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Abstract: The goal of this study is to evaluate the influence of the gravitational attraction of the 

Sun, and the Galilean moons, during orbital maneuvers of a spacecraft orbiting Jupiter. Initially 

ideal thrusters, capable of applying infinite magnitude of the thrust, were used. Thus, impulsive 

optimal maneuvers were obtained by scanning the solutions of the Two Point Boundary Value 

Problem (TPBVP) for various values of transfer time in order to select the impulsive maneuver 

of minimum necessary velocity increment. Then, the selected maneuver was simulated 

considering a more realistic model of the propulsion system. In fact is not possible to accomplish 

an impulsive maneuver. Thus, the orbital maneuver must be distributed in a propulsive arc 

around the position of the impulse given by the solution of the TPBVP. In this arc was used a 

continuous thrust, limited to the capacity of the thrusters, with automatic correction of the 

trajectory. However the effect of the propulsive arc is not exactly equivalent to the application of 

an impulse. The evaluation of the difference between these approaches is extremely relevant in 

the mission analysis and spacecraft design of the trajectory control system. Therefore, the 

influence of the capacity of thrusters in the trajectory was evaluated for a more realistic model 

instead of the ideal case represented by the impulsive approach. 
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1. Introduction 
 

In a space mission analysis all aspects related to the spacecraft's mission must be studied and 

analyzed. Regarding to the orbital maneuvers is important to consider all environmental 

disturbances applied to the trajectory. In this way, this work aims to evaluate the influence of the 

gravitational attraction of the Sun, Io, Europa, Ganymede and Callisto, during orbital maneuvers 

of a spacecraft orbiting Jupiter. Another source of disturbance that should be considered is the 

non-ideality of the thrusters. So, in the simulations some constructive aspects of the propulsion 

system were considered. Initially ideal thrusters, capable of applying infinite magnitude of the 

thrust, were used. Thus, impulsive optimal maneuvers were obtained by scanning the solutions of 

the Two Point Boundary Value Problem (TPBVP) for various values of transfer time, sweeping 

all the time range allowed to perform the maneuver, in order to select the maneuver of minimum 

fuel consumption, which represents the orbital maneuver that requires the minimum total 

velocity increment. Then, the selected maneuver was simulated considering a more realistic 

model of the propulsion system. In fact is not possible to accomplish an impulsive maneuver 

because to perform this kind of maneuver it would be necessary an infinite capacity for the 

thrusters, because the entire velocity change of the spacecraft should occur instantly. Thus, the 

orbital maneuver must be distributed in a propulsive arc around the position of the impulse given 

by the solution of the TPBVP. In this arc was used a continuous thrust, limited to the capacity of 

the thrusters. However the effect of the propulsive arc is not exactly equivalent to the application 

of an impulse due to the errors in magnitude and direction of applied thrust. The difference 
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between these approaches produces a deviation in the trajectory. The evaluation of deviation is 

extremely relevant in the mission analysis and spacecraft design of the trajectory control system. 

Therefore, the influence of the capacity of thrusters in the trajectory was evaluated for a more 

realistic model instead of the ideal case represented by the impulsive approach. Nevertheless, to 

mitigate the effects of the non-ideality of the thrusters was considered an innovative technique of 

automatic correction of the trajectory, which performs automatically the adjustment of the semi-

major axis of the orbits. 
 

Thus, initially the bi-impulsive maneuver, which consists of finding the transfer orbit that 

connects a point on the initial orbit to another point in the final orbit spending a certain amount 

of time, is accomplished. An algorithm for solving this problem by universal variables was used. 

Then, the optimum maneuver is selected and simulated using the Spacecraft Trajectory 

Simulator (STRS). In the STRS the orbital movement is obtained by the solution of Kepler's 

equation for each simulation step. Thus, given an initial state, the Keplerian elements are 

obtained and propagated to the next step, to be converted into the new state. In the STRS 

simulator, the reference state is defined by guidance subsystem providing the ideal trajectory to 

be followed, according to the solution of the TPBVP. This reference is continuously compared 

with the current position of the vehicle generating an error signal, which is inserted into 

proportional-integral-derivative controller, generating a signal capable of reducing errors in 

transition and stationary regimes. This signal is sent to the actuators to generate a signal to be 

applied in the dynamics model of the movement, added to the disturbing signal due to the 

gravitational forces of the Sun, Io, Europa, Ganymede and Callisto, and also the second-order 

term J2 of Jupiter's gravitational potential. Therefore the evolution of the spacecraft's orbit can be 

simulated and analyzed. 
 

2. Two Point Boundary Value Problem  
 

Determination of the optimal maneuver requires the solution of the Two Point Boundary Value 

Problem (TPBVP). To solve this problem is necessary to calculate the transfer orbit that connects 

a point on the initial orbit (initial position of the spacecraft) to another point in the final orbit 

(final position of the spacecraft), during a given time interval t. The initial and final velocities in 

the transfer orbit, 1v


 and 2v


, for the initial and final radii vectors, 1r


 and 2r


, and are given by: 
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To solve the TPBVP the functions f(z) and g(z) must be found. This problem is known as 

Gauss’s problem or Lambert’s problem. A detailed study can be found in Bate et al. (1971). The 

algorithm for solving this problem through universal variables (Battin, 1999; Bond, 1996; Bate et 

al., 1971) utilizes the following equations: 
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The function F(z) is swept by using a cascade algorithm and covers the entire range of elliptical 

solutions, as described in Battin (1999). The sweep is processed n times, each ruled by the F(z) 

tolerance and the step size. This approach enables us to obtain a precision solution without the 

necessity of the initial guess of the variables, since this approach depends only on the variable z 

which is analyzed for the whole range that represents the elliptical solutions. When the method 

converges to a solution evaluate the functions f(z) and g(z). 
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Then, calculate the transfer velocities 1v


 and 2v


. With the velocities in the initial and final 

orbits, the necessary velocity increments can be obtained. 

 2211    ; vvvvvv finalinitial
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To obtain the optimum impulsive maneuver, which minimizes the fuel consumption minimizing 

the total velocity increment, the solution of the TPBVP is obtained several times varying the time 

interval spent in the maneuver. The maneuver with the minimum velocity increment is chosen to 

be simulated, but now considering a non-impulsive model of the propulsion system. 
 

3. Spacecraft Trajectory Simulator 
 

The Spacecraft Trajectory Simulator (STRS), developed by Rocco (2008), and utilized by Rocco 

(2009, 2012, 2013) and by Rocco et al. (2010), was used to simulate the orbital trajectory. The 

STRS uses a closed loop control system for the trajectory. In the simulation, the orbital 

movement can be obtained by solving the Kepler equation (Eq. 10) for each step of the 

simulation, where M is the mean anomaly, u is the eccentric anomaly and e is the eccentricity of 

the orbit. 
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 ueuM sin  (10) 

Given an initial state and a time interval, the state (position and velocity) can be converted into 

keplerian elements solving the inverse problem of satellite positioning. Then, using the Kepler 

equation those elements are propagated considering the given time interval. The new spacecraft 

state can be obtained solving the direct problem of positioning, Kuga et al. (2008). 
 

The architecture of the STRS is presented in Fig. 1. The reference trajectory can be obtained 

from a guidance sub-system capable of providing the optimal path to be followed (solution of the 

TPBVP). This reference is continuously compared with the current position of the spacecraft. 

Therefore, an error signal is generated by the difference between the current and reference states. 

Then, the error signal is sent to a proportional-integral-derivative controller (PID), which the 

control law is defined by Eq. 11, where PK  is the proportional gain, IK  is the integral gain, DK  

is the derivative gain, and )(ter  is the error signal. 
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Figure 1.  Architecture of the trajectory control system in closed loop 

 

The controller will generate a signal to reduce the error. Then, this signal is sent to the 

propulsion system. At this time, considering the actuator model, a signal is generated to be 

applied in the dynamic model. Then the current state of the spacecraft is determined. A sub-

system containing the sensor model is used to estimate the current state, considering an inertial 

coordinate system centered at the center of the Mars. Finally, the current position of the satellite 

is compared with the reference position, and the cycle starts again. 
 

4. Orbital Disturbance 
 

The evaluation of the errors in the trajectory becomes even more relevant if the effects of orbital 

perturbations acting on the spacecraft were considered. Thus, deviations in the trajectory due to 

disturbances caused by the Jupiter gravitational potential (second-order term J2) and the 

gravitational attractions of the Sun, Io, Europa, Ganymede and Callisto were included in the 

simulations. The mathematical models of these perturbations in the motion of a spacecraft can be 

found in , Chobotov (1991) and Kaula (1966). 
 

The function of the gravitational potential due to the presence of a third celestial body is given 

by Eq. 12 (Chobotov, 1991), where:   is obtained by the product of the gravitational constant 

and the mass m  of the third body; r  is the absolute position of the third body related to the 

center of Jupiter;   is the angle between the position vector of the spacecraft related to the 
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Jupiter ( r


) and the position vector of the spacecraft related to the third body ( r

 ); r  is the 

absolute position related to the Jupiter.  
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According to Prado and Kuga (2001) and Szebehely (1967) the general problem of three bodies 

provides a simple way to calculate the disturbing accelerations due to the gravitational attraction 

of the bodies, obtained from the Newton’s law of gravitation: 
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where 1r


, 2r


 and 3r


 are the positions of the bodies, 1m , 2m  and 3m  the masses of the bodies, and 

G  is the gravitational constant. Using Eq. 13 the disturbing effects on the spacecraft’s trajectory 

can be determined. Taking into account a simulation length 50 orbits, the velocity increment due 

to the disturbing forces are presented in Fig. 2 to Fig. 7. The spacecraft’s orbit considered in this 

simulation is the same that will be considered as initial orbit for the orbital maneuvers presented 

in section 5: semi-major axis (a) = 500444 km, eccentricity (e) = 0.0451; inclination (i) = 45º; 

right ascension of the ascending node () = 45º; argument of the periapsis () = 45°. 
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Figure 2. J2 disturbing 
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Figure 3. Sun disturbing 
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Figure 4. Io disturbing 
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Figure 5. Europa disturbing 
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Figure 6. Ganymede disturbing 
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Figure 7. Callisto disturbing 

 
Figure 8.  Orbits of the Galilean moons and 50 spacecraft orbits 

 

5. Orbital Maneuver Simulation 
 

Due to the impossibility of application of an infinite thrust the orbital maneuver must be 

distributed in a propulsive arc around the position of the impulse determined by solution of the 

TPBVP. In this propulsive arc continuous thrust is applied, limited to the maximum capacity of 

the thrusters. However, the effect of the propulsive arc is not exactly equivalent to the 

application of an impulsive thrust. The difference produces a deviation in the final orbit with 

respect to the reference orbit. The velocity increment applied to the spacecraft, according to 

Chobotov [6], is given by Eq. 14, where 0g  is the gravitational constant at planet’s surface and 

g  at the spacecraft altitude, spI  is the specific impulse,   is the flight angle formed between the 

direction of the velocity and the thruster pointing direction, im  is the mass of the vehicle and fm  

the final mass. Therefore, to minimize the error in the final orbit, the flight angle could be 

maintained near to zero by controlling the pointing direction of the thruster, ensuring that the 

thrust is always applied in the direction tangential to the path. However, this solution is more 

complex because it requires the use of the attitude control system, and in fact, this approach is 

not capable to reduce the error in the final orbit reached by the spacecraft. 
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Hence, to optimize the propulsive maneuvers distributed in an arc it must be considered the 

optimization procedure for orbital maneuvers with continuous thrust: Edelbanum (1961); Biggs 
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(1978); Oliveira et al. (2013). However this optimization procedure is a difficult task, since in 

most of the cases it requires numerical methods and the definition of initial values for obtaining 

the solution. A simple possibility to minimize the effect caused by the error in the thrust 

direction would be executing the maneuver in several stages, each one applying just a fraction of 

the total velocity increment, to reduce each propulsive arc and thereby reduce the flight angle. In 

this case the error in the trajectory is minimized but the total time spent to reach the final orbit is 

maximized, characterizing a problem of multi-objective optimization with conflicting objectives. 

Another possibility to minimize the error in the trajectory after the application of the main thrust 

could be the use of an automatic correction of the orbital elements using continuous low thrust 

controlled in closed loop. In this approach, the final orbital elements are defined, then control 

loops for each of these elements determine, at each step of the simulation, the magnitudes and 

directions of application of thrust necessary to reach the desired orbital elements. The variations 

of elements occur gradually until the difference between the current and reference signals do not 

generate errors. Then, the propulsion system is turned off. 
 

To exemplify the necessity of split the maneuver in several propulsive arcs, or use the automatic 

correction approach, eight cases were studied: case 1 for impulsive approach; cases 2 to 8 for 

maneuvers using thruster with capacity of 50 N to 350 N, shown in Figs. 10 to 37, without 

automatic correction (subcases a) and with automatic correction (subcases b). The initial orbit is 

defined by the following keplerian elements: a = 500444 km, e = 0.0451; i = 45º;  = 45º;       

= 45°. The final orbit is defined by: a = 536190 km, e = 0.0451; i = 45º;  = 45º;  = 45º. The 

time necessary to perform the transfer maneuver and the velocity increment applied to the 

spacecraft for the impulsive approach were determined by the solution of the Lambert’s problem 

(TPBVP): t = 103820 s; 1v = 538.2384 m/s ( kjiv ˆ145192.138ˆ573704.35ˆ940508.2301 


);           

2v  = 266.7921 m/s ( kjiv ˆ569099.133ˆ775178.38ˆ670409.2272 


). In this section was 

considered a simulation length of 129600 s and a simulation step of 3s. 
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Figure 9. Io disturbing during the maneuver 

 

The error in the semi-major axis and the applied velocity increment for all cases are summarized 

in Table 1. When considered the application of the impulses, in case 1, all the velocity increment 

and all change in the semi-major axis are performed instantly. Therefore the applied thrust is in 

fact a pulse. However, was applied continuous thrust to counteract the disturbances. This 

continuous thrust was applied because the STRS was adjusted to control the trajectory, reducing 

the effect produced by the disturbances, but the main orbital maneuver in case 1 (impulsive 

approach) was performed in an impulsive way. 
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Figure 10. Case 2a: thrust (50 N) 
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Figure 11. Case 2a: semi-major axis error 
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Figure 12. Case 2b: thrust (50 N) close-up 
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Figure 13. Case 2b: semi-major axis error 
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Figure 14. Case 3a: thrust (100 N) 
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Figure 15. Case 3a: semi-major axis error 
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Figure 16. Case 3b: thrust (100 N) close-up 
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Figure 17. Case 3b: semi-major axis error 
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Figure 18. Case 4a: thrust (150 N) 
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Figure 19. Case 4a: semi-major axis error 
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Figure 20. Case 4b: thrust (150 N) close-up 

1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

x 10
5

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

5

time (s)

s
e
m

i-
m

a
jo

r 
a
x
is

 d
e
v
ia

ti
o
n
 (

m
)

 
Figure 21. Case 4b: semi-major axis error. 
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Figure 22. Case 5a: thrust (200 N) 
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Figure 23. Case 5a: semi-major axis error 
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Figure 24. Case 5b: thrust (200 N) close-up 
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Figure 25. Case 5b: semi-major axis error 
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Figure 26. Case 6a: thrust (250 N) 
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Figure 27. Case 6a: semi-major axis error 
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Figure 28. Case 6b: thrust (250 N) close-up 
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Figure 29. Case 6b: semi-major axis error 
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Figure 30. Case 7a: thrust (300 N) 
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Figure 31. Case 7a: semi-major axis error 
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Figure 32. Case 7b: thrust (300 N) close-up 
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Figure 33. Case 7b: semi-major axis error 
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Figure 34. Case 8a: thrust (350 N) 
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Figure 35. Case 8a: semi-major axis error 
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Figure 36. Case 8b: thrust (350 N) close-up 
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Figure 37. Case 8b: semi-major axis error 

Table 1.  Semi-major axis error and total applied velocity increment 

 

 

 

Thrust Capacity 

Semi-Major Axis Error (km) Total Applied Velocity Increment (m/s) 

without automatic 

correction 

subcase a 

with automatic 

correction 

subcase b 

without automatic 

correction 

subcase a 

with automatic 

correction 

subcase b 

Case 2:     50 N 172.31398380 0.00019550 565.42102984 570.55202300 

Case 3:   100 N 10.90866292 0.00000848 569.53735895 569.87503114 

Case 4:   150 N 35.91877973 0.00000522 572.80670438 573.58799460 

Case 5:   200 N 53.58403656 0.00000696 575.67561016 576.79717998 

Case 6:   250 N 78.21009687 0.00000928 578.67061316 580.50302756 

Case 7:   300 N 116.75456302 0.00001878 581.82111301 584.73286753 

Case 8:   350 N 144.38659081 0.00000039 584.85888182 589.14904132 

 

In general the results present a bigger error for the semi-major axis, for the subcase a, compared 

with the impulsive approach. However, using the automatic correction, the error was continually 

reduced to almost zero after the application of the main thrust. Thus, in a mission analysis of a 

spacecraft should be considered all possible combinations of the main thrust and the automatic 

correction, to choose the best solution. In this study the performance of the automatic correction 

was excellent and was able to correct the errors generated by the fact that the main thrust was 

distributed in a propulsive arc instead of an impulse. With this new procedure was possible to 

eliminate almost all deviations related to the reference trajectory for all cases studied. 
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3. Conclusions 
 

This work represents an effort in the design of the propulsion system of space vehicles. It was 

confirmed that the effect of a propulsive arc is not exactly equivalent to the application of an 

impulse. The difference produces a deviation of the final orbit relative to the reference orbit. This 

deviation depends on the magnitude of the impulse required for the maneuver, the maximum 

capacity of the propulsion system and the characteristics of the trajectory control system, as seen 

in the results. Thus, the evaluation of the trajectory deviations is relevant to the analysis of a 

space mission and in the design of the trajectory control system if a more realistic model is 

considered instead of the ideal case represented by the impulsive approach.  
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