_class 1
where_r 2
where_g 2
where_plate 1

Figure 3.3 - Feature vector.
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Note that, is this case, the feature vector has 23 components, but it is only showing
its own tokens. After processing the whole collection, the final number of attributes
would be the total number of terms in the vocabulary, with terms that are not part
of this particular document having a value of 0.

Substitutions and removals are performed with the intention to account for tokens
that being trivial, specific, or freely defined, would be of little contribution in discrim-
inating each query due to its unusual frequency (too high or too low) or ambiguous
use.

Figure 3.4 shows an example of three queries that only differ in one of their search
criteria, but have essentially the same structure, and are eventually compressed to
the same token set.

select count(*) from galaxy p, specobj s
where p.objid = s.bestobjid and s.z between 0 and 0.1

select count(*) from galaxy p, specobj s
where p.objid = s.bestobjid and s.z between 1 and 3

select count(*) from galaxy p, specobj s
where p.objid = s.bestobjid and s.z between .1 and .7

(a) Queries that generated the above token set.

select: { count }
from: { galaxy, specobj }

where: { objid, bestobjid, logic, z }
(b) A sample token set separated by the SQL group.

Figure 3.4 - Example of a token set and statements that generated it.

3.3 Transformation

Following preprocessing, we already have an intermediate structured representation
of the SQL queries, and in this phase, we are interested in fine tuning such repre-
sentation.

The first of which is to properly weight each feature according to its frequency, using
the already introduced TF*IDF weighting scheme from subsection 2.2.2.

Consider the queries below:
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SELECT g.objid, g.ra, g.dec, g.u, g.g, g.r, g.i, g.z, s.z AS redshift,

zs.elliptical, zs.spiral, zs.uncertain

FROM Galaxy AS G

JOIN ZooSpec AS zs ON G.objid = zs.objid

JOIN specobj AS s ON G.objid = s.bestobjid

WHERE s.z BETWEEN -0.1 AND 0.05

SELECT TOP 100 p.objid, p.ra, p.dec, p.u, p.g, p.r, p.i, p.z,

s.class, s.z

FROM PhotoObj AS p

JOIN SpecObj AS s ON s.bestobjid = p.objid

WHERE p.u BETWEEN 0 AND 19.6

AND g BETWEEN 0 AND 20

SELECT p.objid, p.ra, p.dec, p.u, p.g, p.r, p.i, p.z, p.psfmag_r, s.z

FROM PhotoObj AS p

JOIN SpecObj AS s ON s.bestobjid = p.objid

WHERE s.z<=0.1

AND p.ra BETWEEN 0.0 AND 5.0

AND p.dec BETWEEN 10.0 AND 15.0

AND (CLASS=’galaxy’)

SELECT ra, dec, objID, modelMag_u, modelMag_g, modelMag_r,

modelMag_i, modelMag_z

FROM Galaxy

WHERE ra BETWEEN 140.9 AND 141.1

AND dec BETWEEN 20 AND 21

AND modelMag_g >=18

AND modelMag_u - modelMag_g > 2.2

Taking these three samples as our dataset, after parsing, we would have a vector
representation for each statement, which we could already turn into a term-document
matrix of term-frequencies.

To calculate the weights, we first would need to define, for each token, its document
frequency (dft), i.e., the number of documents in which that token appears, and the
inverse document frequency (idft), i.e., the log of the ratio between the total number
of documents in the collection (in this case, 4) and its document frequency. After
that, the TF*IDF scheme is applied by multiplying each term frequency (tf) by its
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idf. Table 3.1 presents all these values: term-frequencies for each statement in the
first columns, the document frequency and inverse document frequency, and in the
last columns, the final term-document matrix weighted by the TF*IDF scheme.

Table 3.1 - Term-document matrix with term-frequencies in the first columns, the df and
idf indexes, and the weighted term-frequencies using the TF*IDF scheme.

TF TF*IDF
1 2 3 4 df idf 1 2 3 4

select_class 0 1 0 0 1 1.386 0 1.386 0 0
select_dec 1 1 1 1 4 0 0 0 0 0
select_elliptical 1 0 0 0 1 1.386 1.386 0 0 0
select_g 1 1 1 0 3 0.288 0.288 0.288 0.288 0
select_i 1 1 1 0 3 0.288 0.288 0.288 0.288 0
select_modelmag_g 0 0 0 1 1 1.386 0 0 0 1.386
select_modelmag_i 0 0 0 1 1 1.386 0 0 0 1.386
select_modelmag_r 0 0 0 1 1 1.386 0 0 0 1.386
select_modelmag_u 0 0 0 1 1 1.386 0 0 0 1.386
select_modelmag_z 0 0 0 1 1 1.386 0 0 0 1.386
select_objid 1 1 1 1 4 0 0 0 0 0
select_psfmag_r 0 0 1 0 1 1.386 0 0 1.386 0
select_r 1 1 1 0 3 0.288 0.288 0.288 0.288 0
select_ra 1 1 1 1 4 0 0 0 0 0
select_spiral 1 0 0 0 1 1.386 1.386 0 0 0
select_u 1 1 1 0 3 0.288 0.288 0.288 0.288 0
select_uncertain 1 0 0 0 1 1.386 1.386 0 0 0
select_z 2 2 2 0 3 0.288 0.575 0.575 0.575 0
from_bestobjid 1 1 1 0 3 0.288 0.288 0.288 0.288 0
from_galaxy 1 0 0 1 2 0.693 0.693 0 0 0.693
from_inner 2 1 1 0 3 0.288 0.575 0.288 0.288 0
from_join 2 1 1 0 3 0.288 0.575 0.288 0.288 0
from_objid 3 1 1 0 3 0.288 0.863 0.288 0.288 0
from_on 2 1 1 0 3 0.288 0.575 0.288 0.288 0
from_photoobj 0 1 1 0 2 0.693 0 0.693 0.693 0
from_specobj 1 1 1 0 3 0.288 0.288 0.288 0.288 0
from_zoospec 1 0 0 0 1 1.386 1.386 0 0 0
where_class 0 0 1 0 1 1.386 0 0 1.386 0
where_dec 0 0 1 1 2 0.693 0 0 0.693 0.693
where_g 0 1 0 0 1 1.386 0 1.386 0 0
where_logic 0 1 3 3 3 0.288 0 0.288 0.863 0.863
where_modelmag_g 0 0 0 2 1 1.386 0 0 0 2.773
where_modelmag_u 0 0 0 1 1 1.386 0 0 0 1.386
where_ra 0 0 1 1 2 0.693 0 0 0.693 0.693
where_u 0 1 0 0 1 1.386 0 1.386 0 0
where_z 1 0 1 0 2 0.693 0.693 0 0.693 0
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Note that some rows become zero valued after weighting. These cases happen if a
given term occurs in every document, and thus have an idf of 0. Such terms might
be elected for removal, since they do not have any discriminant power between each
document.

The second step in the transformation phase is scaling all features to lie in the 0..1
interval through the simple formula (WITTEN et al., 2011)

xi = vi −min vi
max vi −min vi

,

where vi is the actual value of attribute i, and the maximum and minimum are taken
over all instances in the training set.

Using our test scenario with the four statements presented, the final term-document
matrix weighted and scaled would have the values as the one presented in Table 3.2.

3.4 Data Mining

At this stage, we have already processed the document collection into a term-
document matrix, where each row represents a SQL statement and columns rep-
resent the weighted and scaled frequency of each term in the vocabulary for that
statement. Considering this matrix as the dataset, it is ready to be fed into regular
machine learning algorithms.

In this work, we are interested in clustering techniques, the exploratory analysis to
find natural groupings in the data. As such, we perform two experiments, one with
the FCM algorithm and its cluster validity indexes to assess an optimal number
of clusters in the dataset, the other with the SOM algorithm to make use of its
dimensionality reduction and visualization capabilities.
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Table 3.2 - Term-document matrix, transformed to be appropriately weighted and scaled.

1 2 3 4
select_class 0.208 0.208 0.208 0
select_dec 0.500 0 0 0.250
select_elliptical 0.415 0.208 0.208 0
select_g 0.415 0.208 0.208 0
select_i 0.623 0.208 0.208 0
select_modelmag_g 0.415 0.208 0.208 0
select_modelmag_i 0 0.500 0.500 0
select_modelmag_r 0.208 0.208 0.208 0
select_modelmag_u 1.000 0 0 0
select_modelmag_z 0 1.000 0 0
select_psfmag_r 1.000 0 0 0
select_r 0.208 0.208 0.208 0
select_ra 0.208 0.208 0.208 0
select_spiral 0 0 0 0.500
select_u 0 0 0 0.500
select_uncertain 0 0 0 0.500
select_z 0 0 0 0.500
from_bestobjid 0 0 0 0.500
from_inner 0 0 1.000 0
from_join 0.208 0.208 0.208 0
from_on 1.000 0 0 0
from_photoobj 0.208 0.208 0.208 0
from_specobj 1.000 0 0 0
from_zoospec 0.415 0.415 0.415 0
where_class 0 0 1.000 0
where_dec 0 0 0.500 0.250
where_g 0 1.000 0 0
where_logic 0 0.208 0.623 0.311
where_modelmag_g 0 0 0 1.000
where_modelmag_u 0 0 0 0.500
where_ra 0 0 0.500 0.250
where_u 0 1.000 0 0
where_z 0.500 0 0.500 0
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4 EXPERIMENTAL RESULTS

4.1 On data and implementation

The initial dataset (the normalized version by Raddick et al. (2014)) was originally
composed of almost 195 million records and 68 million unique queries. After filtering
as described in section 3.1, the final dataset was reduced to 1.3 million queries, plus
49 sample templates from SkyServer’s help pages.

Data was downloaded in a CSV format and imported into a MongoDB instance, a
document oriented, non-relational database. The choice was based on the schemaless
paradigm of NoSQL databases, which provided great flexibility while building the
target dataset. Querying is made programatically through a number of bindings
provided, or directly through a JavaScript interactive shell.

A number of open-source SQL parsers were investigated, but since SkyServer uses
the Microsoft SQL Server as its RDMBS, it accepts queries in the Transact-SQL
dialect, or T-SQL, which is Microsoft’s proprietary extension to SQL implement-
ing a number of features like stored procedures, local variables, data processing,
etc. Thus, standard SQL parsers would not be able to process T-SQL intricacies,
and eventually we decided to use a readily available parser library from .NET, the
software framework also developed by Microsoft, which served as base for a custom
parser, tailored for our needs. Note that the parser is strict, ergo, it can only process
syntax valid statements. The code for the custom parser built is presented in the
Appendix A.

After preprocessing, the initial 1.3 million selected queries were compressed to 8,477
token sets with 2,103 features. As usual in a text mining context, this dataset is
extremely sparse, with only 0.008% non-zero values.

Templates were preprocessed in the same manner as queries, also using the same idf
weights and scaling factors. Since some templates have more than one version, the
45 selected entries expanded to 51, denoted with a suffix letter to indicate when it
is a second or third alternative.

Python was the main programming language used, and a number of scripts were
written to perform the various tasks needed, from implementing the custom parser,
to the SOM algorithm (which was based on the work of Vettigli (2015)). For FCM
specifically, R was chosen because of its e1071 package (MEYER et al., 2015). Fi-
nally, most of the computing was performed on a Intel Xeon 3.4 GHz machine with
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32 cores and 66 GB of RAM, running a 64-bit implementation of Linux.

4.2 Analysis of number of clusters with FCM

This experiment consisted of clustering the dataset and then calculate the four dif-
ferent validity measures presented in subsection 2.3.5: partition coefficient, partition
entropy, Fukuyama-Sugeno and Xie-Beni. Literature usually recomends the range of
c to be from 2 to N − 1, where N is the number of samples in the dataset. Since it
is usually infeasible in regards to time, we limited c to be in the 2 . . . 100 interval.

As expected, as c increases, training time increases, and the squared error criterion
decreases (FCM’s objective function), but in this case, the number of iterations
needed is rather stable, with an average of 11 iterations needed, as seen in Figure 4.1.

Figure 4.1 - FCM training metrics for different values of c.

The cluster validity metrics are presented in Figure 4.2.

Recall that we seek the maximum for the partition coefficient and the minimum for
the other three indexes. Visually inspecting the Figure 4.2, however, we can see that
there is no value of c that would have more than one index agreeing with each other.
Thus, one might consider that these metrics suggest this dataset does not present a
natural grouping.
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Figure 4.2 - FCM cluster validity measures for different values of c.

4.3 Visual analysis of the correlation between queries and templates

For this experiment, we used a 30x30 SOM trained for 45 epochs, using the cosine
distance to determine the BMU during training phase.

We used two plots for an initial visual analysis, the u-matrix, presented in Figure
4.3, in which numbers indicate the template id over their respective BMU, and a
hitmap scatter plot, presented in Figure 4.4, in which the size of the circles indicates
the number of token sets that elected that prototype its BMU.

From Figure 4.3 and Figure 4.4, we can see that the trained SOM is able to well
distribute the dataset over prototypes and some areas can be visually defined as
clusters (regions of light colors circled by dark points).

In some cases, more than one template elected the same prototype as their BMU,
as we can check from the legend. So after calculating a distance matrix, we sorted
the top 5 closest templates using the Cosine distance, to see how they compare with
the trained SOM.

Below, for each pair, we present their Cosine distance using the Term Frequency
representation, and the Euclidean distance between their SOM BMUs, along their
name.

a) Pair: 15 and 15b
Distances: TF: 0.0 and SOM: 0.0
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Figure 4.3 - U-Matrix

15: Splitting 64-bit values into two 32-bit values
15b: Splitting 64-bit values into two 32-bit values

b) Pair: 21b and 31
Distances: TF: 0.0 and SOM: 0.0
21b: Finding objects by their spectral lines
31: Using the sppLines table

c) Pair: 22 and 43
Distances: TF: 0.0205 and SOM: 0.0
22: Finding spectra by classification (object type)
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Figure 4.4 - Hitmap

43: QSOs by spectroscopy

d) Pair: 39 and 39b
Distances: TF: 0.1610 and SOM: 0.0
39: Classifications from Galaxy Zoo
39b: Classifications from Galaxy Zoo

e) Pair: 05 and 15
Distances: TF: 0.1632 and SOM: 0.0
05: Rectangular position search
15: Splitting 64-bit values into two 32-bit values

The SQL queries presented that generated the templates listed here are in the Ap-
pendix A.
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5 CONCLUSIONS

The main goal of this thesis was to investigate text mining techniques for the pro-
cessing and analysis of the historic logs of SQL queries from SDSS SkyServer. As
such, we defined a methodology to properly parse, clean and tokenize such state-
ments into a proper intermediate numerical representation, allowing then, the use of
regular data mining algorithms for knowledge discovery, with preliminar experiments
showcasing an example of how such methodology can be used.

Also note that the preprocessing and transformation involved in this work are not
definitive, and can accommodate changes according to the data mining objective.
The parser, for instance, can be quickly adapted to extract or engineer new features
as seem fit. If one was to build a similar map of popular searched areas as devised by
Zhang et al. (2012), the methodology could be tuned to select the queries with the
functions and column names related to this criteria from the already parsed queries
and then update the parser to extract the numeral parameters of interest in the
selected queries.

Foreseen applications for this methodology include, but are not limited to, generation
of detailed usage statistics, with specific information on tables and columns most
popularly queried, which can lead to better database indexes and views management,
improving performance according to user needs; improving user experience with
queries recommendation tools or assistive technologies to offer users suggestions
while writing queries, improving user exploration; and finally, by correlating token
sets with other features logged, such as query success or running time, one could
devise classification models to predict errors in running time or regression models
to predict query running time.

As part of the work done in this thesis, we also had accepted a poster presentation
for the IASC-ABE Satellite Coference for the 60th ISI WSC, 2015; and a short article
for the 2nd Annual International Symposium on Information Management and Big
Data SIMBig, 2015.
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APPENDIX A - PARSER

Below is the reproduction of two Python code files. The first one presents a sample
script showing how to use the parser classes to tokenize statements. While the second
one presents the code for the custom parser built on top of the .NET ScriptDom
library.

Note that this code was written to be run over IronPython, a Python implementation
for .NET, and will not work under other implementations.

tokenizer.py

This script reads statements separated by a new line from a text file, and prints the
tokenized version of each statement after parsing.
#! mono ipy
import sys
import os
import c l r
import System
c l r . AddReference ( ’ Mic roso f t . Sq lSe rve r . TransactSql . ScriptDom . d l l ’ )
import Microso f t . Sq lSe rve r . TransactSql . ScriptDom as sd

import c l a s s e s

def ge tS t r i ng ( node ) :
return ’ ’ . j o i n ( [ t . Text for t in l i s t ( node . ScriptTokenStream ) [ node .

FirstTokenIndex : node . LastTokenIndex +1 ] ] )

def _clause ( node ) :
try :

return ge tS t r i ng ( node )
except :

return None

par s e r = sd . TSql100Parser (1 )
f i l ename = ’ query . txt ’

with open( f i l ename ) as f :
for l i n e in f :

stream = System . IO . Str ingReader ( l i n e . lower ( ) )
fragment , par se_er ror s = par s e r . Parse ( stream )
stream . Close ( )
e r r o r s = ’ ’
i f parse_error s . Count :
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e r r o r s = ( ’The␣ f o l l ow i ng ␣ e r r o r s ␣were␣ caught : \ n ’ , )
for e r r in parse_error s :

e r r o r s += ( ’−− ’ , e r r . Message , ’ \n ’ )
try :

for stmt in fragment . Batches [ 0 ] . Statements :
sv = c l a s s e s . V i s i t o r ( )
stmt . AcceptChi ldren ( sv )
qe = stmt . QueryExpression
query = {

’ mod i f i e r s ’ : [ _clause ( qe . TopRowFilter ) , qe . UniqueRowFilter ] ,
’ s e l e c t ’ : ’ , ␣ ’ . j o i n (map( ge tSt r ing , qe . Se lectElements ) ) ,
’ from ’ : _clause ( qe . FromClause ) ,
’ where ’ : _clause ( qe . WhereClause ) ,
’ orderby ’ : _clause ( qe . OrderByClause ) ,
’ groupby ’ : _clause ( qe . GroupByClause )

}
print ’ ␣−− ’
print ’ ␣Query : ’ , l i n e
for key in [ ’ s e l e c t ’ , ’ mod i f i e r s ’ , ’ from ’ , ’ where ’ , ’ orderby ’ ,

’ groupby ’ ] :
print ’− ’ , key
print ’ ␣␣␣query␣␣␣ : ’ , query [ key ]
print ’ ␣␣␣keywords : ’ , sv . keywords . get ( key )

except :
print sys . exc_info ( )

f ina l ly :
print ’ ’ . j o i n ( e r r o r s )

parser.py

import sys
import l o gg ing
from c o l l e c t i o n s import d e f a u l t d i c t

import System
import c l r
c l r . AddReference ( ’ Mic roso f t . Sq lSe rve r . TransactSql . ScriptDom . d l l ’ )
import Microso f t . Sq lSe rve r . TransactSql . ScriptDom as sd

l ogg ing . bas i cCon f i g ( format=’%(asct ime ) s ␣%(levelname ) 6 s ␣ [ pid ␣%(proce s s ) 5
s ] ␣%(message ) s ’ )

l o gg e r = logg ing . getLogger ( )

# for debugg ing purposes
class p l i s t ( l i s t ) :

46



def append ( s e l f , va lue ) :
l o gg e r . l og (1 , ’ appending␣%s ’ , va lue )
super ( p l i s t , s e l f ) . append ( value )

def ge tS t r i ng ( node ) :
return ’ ’ . j o i n ( [ t . Text for t in l i s t ( node . ScriptTokenStream ) [ node .

FirstTokenIndex : node . LastTokenIndex +1 ] ] )

def _skip_chi ldren ( fn ) :
def wrapped ( s e l f , node ) :

fn ( s e l f , node )
node . Accept ( s e l f . s k i pV i s i t o r )

return wrapped

class BaseVi s i t o r ( sd . TSqlFragmentVisitor ) :
def __init__( s e l f ) :

s e l f . nodes = set ( )
s e l f . keywords = d e f a u l t d i c t ( p l i s t )
s e l f . s k i pV i s i t o r = Sk ipV i s i t o r ( s e l f )

def _getEnumValue ( s e l f , enum) :
return enum . ToString ( ) . lower ( )

def _callMethodByType ( s e l f , _type , node ) :
l o gg e r . l og (1 , ’ [%15 s ] ␣%s : ␣%s ’ , s e l f . __class__ .__name__, _type ,

g e tS t r i ng ( node ) )
return getattr ( s e l f , _type ) ( node )

def _v i s i t ( s e l f , node ) :
try :

_type = node . GetType ( ) .Name
s e l f . _callMethodByType (_type , node )

except Attr ibuteError :
l o gg e r . l og (1 , ’ [%15 s ] ␣Method␣%s␣not␣ found ’ , s e l f . __class__ .

__name__, _type )
except Exception as e :

l o gg e r . l og (1 , ’ [%15 s ] ␣Exception ’ , s e l f . __class__ .__name__,
exc_info=e )

def Vi s i t ( s e l f , node ) :
super ( BaseVis i tor , s e l f ) . V i s i t ( node )
i f node not in s e l f . nodes :

s e l f . nodes . add ( node )
s e l f . _v i s i t ( node )

class Pr i n tV i s i t o r ( BaseVi s i t o r ) :
def __init__( s e l f , parent=None ) :

i f parent :
s e l f . nodes = parent . nodes
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s e l f . keywords = parent . keywords
else :

super ( Pr in tV i s i t o r , s e l f ) . __init__ ( )
def _v i s i t ( s e l f , node ) :

print ’%−30s : ␣%s ’ % ( node . GetType ( ) .Name, g e tS t r i ng ( node ) )

class Sk ipV i s i t o r ( BaseVi s i t o r ) :
def __init__( s e l f , parent ) :

s e l f . nodes = parent . nodes
def _v i s i t ( s e l f , node ) :

pass

class Vi s i t o r ( BaseVi s i t o r ) :
def QuerySpec i f i c a t i on ( s e l f , node ) :

# mod i f i e r s
ur f = node . UniqueRowFilter
i f ur f == ur f . D i s t i n c t :

s e l f . keywords [ ’ s e l e c t ’ ] . append ( ’ d i s t i n c t ’ )
# s e l f . keywords [ ’ mod i f i e r s ’ ] . append ( s e l f . _getEnumValue ( ur f .

D i s t i n c t ) )
try :

t r f = node . TopRowFilter
_keywords = [ ’ top ’ , ’ percent ’ , ’ w i t h t i e s ’ ]
_ f i l t e r = [ 1 , t r f . Percent , t r f . WithTies ]
s e l f . keywords [ ’ mod i f i e r s ’ ] . extend ( [ i for ( i , v ) in zip (_keywords ,

_ f i l t e r ) i f v ] )
except :

pass
sv = S e l e c tV i s i t o r ( s e l f )
for elm in node . Se lectElements :

elm . Accept ( sv )
def FromClause ( s e l f , node ) :

node . AcceptChi ldren ( FromVisitor ( s e l f ) )
def WhereClause ( s e l f , node ) :

node . AcceptChi ldren (WhereVisitor ( parent=s e l f ) )
def OrderByClause ( s e l f , node ) :

node . AcceptChi ldren ( OrderByVis itor ( s e l f ) )
def GroupByClause ( s e l f , node ) :

node . AcceptChi ldren ( GroupByVisitor ( s e l f ) )
def HavingClause ( s e l f , node ) :

node . AcceptChi ldren ( HavingVis i tor ( s e l f ) )

class Ch i l dV i s i t o r ( BaseVi s i t o r ) :
key = None
f n_b l a c k l i s t = [ ’ ca s t ’ , ’ format ’ , ’ s t r ’ ]
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def __init__( s e l f , parent ) :
s e l f . parent = parent
s e l f . nodes = parent . nodes
s e l f . s k i pV i s i t o r = parent . s k i pV i s i t o r
try :

s e l f . keywords = parent . keywords [ s e l f . key ]
except :

s e l f . keywords = parent . keywords

def _v i s i t ( s e l f , node ) :
_type = node . GetType ( )
try :

s e l f . _callMethodByType (_type .Name, node )
except Attr ibuteError :

while True :
# tr y parents type
try :

_type1 , _type = _type , _type . BaseType
i f _type .Name == ’TSqlFragment ’ :

break
l o gg e r . l og (1 , ’ [%15 s ] ␣Method␣%s␣not␣ found , ␣ r e t r y i n g ␣with␣%s ’ ,

s e l f . __class__ .__name__, _type1 .Name, _type .Name)
s e l f . _callMethodByType (_type .Name, node )
break

except Attr ibuteError :
continue

except Exception as e :
l o gg e r . l og (1 , ’ [%15 s ] ␣Exception ’ , s e l f . __class__ .__name__,

exc_info=e )

def _v i s i t c h i l d r e n ( s e l f , node ) :
s e l f . AcceptChi ldren ( s e l f )

# genera l
def Var iab l eRe fe rence ( s e l f , node ) :

s e l f . keywords . append ( ’ v a r i ab l e ’ )

def L i t e r a l ( s e l f , node ) :
# di smi s s ing every l i t e r a l , othwerwise , uncomment the f o l l o w i n g

l i n e s
pass
# l i t e r a l = s e l f . _getEnumValue ( node . L i t e ra lType )
# l i t e r a l = l i t e r a l in [ ’ numeric ’ , ’ i n t e g e r ’ , ’ r e a l ’ ] and ’ number ’

or l i t e r a l
# s e l f . keywords . append ( l i t e r a l )
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# expre s s i on s
def _getExprToken ( s e l f , node ) :

_expr = {
’ BinaryExpress ion ’ : ’ operand ’ ,
’ BooleanBinaryExpress ion ’ : ’ l o g i c ’ ,
’ BooleanComparisonExpression ’ : ’ compare ’ ,
’ BooleanNotExpression ’ : ’ not ’ ,
’ Coa le sceExpress ion ’ : ’ c o a l e s c e ’ ,
’ Ex i s t sPr ed i c a t e ’ : ’ e x i s t s ’ ,
’ Fu l lTextPred icate ’ : ’ c onta in s ’ ,
’ L ikePred i ca te ’ : ’ l i k e ’ ,
’ Nu l l I fExpr e s s i on ’ : ’ n u l l i f ’ ,

}
try :

return _expr [ node . GetType ( ) .Name ]
except KeyError :

try :
return s e l f . _getEnumValue ( node . TernaryExpressionType )

except :
return None

def _express ion ( s e l f , node ) :
try :

node . Express ion . Accept ( s e l f )
except :

# accep t s e v e r y t h in g
node . AcceptChi ldren ( s e l f )

def _prepend_expression ( s e l f , node ) :
s e l f . keywords . append ( s e l f . _getExprToken ( node ) )
s e l f . _express ion ( node )

def BinaryExpress ion ( s e l f , node ) :
node . F i r s tExpre s s i on . Accept ( s e l f )
node . SecondExpress ion . Accept ( s e l f )

BooleanComparisonExpression = BinaryExpress ion
BooleanBinaryExpress ion = BinaryExpress ion

def BooleanTernaryExpress ion ( s e l f , node ) :
s e l f . BinaryExpress ion ( node )
node . ThirdExpress ion . Accept ( s e l f )

Sca la rExpre s s i on = _express ion
Boo leanParenthes i sExpres s ion = _express ion
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PrimaryExpress ion = _express ion
Parenthes i sExpre s s i on = _express ion

BooleanNotExpression = _prepend_expression
Coa le sceExpress ion = _prepend_expression
Ex i s t sPr ed i c a t e = _prepend_expression
Ful lTextPred icate = _prepend_expression
Nu l l I fExpr e s s i on = _prepend_expression

def CaseExpress ion ( s e l f , node ) :
s e l f . keywords . append ( ’ case ’ )
for t in node . WhenClauses :

s e l f . keywords . append ( ’when ’ )
t . WhenExpression . Accept ( s e l f )
t . ThenExpression . Accept ( s e l f )

i f node . E l seExpres s ion :
s e l f . keywords . append ( ’ e l s e ’ )
node . E l seExpres s ion . Accept ( s e l f )

@_skip_children
def CastCal l ( s e l f , node ) :

node . Parameter . Accept ( s e l f )
@_skip_children
def ColumnReferenceExpression ( s e l f , node ) :

i d s = node . Mu l t iPa r t I d en t i f i e r . I d e n t i f i e r s
i d e n t i f i e r = id s [ i d s . Count−1]

# fo r s i m p l i c i t y , cons ider every doub l equo ted i d e n t i f i e r as
cons tant

i f s e l f . _getEnumValue ( i d e n t i f i e r . QuoteType ) == ’ doublequote ’ :
return

s e l f . keywords . append ( i d e n t i f i e r . Value )
@_skip_children
def Funct ionCal l ( s e l f , node ) :

i f node . FunctionName . Value not in s e l f . f n_b l a c k l i s t :
s e l f . keywords . append ( node . FunctionName . Value )

for p in node . Parameters :
p . Accept ( s e l f )

# s e l e c t
@_skip_children
def Se l e c tS ca l a rExp r e s s i on ( s e l f , node ) :

node . Express ion . Accept ( s e l f )
def Se l e c tS ta rExpr e s s i on ( s e l f , node ) :

s e l f . keywords . append ( ’ ∗ ’ )

# from
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@_skip_children
def _getSchemaOjectBase ( s e l f , node ) :

obj = node . SchemaObject . B a s e I d e n t i f i e r . Value
s e l f . keywords . append ( ’#’ in obj and ’ temp ’ or obj )

NamedTableReference = _getSchemaOjectBase
SchemaObjectFunctionTableReference = _getSchemaOjectBase
def Qua l i f i e dJo in ( s e l f , node ) :

node . F i r s tTab l eRe f e r ence . Accept ( s e l f )
s e l f . keywords . extend ( [ s e l f . _getEnumValue ( node . Qual i f i edJo inType ) ,

’ j o i n ’ ] )
node . SecondTableReference . Accept ( s e l f )
s e l f . keywords . append ( ’ on ’ )
node . SearchCondit ion . Accept ( s e l f )

def Unqua l i f i edJo in ( s e l f , node ) :
node . F i r s tTab l eRe f e r ence . Accept ( s e l f )
s e l f . keywords . append ( s e l f . _getEnumValue ( node . Unqual i f i edJoinType )

)
node . SecondTableReference . Accept ( s e l f )

# sub−q u e r i e s
def QuerySpec i f i c a t i on ( s e l f , node ) :

s e l f . nodes . remove ( node )
node . Accept ( s e l f . parent )

class S e l e c tV i s i t o r ( Ch i l dV i s i t o r ) :
key = ’ s e l e c t ’

class FromVisitor ( Ch i l dV i s i t o r ) :
key = ’ from ’

class WhereVisitor ( Ch i l dV i s i t o r ) :
key = ’ where ’

class OrderByVis itor ( Ch i l dV i s i t o r ) :
key = ’ orderby ’

class GroupByVisitor ( Ch i l dV i s i t o r ) :
key = ’ groupby ’

class HavingVis i tor ( Ch i l dV i s i t o r ) :
key = ’ having ’
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APPENDIX B - TEMPLATES

Sample SQL templates available from SkyServer’s help pages1 that are mentioned
in this paper. The list below comprises of the identification number used in the
exploratory analysis process, name and category, a brief explanation, and the SQL
statement.

05: Rectangular position search (Basic SQL)

Rectangular search using straight coordinate constraints.

select obj id , ra , dec
from photoobj
where ( ra between 179 .5 and 182 .3 )

and (dec between −1.0 and 1 . 8 )

15: Splitting 64-bit values into two 32-bit values (SQL Jujitsu)

The flag fields in the SpecObjAll table are 64-bit, but some analysis tools only accept
32-bit integers. Here is a way to split them up, using bitmasks to extract the higher
and lower 32 bits, and dividing by a power of 2 to shift bits to the right (since there
is no bit shift operator in SQL.)

select top 10 obj id , ra , dec ,
f l a g s , −− output the whole b i g i n t as a check
f l a g s & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f as f l ag s_ lo , −− ge t the lower 32 b i t s wi th

a mask s h i f t the b i g i n t to the r i g h t 32 b i t s , then use the same
mask to s g e t upper 32 b i t s

( f l a g s /power ( cast (2 as b i g i n t ) , 32) ) & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f as f l a g s_h i
from photoobj

15B: Splitting 64-bit values into two 32-bit values (SQL Jujitsu)

The hexadecimal version of above query which can be used for debugging

select top 10 obj id , ra , dec ,
cast ( f l a g s as binary (8 ) ) as f l a g s ,
cast ( f l a g s & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f as binary (8 ) ) as f l ag s_ lo ,
cast ( ( f l a g s /power ( cast (2 as b i g i n t ) , 32) ) & 0 x 0 0 0 0 0 0 0 0 f f f f f f f f as

binary (8 ) ) as f l a g s_h i
from photoobj

21B: Finding objects by their spectral lines (General Astronomy)

1http://skyserver.sdss.org/dr12/en/help/docs/realquery.aspx
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This query selects red stars (spectral type K) with large CaII triplet eq widths with
low errors on the CaII triplet equivalent widths.

select s l . p late , s l . mjd , s l . f i b e r , s l . c a i i k s i d e , s l . c a i i k e r r ,
s l . cai ikmask , sp . fehadop , sp . fehadopunc , sp . fehadopn ,
sp . loggadopn , sp . loggadopunc , sp . loggadopn

from s pp l i n e s as s l
join sppparams as sp on s l . s p e cob j i d = sp . spe cob j i d

where fehadop < −3.5
and fehadopunc between 0 .01 and 0 .5
and fehadopn > 3

22: Finding spectra by classification (object type) (General Astronomy)

This sample query find all objects with spectra classified as stars.

select top 100 specob j i d
from specob j
where c l a s s = ’ s t a r ’

and zwarning = 0

31: Using the sppLines table (Stars)

This sample query selects low metallicity stars ([Fe/H] < −3.5) where more than
three different measures of feh are ok and are averaged.

select s l . p late , s l . mjd , s l . f i b e r , s l . c a i i k s i d e , s l . c a i i k e r r ,
s l . cai ikmask , sp . fehadop , sp . fehadopunc , sp . fehadopn ,
sp . loggadopn , sp . loggadopunc , sp . loggadopn

from s pp l i n e s as s l
join sppparams as sp on s l . s p e cob j i d = sp . spe cob j i d

where fehadop < −3.5
and fehadopunc between 0 .01 and 0 .5
and fehadopn > 3

39: Classifications from Galaxy Zoo (Galaxies)

Find the weighted probability that a given galaxy has each of the six morphological
classifications.

select obj id , nvote , p_el as e l l i p t i c a l ,
p_cw as s p i r a l c l o c k , p_acw as s p i r a l a n t i c l o c k ,
p_edge as edgeon , p_dk as dontknow ,
p_mg as merger

from zoonospec
where ob j id = 1237656495650570395
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39B: Classifications from Galaxy Zoo (Galaxies)

Find 100 galaxies that have clean photometry at least 10 Galaxy Zoo volunteer
votes and at least an 80% probability of being clockwise spirals.
select top 100 g . obj id , zns . nvote , zns . p_el as e l l i p t i c a l ,

zns . p_cw as s p i r a l c l o c k , zns . p_acw as s p i r a l a n t i c l o c k ,
zns . p_edge as edgeon , zns . p_dk as dontknow ,
zns .p_mg as merger

from galaxy as g
join zoonospec as zns on g . ob j id = zns . ob j i d

where g . c l ean=1
and zns . nvote >= 10
and zns . p_cw > 0.8

43: QSOs by spectroscopy (Quasars)

The easiest way to find quasars is by finding objects whose spectra have been clas-
sified as quasars. This sample query searches the SpecObj table for the IDs and
redshifts of objects with the class column equal to ‘QSO’
select top 100 specob j id , z
from specob j
where c l a s s = ’ qso ’

and zwarning = 0
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