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“I tell you folks, it’s harder than it looks.
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ABSTRACT

It is increasingly common the use of computer systems to replace human labor in
critical systems, and since these systems have become more autonomous in decision
making, they demand a high degree of quality and robustness. INPE develops em-
bedded systems for scientific satellites and stratospheric balloons; consequently, the
process of verification and validation require special care in detecting and prevent-
ing defects. In terms of complexity and system’s domain in question, these processes
consume specialist’s manpower for a long period. In this scenario, the application
of techniques that can automatically support test process provide a significant gain
in specialist’s productivity and efficiency. For this purpose, this work performs the
source code reverse engineering in order to support a combination of two V&V pro-
cesses, static source code analysis and software testing, in order to detect a wider
range of defects. The proposed method, called REACTOR (Reverse Engineering
for stAtic Code analysis and Testing to detect sOftwaRe defects), complements the
traditional way that static code analyzers work by using dynamic information ob-
tained by an automated test case generator, which combines three different black
box techniques, being also possible to infer a set of estimated expected results sim-
ilar to a test oracle. However, the combination of such techniques is not trivial,
especially in terms of tasks that commonly demand some action that are not easily
automated. Furthermore, the static analysis by itself can not reveal several types
of defects that can only be detected by combining static analysis and dynamic in-
formation. The REACTOR method has been implemented in a software tool, also
called REACTOR, which exempts from a large manual labor’s amount from testers
by automating the process and basing only on application’s source code. In addition,
REACTOR was applied to some case studies including one of the space application
domain, and it performed better than three other well known static code analyzers.

Keywords: Static Code Analysis. Software Testing. Reverse Engineering. Test Case
Generation. Test Oracle.
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REACTOR: COMBINANDO ANÁLISE ESTÁTICA, TESTE DE
SOFTWARE E ENGENHARIA REVERSA PARA DETECÇÃO DE

DEFEITOS DE SOFTWARE

RESUMO

É cada vez mais comum a utilização de sistemas computacionais em substituição à
mão de obra humana em sistemas críticos, e na medida em que estes sistemas têm
se tornado mais autônomos para tomar decisões, eles exigem um alto grau de qual-
idade e robustez. O INPE desenvolve sistemas embarcados para satélites científicos
e balões estratosféricos; consequentemente, os processos de verificação e validação
exigem cuidados especiais na detecção e prevenção de defeitos. E tendo em vista a
complexidade e o domínio dos sistemas em questão, estes processos consomem a mão
de obra especialista por um longo período. Neste cenário, a aplicação de técnicas
que possam efetuar testes de forma automática auxiliam o processo proporcionando
um ganho significativo de produtividade e eficácia no trabalho dos especialistas.
Com esse objetivo, este trabalho realiza a engenharia reversa de código-fonte de
modo a combinar dois processos de V&V, análise estática de código fonte e teste
de software, a fim de detectar uma gama mais ampla de defeitos. O método pro-
posto, denominado REACTOR (Reverse Engineering for stAtic Code analysis and
Testing to detect sOftwaRe defects), complementa a maneira tradicional pela qual
os analisadores de código estático trabalham usando informações dinâmicas obti-
das por um gerador de caso de teste automatizado, que combina três técnicas de
caixa preta diferentes, sendo também possível inferir um conjunto de resultados es-
perados estimados similar a um oráculo de teste. Ainda assim, a leitura do código
fonte estático por si só pode não revelar vários tipos de defeitos que só podem ser
detectados combinando a análise estática com informação dinâmica. O método RE-
ACTOR foi implementado em uma ferramenta de software, também chamado de
REACTOR, que poupa os testadores de um grande volume de trabalho manual
automatizando o processo e baseando-se apenas no código fonte. Além disso, a RE-
ACTOR foi aplicada em alguns casos de estudo incluindo uma aplicação da área
espacial, e seu desempenho foi melhor do que outras três conhecidos analisadores de
código estático.

Palavras-chave: Análise Estática de Código Fonte. Testes de Software. Engenharia
Reversa. Geração de Caso de Teste. Oráculo de Teste.
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1 INTRODUCTION

The last three decades observed an extraordinary advance in development of com-
puter technology, and this meant that what once was a privilege of few computer
enthusiasts and professionals, today it is commonplace and indispensable in our daily
lives. Powerful computational resources that were previously used only in extreme
cases due to their high costs, can be found today in the pockets of any urban life
teenager. Such resources are present ranging from digital music players and smart-
phones, to complex control systems for trains and huge aircraft. These resources
depend pretty much on software, which is a common element that is present in
many types of devices used directly or indirectly in everyday’s life, and people are
surrounded by systems, embedded in devices, that perform some kind of control
(CATSOULIS, 2005).

With advances in hardware and software, increasingly complex problems are solved
by computer systems in order to increase efficiency towards several aspects: cost,
time, productivity, and safety. Computer systems no longer only assist human labor
in repetitive tasks, but today they represent complex tasks and even replace humans
to take decisions that can involve high risks (SOMMERVILLE, 2010). Consequently,
in order to be able to provide safe and consistent decisions operating across several
platforms and conditions, modern systems have more and more needs to be veri-
fied and validated (PRESSMAN, 2014) in order to become reliable in terms of their
functional and non-functional requirements.

Therefore, tests have become an important activity in software development, since
needs for quality and robustness have become rather demanding (SOMMERVILLE,
2010). In this context, testing is no longer a development of a subsequent task and
has become a very important process with a strong interaction with the project since
its beginning (MYERS, 2011).

V&V (Verification and Validation) aims at increasing the quality of software prod-
ucts. Several V&V processes/methods exist, such as static analysis, formal veri-
fication, and the most popular method called software testing. So, it is essential
even with their costs being usually high (PRESSMAN, 2014). Thus, software test-
ing process may demand a considerable time of any software development lifecycle,
but especially in critical applications that, in case of failure, may cause risk to the
environment, humans, or high financial costs (SOMMERVILLE, 2010).

Software testing is a high cost process in several cases, and it is still more costly in
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space systems that involve a complex and costly hardware engineering, since many
of these systems are kept in operation for long periods such as twenty years or more
(GRILO et al., 2010).

Research institutes like INPE (Instituto Nacional de Pesquisas Espaciais) develop
software for embedded computers in stratospheric balloons and satellites. In these
applications, the hardware involved often need to cope with problems such as the
limited space, weight and energy consumption; so, the development of software em-
bedded in computers of satellites or balloon applications need to take into account
such constraints and the critical aspects of such systems require a lot of effort in
V&V activities such as static analysis, testing, or formal verification (SANTIAGO

JÚNIOR, 2011).

1.1 Motivation

The static source code analysis is a safe method to detect defects and has become the
focus of several researches in software testing to address deficiencies in specifications.
Several studies report that more than 60% of software defects can be detected using
source code inspections (SOMMERVILLE, 2010). However, static analysis has two
limitations: it is not able to detect defects based on dynamic information, and it
potentially can reveal a lot of false positive defects. It is important to stress that if
a professional does not agree with certain rule implemented in a static analysis tool
not necessarily mean that a false positive indeed exists. However, results by using
static analyzers are usually very noisy where there may be lots of false positives and
also many defects identified that are not, in fact, important to a particular software
product or coding standard. So, static analysis researchers have tried to combine
static analysis with some data flow analysis, in order to improve its performance.

Software testing based on a test case generation criteria is probably the most used
V&V process in practice. Two known approaches for test case generation are black
and white box testing (PRESSMAN, 2014). Black box testing refers to generate test
cases based on requirements and without the need to “see” the source code. On the
other hand, in white box testing, we usually depend only on the code to generate test
cases, by generating representations such as CFG (Control Flow Graph) or Def-Use
Graphs (BEYDEDA et al., 2001). In practice, black box testing is the most used in
many companies (GAROUSI; ZHI, 2013), and it is also capable to detect defects that
can not be addressed only by static analysis or reverse engineering.

Reverse engineering can be described as a form of static code analysis, and the soft-
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ware modernization generally uses reverse engineering to understand the actual state
of existing or legacy software in order to plan its evolution (LANZA, 2003). Reverse
engineering is a process of examination so that one can analyze an SUVV (Soft-
ware Under Verification and Validation) in order to create another representation
at a higher level of abstraction, going backwards through the standard development
cycle.

It is not uncommon to find V&V processes integrated concurrently with a reverse
engineering. As mentioned before, V&V processes are expensive and essential to
develop a high quality software, and at the same time, exhaustive testing is not an
option in most of the cases (SANTIAGO et al., 2008a). So, the automation of several
activities of the testing process provides benefits, since it can reduce costs both
financially and in terms of time required to perform the test process. Therefore, it
is essential that efforts are dedicated in order to automate all the activities of the
software testing process from test case generation to test results evaluation, which
can be assisted by a test oracle (BINDER, 2000).

Therefore, the approach discussed in this thesis is related to static analysis and
reverse engineering, which are subjects that currently have great relevance and great
challenges to detect types of defects that are not covered only via testing. But it also
mixes different black box testing techniques into a single approach that becomes
interesting because it is possible to rely on the main benefits of each technique
increasing the defect detection capability and enabling the inference of estimated
expected results via test oracle generation.

In addition, this approach is proposed by using just the source code as a unique
resource, since it is possible to use static analysis techniques (that are generally
effective and can be automated as well) to perform its reverse engineering.

The decision to adopt this approach based only on source code is another challenge
related to the dependency of software documentation for testing. The quality of tests
commonly depend on software documents, e.g. software requirements specification
(BINDER, 2000). However, for testing this can be an obstacle in several scenarios
where systems are poorly documented, or where documentation is not updated ac-
cording to the evolution of a legacy system, or even a misspelled documentation
which can lead to a misinterpretation of the testing professional. It is really diffi-
cult to identify all significant requirements, whether relating to functionality, per-
formance, design constraints, attributes or external interfaces (SANTIAGO JÚNIOR,
2011), and this needs to be taken into consideration even for well known development
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models as waterfall model or V-Model. Considering that tests based on unreliable
specifications can not be successful, a more feasible approach would be based on
source code that is the more concrete representation of a system. The decision to
adopt this approach based only on source code is another challenge related to the
dependency of software documentation for testing. The quality of tests commonly
depend on software documents, e.g. software requirements specification (BINDER,
2000). However, for testing this can be an obstacle in several scenarios where sys-
tems are poorly documented, or where documentation is not updated according to
the evolution of a legacy system, or even a misspelled documentation which can lead
to a misinterpretation of the testing professional. It is really difficult to identify all
significant requirements, whether relating to functionality, performance, design con-
straints, attributes or external interfaces (SANTIAGO JÚNIOR, 2011), and this needs
to be taken into consideration even for well known development models as waterfall
model or V-Model. Considering that tests based on unreliable specifications can not
be successful, a more feasible approach would be based on source code that is the
more concrete representation of a system.

Finally, the inference of the estimated expected result for an SUVV is not a particular
problem assigned in test oracles, but also for other white box testing techniques.
For example, one can cite unit testing performed in JUnit (JUNIT, 2015), a popular
automated test execution framework for testing Java classes. In JUnit, a test case
script must specify the expected result in order to run and provide an automated
verdict. And it must be coded manually by the system tester, as shown in Figure
1.1.

The estimation of expected results is not trivial, since it must consider several pos-
sible problems to determine how and whether such an estimate can be produced.
The precise inference of results from an SUVV that uses some randomized element
is impossible. Scalar variables, usually present in interpreted languages such as Perl
and PHP (Hypertext Preprocessor), and non primitive types as arrays, strings, col-
lections or objects (common in object oriented systems) are complex to be inferred.
Also, there are SUVV that implement a GUI (Graphical User Interface), and, con-
sequently, might not have predictable inputs or outputs in several situations. And
finally, many systems can have as input/output data dependent from database sys-
tems or file systems. Therefore, the challenge to develop an approach to infer ex-
pected results, by minimizing to some extent manual interference, has currently a
great relevance (AGGARWAL et al., 2004).
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Figure 1.1 - JUnit test case script.

1.2 Objective

The objective of this PhD thesis is to present a solution to detect a wider range of
software defects via the combination of static source code analysis and testing. Such
a combined solution may have the strengths of both methods, static code analysis
and software testing, and the increased ability to detect a greater range of software
defects is interesting not only to ordinary but also to critical software systems.

1.3 A Proposal to Achieve the Objective

In order to reach the objective of this work, a combined approach that uses static
source code analysis and testing was developed. The created method and tool is
called REACTOR (Reverse Engineering for stAtic Code analysis and Testing to
detect sOftwaRe defects) which uses reverse code engineering to support both the
methods (static code analysis and testing).

For static source code analysis, the main contribution of this PhD thesis is the
use of dynamic information in order to complement the usual way to perform static
analysis. For testing, REACTOR is related to two testing process activities: test case
generation and test results evaluation (the oracle problem). With respect to test case
generation, the benefits of three black box testing techniques - BVA (Boundary-Value
Analysis), EP (Equivalence Partitioning), RT (Random Testing) - are an adapted
version of the original combined into a single approach. In addition, pairwise testing
(LEI; TAI, 1998) is used in order to decrease the size of the test suite. For test oracle, a

5



solution based only on the source is presented where there is no delivery of a precise
oracle information, but the test case generation and test oracle activities together
provide a solution to address, more specifically, exception handling defects that turn
into failures.

By combining static code analysis with software testing, REACTOR has a potential
to detect a wider range of defects. The proposal was applied to 11 case studies,
including one from the space application domain. With respect to static code analy-
sis, REACTOR performed better when compared with three other well known static
code analyzers considering the detected true positives and unimportant defects. For
testing, REACTOR detected exception handling defects considering the 11 case
studies.

Case studies used in this work were developed in the Java programming language.
Java and its derived languages still seem to be most used programming languages
in the real settings (REDMONK, 2016; TIOBE, 2016). Though, C is the most used
programming language for embedded systems (UBM TECH ELECTRONICS, 2014).

Java can be the solution for the development of simulators of systems as part of an
EGSE (Electrical Ground Support Equipment), including space applications. But,
it is important to point out that most of the concepts and the scientific contribu-
tion of REACTOR can be adapted to source code developed in other programming
languages that support the object-oriented programming paradigm such as C++,
PHP, and C#.

The theoretical contributions of this work are:

a) Development of a method combining two V&V approaches: static code
analysis and software testing;

b) Handling several types of static code analysis defects and testing defects as
bad coding practices, code parts that causes a performance losses, unused
code parts, coding vulnerabilities, and code lines that can cause failures.

c) Development of a new test case generation method based on BVA, EP,
and RT;

d) Development of an organic test oracle that does not depend on explicit
documentation.
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Apart from the theoretical contributions, the implementation of this approach into
a tool, REACTOR, brought several practical contributions:

a) The application of reverse engineering in order to perform automated
source code inspection;

b) Using regular expressions patterns to match code lines of the SUVV;

c) The estimation of expected results (oracle information) automatically with-
out the need of explicit documentation;

d) Generation of test scripts by automatically instrumenting the source code;

e) Application of the approach to 11 case studies including a simulator of
software embedded into satellite scientific instrument’s computer;

1.4 Text Organization

This work is divided into chapters whose division is described below:

• Chapter 2 - Theoretical Basis: briefly describes several issues related
to basic terminology, static analysis, software testing, testing techniques,
reverse engineering, test automation, and test oracles;

• Chapter 3 - REACTOR Concepts: discusses in details the concepts
behind the REACTOR method: static source code analysis, software test-
ing and reverse engineering;

• Chapter 4 - Implementation of REACTOR: discusses the features
and other implementation level characteristics of the REACTOR tool, the
realization of the concepts presented in the previous chapter;

• Chapter 5 - Case Studies: presents results obtained by REACTOR
considering a set of case studies;

• Chapter 6 - Conclusion: presents conclusions of this PhD thesis and
possible future directions for this research.
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2 THEORETICAL BASIS

2.1 Basic Terminology

In order to avoid possible confusion in understanding the terminology in the area
of software testing, this sub-section provides some basic definitions. In fact several
authors in software engineering area distinguish these terms (defect, fault, error
and failure) in different settings, as there is no consensus among all authors. In
this work, defect is considered a synonym of fault. This terminology is defined in
accordance with the IEEE Standard Glossary of Software Engineering Terminology
(INSTITUTE. . . , 1990) and can be understood by Figure 2.1.

Figure 2.1 - Defect, Error and Failure Terminology.

The defect (or fault) is the occurrence of an incorrect step, process, or data definition
in a software. It occurs in a lower level of application, a defective memory that
changes a bit, corrupted file, or a syntax problem from the compiled program. An
error is the effect of lack of data manipulated by the program, and this error may or
may not manifest a failure, that is the user perception of the occurrence of a defect
(BINDER, 2000).

Processes of V&V ensure that the software satisfies all the requirements necessary
to develop all tasks for which it was designed (Validation), and to ensure that all
requirements have been met (Verification) (PRESSMAN, 2014). Briefly, one can say
that there are inspections with intention of certifying that the system satisfies user
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expectations. One of the most classical definitions of V&V was written by Boehm
(1981) and says that validation is the answer to the question “are we building the
right product?”, and the verification replies to “are we building the product right?”.

Some other definitions used in this PhD thesis are defined according to the glossary
of IEEE (INSTITUTE. . . , 1990) and (MYERS, 2011).

• Input: Specific data value to be entered during the execution of a partic-
ular test case.

• Output: Data resulting from an operation, software execution, or test
execution.

• Test Case: Set of finite entries assigned to perform a system test.

• Test Suite: Collection of test cases that are intended to be used to test
an SUVV.

• False Positive: It is a false alarm that a software defect was found when
in fact it does not.

• Return Value: If a statement (or method on object oriented systems)
contains an output variable, this is treated as a return value.

• Expected Result: Observable conditions or states expected as a result
of running a test.

• Driver: Software, or any other mechanism, which is used to apply test
cases on SUVV.

2.2 Static Analysis

Static code analysis is the process of detecting defects in a software’s source code.
The term “static analysis” can be viewed as an automated code review process
for evaluation of source code, or other system representation, without executing it
(CHESS; WEST, 2007). Similar to manual inspections, automatic static analysis is
a technique where the source code of an SUVV is checked searching for particular
patterns that are automatically classified as potentially defective (SOMMERVILLE,
2010).
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2.2.1 Manual Inspections

It is interesting to mention that the term “inspection” (or code reviewing) is gen-
erally related to the analysis performed by a human, because when the analysis is
performed by a software tool, the most common term is “static analysis”. Inspection
and peer review are the most commonly used static analysis techniques, where group
of people check specification, design, or source code. They examine the design or
source code in detail, looking for possible defects or omissions.

The inspection works well assuming that programmers can notice defects in some-
body else’s source code much easier than in their own source code. However, although
it is a very efficient technique for detecting defects, the dependence on manual in-
spections has several issues:

• Manual work usually produces inconsistent and fragmentary test process
information. Thus, the testing team may produce, for instance, inconsistent
system test cases due to unambiguous requirements not detected during
the manual inspection;

• It is difficult to accomplish an appropriate manual traceability between
requirement specifications and other artifacts derived during the develop-
ment of the software product;

• It is an extremely expensive, since it requires several inspectors at regular
times;

• There is a dangerous risk that a test success depends on an expert profes-
sional exclusively;

• In most cases, manual inspection is tedious and error-prone;

Manual inspections are an effective technique to detect defects, but in most of the
cases, it is extremely expensive and some times infeasible. However, it is possible to
use automatic and more efficient approaches to aid testing inspections by the use of
reverse engineering to create architectural views of SUVV.

2.2.2 Reverse Engineering

Reverse engineering is the processes of extracting knowledge from anything already
made in order to reproduce anything based on this extracted knowledge.
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In practice, there are two main types of reverse engineering. The first type is where
there is no source code available, and the engineering is focused on several efforts
towards discovering the possible source code for the regarded SUVV. This usage is
more familiar to most of the people. And the second type, which is implemented in
this work, that is when system’s source code is already available, but higher-level
aspects of the SUVV may be discovered due to poor or outdated documentation.

For a software to be completely understood, it is necessary to extract two types of
information: static and dynamic (GRILO et al., 2010). Static information are closely
related to white box approach, since the information can be basically recovered by
source code analysis, such as software elements (classes, methods and variables) and
relationships between them. Relationships can be complex spanning the extension
between classes, interfaces, and overwritten or overloaded method calls. The dynamic
information is related to black box approach. It goes beyond static software elements
and can represent the sequence, concurrence and coverage of encoding (GRILO et al.,
2010). Thus, reverse engineering can be made focused on two approaches:

• Static approach: refers to system verification techniques that do not involve
executing the program (MOORE, 1996) and requires access to system’s
source code. This approach is especially useful for extracting information
about the internal structure of the system and dependencies between its
elements, so it is classified as a white box approach.

• Dynamic approach: is also based on an analysis of system’s external be-
havior, and it is done during execution (MORI et al., 2002). It is the only
feasible approach when source code is not accessible, and adequate for the
extraction of system’s physical structure and its dynamic behavior. This
approach is commonly used in black box tests.

2.2.3 Static Source Code Analysis

Static source code analysis, also commonly known as code reviewing, is one of the
classic, oldest and safest methods to detect defects and it recommends on how to
improve the code (CHESS; WEST, 2007). This process can reveal defects and source
code fragments that may turn into a failure in the future.

The automated static analysis tools can assist programmers and aims to solve the
two major disadvantages of the inspections: its high costs to analyze a code by hiring
programmers, and the analysis repeatability. After all, people need to rest regularly,
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as their attention uses to weaken quickly when they review a lot of code at a time,
thus compromising the quality of analysis. So, static analysis tools are strongly
recommended since they can tirelessly analyze large source code routines and give
recommendations on which code fragments the programmer should consider.

In many cases, a static analysis tool can not replace a well done code analysis
performed by a team of professionals, but in general, the trade off cost/benefit makes
the usage of such tools a good practice exploited by many companies. In general,
static analysis is related to four problems: detection of defects, recommendations on
code formatting, software metrics and reverse engineering.

The SSCARE (Static Source Code Analysis by Reverse Engineering) is possible
once a lot of static information can be obtained by static analysis, such as: methods
called by other method (or the same method), uninitialized variables, variables set
but not used, source code segments that are isolated and not executed by any test
case, questionable or unsafe coding practices, among others (CHESS; WEST, 2007).
Static approaches are particularly well suited for extracting information about the
internal structure of the system and dependencies among structural elements from
the source code by reverse engineering.

Based on source code, SSCARE can detect defects that are often a result of pro-
gramming mistakes or omissions, so they highlight anomalies that could go wrong
when the program is executed generating an error or failure. However, many times
these anomalies do not necessarily result in an error or failure with test cases, or
even in any case, as explained in Section 2.1. This is typically conservative technique,
since it reports not only defects that are guaranteed true, but also weaker defects
than can (or can not) be true (ERNST, 2003). So, the usefulness of this technique
is sometimes questionable, due to the large number of false positives that can be
found, especially when analyzing large systems. This is certainly one of the greatest
issues of static analysis (CHESS; WEST, 2007).

Other very important issue is that automated tools analyze the source code with-
out considering the possibilities that can be explored through all the computations
involved. So, the use of automated tools still has a limited range since some classes
of defects can only be identified by making inferences about the control flow data,
and computing all possible values for the data (SOMMERVILLE, 2010). For example,
which code block within a control structure is actually exercised may depend on the
data that the SUVV is handling. This information can only be addressed by dynamic
analysis, which consists in monitoring variable values and instrumenting the source
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code to produce information regarding exercised paths (AGGARWAL; JALOTE, 2006).

As static analysis is criticized for revealing false alarms many times, on the other
hand, dynamic testing operates by executing (or simulating an execution) a program
and observing its behavior (CHESS; WEST, 2007). So, this is precise because it ex-
amines the exact run-time data, and there is little or no uncertainty in what control
flow paths were taken or what values were computed once selected a representative
set of test cases.

Traditionally static and dynamic approaches have been viewed as separate domains,
with practitioners or researchers specializing in one or other. However, the difference
is smaller than it appears, and it is certain that these distinctions are unnecessary
and counterproductive. Hence, several researches aims to use static and dynamic
approaches as complementary techniques, and showing that there is a synergy be-
tween their strengths and weaknesses (ERNST, 2003). However, in terms of existing
automated tools, they are still limited to perform only the source code analysis based
only on static information.

2.2.4 Automated Static Analysis Tools

In order to be effective and repeatable, testing must be automated. And tests can be
automated by some kind of software that includes capabilities to generate test inputs
and to run test suites without manual intervention of a software tester (BINDER,
2000).

The more appropriate approach of automated testing depends directly on the goals,
budget, software process, class of application under development, and particularly
limitations of the development and target environment (BINDER, 2000). An useful
test automation can be entirely different for embedded systems, graphical interfaces
or database based systems, for example.

Automation of testing must be timely used as much as possible in an effective
manner, since it offers many significant advantages:

• It allows a faster and efficient detection of defects significantly reducing
the amount of post-release updates;

• Costs of test automation are generally recovered increasing productivity
and avoiding costs associated with defects correction;

• Reduces the risk that test success depends exclusively on an expert;
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• Tester productivity is improved with an increase of time for designing tests
achieving a greater coverage;

• Automated evaluation is the only efficient manner to evaluate a huge
amount of outputs by repetition.

For several types of defects, it is possible to automate the process of checking source
code revealing code fragments that may be defective. These techniques were em-
ployed in development of automated static analysis tools, which allows testers to
perform an automated analysis without a complete knowledge of the SUVV and
without the need for much information. Such tools complement the defect detection
facilities being used as part of the inspection process or as a separate verification
process activity, since they are faster and cheaper than detailed code reviews. Some
examples of well known static analysis tools are: SciTools Understand, SonarQube
and FindBugs.

SciTools Understand (SCITOOLS, 2015) is a very advanced commercial tool IDE
built focusing the code knowledge. It does not only perform static analysis tests but
also has a lot of features related to metrics, editor, graphing, dependency analysis,
among others. This tool is able to perform tests in several programming languages
as COBOL, C, C++, Fortran, Java, Pascal, Python and PHP. It depends only on
the source code, but the developer does not provide a list of all types of defects that
the tool can verify.

SonarQube (SONARQUBE, 2015) is an open source platform which provides code
analyzers, reporting tools, defects hunting modules, among others. In terms of pro-
gramming languages, Sonar supports C, C++, C#, COBOL, Groovy, Java, PHP,
Python, VB (Visual Basic) and many others. Different from Understand, SonarQube
is less dependent on code knowledge and more on static analysis, and the only re-
quirement to perform tests in it is the source code. This tool runs hosted in a server
and it has a web-based GUI. So, its installation and setup are not as trivial as the
previous.

FindBugs (FINDBUGS, 2015) is an open source static code analyzer which detects
possible bugs in Java programs. This tool is distributed as a stand-alone GUI ap-
plication, and rather than other two tools, FindBugs operates on Java bytecode
instead of the source code. As can be seen in Section 2.5.1, this is probably the most
referenced static analysis tool in academics, since it is easy to install, easy to use,
and very well documented. It also has plug-ins available for some IDEs, and its only
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limitation is that it performs static analysis of Java code only.

2.3 Software Testing

Testing is a set of processes intended to ensure that a software does what it is
intended for, and to discover possible defects before it is put into use (SOMMERVILLE,
2010). Therefore, testing process has two main objectives: to demonstrate to the
developer and the customer that the software meets its requirements, and to reveal
situations in which the behavior of the software is incorrect, undesirable, or does
not match to its specification (SOMMERVILLE, 2010). The occurrence of defects can
invoke an undesirable software behavior, software crashes, unwanted interactions,
incorrect computations, and data corruption (SOMMERVILLE, 2010).

The first objective leads to validation (V&V testing), where the software is tested
by using a given set of test cases which may reflect the expected software behavior
(SOMMERVILLE, 2010). And the second objective leads directly to detection of de-
fects, where test cases are designed, on purpose, to expose possible defects. So, the
test cases for detection of defects can be deliberately nonsense and do not need to
reflect exactly how the software may be used (SOMMERVILLE, 2010).

However, in real situations, there is no exact boundary between these two objectives.
Thus, it is not uncommon that defects are revealed during validation testing, and
otherwise, it is not unusual to discover situations where software does not meet its
requirements during tests for detection of defects (SOMMERVILLE, 2010). And this
is the reason that is necessary to understand the validation (V&V) even in research
dedicated to the detection of defects, as this thesis.

V&V is a technical and systematic evaluation at the end of each development stage,
to ensure that all requirements have been complied with. Design, source code, doc-
umentation and data must satisfy these requirements undergoing revisions, walk-
throughs and testing. One can say that the focus of verification is in the process,
while the validation is in the product (SOMMERVILLE, 2010).

Such tasks are usually more effective when conducted by people not directly involved
in the product development, since testers involved in the project can unconsciously
develop biased and well behaved tests that do not exploit system limits, and often
do not represent the environment for real operation. Walkthrough is a closer ex-
amination based on debugging source code with the intent of finding errors. It is
common that V&V teams have, besides test developers, experts in quality assur-
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ance. Tests are conducted operating the SUVV with real data inputs, produced by
developers, and running SUVV in a real situation. This simulation demonstrates
that the software satisfies all requirements, and if not, identify differences between
results obtained compared with expected results.

V&V process is usually composed of five stages which are tested from smaller com-
ponents up to the full integrated system. This process is interactive, and based on
feedbacks, it is possible to return to an earlier process stage in order to fix defects in
its sources satisfying system requirements. These five stages are illustrated in Figure
2.2.

Figure 2.2 - Test Process.

SOURCE: Adapted from Sommerville (2010).

• Unit Testing: Tests of individual components independently. In an object-
oriented methodology, a unit could be a method or a class;

• Module Test: Tests of collection of dependent components, such as a
class hierarchy;

• Subsystem Test: Test of a set of integrated or subsystem modules, or
sub-packages in an object-oriented methodology;

• System Test: Testing of integrated subsystems that compose a system,
or a package;

• Acceptance Testing: System testing with real data instead of simulated
data.
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Therefore, tests for V&V can be applied at different stages of the software develop-
ment process, and there are several documented techniques for planning and valida-
tion of test cases (MYERS, 2011). Each of these techniques has a different perspective
of the SUVV, and together they complement each other (PRESSMAN, 2014).

2.3.1 Dynamic Analysis

Ball (1999) defines dynamic analysis (or dynamic testing) as “the analysis of the
properties of a running software system”. In other words, dynamic analysis is the
study of a software execution, and has become a common technique which has re-
ceived a lot of attention from the software testing community. The proper analysis
of data gathered by executing software has potential to provide an accurate picture
of an SUVV, since it exposes its real behavior. This picture can expose runtime
information and object identities (in context of object-oriented systems) for sce-
narios that are exercised during the analysis (CORNELISSEN et al., 2009). Dynamic
approaches are the only option when the source code is not available, and they are
usually more difficult to automate.

The SUVV comprehension is another purpose of dynamic analysis, and several ap-
proaches have been proposed in this context using different interpretation techniques
and tools (CORNELISSEN et al., 2009); and the source code instrumentation is a use-
ful resource to produce information regarding exercised paths in order to detect
software defects (AGGARWAL; JALOTE, 2006).

Generally, dynamic analysis also comprises the analysis of an SUVV execution
through interpretation or instrumentation, and the resulting data are used for such
purposes as reverse engineering and debugging. It does not only include software
artifacts, but also contains other essential information to comprehend SUVV as
sequential information, information about concurrency, code coverage, etc.

The dynamic analysis operates out of the limited range of static analysis, since
it involves executing test cases and evaluating the results by monitoring variable
values (CORNELISSEN et al., 2009). For example, which code block within a control
structure is actually exercised depends on the data that the SUVV is handling, and
this information can only be addressed by dynamic analysis.

Therefore, dynamic analysis can reduce the search space for static analysis by re-
stricting it only for the source code exercised by test cases, saving the tester time
that is not interested in analyze useless code. Thus, the hybrid approach tends to
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present a better reliability of the results, since dynamic analysis can be used to
confirm or discard results from static analysis (WENDEHALS, 2003). In short, in this
work dynamic analysis help to make results of static analysis more precise.

2.3.2 Black Box Testing

Also called “functional testing”, is based only on the software specification or per-
forming tests without knowledge of its internal structure; therefore, the tester has
no access to the source code. The purpose strictly ensures that the system is able
to perform all functions required no matter how they implemented their solutions.
The main types of tests used in this approach are:

• Boundary Value Analysis: Consists of selecting data (or cases) for tests
beyond software’s range of values. The extrapolation of maximum and
minimum values are often the most responsible for failure occurrence.

• Equivalence Partitioning: Divides the set of input data into classes that
are tested from specific cases. The main objective of this technique is to
eliminate redundancy of test cases optimizing the discovery of defects with
less effort from testers.

• Category-Partition: Consists of a systematic way to design functional
test cases. Significant test cases are generated based on combining values,
input parameters or operating environment which are inferred by analyzing
the system specification.

• Classification Trees: It is based on the partition of the input domain of
a test object, which is considered under various aspects addressed by the
tester if it is relevant. So, test cases are composed by combining classes of
different classifications.

• Random Testing: As the name suggests, this technique tests the SUVV
by using the generation of random and independent inputs.

• Cause Effect Graphing Technique: Graphs, in general, are important
tools for software testing. This particular technique uses graphs to con-
struct a representation (or model) of logical conditions and their corre-
sponding actions.

It is important to point out that very classical black box test case generation tech-
niques, e.g. BVA, are still the most used in practice in many companies (GAROUSI;
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ZHI, 2013). Mixing different black box testing techniques into a single approach can
be interesting because one can rely on the main benefits of each technique.

2.3.2.1 Boundary Values Analysis

BVA is an usual testing technique for functional tests where each boundary condition
of an equivalence class is tested (MYERS, 2011). Several experiences show that test
cases that explore boundary conditions of an SUVV have a greater efficacy than test
cases that do not (MYERS, 2011).

In this case, boundary conditions are those situations directly within, above, and
below the limits of an equivalence class. BVA is different from EP, since rather than
selecting any value in an equivalence partition, BVA requires that one or more values
be selected as test case in order to test each threshold of the equivalence class.

Figure 2.3 presents an example of the BVA set to test the factorial in a handheld
calculator. It is known that most of handheld calculators can just calculate factorial
numbers up to 69 at most, due to memory limitations. And also, it is known that
there is no factorial for negative numbers. So, based on BVA testing, the factorial
for this calculator could be reasonably tested with four test cases. Two of them
are the edges within the equivalence class, and other two immediately outside the
boundaries.

Figure 2.3 - Example of an BVA application.
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2.3.2.2 Equivalence Partitioning

EP is a testing technique that aims to reduce the number of tests by setting classes
of values. Therefore, this technique assumes that a test of an SUVV with a repre-
sentative value within a determined class, consequently tests all values within that
class (MYERS, 2011). EP assumes that a well planned test case has a reasonable
probability of finding defects avoiding exhaustive tests, that is impossible in most
times.

When testing an SUVV, generally one is limited to a small subset of possible inputs.
Hence, it is needed to select the “right” subset, which is the one with the highest
probability of revealing the most number of defects. One way of choosing this subset
is by considering that a well planned test case may have two characteristics:

• It may drastically reduce the number of test cases that must be developed
to meet some predefined requirement for a reasonable testing.

• It should cover a large range of other possible test cases, allowing one to
foresee (of course, without the absolute certainty) the defects that may
occur with input values within the same equivalence class.

EP suggests that tests with a representative value within a determined class is
equivalent to a test with any other value within the same class. So, if one test case
within an equivalence class detects a defect, it is expected that all other test cases
within the same equivalence class would reveal the same defect. And logically, if a
determined test case did not detect any defect, it is expected that no other test cases
within the same equivalence class do not also.

Figure 2.4 presents the same example of the handheld calculator, that is in mentioned
in Section 2.3.2.1, treated by EP approach. In this approach, the factorial could be
reasonably tested with three test cases, one for each partition set in Figure 2.4.

2.3.2.3 Random Testing

Random testing (also known pejoratively as “monkey testing”) is a functional (black
box) software testing technique where the SUVV is tested with random and indepen-
dent inputs generated somehow (GODEFROID et al., 2005). This technique is specially
useful in situations where the time needed to design test cases is too long, or the
complexity of test cases makes it impossible to test every possible combination of
inputs.
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Figure 2.4 - Example of an EP application.

Although RT is usually considered a inefficient approach of software testing when
compared with test case generation based on software structure (which is preferred
in most of times (DURAN; NTAFOS, 1981)), there are several researches that presents
experiments based on random testing which tend to confirm the viability this testing
technique as a useful validation tool (GUTJAHR, 1999).

2.3.2.4 Pairwise Testing

Pairwise testing (LEI; TAI, 1998), also known as 2-way testing, is a known test case
generation criterion that requires that for each pair of input parameters of a system,
every combination of valid values of these two parameters be covered by at least
one test case. The generation of the minimum pairwise test set is considered a NP-
complete problem.

Empirical results show that pairwise testing is a practical and effective approach
that tends to use the least amount of variable combinations keeping an effective
coverage of the tests. It groups the variables in pairs for test suites, assuming that
the interaction of at most two values can cause the most of defects. A practical
example of using pairwise testing demonstrating its capacity to reduce test cases is
shown in Section 3.1.2.
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2.3.3 White Box Testing

Also known as “structural testing”, is performed at a lower level than functional
tests, and is based on internal structure of the system by accessing source code im-
plementation (SOMMERVILLE, 2010). The tester needs full access to system’s source
code in order to examine logical paths and verify its operation. At this level, there
is no concern about functional requirements or system specification (PRESSMAN,
2014). White box tests can detect many implementation failures or even highlight
never executed paths (useless code). The main types of tests used in this approach
are:

• Control Flow Graph: Consists of directed graphs which has nodes that
are blocks of sequential statements. Edges contain a label or predicate
that represents the condition of control transfer. There are other several
techniques based on CFG, as Concurrent CFG, Hierarchical CFG, among
others.

• Def-Use Graph: Similar to a CFG, it captures the flow of definitions
(computation-use or c-use and predicate-use or p-use) to each node in the
graph and uses across basic blocks in a program. It also labels each edge
with a condition that causes the edge to be taken if it is true.

• Basis Path Testing: Aims to define a basic set of testing finite paths.
Requires the creation of a set of test cases that exercise the paths guaran-
teeing the execution of each statement contained in these at least once.

• Condition Test: Tests logical conditions (if, for, while, etc.) contained
in the code. Conditions can be simple (with only one logical operator) or
composed.

• Data Flow Testing: Makes execution paths selection according to defi-
nitions and locations of variables or, in other words, data flow is selected
based on the data manipulated in certain code snippets.

• Bounds Test: The tester makes use of test cases that traverse program’s
bounds, in order to validate the construction of each bound.

There is another technique called “Error-based testing” which is based on the in-
troduction of common mistakes in software during the development process. Many
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references consider this technique as belonging to the same group of structural tests
(or white box tests).

Structural tests are done generally during the early stages of development in small
software parts (functions, methods, or classes); functional tests are done during the
integration of software stage checking the outputs for generated test cases at an
earlier stage.

2.3.3.1 Control Flow Graph

CFG is a known computing technique where a representation of the software is
decomposed into a set of blocks such that the execution of a block command can
perform the execution of other block commands (MARINKE, 2012). CFG establishes
a relationship between nodes and the graph blocks, where each node and edge re-
spectively of the graph represent the command and possible path of the software.
So, from the graph, it can choose which components should be run (MARINKE,
2012). Figure 2.5 shows the representation of nodes and arcs generated to the fol-
lowing standard programming structures: if, while/for, repeat-until and switch-case,
respectively.

Figure 2.5 - Usual control structures illustrated as CFG.

SOURCE: Adapted from Marinke (2012).

2.3.4 Model-Based Testing

Specifying software requirements, complex or not, is commonly designed making
use of NL (Natural Language) and can be divided into three types (SOMMERVILLE,
2010).
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• Functional Requirements: Function statements whose system should
provide how it react to its inputs, or in some cases, even statements of
what the system should not do.

• Non-functional Requirements: Restrictions on services or functions
provided by system as patterns, development constraints, response time to
an input, etc.

• Domain Requirements: In most cases, same as functional requirements,
however specific for application domain commonly following standards or
restrictions.

Specifications are usually written in NL and often are interpreted for generation of
models. Since they are based on a set of consistent rules, graphical or textual lan-
guage can be used to represent structured information composing a formal model.
Models have become common for specification of specific domain applications, par-
ticularly in software development (XIAO et al., 2007). However, the process to formal-
ize a specification in a model is not a trivial task and requires time and experience
from testers. The SOLIMVA methodology (SANTIAGO JÚNIOR, 2011), for example,
was presented to be used in order to minimize the effort spent by the tester in
understanding formal system specification. In short, if there is the availability of a
reliable specification of requirements, one can use a top-down approach and obtain
a formal model on the lower level through the interpretation of the requirements for
the tester. On the other hand, one can also use a bottom-up approach to generate
requirements models at a higher level based on some reading or analyzing the source
code.

MBT (Model-Based Testing) is a much discussed topic by software engineering au-
thors, because depending on the type of application, the use of a given representation
model becomes more similar to a real system. One can cite models known as the
ERD (Entity-Relationship Diagram) (CHEN, 1976) that has as main objective the
organization and links between data, the DFD (Data Flow Diagram) (GANE; SAR-

SON, 1979) that deals with the relationship among processes performed by system,
and Class Diagram (UML, 2015) that describes the structure of a system by show-
ing its classes, attributes, methods (or operations), and relationships among these
objects.

One must also mention FSM (Finite State Machine) based models, that represent
states of a system and events (or stimuli) that cause transitions from one state to
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another, being particularly useful to demonstrate stimuli driven systems. Ward and
Mellor (1985) proposed the use of modeling states for designing real time systems,
and several other authors quote techniques based on FSM such as Petri Nets (PE-
TERSON, 1981), SDL (Specification and Description Language) (ELLSBERGER et al.,
1997) and Statecharts (HAREL, 1987). The major problem with this approach is that
the number of possible states for a representation can increase rapidly depending on
the complexity of the modeled system.

These techniques are extremely useful, almost any application that makes use of
database has an ERD diagram, for example. The choice of which to use depends on
the aspect wanted to approach the SUVV, since none of these techniques can alone
satisfy all possible aspects to build a complete suite of tests.

2.4 Test Oracles

Dictionaries define the word “oracle” as a person considered to be a source of wise
counsel or prophetic opinions, or an authoritative or wise statement or prediction.
Simply, an oracle has answers to all the questions.

In software testing, oracle is a tool that has been widely used as a framework of
expected results for certain test cases applied to the system under test (BINDER,
2000). An oracle is like a set of tuples where for each possible input, an expected
output is associated. Thus, one can compare the output obtained from a system
execution with the expected output, facilitating the job of testers in detecting faults.

Test oracles are mainly composed of two components, oracle information and ora-
cle procedure (XIE; MEMON, 2007). Oracle information is the information source of
expected results, while oracle procedure is responsible for comparison.

Oracle information is the most complex component of an oracle, since different
approaches can be used in its development. Its structure depends directly on the
application’s complexity and the range of inputs domain, and these information
can be acquired from human knowledge or even via software. In its most common
forms, oracles tend to be based on the system’s specifications, tables of examples,
or even in knowledge of developers who may know how the software should work
for certain cases (HOWDEN; EICHHORST, 1978). The comparison mechanism (oracle
procedure) is responsible for the verification of results and determining the verdict
(XIE; MEMON, 2007). Figure 2.6 illustrates this definition.

Based on several approaches cited by Binder (2000), it can be deduced that there
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Figure 2.6 - The basic structure of a test oracle.

is no general rule or “silver bullet” for the oracle development. And due to the
complexity that a TOG (Test Oracle Generator) development can offer, a reflection
regarding its benefits in face of the implementation effort is perfectly justifiable.

In the case of this thesis, none of the approaches mentioned by Binder (2000) can
be totally implemented due these two requirements: it must be based only on source
code, and it must work automatically. However, it is possible to classify REACTOR
in the group of Organic Oracles, since it has as a main characteristic the fact that it
does not need an explicit indication of the expected result. Organic Oracles exploit
information about SUVV structure and the knowledge about the test cases, assuming
that it is sufficient to decide whether the result is right or not, exactly as REACTOR
does.

Although an extensive automation of the testing process is, in many cases, very
dependent on the expected result (oracle information), and the capability to perform
an automatic comparison between the expected and actual results (BINDER, 2000),
there are approaches that dot not depend on expected results. This is the case of
organic oracles where the test input data and the actual results are enough to decide
the verdict of the test case. This implies that the expected result does not need to
be explicitly provided in this way.

2.5 Related Publications

2.5.1 Static Source Code Analysis and Testing

In this section, it is presented some studies related to static source code analysis
and testing (black box, white box). Since these research fields have been extensively
addressed, we mention some approaches more related to our work.
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Aggarwal and Jalote (2006) proposed a hybrid approach that combines static and
dynamic analysis like the one used in REACTOR, but it used a combination of two
independent tools for implementations in C, which are not user-friendly.

Balzarotti et al. (2008) also used the same hybrid approach to detect defects in
web systems written in PHP, in order to solve SQL (Structured Query Language)
injection and cross-site scripting. A tool named Saner was implemented and it found
defects in known web applications as Jetbox, MyEasyMarket, PBLGuestbook, PHP-
Fusion 6.01, Sendcard 3.4.1.

Another similar hybrid research was released by Jovanovic et al. (2006), demon-
strating Pixy tool, which can identify vulnerabilities in web applications written in
PHP. Several open source web applications in PHP as DCP Portal 6.1.1, MyBlog-
gie 2.1.3beta 3 and TxtForum 1.0.4-dev were tested in order to demonstrate the
efficiency of the tool.

Chatzieleftheriou and Katsaros (2011) compared some tools that perform static
analysis of source code in C. They are: Splint, UNO, cppcheck, Frama-C, C++ Test
and Com. B. These six tools were compared based on the detection of capabilities
of certain types of defects such as memory used, and time spent for analysis. The
conclusion is that open-source tools generally do not have the same effectiveness of
commercial tools.

Another interesting comparison was done in Emanuelsson and Nilsson (2008) to
evaluate PolySpace Verifier, Coverity Prevent and Klocwork K7M. These tools were
applied to detect defects in implementations in C and C++, and they were analyzed
in depth, particularly with respect to their limitations.

Several investigations are focused on detecting some specific defect classes. Li and
Cui (2010), focused the work on detecting bugs generated by copy-pasted blocks by
programmers in source code by developing CP-Miner was used to detect failures
caused by copy-pasted code.

The detection of defects in critical systems has also a significant literature. Torri et
al. (2010) focused on embedded systems, and did an extensive research on free/open
source static analysis tools. The conclusion is that, although there was a certain
gain in defect detection, the open-source tools are not sufficient for testing complex
embedded systems yet.

Among the free/open source static analysis tools, FindBugs is presented in several
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academic articles. Ayewah et al. (2007) and Schmeelk (2010) obtained good testing
results with it. And Shen et al. (2011) developed the EFindBugs, an improved version
of FindBugs adding a ranking of defects that aids the classification of defects for the
report.

Lucca et al. (2002) proposed a black box testing approach for web applications by
using decision tables as a combinatorial model for representing the behavior of the
Web application and which is applied to generate the functional test cases.

Arcuri et al. (2010) proposed the use of a black box approach by automating tests of
real-time embedded systems based on environment models. These models describe
some of the structural and behavioral properties of the environment which interact
with SUVV, and test cases can be automatically selected based on the models, using
various heuristics that maximize chances of fault detection.

Lapierre et al. (1999) investigated several strategies towards to a practical test data
generation, and they presented an approach based on the white box approach and
symbolic execution. So, execution trees are symbolically executed to produce paths,
which can be mapped by an algorithm whose solutions corresponds to the test data
used (as input) to cover program branches.

The use of white box testing is also common in web applications. Liu et al. (2000)
proposed a white box technique that exploits a data-flow models focused on tests of
web applications implemented in HTML (HyperText Markup Language), XML (eX-
tensible Markup Language), and other scripts. Tonella and Ricca (2004) presented
a white box solution based on a control flow model which represents the internal
structure of web pages in terms of the execution order.

2.5.2 Test Oracles

The following investigations describe proposals that solve the oracle problem to
some extent, and many of them aim to the oracle automation for many kinds of
applications.

Aggarwal et al. (2004), Jin et al. (2008) and Sangwan et al. (2011) used ANN (Artifi-
cial Neural Networks) acting as an oracle of an SUVV that provides the classification
of triangles (equilateral, isosceles, scalene or not triangle) by analyzing the relation-
ship between its three sides. Although the example is not complex, the authors
proposed the use of ANN for complex problems that have no analytical solution.
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Boyapati et al. (2002) presented Korat, a framework in Java for generating and
executing test cases, and creating oracles from specifications in JML (Java Model-
ing Language). The tool translates postconditions in JML to assertions in Java. If
SUVV execution violates any assertion, an exception is sent identifying a violated
postcondition. The oracle accumulates these exceptions and reports violations.

Chen et al. (2003) proposed a combined solution that integrates metamorphic with
fault-based testing using real inputs and symbolic executions. As in Singh et al.
(2011), the focus is on performing validation tests without the need to obtain a test
oracle, and the major limitation of this methodology is the difficult to found such
relations. Based on this work, Sun et al. (2011) used the metamorphic approach for
testing web services, and Murphy et al. (2009) implemented a metamorphic solution
by using JML specifications which contain metamorphic relations properties.

Harman et al. (2010) addressed the oracle cost, rather than its coverage. They
mention that the only way to reduce the oracle cost is by reducing the number of
generated tests and, for this objective, present three algorithms that were used in
five SUVV examples demonstrating that is possible to reduce the number of test
cases without any substantial coverage loss. The problem of cost reduction in test
execution also has been approached by Santiago et al. (2008b).

Memon and Xie (2005) presented a technique for test oracle generation for GUI,
determining that GUI behaves as specified for certain test cases. The oracle is con-
structed by means of a specific formal model developed for the project. The oracle
derives the expected outputs based on this model, and obtains the current output
by an execution monitor. An automatic checker compares results and determines
whether GUI is behaving properly or not.

Nardi (2014) considered that generating fully-automated test oracles is unfeasible
and proposes an intermediate solution that partially automates test oracle genera-
tion for embedded systems, once it is represented by Simulink-like models. As occurs
in most of model-driven testing, a great challenge is the manual effort spent to build
a model that represents the SUVV and the mapping between model and specifica-
tion.

LFA (Log File Analysis) (TU et al., 2009) techniques were used in order to generate
test oracles. A log analyzer is specified by means of an FSM and a parser converts this
representation into a Java program. This approach has some limitations, especially
with respect to the difficulty in specifying recursive concepts and more complex
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analyzers that require a lot of states to be represented directly in FSM.

Wang et al. (2011) investigated the oracle construction for reactive systems without
explicit specifications and making use of ML (Machine Learning) techniques. The
InTOL (Intelligent Test Oracle Library) tool, that gathers traces of system execution
when their calls are placed in the SUVV, was presented. These execution traces are
used to train a SLA (Supervised Learning Algorithm) which derives the oracle.

2.5.3 Considerations of Related Literature

Through the analysis of the related literature in Section 2.5, it is possible to consider
that there are really certain types of defects that may be detected by means of static
analysis. Furthermore, several studies show that the combination of static analysis
and dynamic information significantly increases the efficacy of tests for detection
of defects, rather than using only static analysis. The analysis with dynamic in-
formation is based on real information from SUVV behavior, discarding impossible
situations and focusing more on the paths exercised by test cases. REACTOR has
a combination of both theories, test oracle and static analysis, and thus it presents
the benefits of both methods in a single approach. Moreover, REACTOR tool has
a high degree of automation and does not need any extra effort from developers
beyond the source code.

Several approaches were already proposed to solve the oracle problem. However, none
of them achieved one of the most important aspect, which is a full or really significant
automation of this process. In general, these researches presented approaches which
needed the manual build of specifications or models, or training of neural networks.
In cases where the level of automation is slightly larger, it is observed that they were
only tested with simple case studies.

Many related work mentions that the system requirements documentation is the
most precious resource when trying to reveal faults (PETERS; PARNAS, 1998), and
one shall say that the tests tends to be as good as the documentation associated
with SUVV is.

Text documents written in NL still is the most common method for specifying
software requirements. However, NL is not formal, and it is therefore very susceptible
to several issues of incompleteness, inconsistency or ambiguity (SANTIAGO JÚNIOR,
2011).

Due to the difficulty in handling and interpreting NL, most of related and cited
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research studies use an “intermediate” formalism. It is obvious that the adoption
of a formal syntax and semantics, brings a great advantage enabling greater ease
of developing automated tools. However, one must consider that in many cases the
cost of maintaining updated software models (mostly for complex software) can
be prohibitive. That is the reason why this thesis is engaged to research testing
methodologies that do not require documents or any other formalisms.

2.6 Final Remarks

This chapter presented the basic terminology related to testing techniques com-
mented in this work, and introduces several testing techniques which can be applied
on SUVV as black box, white box and model-based. Automated tests provides sev-
eral advantages in efficiency for testing. Also, it was discussed the importance of
reverse engineering for software testing and techniques that were used to generate
test data. The static source code analysis can detect defects and extracting infor-
mation about the internal structure of an SUVV by reverse engineering. Several
researches aims to use static and dynamic approaches as complementary techniques
in order to let the most accurate defect detection. The inference of expected results
is the more complex task to implement a test oracle generator, and this the why
there is a lot of published research focusing to solve the oracle problem with certain
degree of automation.
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3 THE REACTOR METHOD

The REACTOR method (ARANTES et al., 2015) combines static code analysis, test
case generation and test oracle supported by reverse engineering in order to detect
software defects considering only the source code. In this chapter, we present the
main concepts, algorithms of the REACTOR method as a general scientific con-
tribution. In other words, although we developed a tool, REACTOR and whose
implementation details are in Chapter 4, most of the contributions of REACTOR
are not specific to a particular programming language. As we mentioned in Chapter
1, case studies were developed in Java, but most of the ideas behind REACTOR
can be adapted to other programming languages such as C++ or C#.

The REACTOR method is shown in Figure 3.1. The source code example of factorial
problem (FACTORIAL, 2015) in Figure 3.2 is used in order to illustrate how the
method works.

Figure 3.1 - The REACTOR method workflow.
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Figure 3.2 - Source code of factorial problem.

3.1 Dynamic Information via Test Case Generation

A test case is usually defined as a set of test input data and their respective expected
results. However, in some cases, it may consider a test case only as the test input data
generated by the approaches, being the expected results omitted. Thus, specifically
for this work, when “test case” is mentioned, it means only the test input data.
Therefore, in REACTOR a test case is as a set of primitive variables (inputs) that
may be used to SUVV testing.

In REACTOR, test cases are automatically generated by a combination of three
black box techniques (BVA, EP, RT) which looks at the types of input variables
that the tester should configure based on her/his knowledge. Such information, and
also other as the directory containing SUVV must be set in attributes coded in a
configuration class of REACTOR. Moreover, pairwise testing (LEI; TAI, 1998) is used
to decrease the size of the test suite.

In factorial problem, test cases were generated based on its input variable which is
a long type value, and the expected result is also a long type value (as can be seen
in Figure 3.3).
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Figure 3.3 - Input and output of factorial problem source code.

3.1.1 Automatic Equivalent and Boundary Partition Analysis

Since it was unable to find a known technique for generating test cases that is
perfectly adaptable to our approach, it was necessary to create an ad hoc technique
suitable for this work. This was done by adapting three known techniques in a way
that they could complement each other, in order to provide a consistent and coherent
set of values to be used when testing an SUVV in normal and extreme conditions.
So, for the purpose of this work, BVA, EP and RT were fused in a technique that was
named AEBPA (Automatic Equivalent and Boundary Partition Analysis), which is
designed to address more especially exception handling defects that become failures.

AEBPA merges the idea of testing the boundary values suggested by BVA and
with range partitions of EP, and adds the RT (GODEFROID et al., 2005) that is
recommended by several authors.

Figure 3.4 illustrates how AEBPA selects values for testing, in case of range of integer
values in Java. So, in AEBPA, the test case is composed by the lower and higher
limits for the variable type, zero, a negative and positive fixed values (represented
by -n and n), and a negative and positive random values (represented by -? and ?).
The fixed values can be coded by the tester, and random values are automatically
generated on the fly.
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Figure 3.4 - Automatic Equivalent and Boundary Partition Analysis for integer type vari-
ables.

It is interesting to mention the differences between classic techniques (BVA, EP and
RT), and their principles implemented in AEBPA. In AEBPA, note that the range
of values was divided in three partitions. Values above the higher limit, and below
the lower limit, are considered invalid. Hence, values within these partitions are not
tested. This is a little different to BVA, where a value just below the lower limit and a
value just above the upper limit are also tested, but it makes sense computationally,
since it is not plausible to expect that an integer stores a greater (or lower) value
than allowed by its memory limit without generating a failure.

It also modifies the idea of EP, since in classic approach a negative, zero and positive
value can be within the same partition. And consequently, the test with only one
value from each partition would be considered a good test even when dealing with
such different values. In AEBPA negative, zero, and positive values are always tested
even if they are within the same partition. Considering as a running example the
factorial problem (FACTORIAL, 2015), Table 3.1 presents the list of values used to
generate test cases automatically.
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Table 3.1 - Test cases generated for the factorial problem.

# Value (long) Justification
1 -9223372036854775808 Lower boundary for long type
2 -94 Random negative value
3 -7 Fixed negative value from equivalence class
4 0 Zero
5 7 Fixed positive value from equivalence class
6 49 Random positive value
7 9223372036854775807 Upper boundary for long type

It is obvious that the largest number of values to be tested by AEBPA increases the
number of test cases, and this can make the test unfeasible especially if there are
many input variables that have their values combined. Therefore, a method would be
very welcoming to reduce the number of redundant test cases following a particular
criteria.

Combinatorial designs have been used as a means to generate shorter and more effi-
cient test suites (MATHUR, 2008). These techniques have been found to be effective
in the discovery of faults (defects) due to the interaction of various input variables
(BALERA; SANTIAGO JÚNIOR, 2015).

3.1.2 Reduction of Test Cases by Pairwise Testing

REACTOR implements an ad hoc pairwise that works once SUVV has three or more
input variables (it is not applicable for factorial problem). So, it reads a test suite
with all test case combinations that were exhaustively generated by AEBPA, and
then creates a new test suite (that overwrites the old one) with a reduced number
of test cases. This new test suite covers all combinations of two, therefore, are much
smaller than exhaustive old ones. And still very effective in finding defects. So, the
pairwise algorithm is based on the analysis of test suite, defined as follows:

suite = { tuple ‖ tuple = F , IV , TC , RTC }

IV = { IVc ‖ IVc : input values }
TC = { TCi ‖ TCi : test cases set }
RTC = { RTCk ‖ RTCk : reduced test cases set }

Algorithm 1 presents the pairwise testing, where it should be considered that suite
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is a tuple which is composed by three elements. IVc is a reference to the input values
generated by AEBPA. TCi is a reference to the set of test cases which compose the
test suite, and RTCk is a reference to the reduced set of test cases generated by
pairwise algorithm.

The input values of all input variables (generated by AEBPA) are concatenated in a
set that is counted (lines 3 to 5), and all possible combinations that can be obtained
by arranging these values in different orders is stored in ts (line 6). According to
the order of input variables, all impossible combinations are eliminated from ts (line
7) and all possible combinations of pair positions are stored in pairs (line 8). Then,
each test case is analyzed by comparing with all other test cases (line 9) by searching
all its possible pairs of values in other test cases (lines 10 to 23). If all pairs of values
from a particular test case are not already set in other test cases (line 27), this test
case is added to the reduced test case set (RTC ) in line 29.

Table 3.2 shows as an example, a test case suite exhaustively generated from a
hypothetical system that has three possible inputs: A, B and C. Table 3.3 shows the
same test suite generated by the pairwise algorithm implemented in REACTOR.
Note that, even keeping all combined pairs covered, the pairwise reduced the set of
test cases from 27 to only 12.

To demonstrate how pairwise can reduce the set of test cases, consider the test case
11. This test case is set by values B, C and B. So, all possible combinations of two
values are B and C as the first and second value, that is already covered by test
case 7, B and B as the first and third value, that is already covered by test case 8,
and C and B as the second and third value, that is already covered by test case 3.
The same occurs with test case 21 which is set by values C, A and A. The possible
combinations of two values are C and A as the first and second value, that is already
covered by test case 10, C and A as the first and third value, that is already covered
by test case 12, and A and A as the second and third value, that is already covered
by test case 6. Therefore, once previous test cases already cover all pairs of test cases
11 and 21, these test cases can be discarded.

In order to demonstrate the effectiveness of pairwise capacity, Table 3.4 shows its
reduction rate for several number of possible inputs, by comparing the quantity of
exhaustively generated test cases with the quantity of pairwise reduced test cases.
Note that, once that the number of possible inputs increases (from 3 up to 12), the
pairwise increases its efficiency by reducing the set of test cases from 44, 44% until
approximately 15% of the original set when handling 12 possible inputs.
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Input: Test Suite
Output: Reduced Test Suite

1 ts← Test Suite;
2 c← 0;
3 for IVc ∈ ts do
4 c← c + 1;
5 end
6 ts← generate_combinations(c);
7 ts← eliminate_impossible_combinations(ts);
8 pairs← generate_pairs(c);
9 for TCi ∈ ts do

10 for P ∈ pairs do
11 p1← get_first_value(P );
12 p2← get_second_value(P );
13 repeated_pair ← false;
14 for TCj ∈ ts do
15 if i 6= j then
16 if TCi[p1] ∈ TCj ∧ TCi[p2] ∈ TCj then
17 repeated_pair ← true;
18 end
19 end
20 end
21 if repeated_pair = true then
22 set_repeated_pair(P );
23 end
24 end
25 / ∗ check if all pairs are repeated in at least one test case ∗ /
26 k ← 0;
27 if all_repeated_pairs(pairs) = false then
28 / ∗ add TCi to reduced test suite ∗ /
29 RTCk ← TCi;
30 k ← k + 1;
31 else
32 / ∗ TCi is eliminated ∗ /
33 end
34 end

Algoritmo 1: Algorithm of the pairwise testing.

39



Table 3.2 - Example of a test case suite exhaustively generated.

Test Case # Input 1 Input 2 Input 3
1 A B C
2 A B A
3 A B B
4 A C A
5 A C B
6 A C C
7 A A B
8 A A C
9 A A A
10 B C A
11 B C B
12 B C C
13 B A B
14 B A C
15 B A A
16 B B C
17 B B A
18 B B B
19 C A B
20 C A C
21 C A A
22 C B C
23 C B A
24 C B B
25 C C A
26 C C B
27 C C C
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Table 3.3 - Example of a test case suite reduced by pairwise.

Test Case # Input 1 Input 2 Input 3

1 A B A
2 A B B
3 A C B
4 A C C
5 A A C
6 A A A
7 B C A
8 B A B
9 B B C
10 C A B
11 C B C
12 C C A

Table 3.4 - Reduction rate of pairwise test cases.

# of Possible In-
puts

Exhaustive Test
Cases

Pairwise Test
Cases

Reduction Rate

3 27 12 44, 44%
4 64 24 37, 5%
5 125 40 32%
6 216 60 27, 77%
7 343 84 24, 49%
8 512 112 21, 88%
9 729 144 19, 75%
10 1000 180 18%
11 1331 220 16, 53%
12 1728 264 15, 28%
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3.2 Static Information via Reverse Engineering

Reverse engineering of the source code is an important asset for REACTOR. It
feeds the necessary information to REACTOR’s static code analysis and testing
algorithms to detect defects. So, reverse engineering is based on the reading the
source code contained in all SUVV files, and since the source code has a defined
syntax, it was proposed to read and understand it using regular expressions, defined
as follows:

files = { tuple ‖ tuple = F , F r , F f , F dec , F cfg }

F = { Fi ‖ Fi : source code file }
F r = { F r

i ‖ F r
i : source code read }

F f = { F f
i ‖ F f

i : source code formatted }
F dec = { F dec

i ‖ F dec
i : source code decomposed }

F cfg = { F cfg
i ‖ F cfg

i : source code cfg }

The complete process that generates SUVVmodel is presented in Algorithm 2, where
it should be considered that files is a tuple which is composed by five elements. Fi

is a reference of the source code in file system. F r
i is a reference for the contents of

source code file read by REACTOR and F f
i is a reference for the same source code

already formatted. F dec
i is a reference of the decomposed source code and, finally,

F cfg
i is the decomposed source code arranged in CFG.

Depending on the SUVV, REACTOR must be properly configured with essential
data which are loaded in line 1 and used to generate test cases (line 10). If the
pairwise is activated (line 11) and SUVV has more than two input variables (line
12), the set of test cases may be reduced (line 13). So, the source code files of SUVV is
grouped in a set (line 17) whose elements are addressed in a loop (line 18). Then the
source code of each file is formatted (line 21), decomposed (line 23), and its control
structures are arranged in CFG (line 24). The source code is interpreted in line 28,
and its defects detected are inserted in a list (line 30), which is used to generate the
text file and table (lines 32 and 34). And finally, the SUVV is instrumented (line
36) and saved in file system (line 38).
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Input: SUVV and Configuration
Output: List of Defects and Test Oracle Information

1 config ← REACTOR Configurations;
2 suvv ← SUV V Model;
3 dl← Defect List;
4 fw ← File Writer;
5 if exists a directory of report files then
6 delete all files;
7 else
8 creates a new directory;
9 end

10 suvv ← generate_test_cases(suvv);
11 if pairwise is activated then
12 if SUV V has more than two inputs then
13 suvv ← pairwise_testing(suvv);
14 end
15 end
16 / ∗ search source code files ∗ /
17 files← search_files(config);
18 for Fi ∈ files do
19 / ∗ get contents of source code files ∗ /
20 F r

i ← file_reader(Fi);
21 F f

i ← format_source_code(F r
i );

22 / ∗ source code decomposition ∗ /

23 F dec
i ← Call Algorithm 3(F f

i );
24 F cfg

i ← generate_CFG(F dec
i );

25 suvv ← F cfg
i ;

26 end
27 / ∗ source code interpretation ∗ /
28 Call Algorithm 4(suvv);
29 / ∗ detection of defects ∗ /
30 dl← check_overall_defects(suvv);
31 / ∗ saving text file ∗ /
32 save_defect_text(fw , dl);
33 / ∗ saving HTML table ∗ /
34 save_defect_table(fw , dl);
35 / ∗ instrumentation of SUV V ∗ /
36 new_suvv ← instrument_SUV V (suvv , config);
37 / ∗ saving similar SUV V ∗ /
38 save_instrumented_SUV V (fw , new_suvv);

Algoritmo 2: REACTOR’s main algorithm.
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3.2.1 Regular Expressions

In computer science, a regular expression is a planned sequence of characters that
specifies a search pattern, generally for use by matching with string’s patterns,
similar to “search and replace” operations (LORENZO et al., 2013). Regular expression
is usually abbreviated as “regex”, and originated from formal language theory.

Regular expressions are commonly applied for text processing utilities, since they are
useful to provide both a basic and extended standard for the grammar and syntax.
Regular expression processors are available in several applications: search engines,
text editors, search and replace dialogs of several text processors, and command line
utilities from operational systems. In addition, most of the programming languages
provide regular expression functions, some built-in, for example Perl or Ruby, and
others via a standard library, for example Java, Python and C++. Many other
languages implement regular expressions by means of additional libraries.

REACTOR implements several regex patterns that match key code lines which guide
the construction of the SUVV model in Figure 3.7, and many other patterns that
are responsible to interpret code lines after the decomposition process.

In REACTOR there are basically two types of regex : full line and inline regex. Full
line regex matches perfectly with a full source code line without no more decom-
positions, and is used also to classify a code line. On the other hand, inline regex
matches with just a part of a code line, and it is used to match and decompose a
code line. The decomposition of code lines is more detailed in Section 3.2.4.

Table 3.5 shows some of the major expressions that are used to identify and classify
specific standards of full source code lines, and Table 3.6 shows some of the major
expressions that are used to identify specific standards of inline source code. All
regular expressions are shown in Appendix A.1 (Tables A.1 and A.2). In both tables,
the first column describes the code line standard that regex matches, and the second
and third columns shows, respectively, the regex implemented and an example of a
code line that it matches.
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In order to demonstrate how regex works, let us consider the first example in Table
3.5 which matches the variable assignment. The “ˆ” character indicates that this
is the beginning of a line, and “[ ]” indicates an empty space. There are two ex-
pressions that identify a variable name “[a-zA-Z_][a-zA-Z0-9_]*” where the first
part (“[a-zA-Z_]”) means that it must begin with any lowercase/uppercase char-
acter or underline. The second part (“[a-zA-Z0-9_]*”) is slightly similar with the
addition of numbers, since variable names can not begin with numbers but can have
numbers after the first character. Also, it has the usual quantifiers “*” (zero or more
occurrences), “+” (one or more occurrences). Finally, the regex ends with “$” which
indicates the end of line.

By search patterns, detailed static information of the SUVV are recovered by using
several regex listed in Table 3.5. Such information are essential to build a model
that corresponds the real SUVV, and this model is the basis for the entire operation
of REACTOR.

3.2.2 Source Code Reading

The first step of REACTOR is the search of source code files of the SUVV. Initially,
each of these files is modeled as a class, and its code lines are stored within the
model. Only then, each of these files are formatted and analyzed more carefully.

The formatting of code lines means basically by splitting annotations and adjusting
spacing. Since the ultimate goal of the REACTOR is to prevent failures, it does
not make sense to analyze annotation lines knowing that they do not influence the
execution of SUVV. Furthermore, the maintenance of annotations can significantly
increase the number of code lines that may be analyzed by regex when dealing with
well annotated software, so it is an unnecessary processing that can be avoided.

REACTOR defined an annotation technique which is concatenated at the end of each
code line in order to delimit scopes (for classes, methods and constructors), and to
point out package declarations and import statements, as illustrated in Figure 3.5.
Note the annotations /*%POINT_PACKAGE%*/ which identifies a package, /*%POINT_-
CLASS_OPEN#2%*/ identify the opening of a class, and /*%POINT_METHOD_OPEN#4%*/
identifies a method, among others. Note also that some annotations have a “n” at
the end, this character is changed by an automatically incremented number that
is used to identify each element of static analysis. The set of annotations used by
REACTOR with its respective functions are listed in Table 3.7.
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Figure 3.5 - Scopes annotated in factorial problem source code.

Table 3.7 - Annotations to Delimit Scopes, Packages and Imports.

# Annotation Function

0 /*%POINT_PACKAGE%*/ Java Package
1 /*%POINT_IMPORT%*/ Library Import
2 /*%POINT_CLASS_OPEN#n%*/ Class Opening
3 /*%POINT_CLASS_CLOSE%*/ Class Closing
4 /*%POINT_MAIN_OPEN%*/ Main Method Opening
5 /*%POINT_MAIN_CLOSE%*/ Main Method Closing
6 /*%POINT_METHOD_OPEN#n%*/ Method Opening
7 /*%POINT_METHOD_CLOSE%*/ Method Closing

Based on the annotations that delimit programming scopes, the source code is mod-
eled by analyzing its main contents as: attributes, classes, methods and constructors.
And once a method or constructor is found and its source code is delimited, it is
modeled in SUVV as new method. In modeling, constructors are also modeled as
methods with (or without) parameters, since the difference between them is subtle.
It is interesting to mention that, if there is an inner class, it is split from source
code and modeled as a standard class. And if a specific class is implemented with-
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out empty constructors, they are automatically modeled. Source code lines that are
within the class boundaries and outside the boundaries of methods or constructors,
are stored as attributes of the class model. And all source code that is within the
boundaries of methods and constructors are stored as source code of the method
modeling.

It is also interesting to mention that, although Figure 3.5 suggests that SUVV files
are updated with standard annotations, in fact they are not. Because such updates
are performed only with the source code that is stored within the SUVV model,
and the source code files are never modified by REACTOR. Therefore, the figure
illustrates the annotated source code that is modeled and which is not necessarily
visible to software tester in SUVV files.

At this point, it was possible to model classes, methods (and parameters), builders
and attributes from SUVV. The next step is to analyze the source code of each
method or constructor, and identify the involved control structures. In Java, control
structures types can be if, for, do, while, switch and try. Code lines related to these
structures are identified by using specific regex (Table 3.5) and they are annotated
following a standardized classification which is detailed in Section 3.2.4. Figure 3.6
illustrates the source code with an annotated control structure (see the annotation
/*#%FOR_OPEN#1#*/). Table 3.8 lists the set of annotations used by REACTOR with
its respective functions.

Figure 3.6 - Control structures annotated in factorial problem source code.
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Table 3.8 - Annotations Identify Control Structures.

# Annotation Function

0 /*#IF_OPEN#n#*/ If Opening
1 /*#IF_ELSE#n#*/ If-Else
2 /*#IF_ELSEIF#n#*/ If-Else-If
3 /*#IF_CLOSE#n#*/ If Closing
4 /*#FOR_OPEN#n#*/ For Opening
5 /*#FOR_CLOSE#n#*/ For Closing
6 /*#WHILE_OPEN#n#*/ While Opening
7 /*#WHILE_CLOSE#n#*/ While Closing
8 /*#DOWHILE_OPEN#n#*/ Do-While Opening
9 /*#DOWHILE_CLOSE#n#*/ Do-While Closing
10 /*#SWITCH_OPEN#n#*/ Switch Opening
11 /*#SWITCH_CASE#n#*/ Switch-Case
12 /*#SWITCH_BREAK#n#*/ Switch-Brake
13 /*#SWITCH_DEFAULT#n#*/ Switch-Default
14 /*#SWITCH_CLOSE#n#*/ Switch Closing
15 /*#BREAK#n#*/ Break Calling
16 /*#CONTINUE#n#*/ Continue Calling
17 /*#TRY#n#*/ Try Opening
18 /*#CATCH#n#*/ Try-Catch
19 /*#FINALLY#n#*/ Try-Finally
20 /*#TRY_CLOSE#n#*/ Try Closing

Figure 3.6 illustrates the source code with a annotated control structure. Note that
this annotation also incorporates an integer number that relates a code line with
others from the same control structure. As well as with the elements mentioned
before (class, methods and constructors), control structures must also be modeled
and inserted in SUVV model as CFG. Each method or constructor must be linked
to its CFG model.
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3.2.3 SUVV Modeling

Basically, static information is recovered from source code analysis, such as software
elements (classes, methods, and variables) and relationships among them. Rela-
tionships can be complex spanning the extension between classes, interfaces, and
overwritten or overloaded method calls. A structural model, shown in Figure 3.7, is
built based on test cases and source code static information, and this model becomes
the basis for detection of defects and test oracle generation.

Figure 3.7 - Structural model of the SUVV created by REACTOR.

It is important to stress that this SUVV model is standardized for every source code
that REACTOR assesses. A brief explanation of the meaning of some classes fol-
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lows. Classes hierarchically below “JavaFile” are based on UML (Unified Modeling
Language) (UML, 2015) class diagram, in spite of not following exactly the same
standard since it has information that UML does not, such as code blocks and code
lines. “TestCase” modeling classes with its input and output values. “Boundary”
models the values used in automatic test case generation. “CodePath” and “Struc-
ture” represents the path and control structures exercised by a test case. A “Defect”
class, such as its name suggests, is the modeling of defects that are detected. “Stack”,
“Process”, and “Variable” are used in source code interpretation.

The SUVV modeling requires the insertion of classification annotations in all code
lines in accordance with Table 3.5. This is more complex, because in many cases, it
requires the decomposition of non-classifiable code lines in classifiable code lines.

3.2.4 Source Code Decomposition

The decomposition process is basically breaking each SUVV’s code line into one or
more standardized and less complex code lines, since only standardized code lines can
be accurately recognized using regex. Therefore, each code line may be decomposed
into a finite set of simpler and standardized lines for source code representation,
so that almost any software can be written using only this set which consists of a
finite and relatively small number of code line possibilities. Three examples of this
decomposition process are shown in Figure 3.8.

Figure 3.8 - Example of source code decomposition.

52



The source code decomposition is a required process, because it is possible to write
a code line to perform a specific function using many different syntaxes. Therefore,
code lines must be decomposed by using syntaxes known and understandable by
REACTOR, as defined follows:

suvv = { tuple ‖ tuple = C , M , CLc , CLd }

C = { Ci ‖ Ci : suvv class reference }
M = { Mi ‖ Mi : suvv method reference }
CLc = { CLc

ij ‖ CLc
ij : current code line }

CLd = { CLd
ik ‖ CLd

ik : decomposed code line }

A summarized version of this decomposition process is shown in Algorithm 3, where
it should be considered that suvv is a tuple which is composed by four elements.
Ci is a reference for the class of SUVV modeled in REACTOR. Mi is a reference
for the method or constructor which belongs to Ci. CLc

ij is a set which contains
the code lines of SUVV that belongs to Ci and Mi. And finally, CLd

ik contains the
decomposed code lines equivalent to the code lines of CLc

ij.

In Algorithm 3, every code line composes a list of code lines which is linked to its
method instance (line 3) and to its respective class instance (line 2) of SUVV. These
are read and tested by a set of regex parsers which verify if it is possible to classify
without the decomposition (line 7). If it is possible, the code line is considered
already decomposed and is added to CLd

ik (lines 8, 9 and 10), otherwise, it may be
decomposed. The part of code line that is decomposed is assigned to a temporary
variable (line 13) which also replaces the matched region in current code line (line
15), and this loop (lines 12 to 19) is done until the current code line becomes a
code line that can be classified in Lines 19, 20 and 21. The SUVV can only be
understood by REACTOR once it is decomposed. Note that the “_” signal means
a concatenation of two strings in lines 9, 17 and 21.
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Input: SUVV Model
Output: Decomposed Code Lines of SUVV

1 suvv ← SUV V Model;
2 for Ci ∈ suvv do
3 for Mi ∈ Ci do
4 j ← 0;
5 k ← 0;
6 for CLc

ij ∈Mi do
7 if isClassificable(CLc

ij) = true then
8 ann← annotate_codeline(CLc

ij);
9 CLd

ik ← CLc
ij _ ann;

10 k ← k + 1;
11 else
12 while isClassificable(CLc

ij) = false do
13 tmpV ar ← new_temporary_variable(suvv);
14 cp← split_classificable_code_part(CLc

ij);
15 CLc

ij ← replace(CLc
ij , cp , tmpV ar);

16 / ∗ CLd
ik is a new decomposed code line ∗ /

17 CLd
ik ← tmpV ar _ ” = ” _ cp _ ”; ”;

18 k ← k + 1;
19 end
20 ann← annotate_codeline(CLc

ij);
21 CLd

ik ← CLc
ij _ ann;

22 k ← k + 1;
23 end
24 end
25 end
26 end

Algoritmo 3: Algorithm of the source code decomposition.
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Returning to the factorial problem example, Figure 3.9 demonstrates how the de-
composition process acts on factorial problem source code by showing differences
between original source code and its equivalent decomposed source code. Note that,
in this example, there are single code lines that were decomposed in three according
to the classification proposed in Section 3.2.5.

Figure 3.9 - Example of source code decomposition of factorial problem.

Figure 3.10 illustrates the complete factorial problem source code after the decom-
position process. It can be seen that the decomposition increased the number of
SUVV code lines, but they are now simple and classifiable by the regex in Table 3.5.

3.2.5 Source Code Classification

As mentioned before, when each code line is identified by regex (Table 3.5) and
decomposed, they are then classified based on a known set, thus generating another
source code easier to be read by a finite set of regex parsers, however more complex
to be understood by humans, and equivalent to the original SUVV. This known
set, shown in Appendix A.2 (Table A.3), is composed of 51 standardized code line
types which cover several possibilities of writing a source code in Java. The set of
annotations used by REACTOR to identify and classify code lines with its respective
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Figure 3.10 - Code lines of factorial problem after the decomposition process.

functions are listed in Table 3.9.

The main reasoning behind this classification is to provide a simple and automatic
description of what each code line does. And, based on this description, REACTOR
may interpret the code line content to help in the detection of static and testing
defects. However, code lines must be interpreted following the sequence provided by
their control structures, therefore these structures should be somehow modeled.
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3.2.6 CFG Generation

Internal control structures of a source code must be modeled, in order to guide
the correct interpretation of code lines. And the most appropriate approach for
this purpose is by arranging classified code lines in blocks and connect these blocks
similar to a CFG (MARINKE, 2012) model.

In this work, CFG is adapted to represent each method within the SUVV assuming
that graph nodes are the source code blocks (i.e., a finite list of code lines) and the
edges are the connections between them due to control structures in Java, such as: if-
else, for, while, do-while, switch-case, and try-catch. Thus, the CFG is implemented
by classes “CodeBlock” and “CodeLine” in Figure 3.7. Each method will have a
related CFG and thus the SUVV model will have as many CFGs as the number of
methods of all SUVV’s classes.

Figure 3.11 shows the factorial problem source code properly decomposed, classified
and arranged into code blocks. Note that there is a sequence of blocks connected
within factor method and the main method has only one block, since it does not
have any control structure involved.

Figure 3.11 - Code lines of factorial problem arranged in code blocks.
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Table 3.10 presents the information of each block that is stored in REACTOR.
block_id and block_name are, respectively, the numerical and named identification
of the block. codelines is an array of code lines (i.e., objects of “CodeLine” class)
which stores all code lines related to the code block, and note that its four code
lines refers to the first code block of factor method in factorial problem decomposed
source code. A reference (or pointer) from the “method” object of SUVV model is
in method. Each code block can be of structural or common source code, and the
attribute type is set as “s” or “c” depending on this. And finally, the boolean value
of isUsed is set as “true” once this code block is interpreted, that is useless source
code many times.

Table 3.10 - Code block of factor in REACTOR.

Attribute Value

int block_id 0
String block_name “Block0”
ArrayList<CodeLine> [0]: “long fat ;”
codelines [1]: “varTOG1 = 1;′′

[2]: “fat = varTOG1;′′

[3]: “int i ;”
Method method “object reference”
char type “c”
boolean isUsed false

3.3 Source Code Interpreter

In this work, static approach is automated and used to provide all information
necessary for understanding the SUVV and assembling a model that can be analyzed
to reveal defects and provide the estimated expected result. The way that static
analysis is combined with dynamic information and estimated results are inferred
from the SUVV model is by interpreting of code lines arranged in code blocks.
So, for each generated test cases, code blocks are accessed and their code lines are
interpreted following the same sequence of a conventional execution, starting from
the first code line of the first block. So, the source code is interpreted by a hybrid
technique that combines static and dynamic information in order to get additional
information that can only be addressed with the observation of SUVV with test
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cases. Usually the static code analysis tools do not use such dynamic information,
however, in REACTOR the use of dynamic information makes available the values
of variables in a certain computation step and it is used as a complementary way in
order to detect defects.

The interpretation of decomposed source code is performed by simulating the SUVV
behavior with test case inputs, similar to a real execution. A preliminary source code
reading is done in order to list every variable declared in SUVV, including temporary
variables created by the tool in decomposed source code. In REACTOR, a variable
can be a class attribute, local variable or method parameter. Furthermore, in case
of class inheritance, the variable must be accessible by other classes that inherited
it. A list of all SUVV variables is an attribute of the “Process” class in the SUVV
model. This attribute (list) for the factorial problem is in Table 3.11.

One of the columns in Table 3.11 is the scope of variable. Every variable listed has its
specific scope, which is determined based on its statement location. The specification
of a scope is essential to allow variables with equal names in different locations of
SUVV. The scope is an auto incremented integer value automatically generated that
is the key of a modeled class, method or constructor. In factorial problem example,
Table 3.12 lists all scopes of SUVV and it can be seen that there is a variable named
fat that exists in two different scopes (see Table 3.11).

Table 3.11 - Process used in factorial problem.

Variable Scope Type Value

n 1 long -
fat 1 long -

varTOG_1 1 - -
i 1 int -

varTOG_3 1 - -
varTOG_2 1 - -

fat 2 Factorial -
number 2 long -

varTOG_0 2 - -
factorial 2 long -
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Table 3.12 - Scopes used in factorial problem.

ID Type Path Parameters

0 Class Factorial -
1 Method Factorial.factor 1
2 Method Factorial.main 0

The interpretation starts with the main method by reading code blocks respecting
block sequence that may be modified by control structures. Each operation that
results in change of a variable value, updates the variable list taking care to ensure
that it only updates variables that are within the current scope. When the inter-
pretation has a scope change reading from declaration of a new class or by calling
a constructor or method, a new process is created bringing its own new list of vari-
ables (process). One for each code line interpreted, and another in the path of code
lines exercised for each test case. At the end of interpretation, when the last code
line of the main method is read, input and output values obtained are captured and
stored for the final report. At the end of this step, a new test case is initialized. After
simulating all test cases, the final verdicts are determined through the comparison
of expected results with results obtained by executing a test implementation that is
automatically generated.

The interpretation infers the expected result of a test case by reading code blocks
respecting the sequence dynamically determined by control structures. The summa-
rized approach of the source code interpreter is presented by Algorithms 4, 5 and 6.
Note that Algorithms 5 and 6 are subroutines of 4. The set of information used by
these algorithms is defined follows:

dataset = { tuple ‖ tuple = TC , P , DD , IN , IV , ON , OV , V LN , V LV }

TC = { TCi ‖ TCi : suvv test case reference }
P = { Pi ‖ Pi : test case path }
DD = { DDi ‖ DDi : list of defects detected }
IN = { INij ‖ INij : test case input names }
IV = { IVij ‖ IVij : test case input values }
ON = { ONik ‖ ONik : test case output names }
OV = { OVik ‖ OVik : test case output values }
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V LN = { V LNil ‖ V LNil : variable list names }
V LV = { V LVil ‖ V LVil : variable list values }

There are two main sets handled by these algorithms: dataset and codeblock. In
dataset, it should be considered that TCi is a reference for the test case. Pi is
a reference for the path built by the source code while it is interpreted. Defects
detected in the SUVV are sent to DDi which represents a list. INij, IV ij are
respectively the names and values of input variables generated for the test case
(TCi). The same analogy is used in ONik and OVik, but for outputs in this case.
And finally, V LNil and V LVil composes respectively the list of names and values of
variables manipulated by SUVV.

codeblock = { tuple ‖ tuple = CB , PCBi , NCBi , CBT , CLi }

CB = { CB ‖ CB : current code block reference }
PCB = { PCBi ‖ PCBi : previous code block list }
NCB = { NCBi ‖ NCBi : next code block list }
CBT = { CBT ‖ CBT : current code block type }
CL = { CLi ‖ CLi : list of code lines }

Five elements compose the codeblock structure. CB represents a reference for the
current code block. PCBi is a list of previous code blocks that have the current
code block as destiny. The list of upcoming next code blocks which leave the current
one is represented by NCBi. There are basically two types of code blocks, code
blocks which contain control structure commands, and code blocks that contain non
structural commands. This information is represented by CBT . And finally, CLi

represents a list of code lines that represents the current code block.

Algorithm 4 presents a loop that performs the interpretation of each test case (line
2). The input variables of the respective test case are set in line 9, and the other
variables are set as null (line 11). The interpretation starts by the first code block of
the main method (lines 15 and 17), and so, this code block is read (line 18) calling
Algorithm 5 recursively. The detection of defects (line 19) is done for each path
resulting from test cases. And finally, the loop in line 20 and 21 set the expected
output inferred from interpretation.
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A subroutine called “read_code_block” is represented by Algorithm 5. A condition
(line 3) checks if the current code block represents a control structure or not. If so,
the control structure condition is checked in order to search the next code block (line
4) that may be read calling the current subroutine recursively (line 5). Otherwise, the
code lines of the current code block are analyzed one by one (loop in line 7). In case
of a code line that calls a method or constructor (line 9), its reference is taken (line
10) as its first code block (line 11). So, the current subroutine is called recursively
with the next code block as parameter. Otherwise, the subroutine “read_code_line”
is called (line 14).

The “read_code_line” subroutine is presented in Algorithm 6, where a condition
checks if the code line has a value assignment (line 3), and in this case, the variable
name and value assigned are taken (lines 6 and 7) and the variable list is updated
(line 10). Otherwise, the code line is sent to “parse_code_line”, which employs sev-
eral different analysis depending of the code line classification. Finally, the detection
of defects at the code line level is done in line 18 and the current code line is added
in the test case path in line 19.
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Input: SUVV Model
Output: Expected Result for Test Case

1 suvv ← SUV V Model;
2 for TCi ∈ suvv do
3 V LNi ← build_variable_list_names(suvv , TCi);
4 j ← 0;
5 for V LNil ∈ V LNi do
6 for INij ∈ INi do
7 if INij = V LNil then
8 IVij ← V LVil;
9 else

10 IVij ← null;
11 end
12 end
13 end
14 m← return_method(suvv , ”main”);
15 codeblock ← return_code_block(m , 0);
16 read_code_block(suvv , codeblock , Pi);
17 / ∗ Detection of Defects ∗ /
18 DDi ← check_path_level_defects(Pi);
19 for V LNil ∈ V LNi do
20 for ONik ∈ ONi do
21 if ONik = V LNil then
22 / ∗ Setting expected outputs ∗ /
23 OVik ← V LVil;
24 end
25 end
26 end
27 end

Algoritmo 4: Algorithm of the source code interpretation (Part I).
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Input: SUVV Model, Code Block
Output: -

1 subroutine read_code_block(suvv, codeblock)
2 if CB 6= null then
3 if CBT = ”structure” then
4 nextCodeBlock ← check_control_structure_condition(codeblock);
5 read_code_block(suvv , nextCodeBlock , Pi);
6 else
7 for codeline← CLi do
8 if codeline 6= null then
9 if has_method_call(codeline) = true then

10 m← return_method(suvv , codeline);
11 codeblock ← return_code_block(m , 0);
12 read_code_block(suvv , codeblock , Pi);
13 end
14 read_code_line(suvv , codeline , Pi);
15 end
16 end
17 end
18 end

Algoritmo 5: Algorithm of the source code interpretation (Part II).

66



Input: SUVV Model, Code line
Output: -

1 subroutine read_code_line(suvv, codeline)
2 if codeline 6= null then
3 if contains(codeline , ” = ”) = true then
4 posMid = search_character_position(codeline, ” = ”);
5 posEnd = search_character_position(codeline, ”; ”);
6 varName = search_substring(codeline, 0, posMid);
7 varV alue = search_substring(codeline, posMid + 1, posEnd);
8 for V LNij ∈ V LNi do
9 if varName = V LNij then

10 / ∗ Setting variables ∗ /
11 V LVij ← varV alue;
12 end
13 end
14 else
15 parse_code_line(codeline);
16 end
17 / ∗ Detection of Defects ∗ /
18 DDi ← check_line_level_defects(codeline);
19 add(Pi , codeline);
20 end

Algoritmo 6: Algorithm of the source code interpretation (Part III).
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In order to demonstrate the interpretation of a source code, consider a running
example of factorial problem based on its tables of variables (Table 3.11) and scopes
(Table 3.12). The interpreted source code forms a path, that consists of a tuple
composed by the current scope (Cs), the code line in interpretation, input parameters
(if any parameters) and elapsed variables in a specific scope, as follows:

path = { tuple ‖ tuple = Cs , Cl , Ip , Ev }

Cs = { Csi ‖ Csi : current scope }
Cl = { Cli ‖ Cli : code line }
Ip = { Ipi ‖ Ipi : input parameters }
Ev = { Evi ‖ Evi : elapsed variables }

The interpreted source code forms a path, that consists of a tuple composed by the
current scope (Cs), the code line, input parameters (if any) and elapsed variables in
a specific scope. The demonstration is shown in Table 3.13 and considers that the
input variable number for this test case is equal to 7. Finally, the last variable values
set by interpretation are listed in Table 3.14, and the variable that was configured
as SUVV output by tester (factorial variable) has its value stored as the expected
result for this test case.

The demonstration is shown in Table 3.13 and considers that the input variable
number for this test case is equal to 7. Note that the last variable values set by
interpretation are listed in Table 3.14, and the variable that was configured as SUVV
output by tester (factorial variable) has its value stored as the expected result for
this test case.
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Table 3.14 - Last values set in factorial problem.

Variable Scope Type Value

n 1 long 7
fat 1 long 5040

varTOG_1 1 - 1
i 1 int 8

varTOG_3 1 - 1
varTOG_2 1 - 5040

fat 2 Factorial “Instance of Factorial”
number 2 long 7

varTOG_0 2 - 7
factorial 2 long 5040

As mentioned before, during source code interpretation, REACTOR combines static
and dynamic information for detecting defects by searching for patterns that can be
considered defective considering values of variables involved.

3.4 Static Code Analysis

In view of that inspections can detect most of software defects (SOMMERVILLE,
2010), the intention of the hybrid approach implemented in REACTOR is to perform
a similar inspection automatically and with little manual labor. Thus, in this work
it is used an automatic combination of static and dynamic information to detect
defects during the interpretation of SUVV with test cases.

This approach was chosen since traditional static analysis algorithms can detect
many software defects and extract a lot of information from the SUVV, but with
limitations. For example, which code block inside a control structure is actually
exercised may depend on the data that the SUVV is handling. This information
can only be addressed based on dynamic information, which consists in monitoring
variable values and instrumenting the source code to produce information regarding
exercised paths (AGGARWAL; JALOTE, 2006).

Therefore, REACTOR can detect defects based on particular standards found in the
source code which are exercised for each test case, and it may be checked by tester
to decide whether or not the code should be corrected. Certain defects can only be
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addressed by combining static analysis with dynamic information. In REACTOR,
it was defined 47 types of defects which are divided into six basic classes that are
described below.

• Notice: warning messages about details that the tester should know, but
that are not probably the cause of a defect directly, such as an access of
an external file or database.

• Bad Practice: warnings about questionable coding practices that may
not belong to usual conventions or programming standards.

• Performance Loss: parts of the source code that can cause loss of perfor-
mance, as very complex control structures or print commands inside much
repeated loops.

• Useless Code: classes, methods, constructors, variables or code blocks
that are not exercised by test cases.

• Vulnerability: programming faults that are not explored by test cases,
but can be exploited by malicious attacks, such as public constructors or
public variables.

• Unreliable Code: parts of the source code that can cause an error or
exception depending on input data loaded into its variables, such as a
division by zero or numeric overflows.

The detection of static defects is done in three stages: static and dynamic analysis
of an exercised path for each test case, static and dynamic analysis for each code
line exercised also during the interpretation, and static analysis of the entire SUVV
model (performed just once).

Figure 3.12 illustrates the proportion of the number of defects that can be detected
by each class implemented in REACTOR. Note that REACTOR implements most
of them related to unreliable code (29), followed by useless code (6), and these
both categories make use of dynamic information in order to detect defects. Other
static class that use dynamic information is performance loss. Therefore, the most of
defects that can be detected by REACTOR are not addressed by other tools which
performs only the static analysis.

Algorithms 7 to 16 present a summarized version for the detection of some types of
defects by REACTOR.
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Figure 3.12 - REACTOR: distribution of the 47 types of static defects into classes.

Algorithms 7 and 8 detects notices related to variables which are set with values
really close to its limits, and source code that depends on accessing external files,
respectively. Algorithms 9 and 10 detects, respectively, the inadvisable use of con-
stant numbers, and the wrong naming convention of classes, methods and variables.
Algorithm 11 detects collapsed “ifs” that can be merged in order to increase the
executing performance, and Algorithm 12 detects the use of print commands. Algo-
rithm 13 detects classes, methods, constructors or even code blocks that were not
exercised by test cases. Algorithm 14 detects the use of public constructors or at-
tributes. And finally, Algorithms 15 and 16 present a the detection of some types
of unreliable code defects. Both defects are classified in REACTOR as unreliable
code, and other static analysis tools are no able to detect such defects. Algorithm
15 detects division by zero, that is a common defect in computation, and Algorithm
16 detects numeric overflows. These algorithms makes use of the same suvv tuple
described in Section 3.2.4 and of the testing_step tuple, described as follows:

testing_step = { tuple ‖ tuple = codeline , V LN , V LV , V LT }

codeline = { codeline ‖ codeline : current code line }
V LN = { V LNi ‖ V LNi : variable list names }
V LV = { V LVi ‖ V LVi : variable list values }
V LT = { V LTi ‖ V LTi : variable list types }
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In these previous algorithms, it should consider that testing_step is a tuple which
is composed of four elements. codeline is a reference for the current code line in
analysis. V LNi is a reference for the list of variable names during the interpretation.
V LVi and V LTi are, respectively, the list of values and types that corresponds to
variables in V LNi.

In Algorithm 7, every code line that is classified as an numeric assignment (line 4)
searches for the variable type for which the value will be assigned (lines 5 to 10). So,
the upper and lower limits of such type is computed (lines 11 and 12) and compared
with the value that supposedly should be assigned (line 13). If the value is greater
that the upper limit (line 14) or lower that the lower limit (line 17), it is reported a
notice that it is close to variable limit. And Algorithm 8 has a loop (line 1) which
examine the list of variables searching for variables of the types BufferedReader or
FileReader (line 2). If there is any variable of this type, a file dependence is noticed
(line 4).

Input: Code Line ad Dynamic Information
Output: Notice Code Defect

1 posMid← search_character_position(codeline , ” = ”);
2 posEnd← search_character_position(codeline , ”; ”);
3 varName← search_substring(codeline , 0 , posMid);
4 if codeline is classified as numeric assignment then
5 for V LNi ∈ V LN do
6 if varName = V LNi then
7 / ∗ Getting variable type ∗ /
8 varType ← V LTi;
9 end

10 end
11 upperLimit ← upper_type_limit(varType);
12 lowerLimit ← lower_type_limit(varType);
13 varV alue← search_substring(codeline , posMid + 1 , posEnd);
14 if varV alue ≥ ( upperLimit ∗ 0.9 ) then
15 report_defect_detected(”upper limit dangerously close”);
16 end
17 if varV alue ≤ ( lowerLimit ∗ 0.9 ) then
18 report_defect_detected(”lower limit dangerously close”);
19 end
20 end

Algoritmo 7: Algorithm to detect notices (close to variable limit).
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Input: Code Line ad Dynamic Information
Output: Notice Code Defect

1 for V LNi ∈ V LN do
2 if V LTi = ”BufferedReader” ∨ V LTi = ”FileReader” then
3 if V LVi 6= ”null” then
4 report_defect_detected(”file dependence”);
5 end
6 end
7 end

Algoritmo 8: Algorithm to detect notices (file dependence).

Algorithm 9 presents three loops which read each code line (line 6) of each method
(line 3) within SUVV classes (line 2). If the code line is not in main method (line 7)
and if it is a numeric assignment (line 8) or a hex assignment (line 11), it is reported
a bad practice of using magic constants (lines 9 and 12). And Algorithm 10 performs
three loops (line 2, 6 and 12) which examines the names of classes, methods and
variables with determined regex (line 3, 7 and 13) in order to find names that does
not follow the naming convention.

Input: Code Line ad Dynamic Information
Output: Bad Practice Code Defect

1 suvv ← SUV V Model;
2 for Ci ∈ suvv do
3 for Mi ∈ Ci do
4 j ← 0;
5 k ← 0;
6 for CLc

ij ∈Mi do
7 if Mi is not the ”main” method then
8 if check_classification(CLc

ij) = ”assignment numeric” then
9 report_defect_detected(”magic number”);

10 end
11 if check_classification(CLc

ij) = ”assignment hexadecimal” then
12 report_defect_detected(”magic hexadecimal”);
13 end
14 end
15 end
16 end
17 end

Algoritmo 9: Algorithm to detect bad practice (magic number).
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Input: Code Line ad Dynamic Information
Output: Bad Practice Code Defect

1 suvv ← SUV V Model;
2 for Ci ∈ suvv do
3 if Ci does not matches with class name ”regex” then
4 report_defect_detected(”Naming convention of class”);
5 end
6 for Mi ∈ Ci do
7 if Mi does not matches with method name ”regex” then
8 report_defect_detected(”Naming convention of method”);
9 end

10 end
11 end
12 for V LNi ∈ V LN do
13 if V LNi does not matches with variable name ”regex” then
14 report_defect_detected(”Naming convention of variables”);
15 end
16 end

Algoritmo 10: Algorithm to detect bad practice (naming convention).

Algorithm 11 presents a set of loops which examines inside the source code (line
10) exercised by test cases (line 7) if there is two “ifs” (lines 11 and 14) declared in
sequence, and so, that can be merged in only one code line. And Algorithm 12, each
code line is examined in order to find print command lines (line 7).
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Input: Code Line ad Dynamic Information
Output: Performance Loss Code Defect

1 suvv ← SUV V Model;
2 for Ci ∈ suvv do
3 for Mi ∈ Ci do
4 flag1← false;
5 flag2← false;
6 flag3← false;
7 if is_used(Mi) = true then
8 j ← 0;
9 k ← 0;

10 for CLc
ij ∈Mi do

11 if check_classification(CLc
ij) = ”if opening” then

12 flag1← true;
13 for CLc

ik ∈Mi do
14 if check_classification(CLc

ik) = ”if opening” then
15 flag2← true;
16 flag3← true;
17 for x = j + 1(to)x<k do
18 x = x + 1;
19 cl = CLc

ix;
20 if cl does not starts with temporary variable then
21 flag3 = false;
22 end
23 end
24 end
25 end
26 res = false;
27 if flag1 = true ∧ flag2 = true ∧ flag3 = true then
28 res = true;
29 end
30 end
31 end
32 end
33 if res = true then
34 report_defect_detected(”collapsed ifs can be merged”);
35 end
36 end
37 end

Algoritmo 11: Algorithm to detect performance loss (collapsed “ifs”).
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Input: Code Line ad Dynamic Information
Output: Performance Loss Code Defect

1 suvv ← SUV V Model;
2 for Ci ∈ suvv do
3 for Mi ∈ Ci do
4 if is_used(Mi) = true then
5 j ← 0;
6 for CLc

ij ∈Mi do
7 if check_classification(CLc

ij) = ”print line” then
8 report_defect_detected(”print command as logger”);
9 end

10 end
11 end
12 end
13 end

Algoritmo 12: Algorithm to detect performance loss (print command as logger).

Algorithm 13 uses an artifact implemented in SUVV model that is the isUsed at-
tribute (shown in Section 3.2.6). So, useless code defects are found by checking this
attribute within classes, methods/constructors and code blocks after the interpre-
tation of test cases. And Algorithm 14 uses another artifact provided by the SUVV
model, that is the visibility attribute. So, it is possible to find constructors and
attributes set with public visibility based on few loops.

It is interesting to cite that Algorithms 11, 12, 13 and 14 only detect defects in
classses/methods/constructors that were exercised by test cases (note that there is
a is_used function within “ifs” which consults the isUsed attribute). So, some types
of defects are not purposely detected within useless code, which assumes that it can
be disposed of by the developer. This feature contributes to the reduction of false
alarms.
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Input: Code Line ad Dynamic Information
Output: Useless Code Defect

1 suvv ← SUV V Model;
2 for Ci ∈ suvv do
3 if is_used(Ci) = false then
4 report_defect_detected(”useless class”);
5 else
6 for Mi ∈ Ci do
7 if is_used(Mi) = false then
8 report_defect_detected(”useless method or constructor”);
9 end

10 for codeblock ∈ Mi do
11 if is_used(codeblock) = false then
12 report_defect_detected(”useless code block”);
13 end
14 end
15 end
16 end
17 end

Algoritmo 13: Algorithm to detect useless code (class, method/constructor and
code block.
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Input: Code Line ad Dynamic Information
Output: Vulnerability Defect

1 suvv ← SUV V Model;
2 for Ci ∈ suvv do
3 if is_used(Ci) = true then
4 for Mi ∈ Ci do
5 if is_used(Mi) = true then
6 if check_visibility(Ci) = ”public” then
7 if check_name(Ci) = check_name(Mi) then
8 report_defect_detected(”public visibility constructor”);
9 end

10 end
11 end
12 end
13 else
14 end
15 for V LNi ∈ V LN do
16 if check_visibility(V LNi) = ”public” then
17 if check_scope(V LNi) = ”attribute” then
18 report_defect_detected(”public visibility attribute”);
19 end
20 end
21 end

Algoritmo 14: Algorithm to detect vulnerability (public constructors or at-
tributes).
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In Algorithm 15, every code line that is classified as an division operation (line 4
and 5) performs a checking of divider value which is accessed from the variable lists
V LNi, V LVi and V LTi (lines 9 to 14). If the divider value is equal to zero (line 15) it
is reported a division by zero defect (line 16). And in Algorithm 16, every code line
that is classified as an numeric assignment searches for the variable type for which
the value will be assigned (lines 5 to 10). So, the upper and lower limits of such type
is computed (lines 11 and 12) and compared with the value that supposedly should
be assigned (line 13). If the value is greater that the upper limit (line 14) or lower
that the lower limit (line 17), it is reported a numeric overflow defect.

Input: Code Line ad Dynamic Information
Output: Unreliable Code Defect

1 posMid← search_character_position(codeline , ” = ”);
2 posEnd← search_character_position(codeline , ”; ”);
3 varName← search_substring(codeline , 0 , posMid);
4 if codeline is classified as operation between variables then
5 if operator is division then
6 posOp← search_character_position(codeline , operator);
7 varNameR← search_substring(codeline , posOp + 1 , posEnd);
8 varNameL← search_substring(codeline , posMid + 1 , posOp);
9 for V LNi ∈ V LN do

10 if varNameR = V LNi then
11 / ∗ Getting variable value ∗ /
12 varV alueR ← V LVi;
13 end
14 end
15 if varV alueR = 0 then
16 report_defect_detected(”division by zero”);
17 end
18 end
19 end

Algoritmo 15: Algorithm to detect unreliable code (division by zero).
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Input: Code Line ad Dynamic Information
Output: Unreliable Code Defect

1 posMid← search_character_position(codeline , ” = ”);
2 posEnd← search_character_position(codeline , ”; ”);
3 varName← search_substring(codeline , 0 , posMid);
4 if codeline is classified as numeric assignment then
5 for V LNi ∈ V LN do
6 if varName = V LNi then
7 / ∗ Getting variable type ∗ /
8 varType ← V LTi;
9 end

10 end
11 upperLimit ← upper_type_limit(varType);
12 lowerLimit ← lower_type_limit(varType);
13 varV alue← search_substring(codeline , posMid + 1 , posEnd);
14 if varV alue ≥ upperLimit then
15 report_defect_detected(”upper limit reached”);
16 end
17 if varV alue ≤ lowerLimit then
18 report_defect_detected(”lower limit reached”);
19 end
20 end

Algoritmo 16: Algorithm to detect unreliable code (numeric overflow).
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With respect to the factorial problem, five defects were detected by REACTOR as
presented in Figure 3.13. There are two bad practice issues, one performance loss
code part and two unreliable code lines.

Figure 3.13 - Defects detected in factorial problem.

The first bad practice issue is related to a package name which should comply with
a naming convention, and the second one is related to the use of what static analysis
tools call “magic number” or “magic constants”, and the use of constants spread in
the source code must be discouraged.

A performance loss was detected in a code line that performs a print command.
This is considered a performance loss defect by static analysis tools since the print
command consumes much more execution time than other loggers that could be used.
The detection of this defect is specially useful when print commands are within very
repeated loops.

Finally, unreliable code lines were detected in two code lines that can potentially
raise an exception. Note that these source code lines can cause a failure if they are
executed with a very high value set in number variable. This type of defect can only
be detected by using static analysis combined with dynamic information, therefore
it can not be detected by tools that perform only static analysis.
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3.5 Oracle Procedure

REACTOR determines verdicts of the test cases by comparing (estimated) expected
with actual results. Expected results are inferred according to what was discussed in
Section 3.3; on the other hand, actual results may be obtained by executing SUVV
with the same test cases that inferred expected results. For this purpose, REACTOR
instruments SUVV automatically so that it can execute with the same set of test
cases.

This instrumented SUVV implements the original SUVV by changing it so that it
works as a driver. So, it changes only the class that contains a main method and
creating a changed copy of it. The copy of SUVV changes the acquisition of the
input in order to get test case inputs, and by redirecting the output data to set the
test case results.

Once test oracle information (expected results) is based only on the source, it does
not require an explicit representation of the requirements. Hence, the oracle infor-
mation sometimes will not be the true expected result that it would obtain if our
oracle approach demanded the documentation to be considered too, so it was pre-
ferred call it “estimated oracle information”. Therefore, although it is generated an
“expected result”, this outcome is not really too relevant to our approach because
our oracle is much more like an organic oracle where, combined with our automated
test case generation strategy, it is aimed to address one specific type of testing defect:
exception handling.

An oracle procedure performs an automatic comparison between expected results
from the generated oracle and actual results from SUVV execution. The overall
result from REACTOR is a set of test cases with their respective verdicts, and a list
of testing defects detected within the SUVV. REACTOR considers there are three
possible verdicts:

• Pass: when a valid estimated result from a test case is exactly the same
as actual result.

• No pass: when a valid estimated result from a test case is different from
actual result.

• Inconclusive: when the estimated result and actual result returns invalid
results, which can not be compared.
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Several types of testing defects can be detected, and as explained in Section 2.1,
a defect can or can not become a failure. In REACTOR, beyond the detection of
defects, failures can also be found when expected results are not the same as actual
results obtained via testing. So, in REACTOR, it can be said that testing is a
complementary technique used to prove or disprove the existence of a defect that
becomes a real failure, and thus reduce the probability of detecting false positives.
The set of information used by oracle procedure is defined follows:

oracle = { tuple ‖ tuple = TC , V N , ER , AR , V }

TC = { TCi ‖ TCi : suvv test case reference }
V N = { V Ni ‖ V Ni : output variable name }
ER = { ERij ‖ ERij : expected result }
AR = { ARij ‖ ARij : actual result }
V = { Vi ‖ Vi : test case verdict }

Algorithm 17 shows how the test oracle procedure operates, and for this algorithm, it
may be considered that oracle is a tuple which is composed by five elements. TCi is a
reference for the test case. V Nij composes the list of output variable names. ERij and
ARij are respectively the expected and actual results for the output variable named
by V Nij. And finally, Vi is the final verdict inferred by the procedure component.

Note that Algorithm 17 implements a loop that performs the procedure for each
test case (line 2). The verdict is set as “pass” (line 3). If expected and actual results
are valid (line 6) they may be compared (line 8), and if they are not equal verdict
is set as “no pass” (line 9). If one of them (or both) are invalid, verdict is set as
“inconclusive” (line 12). Finally, the oracle is set with the final verdict (line 16), and
once all test cases were performed, the HTML table is saved in file system line 19).
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Input: Test Oracle Information
Output: Test Oracle Verdicts

1 fw ← File Writer;
2 for TCi ∈ oracle do
3 verdict← ”pass”;
4 for V Nij ← V Ni do
5 / ∗ both valid results ? ∗ /
6 if is_valid(ERij) ∧ is_valid(ARNij) then
7 / ∗ comparing results ∗ /
8 if ERij 6= ARNij then
9 verdict← ”nopass”;

10 end
11 else
12 verdict← ”inconclusive”;
13 end
14 end
15 / ∗ setting verdict ∗ /
16 Vi ← verdict;
17 end
18 / ∗ saving HTML table ∗ /
19 save_oracle_table(fw , oracle);

Algoritmo 17: Algorithm of the test oracle procedure.
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3.6 Final Remarks

Published literature proposed solutions for detecting defects via static analysis, how-
ever, there are several types of defects that can not be revealed by presented ap-
proaches. Thus, this thesis proposed the combined use of static and dynamic infor-
mation in a way that results obtained dynamically are used to reinforce possible
defects found in static analysis. REACTOR performs a similar solution by an au-
tomated approach for detecting defects by generating test oracle information and
procedure. REACTOR tool works by analyzing SUVV by reverse engineering and
building an SUVV model based on class models. Based on a set of test cases, an
estimation of expected results are inferred based on the interpretation of source
code, and verdicts are determined by comparing expected results with actual results
obtained by SUVV execution.
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4 IMPLEMENTATION OF REACTOR

This chapter presents development aspects of the REACTOR method by describing
its software architecture that implements the main concepts presented in Chapter
3. It will also address operation of the tool based on the sequence diagram in Figure
4.1, which illustrates the interactions required by the tester beyond the collaboration
among REACTOR’s objects based on a time sequence.

Figure 4.1 - REACTOR’s sequence diagram.

4.1 REACTOR’s Architecture

The development of REACTOR made use of Java JDK (Java Development Kit)
1.7.0, and does not make access to any database management system. Figure 4.2
shows the package diagram which groups all classes used by the tool.

REACTOR package incorporates several sub-packages arranged according to spe-
cific scopes. The package “Library” contains some useful classes which are used by
the tool, as the list of reserved words of Java language, constants, the combiner of
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Figure 4.2 - REACTOR’s package diagram.

inputs for the automatic generation of test cases, the AEBPA for test case generation
and pairwise algorithm.

“Models” contains several sub-packages with the prospect of reverse engineering.
“Interpreter” is composed by three classes which are used to interpret the classified
source code. “SUVVModel” is composed by eight classes used to represent the SUVV
model. The structure of the source code files in blocks is built by two classes in
“CFG” sub-package. The detection of defects uses three classes in “Defect” sub-
package and the test case suite is stored by five classes in “TestCase” sub-package.

“ReverseEngineering” package contains the sub-packages “Library” and “Models”,
which as mentioned, also has its own sub-packages. Beyond these two sub-packages,
“ReverseEngineering” is composed also by thirteen classes required for reverse engi-
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neering and static analysis, file reader, such as test case generation, decomposition,
regex matcher, interpretation, instrumentation and detection of defects.

The package “REACTOR” comprises the complete tool which is executed by classes
“REACTOR” and “TOProcedure”. The REACTOR’s configuration must be done in
“Configuration” and the instrumented SUVV is represented by “SUVV ”.

4.2 Configuration

The first steps of REACTOR once it is executed with a preconfigured SUVV, are
by searching source code files within SUVV directory. As mentioned before, static
analysis can only be done if source code is available, so it is a fundamental step.

The preconfiguration of SUVV’s directory, as its inputs and outputs, must be coded
in a configuration class within the tool. This class contains some attributes that
can be set by tester according to the SUVV. Figure 4.3 presents the configuration
class of factorial problem, and Figure 4.4 presents the configuration class of triangle
classification. The attributes that must be coded by tester are:

• SUVV_inputs: represents all inputs that must be used to generate test
cases. It must be coded as an array of Strings, and each string must be
in format “type variable-name”. Note that in Figure 4.3 there is only one
input variable, and in Figure 4.4 there are tree of them.

• SUVV_outputs: represents all outputs that must be considered estimated
expected results to compute. It must be coded by using the same format
as inputs, and it must be declared in main method of SUVV.

• SUVV_input_values: if this it set as null (as shown in Figure 4.3), input
values are automatically generated by AEBPA. Otherwise, tester can code
particular values of interest, as shown in Figure 4.4.

• SUVV_JAVA_FILES: this is the directory path that contains all source
code files of SUVV.

• WORK_FOLDER: during its execution, REACTOR creates a temporary
directory with several text files. This directory is created within this pre-
configured folder.

• SUVV_ID: this attribute must be set with a short string that identifies
the SUVV. The temporary directory is created with this name.
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• PAIRWISE: it is a boolean variable that indicates if pairwise is active to
reduce the set of test cases for SUVV with three or more inputs.

Figure 4.3 - Configuration class of factorial problem.

Figure 4.4 - Configuration class of triangle classification.

4.3 REACTOR’s Execution

4.3.1 Automatic Test Case Generation

Next, REACTOR generates test cases automatically based on information about
input and output variables that the testing professional may provide in a configura-
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tion class. These are automatically planned according to the variable types involved,
being tested for upper and lower limits, a fixed positive and negative value, a random
positive and negative value, and zero.

The Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 present a list of values that are
used in order to generate test cases by the AEBPA approach (Section 3.1.1). It is
important to mention that the approach used in this work can generate test cases
just based on variables of primitive types. In addition, since all possible combinations
of inputs are generated exhaustively, the combination can result in a huge amount
of generated test cases. In order to deal with this situation, a pairwise algorithm
(Section 3.1.2) was implemented to filter and reduce the set of test cases when SUVV
has more than two input variables.

Table 4.1 - Suggested limits for testing boolean variables (1 bit).

Lower limit “false”
Upper limit “true”

Table 4.2 - Suggested limits for testing char variables (2 bytes/16 bits).

Lower limit 0
Fixed positive value n

Random positive value ?
Upper limit 65535
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Table 4.3 - Suggested limits for testing byte variables (1 byte/8 bits).

Lower limit -128
Random negative value -?
Fixed negative value -n

Zero 0
Fixed positive value n

Random positive value ?
Upper limit 127

Table 4.4 - Suggested limits for testing short variables (2 bytes/16 bits).

Lower limit -32.768
Random negative value -?
Fixed negative value -n

Zero 0
Fixed positive value n

Random positive value ?
Upper limit 32.767

Table 4.5 - Suggested limits for testing integer variables (4 bytes/32 bits).

Lower limit -2.147.483.648
Random negative value -?
Fixed negative value -n

Zero 0
Fixed positive value n

Random positive value ?
Upper limit 2.147.483.647
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Table 4.6 - Suggested limits for testing long variables (8 bytes/64 bits).

Lower limit -9.223.372.036.854.775.808
Random negative value -?
Fixed negative value -n

Zero 0
Fixed positive value n

Random positive value ?
Upper limit +9.223.372.036.854.775.807

Table 4.7 - Suggested limits for testing float variables (4 bytes/32 bits).

Lower limit 1.40129846432481707e-45
Random negative value -?
Fixed negative value -n

Zero 0
Fixed positive value n

Random positive value ?
Upper limit 3.40282346638528860e+38

Table 4.8 - Suggested limits for testing double variables (8 bytes/64 bits).

Lower limit 4.94065645841246544e-324d
Random negative value -?
Fixed negative value -n

Zero 0
Fixed positive value n

Random positive value ?
Upper limit 1.79769313486231570e+308d
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4.3.2 Automatic Reverse Engineering of Static Source Code

Once the source code is available based on SUVV analysis, it must be properly in-
strumented and prepared to be analyzed by regex (Section 3.2.1). This preparation
basically consists in formatting to check the spacing and line breaks, and insert stan-
dardized markings to set locations of opening and closing scopes in classes, methods,
libraries, and packages. Only then, SUVV is analyzed and recognized by predeter-
mined expressions implemented using a regex language supported by libraries in
Java. Finally, the structural model of the SUVV (Figure 3.7) is built in REACTOR
totally by reverse engineering of Java software.

REACTOR reads each code line for each Method instance in SUVV model, so it
decomposes, classifies (according to the Table A.3), and overwrites the old code lines
in the model as showed in Figure 4.5.

Figure 4.5 - Source code decomposition and classification.

The reading of each decomposed and classified code line, that if representing a
control structure, this structure is built in a set of linked code blocks similar to a
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CFG (Section 3.2.6) showed in Figure 4.6.

Figure 4.6 - Conversion of source code into CFG.

Once the model is ready with SUVV grouped in code blocks, the source code is
interpreted feeding a list of variables that was set by collecting all variables of SUVV.
It includes, of course, temporary variables created by the decomposition of source
code. The standard used to create temporary variables was the string “varTOG_”
followed by an integer number that is automatically incremented, thus, it is unlikely
that the SUVV has a coded variable with the same name causing a problem. Figure
4.7 shows factorial problem source code with temporary variables highlighted.

At the end of the test case, the output variables specified by the tester have their
values stored as estimated expected results and, thus, this step occurs again for
next test cases generated. Once the set of test cases were interpreted, a text file
with inputs and estimated expected outputs is saved. This text file provides input
data for a modified version of SUVV that may be executed with the same test cases,
and its contents generated for factorial problem are shown in Figure 4.8.
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Figure 4.7 - Temporary variables created by REACTOR in factorial problem.

4.3.3 Automatic Detection of Defects

During and after the interpretation of test cases, the detector of defects evaluates the
behavior of SUVV (testing) stimulated by source code (static analysis) operations,
and apply several techniques to search six classes of defects (as is detailed in Section
3.4). The defect is detected in three stages:

• 1st stage: this is the code line analysis. There are detected defects during
the interpretation of each singly code line, based on static and dynamic
information. It is done once for each code line interpreted.

• 2nd stage: this is the source code path analysis. There are detected defects
by analyzing the path traversed by each test case in source code. It is
performed once for each test case.

• 3rt stage: this is the SUVV model analysis. There are detected defects by
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Figure 4.8 - Text file with input and output data of factorial problem.

analyzing characteristics of the SUVV model after the interpretation of
test cases.

All defects found in these three stages are saved in a text file and compiled in a
HTML table. Figures 4.10 and 4.9 show, respectively, the list of defects in a text file
and its HTML table for factorial problem.

As it can be seen, in Figure 4.9, defects are arranged providing an overview of the
number of defects found in each class. Otherwise, Figure 4.10 shows a text file that
relates a more detailed list of defects found. This text file must be understood as
follows:

• Defect #: defect counter number.

• Testcase: when it is set as “ALL”, it means that this defect occurred in all
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Figure 4.9 - Classes of defects found in factorial problem.

test cases. Otherwise, if it presents a list of numbers separated by comma,
it means that this defect occurred just in test cases identified by these
numbers.

• Class: it is showed if this defect occurred within a particular class. Other-
wise, this field is suppressed.

• Severity: it shows the class of the defect by following this order: 0 - Notice,
1 - Bad Practice, 2 - Performance Loss, 3 - Useless Code, 4 - Vulnerability
and 5 - Unreliable Code.

• Method: it is showed if this defect occurred within a particular method.
Otherwise, this field is suppressed.

• Defect: this is a more detailed description of the defect found, very useful
to locate it in the source code.

REACTOR implements the search for a particular set of defects, which were divided
in six classes based on the classification used in other static analysis tools that
is presented in Chapter 5. The search for other defects can be implemented and
incorporated in the tool once its defective pattern is set. Table 4.9 shows the complete
list of defects that can be found by REACTOR, and it can be interpreted as follows:

• Defect: it is a short description of each defect.

• Class: it is the class to which the defect type belongs.
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Figure 4.10 - List of defects found in factorial problem.

• State: it shows in what stage this defect type can be detected.

• Description: it is a more detailed description of each defect type.
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4.4 Instrumented SUVV Execution

Once expected results have been estimated, it is necessary to obtain actual results
for the same set of test cases, as discussed in Section 3.5. With this intention,
REACTOR instruments SUVV by creating a copy of its “main” class with the same
file name followed by “_TOG.java”. This copy is automatically changed to execute
SUVV realizing the driver work with the same values of test cases by reading input
values from the text file previously showed in Figure 4.8.

Although, this instrumented class is created automatically, it can not be executed
automatically. So, at this point the testing professional must access it in a IDE
(Integrated Development Environments) and execute it manually by selecting “run”
option, as showed in Figure 4.11. After this execution, actual results of SUVV are
also saved in text file that is read by oracle procedure.

Figure 4.11 - Running the SUVV with test cases manually.

4.5 Oracle Procedure Execution

As explained in Section 3.5, the final verdict for a determined test case can only
be inferred if an estimated expected result can be compared with an actual result.
So, the procedure implemented in REACTOR gets all estimated expected results
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(showed in Figure 4.8) and compares with actual results. The execution of oracle
procedure also must be done manually, as presented in Figure 4.12.

The result of comparison between the estimated expected results and actual results
obtained for each of test cases provides a verdict that is reported in a HTML ta-
ble automatically built by REACTOR. Figure 4.13) shows the HTML table with
verdicts of the factorial problem case study.

Figure 4.12 - Running the oracle procedure manually.

In Figure 4.13, it can be seen that from seven test cases, two of them did not obtain
“pass” verdicts since they presented failures.

In test cases 0, 1, 3 and 6, the verdict is “pass” because estimated expected results
and actual results were equal. It should be mentioned that the expected and actual
result “1” does not represent the reality of a factorial operation with these entries.
However, SUVV has this value as a result because the output variable has been set
with “1” so that the tool does not return an exception when assembling the HTML
table with null values.

The 5th test case got a “pass” verdict with both correctly computed results. The
expected outputs estimated in test cases 2 and 4 were filled with “-” because the
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Figure 4.13 - Test oracle generated for in factorial problem.

return

tool had its run interrupted before computing the result. It occurs since REACTOR
has an automatic timeout routine that interrupts test cases that take a long time
to be processed. Also, note that in this same test case, the execution of the tool ed
one exception and inconclusive verdicts, due to the fact that it is not possible to
compare two valid results.

4.6 Final Remarks

The proper configuration of REACTOR is essential to locate source code files and
generate test cases based on inputs and outputs of SUVV. Such data must be set
by the software tester before executing REACTOR itself. Only then, it can generate
test oracle information and detect software defects only by source code analysis. The
detection of defects is done by mixing static and dynamic information, revealing
classes of defects that are generally unreachable via static analysis only. The oracle
procedure compares the results inferred by test oracle and results obtained by a test
case executor, and so REACTOR can determine the estimated verdict for each test
case generated and save this report in a text file and HTML tables.
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5 EVALUATION

In order to evaluate the approach proposed in this PhD thesis, nine classic program-
ming problems and two real implementations were considered: Factorial Problem,
Triangle Classification, Hanoi Towers, Quick Sort, Merge Sort, Bubble Sort, Inser-
tion Sort, Fibonacci Series, Arithmetic Mean, Threads and ORCAS (a simulated
space application software).

The number of input variables for each test case were set in a black box perspective.
REACTOR’s static analysis defect detection was compared with three other known
tools - FindBugs (FINDBUGS, 2015), SonarQube (SONARQUBE, 2015) and SciTools
Understand (SCITOOLS, 2015) - which perform source code static analysis, and the
success criteria considered for this work is basically the number of defects detected
for each defect class.

It is important to comment that FindBugs, SonarQube and SciTools Understand are
tools which perform static analysis. Therefore, the comparison stresses the ability
to detect defects by static analysis. With respect to the detection of defects based
on testing, i.e. testing defects detected by REACTOR’s oracle, we were not able
to compare REACTOR with any other approach/tool. Although there are several
automated testing oracle efforts in the literature, it was not possible to identify a
solution that addresses this problem considering only the source code as proposed
by REACTOR.

5.1 Evaluation Criteria

There is no standard for classifying software static analysis defects, and the three
static analysis tools have differences in this respect. Understand does not have any
classification type of defects. SonarQube classifies the defects clearly based on its
severity (“Blocker”, “Critical”, “Major”, “Minor” and “Info”). And finally, FindBugs
classifies based on the technical aspect of defect (“Bad practice”, “Correctness”, “Ex-
perimental”, “Internationalization”, “Malicious code vulnerability”, “Performance”,
“Security” and “Dodgy code”).

In REACTOR, it was decided to make a technical classification related to the defect
type, but also somehow convey an immediate idea of its severity. Some classes were
based on FindBugs and other new classes were created. This classification is detailed
in Section 3.4. Therefore, as there is no established standard to classify all defects
detected for all tools, the authors conducted an ad hoc analysis of each defect in
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order to arrange them within REACTOR classes.

5.2 Overall Results

Figures 5.1 and 5.2 show the results of the static defects detection comparing REAC-
TOR’s static code analysis feature with other three tools. In these tables, we report
only the true positive static defects. Figure 5.3 shows the results of REACTOR’s
testing capability.

In Figures 5.1 and 5.2, gray column exhibits the case study. Orange column contains
the six classes of defects that are being compared. Yellow column shows the number
of defects detected by REACTOR within each class, and white columns show the
defects detected by other tools. And finally, green row presents the sum of defects
detected by each tested tool in each case study.

In Figure 5.3, gray column exhibits the number of test cases generated (number
within parenthesis is the original number before being reduced by pairwise ap-
proach). The number of test case verdicts is in yellow columns separated by “pass”,
“no pass” and “inconclusive”, and the last column presents the number of defects
that influenced the negative and inconclusive verdicts.

5.2.1 Case Study 1: Factorial Problem

In factorial problem, whose source code is used as running example in Chapter 3,
REACTOR was tested using as input and output two numeric values which are the
numbers that must be calculated by n! and its result respectively. Seven test cases
were automatically generated and a failure was found when SUVV was submitted
with the upper limit of its numerical input variable.

Note that only REACTOR found unreliable code lines, whose result presented two
“inconclusive” verdicts in this case study, which was presented in Chapter 3.

5.2.2 Case Study 2: Hanoi Towers

This is a very common programming problem whose source code is presented in
Section B.1. It consists of three fixed towers with an input variable that corresponds
to the number of discs that must be moved, and an output variable that is the
number of movements performed. Seven test cases were automatically generated
and two failures were discovered resulting in a “no pass” and an “inconclusive”
verdict.
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Figure 5.1 - REACTOR’s true positive static defects detection compared with other tools
(Part I).
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Figure 5.2 - REACTOR’s true positive static defects detection compared with other tools
(Part II).
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Figure 5.3 - REACTOR’s testing defects detection.
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In case of detecting useless code as a defect, REACTOR performed better than
other tools. REACTOR is specially useful in order to detect such defect, since an
unreachable code block can be perceived by REACTOR because it performs real
test cases in order to exercise a path between code blocks, unlike other tools that
detect unreachable code only if it is a method, constructor or class that is not used.

5.2.3 Case Study 3: Triangle Classification

Triangle Classification Problem has its source code presented in Section B.2, and
it consists of three input numeric variables corresponding to the three sides of the
triangle, and an output text variable describing triangle’s type that can be “equilat-
eral”, “isosceles” or “scalene”. For this case study, 343 test cases were automatically
generated by combining input variables, and then they were reduced to 84 by pair-
wise algorithm.

In this case study it can be seen that all test cases passed. And this was the only
case study that the tool (SonarQube) found more defects than REACTOR. However,
most of these defects are related just to bad coding practices of minor importance.
And again, REACTOR was able to detect more useless code parts than other tools.
No failure was reported in this case study.

5.2.4 Case Study 4: Quick Sort

Sorting algorithms are very useful in computer science, and Quick Sort is a very
commonly used algorithm for sorting, since it is usually faster than any other al-
gorithm for this purpose (SKIENA, 2008). This problem consists basically in sorting
an array of random numeric values. The input, in this case, is the array size that is
randomly generated, and the output is the number of elements that were not sorted
in array at the end of execution. The source code of this case study is presented in
Section B.3.

REACTOR was much better that the other 3 tools when compared with respect to
detection of defects. Beyond two unreliable code lines, it detected 10 useless code
parts (variables, blocks, methods, constructors or classes) that were not exercised by
test cases, and no other tool was able to find even one. Five failures were discovered
and reported as four “no pass” and one “inconclusive” verdicts.
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5.2.5 Case Study 5: Merge Sort

Merge Sort is a sorting algorithm that implements the approach of “divide and con-
quer”. It uses recursion to reduce large problems into smaller ones by partitioning
the set of elements into two smaller groups, and sorting each one of these recur-
sively (SKIENA, 2008). As with Quick Sort case study, the input is an integer that
determines the array size which may be randomly generated, and the output is the
number of unsorted elements at the end of execution. The source code of this case
study is presented in Section B.4.

Seven test cases were executed and several defects were found by REACTOR that
were not found by other tools, mainly, useless code, performance loss and unreli-
able code parts that may return into failures. Four failures, that were reported as
“inconclusive” verdicts, were discovered in this case study.

5.2.6 Case Study 6: Bubble Sort

Also known as Sinking Sort, Bubble Sort is a sorting algorithm that is based on the
swaps of values that are in the wrong order. This algorithm is known as “bubble”
due to the way that smaller values go to the top of the list like bubbles. As with
Quick Sort and Merge Sort, in this case study the input is an integer value which
sets the array size that may be randomly generated, and the output is the number
of unsorted elements at the end of execution. The source code of this case study is
presented in Section B.5.

Three useless code defects were detected by REACTOR and undetected by other
tools, once seven test cases were generated and executed. However, SonarQube de-
tected one more performance loss defects due to an unnecessary collapsed “if” which
REACTOR does not detected, since its within a code block that was not performed
(and so, it is reported as useless code). Three “pass” and four “inconclusive” verdicts
were reported due to defects found by REACTOR.

5.2.7 Case Study 7: Insertion Sort

Insertion Sort is a simple sorting algorithm that basically builds an array by insert-
ing sorted values one at a time. This algorithm is simple to implement, however, it is
much less efficient on large arrays than other sorting algorithms. As with the others
already presented as case studies, the input of Insertion Sort is an integer value
which corresponds to the array size that is randomly generated, and the number of
unsorted elements at the end of execution is the output. The source code of this
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case study is presented in Section B.6.

This case study presented similar defects if compared to Bubble Sort algorithm, and
it occurred due to the fact that both the implemented source codes present a very
similar structure.

5.2.8 Case Study 8: Fibonacci Series

The Fibonacci Series is one of the most known problems discussed in computing and
mathematics, and it is a set of numbers that starts with a one (or a zero followed
by a one), and proceeds based on the rule that each number (named a Fibonacci
Number) is equal to the sum of the preceding two numbers. For this case study, the
input is the series size, and the output is the next value of the Fibonacci Series. The
source code of this case study is presented in Section B.7.

This case study is the one with lower occurrence of defects detected among test
cases, both by REACTOR and the others. However, even with few defects detected,
one of the seven test cases was reported as “no pass” since the execution of one test
case reached the time limit stipulated by REACTOR and so the output variables
was not set.

5.2.9 Case Study 9: Arithmetic Mean

In mathematics, the arithmetic mean is the sum of a certain quantity of numbers
divided by that quantity. The source code of this case study is presented in Section
B.8 and it is used by (MARINKE, 2012), which basically calculates the mean grade
of a certain number of semesters, supposing that each semester is represents by one
grade.

By combining input variables, 49 test cases were generated of which 3 were reported
as “no pass”. Once again, REACTOR detected 2 useless code parts that others did
not. However, SonarQube detected a vulnerability related to the existence of a public
constructor that is not explicitly implemented, but it seems that it is automatically
generated by Java compiler.

5.2.10 Case Study 10: Threads

The source code of this case study is presented in Section B.9, it was used in Marinke
(2012) and simulates a pipelined computation, where each pipeline stage is executed
as a separate thread. The stages interact through a “Connector” object that imple-
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ments typical methods for handling data. Forty nine test cases were generated from
the combination of two sets of seven testing values for integer.

The number of defects found shows that REACTOR was far better than other tools
particularly with respect to useless code parts, as it has become typical in REAC-
TOR. No failures were reported in this case study as “no pass” verdicts, although
a huge number of failures reported as “inconclusive” verdicts were discovered.

5.2.11 Case Study 11: ORCAS

The ORCAS (Observação de Raios Cósmicos Anômalos e Solares na Magnetosfera)
(INSTITUTO. . . , 1998) software is a real scientific experiment developed to be embed-
ded on satellites, and it can be considered as an industry case study. The test case
generator combined two sets of seven values for byte type testing, and it generated
forty nine test cases for analysis and execution.

In this case study, one more time REACTOR detected more defects than other
tools including several bad practices, performance losses, useless code, vulnerabilities
and an unreliable code part. The results obtained by this case study are specially
interesting, since it demonstrates that the approach implemented in REACTOR can
handle real world applications.

5.3 Additional Discussion About the Evaluation

With respect to static code analysis, in the 1st, 3rd, 4th, 5th, 7th, 9th, 10th and
11th case studies, other tools detected vulnerabilities that REACTOR did not. In
the 1st, 3rd, 4th, 7th, 9th and 10th, REACTOR did not find specifically a method
with public visibility, which is characterized as a vulnerability issue in SonarQube. In
fact there is no public method explicitly implemented, but as the empty constructor
was not implemented, the tool SonarQube probably foresees that the Java compiler
automatically creates an empty public constructor and treats this issue as a vulner-
ability. In the 3th case study, REACTOR did not find three attributes with public
visibility, which is also classified as an vulnerability issue. These types of defects are
implemented in REACTOR, and their implementation will be inspected in order to
fix it hereafter. Also, in the 4th and 5th case study, Findbugs tagged as vulnerability
the passing of a changeable size object through method’s parameter.

Other defects that REACTOR could not find are in 3rd and 10th case studies, where
SonarQube found more bad practice defects. These defects found by SonarQube are
related to parameter names (in a method) that do not comply with a naming con-
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vention. Finally, in the 11th case study, FindBugs found more performance losses
than REACTOR, and that happened because FindBugs detected some calls of dep-
recated methods implemented in JDK. That type of defect is still not implemented
in REACTOR yet, however, as with other defects that it did not find, it is planned
to be implemented hereafter.

In most of the case studies, REACTOR detected more defects than the other three
tools except for one of them. This happened even if REACTOR is not able to detect
the same variety of defects of these established tools (the current implementation of
REACTOR detects 47 types of static analysis defects, and FindBugs, for example, is
able to detect about 400 types of static analysis defects). However, the combination
of static and dynamic techniques into a single approach resulted in a more favorable
REACTOR’s performance.

Figure 5.4 shows that, in general, REACTOR detected more true positive static de-
fects than the other three tools when compared to the total amount of defects which
were detected in each case study. All defects detected by all tools were considered
as the total number of defects, with the exception of the same defects that were
detected by more than one tool, that represents in practice one defect only. In other
words, the rate presented in Figure 5.4 is a recall where:

recall = # relevant defects

total relevant defects

As it can be seen, REACTOR detected more than 90% of the total relevant defects
presented in case studies.

One known problem related to static code analysis tools is the huge amount of false
positives. The fact that a professional does not agree with certain rule implemented
in a static analysis tool not necessarily mean that there is a false positive. However,
results by using static analyzers are usually very noisy where there may not only have
false positives but also many defects identified that are not, in fact, important to a
particular software product or coding standard. These points are some drawbacks
regarding the use of static analysis tools.

Although it is not possible to assert that false positives were detected by running
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Figure 5.4 - Rate of true positive static defects.

FindBugs, Understand, and SonarQube, some unimportant results, in Understand
and SonarQube, were identified.

Some issues that these tools identify as defects were considered unimportant because
they do not present any relevance for testing, so they were suppressed from results.
For example, Understand lists as defects methods that do not have an exit point or
methods that have more than one exit point (in practice the exit point is the “return”
in Java). Other examples are SonarQube which considers as a defect annotations
located at the end of code lines, and FindBugs has a spell checker for annotations
which considers misspellings as defects, among others. Such occurrences may be
obstacles in the real word settings, since one of the major criticisms of static analysis
is that these tools often return reports with a lot of information (i.e., unimportant
defects), discouraging their use by testers. So, REACTOR has planned to does not
detect defects considered unimportant.

Figure 5.5 presents the percentage of unimportant static analysis defects detected
by running these two tools for the first six case studies (Figure 5.1). This percentage
is calculated as follows:

unimp = # unimportant

(# true positive) + (# unimportant)
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Figure 5.5 - Rate of unimportant defects.

According to the type of static defects defined in this PhD thesis, it was not detected
unimportant defects neither in REACTOR nor in FindBugs. However, as shown
in Figure 5.4, REACTOR detected many more true positive static defects than
FindBugs.

Regarding the testing capability, except for the 3rd case study, REACTOR found
defects that resulted in failures in all of them. As previously mentioned, it was not
possible to compare REACTOR with other test oracle approaches because it was
not found, in the literature, other test oracle solutions which work based only on
the source code as REACTOR.

5.4 Final Remarks

The capability of REACTOR to detect software defects was compared with three
well known static analysis tools in order to validate the approach proposed in this
work. For this purpose, 11 case studies were assessed, being 9 of them related to the
classical computing problems, and 2 of them real applications. The 11th case study
can be considered an industry case study. REACTOR presented better results in
most of the case studies. Next chapter presents conclusions and future directions of
this work.
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6 CONCLUSION

The main advantage of an automated static analysis approach is to enable a signif-
icant reduction in the cost of revealing software defects, which drastically reduces
the cost of development for the entire project. Unlike manual inspections, the auto-
mated static analysis can have a full code coverage by checking routines even when
very rarely used, and that are hardly checked by programmers. So, it can reveal
defects that may not manifest as failures for a long time. However, unlike other
testing techniques, static analysis is unable to detect any kind of defects directly
related to the dynamic information handled by source code, as numeric overflows or
exceptions. Such defects can only be addressed by executing the SUVV, or at least
part of it.

Therefore, like any other testing methodology, static analysis has a lot of strong
points but it also has its weaknesses, and its weak points certainly reinforces the
cliche that there is no “silver bullet” in software testing. Different methodologies
always produce different results for different approaches. Thus, once there is no per-
fect testing method, the proper combination of more than one methodology joining
their strong points can be an alternative to achieve a higher software quality.

The development of high quality software products is nowadays essential. The issues
in software may have minor but also major consequences such as causing great
financial costs or risks to human lives. Thus, combining different V&V strategies into
a single approach is interesting because it is possible to benefit from the potentials
of each method in an integrated solution.

The REACTOR method and its implementation are in line with this reasoning
where static code analysis, testing, and reverse engineering are employed aiming
to address a wider range of software defects. With respect to static code analysis,
REACTOR uses dynamic information in order to complement this analysis and the
results presented in this PhD thesis confirm it is a promising solution.

The methodologies developed to support automated software testing activities gener-
ally uses high level specifications as a means to computationally handle abstraction.
However, high level specifications, for most of the cases, are not detailed enough
to be able to detect defects and prevent failures by purely analyzing them. Also,
developing and maintaining several specifications with a high degree of details can
raise costs prohibitively. And in order to outline this, the approach proposed in RE-
ACTOR does not require such specifications and works based only on the source
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code.

REACTOR was compared with three well known open source and commercial static
code analyzers. To sum up, considering all evaluated case studies, including one com-
plex case study for the space domain, REACTOR performed better, based on the
amount of detected true positive static defects, than the other tools, with the excep-
tion of the Triangle Classification Problem, where SonarQube was slightly better,
and Fibonacci Series where it can be considered a draw. In all other case studies,
REACTOR was better showing the benefits of our proposal.

Concerning the amount of unimportant defects detected, none was found by using
REACTOR. This is not the case considering Understand and SonarQube where
the average value of unimportant static analysis defects was 93.63% and 14.93%,
respectively, for the first six case studies. Although it did not also find unimportant
results via FindBugs, REACTOR detected many more true positive static defects
than FindBugs. This is due to the combination of static and dynamic analysis.
REACTOR is suitable to detect useless code as other tools do not. This is because
the combination used in the thesis finds, not only methods or classes not used, but
also code blocks that are not exercised by any test case. Only the static analysis by
itself is not enough to reveal this kind of defect in that level of detail.

For testing, REACTOR generates test cases according to four different techniques:
BVA, EP, RT, and combinatorial designs (pairwise testing). By mixing these tech-
niques, a new technique called AEBPA was created. To the best of our knowledge,
no other automated test oracle approach in the literature addresses this problem
based only on the source code as this work proposes.

6.1 Requirements and Limitations

Due to its characteristics, this approach depends on some requirements and presents
some limitations.

As mentioned in Section 4.3.1, the execution of REACTOR requires a description of
input and output variables along with their types. Therefore, the testing professional
must know this information based on the SUVV. In addition, these variables must
be only primitive types since the oracle procedure can not compare instances of
classes.

SUVV must have only one main method, so that REACTOR knows where source
code interpretation must start, and, it must be written in Java. REACTOR works
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fully based only on source code analysis, therefore, modifications to use other lan-
guages as C++, PHP or C# are totally possible, but not quite trivial.

Before the SUVV is executed with the set of test cases for obtaining the actual
results, it must have been compiled without any errors.

To minimize the probability of an error in identifying code lines, it is recommended
that the testing professional makes a proper formatting of the source code before
running REACTOR. The most of IDE’s for Java, such as NetBeans (NETBEANS,
2015) or Eclipse (ECLIPSE, 2015), have this functionality available.

Finally, SUVV should not implement any GUI, since GUI testing requires other
different approaches to somehow simulate user interactions.

6.2 Future Work

Future directions include the improvement of REACTOR in order to bypass some
of the limitations discussed in Section 6.1. A very import task is the development
of new types of defects that may be addressed by static analysis.

Other interesting possibilities are the improvement of REACTOR’s usability by
the implementation of a friendly GUI, and the development of features to perform
static analysis of SUVV coded in other programming languages such as C++, C#
and PHP.

The application of REACTOR in other domains is another effort to pursue, as
the increment of its capability to infer expected results by test oracle using other
combines techniques as AI (Artificial Intelligence) based, for example.

6.3 Final Remarks about this PhD Thesis

This thesis presents a new approach that combines static and dynamic analyzes
to automate the solution of two complex problems: detection of defects and oracle
problem. In order to prove that this approach is feasible, it was implemented on an
experimental tool that presented good results compared to other known tools that
perform almost similar task.

Although an experimental tool and without GUI, REACTOR is not complicated to
be used. It requires basically, from tester, identification of the names of the input
variables, output variables, and directories where the SUVV is located. This factor is
very encouraging for the use of this tool in practical context. In addition, REACTOR
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fills an important gap in academia as it focuses on the automatic generation of test
oracles, presenting a high level of automation for testing.

According to the literature review presented in this work, no related research has the
same level of automation as REACTOR in order to solve the oracle problem based
only on the source code, with the additional benefit of performing a very effective
detection of defects by a combination of static and dynamic analyses, as shown by
the case studies.

Pragmatically, it is expected that the approach developed in this thesis can be used
effectively in academic and industrial environments and henceforth contribute to
improves overall SUVV quality.

May this thesis be also a new contribution to disseminate the knowledge about
combined approaches that use testing oracle and static code analysis capable of
detecting defects, and techniques to make them more systematic, automatic, and
less resources demanding.
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Appendix A

A.1 Additional Information About Regular Expressions

Tables A.1 and A.2 shows all regular expressions which complement the contents of
Tables 3.5 and 3.6.
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A.2 Additional Information About Source Code Classification

Table A.3 shows the set of standard lines for source code classification.

Table A.3 - Set of standard lines for source code classification.

1 type v; 27 } else {
2 v = “String”; 28 v = ( ) ? 1 : 0 ;
3 v = ‘c’; 29 for ( ; ; ) {
4 v = 9.9; 30 for ( : ) {
5 v = boolean; 31 while ( ) {
6 v = new Class(); 32 do {
7 type[] v; 33 } while ( ) ;
8 v = x[i]; 34 switch ( ) {
9 x[i] = v; 35 case :
10 x = new type[i]; 36 break ;
11 v = x; 37 continue ;
12 v = op x; 38 default :
13 v = x op; 39 try {
14 v = x op y; 40 } catch ( ) {
15 method(x); 41 } finally {
16 v.method(x); 42 }
17 v = method(x); 43 throw exception ;
18 v = x.method(y); 44 class.attribute ;
19 v = (type) x; 45 package pack ;
20 return v; 46 import class ;
21 v = 0x00; 47 class Class {
22 v = null; 48 Method ( ) {
23 Collection < Class > v; 49 Constructor ( ) {
24 v = new Collection < Class > (); 50 print ( v ) ;
25 if ( ) { 51 super ;
26 } else if ( ) {
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Appendix B

B.1 Additional Information About Evaluation of Hanoi Towers

Source Code B.1 and B.2 shows the source code used in evaluation of this case study.

Code B.1 - Hanoi Towers source code (Hanoi class)
1 /∗
2 ∗ To change t h i s template , choose Tools | Templates
3 ∗ and open the temp la te in the e d i t o r .
4 ∗/
5 package i u t . TestHanoi ;
6

7 /∗∗
8 ∗
9 ∗ @author Aarantes

10 ∗/
11 public class Hanoi {
12

13 int movimentos ;
14

15 public Hanoi ( ) {
16 movimentos = 0 ;
17 }
18

19 public int getMovimentos ( ) {
20 return movimentos ;
21 }
22

23 public void execute ( int n , int O, int D, int T) {
24 //System . out . p r i n t l n ( " execu te ( " + n + " , " + O + " , " + D + "

, " + T + ") ; " ) ;
25 i f (n > 0) {
26 execute (n − 1 , O, T, D) ;
27 movimentos++;
28 execute (n − 1 , T, D, O) ;
29 }
30 }
31 }
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Code B.2 - Hanoi Towers source code (Main class)
1 /∗
2 ∗ To change t h i s template , choose Tools | Templates
3 ∗ and open the temp la te in the e d i t o r .
4 ∗/
5 package i u t . TestHanoi ;
6

7 /∗∗
8 ∗
9 ∗ @author Aarantes

10 ∗/
11 public class Main {
12

13 public stat ic void main ( St r ing [ ] a rgs ) {
14 int n = 4 ;
15 Hanoi hanoi = new Hanoi ( ) ;
16 hanoi . execute (n , 1 , 3 , 2) ;
17 int m = hanoi . getMovimentos ( ) ;
18 System . out . p r i n t l n (m) ;
19 }
20 }
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B.2 Additional Information About Evaluation of Triangle Classification

Source Code B.3 and B.4 shows the source code used in evaluation of this case study.

Code B.3 - Triangle Classification source code (Triangle class)
1 /∗
2 ∗ To change t h i s template , choose Tools | Templates
3 ∗ and open the temp la te in the e d i t o r .
4 ∗/
5 package i u t . TestTr iang le ;
6

7 /∗∗
8 ∗
9 ∗ @author Alessandro

10 ∗/
11 public class Triang le extends Main {
12

13 public St r ing Equ = "Equilatero" ;
14 public St r ing I so = "Isoceles" ;
15 public St r ing Esc = "Escaleno" ;
16

17 public St r ing ChecarTriangulo (double a , double b , double c ) {
18 St r ing r e s = null ;
19

20 i f ( a == b && a == c && b == c ) {
21 r e s = Equ ;
22 } else i f ( a == b | | a == c | | b == c ) {
23 r e s = I so ;
24 } else i f ( a != b && a != c && b != c ) {
25 r e s = Esc ;
26 }
27

28 return r e s ;
29 }
30 }
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Code B.4 - Triangle Classification source code (Main class)
1 /∗
2 ∗ To change t h i s template , choose Tools | Templates
3 ∗ and open the temp la te in the e d i t o r .
4 ∗/
5 package i u t . TestTr iang le ;
6

7 import java . u t i l . ArrayList ;
8

9 /∗∗
10 ∗
11 ∗ @author Alessandro
12 ∗/
13 public class Main {
14

15 public stat ic void main ( St r ing [ ] a rgs ) {
16

17 Triang le t = new Triang le ( ) ;
18

19 double input_a = 0 ;
20 double input_b = 0 ;
21 double input_c = 0 ;
22

23 St r ing type = t . ChecarTriangulo ( input_a , input_b , input_c ) ;
24

25 System . out . p r i n t l n ( type ) ;
26 }
27 }
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B.3 Additional Information About Evaluation of Quick Sort

Source Code B.5 and B.6 shows the source code used in evaluation of this case study.

Code B.5 - Quick Sort source code (Quicksort class)

1 /∗
2 ∗ To change t h i s template , choose Tools | Templates
3 ∗ and open the temp la te in the e d i t o r .
4 ∗/
5 package i u t . TestQuicksort ;
6

7 public class Quicksort {
8

9 private int [ ] numbers ;
10 private int number ;
11

12 public void s o r t ( int [ ] va lue s ) {
13 // Check f o r empty or n u l l array
14 // i f ( va l u e s == nu l l | | v a l u e s . l e n g t h == 0) {
15 // re turn ;
16 // }
17 this . numbers = va lue s ;
18 number = va lue s . l ength ;
19 qu i ck s r t (0 , number − 1) ;
20 }
21

22 private void qu i ck s r t ( int low , int high ) {
23 int i = low , j = high ;
24 // Get the p i v o t e lement from the middle o f the l i s t
25 int p ivot = numbers [ low + ( high − low ) / 2 ] ;
26

27 // Divide in t o two l i s t s
28 while ( i <= j ) {
29 // I f the curren t va lue from the l e f t l i s t i s sma l l e r then

the p i v o t
30 // element then ge t the next e lement from the l e f t l i s t
31 while ( numbers [ i ] < p ivot ) {
32 i++;
33 }
34 // I f the curren t va lue from the r i g h t l i s t i s l a r g e r then

the p i v o t
35 // element then ge t the next e lement from the r i g h t l i s t
36 while ( numbers [ j ] > p ivot ) {
37 j−−;
38 }
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39

40 // I f we have found a va l u e s in the l e f t l i s t which i s
l a r g e r then

41 // the p i v o t e lement and i f we have found a va lue in the
r i g h t l i s t

42 // which i s sma l l e r then the p i v o t e lement then we exchange
the

43 // va l u e s .
44 // As we are done we can increa se i and j
45 i f ( i <= j ) {
46 exchange ( i , j ) ;
47 i++;
48 j−−;
49 }
50 }
51 // Recursion
52 i f ( low < j ) {
53 qu i c k s r t ( low , j ) ;
54 }
55 i f ( i < high ) {
56 qu i c k s r t ( i , high ) ;
57 }
58 }
59

60 private void exchange ( int i , int j ) {
61 int temp = numbers [ i ] ;
62 numbers [ i ] = numbers [ j ] ;
63 numbers [ j ] = temp ;
64 }
65 }
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Code B.6 - Quick Sort source code (Main class)

1 /∗
2 ∗ To change t h i s template , choose Tools | Templates
3 ∗ and open the temp la te in the e d i t o r .
4 ∗/
5 package i u t . TestQuicksort ;
6

7 import i u t . TestQuicksort . Quicksort ;
8

9 /∗∗
10 ∗
11 ∗ @author Aarantes
12 ∗/
13 public class Main {
14

15 public stat ic void main ( St r ing [ ] a rgs ) {
16

17 int n = 3 ;
18 int unsorted = 0 ;
19

20 int [ ] va lue s = new int [ n ] ;
21

22 for ( int i = 0 ; i < n ; i++) {
23 va lue s [ i ] = 1 + ( int ) (Math . random ( ) ∗ 100) ;
24 }
25

26 System . out . p r i n t l n ("Unsorted!" ) ;
27 for ( int i = 0 ; i < va lues . l ength ; i++) {
28 i f ( i > 0) {
29 i f ( va lue s [ i − 1 ] > va lue s [ i ] ) {
30 unsorted++;
31 }
32 }
33 System . out . p r i n t l n ( va lue s [ i ] ) ;
34 }
35

36 Quicksort m = new Quicksort ( ) ;
37 m. so r t ( va lue s ) ;
38

39 System . out . p r i n t l n ("Unsorted numbers: " + unsorted ) ;
40

41 unsorted = 0 ;
42

43 System . out . p r i n t l n ("" ) ;
44
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45 System . out . p r i n t l n ("Sorted!" ) ;
46 for ( int i = 0 ; i < va lues . l ength ; i++) {
47 i f ( i > 0) {
48 i f ( va lue s [ i − 1 ] > va lue s [ i ] ) {
49 unsorted++;
50 }
51 }
52 System . out . p r i n t l n ( va lue s [ i ] ) ;
53 }
54 System . out . p r i n t l n ("Unsorted numbers: " + unsorted ) ;
55 }
56 }
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B.4 Additional Information About Evaluation of Merge Sort

Source Code B.7 and B.8 shows the source code used in evaluation of this case study.

Code B.7 - Merge Sort source code (Mergesort class)

1 package i u t . TestMergesort ;
2

3 public class Mergesort {
4 private int [ ] numbers ;
5 private int [ ] h e lpe r ;
6

7 private int number ;
8

9 public void s o r t ( int [ ] va lue s ) {
10 this . numbers = va lue s ;
11 number = va lue s . l ength ;
12 this . h e lpe r = new int [ number ] ;
13 mergesort (0 , number − 1) ;
14 }
15

16 private void mergesort ( int low , int high ) {
17 // Check i f low i s sma l l e r then high , i f not then the

array i s so r t ed
18 i f ( low < high ) {
19 // Get the index o f the e lement which i s in the

middle
20 int middle = ( low + high ) / 2 ;
21 // Sort the l e f t s i d e o f the array
22 mergesort ( low , middle ) ;
23 // Sort the r i g h t s i d e o f the array
24 mergesort ( middle + 1 , high ) ;
25 // Combine them both
26 merge ( low , middle , high ) ;
27 }
28 }
29

30 private void merge ( int low , int middle , int high ) {
31

32 // Copy both par t s i n t o the he l p e r array
33 for ( int i = low ; i <= high ; i++) {
34 he lpe r [ i ] = numbers [ i ] ;
35 }
36

37 int i = low ;
38 int j = middle + 1 ;
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39 int k = low ;
40 // Copy the sma l l e s t v a l u e s from e i t h e r the l e f t or the

r i g h t s i d e back
41 // to the o r i g i n a l array
42 while ( i <= middle && j <= high ) {
43 i f ( he lpe r [ i ] <= he lpe r [ j ] ) {
44 numbers [ k ] = he lpe r [ i ] ;
45 i++;
46 } else {
47 numbers [ k ] = he lpe r [ j ] ;
48 j++;
49 }
50 k++;
51 }
52 // Copy the r e s t o f the l e f t s i d e o f the array in to the

t a r g e t array
53 while ( i <= middle ) {
54 numbers [ k ] = he lpe r [ i ] ;
55 k++;
56 i++;
57 }
58

59 }
60 }
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Code B.8 - Merge Sort source code (Main class)

1 /∗
2 ∗ To change t h i s template , choose Tools | Templates
3 ∗ and open the temp la te in the e d i t o r .
4 ∗/
5 package i u t . TestMergesort ;
6

7 /∗∗
8 ∗
9 ∗ @author Aarantes

10 ∗/
11 public class Main {
12

13 public stat ic void main ( St r ing [ ] a rgs ) {
14

15 int numbers = 30 ;
16 int unsorted = 0 ;
17

18 int [ ] va lue s = new int [ numbers ] ;
19

20 for ( int i = 0 ; i < numbers ; i++) {
21 va lue s [ i ] = 1 + ( int ) (Math . random ( ) ∗ 100) ;
22 }
23

24 System . out . p r i n t l n ("Unsorted!" ) ;
25 for ( int i = 0 ; i < va lues . l ength ; i++) {
26 i f ( i > 0) {
27 i f ( va lue s [ i − 1 ] > va lue s [ i ] ) {
28 unsorted++;
29 }
30 }
31 System . out . p r i n t l n ( va lue s [ i ] ) ;
32 }
33

34 Mergesort m = new Mergesort ( ) ;
35 m. so r t ( va lue s ) ;
36

37 System . out . p r i n t l n ("Unsorted numbers: " + unsorted ) ;
38

39 unsorted = 0 ;
40

41 System . out . p r i n t l n ("" ) ;
42

43 System . out . p r i n t l n ("Sorted!" ) ;
44 for ( int i = 0 ; i < va lues . l ength ; i++) {
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45 i f ( i > 0) {
46 i f ( va lue s [ i − 1 ] > va lue s [ i ] ) {
47 unsorted++;
48 }
49 }
50 System . out . p r i n t l n ( va lue s [ i ] ) ;
51 }
52 System . out . p r i n t l n ("Unsorted numbers: " + unsorted ) ;
53 }
54 }
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B.5 Additional Information About Evaluation of Bubble Sort

Source Code B.9 and B.10 shows the source code used in evaluation of this case
study.

Code B.9 - Bubble Sort source code (Bubblesort class)

1 /∗
2 ∗ To change t h i s l i c e n s e header , choose License Headers in Pro jec t

Prope r t i e s .
3 ∗ To change t h i s t emp la te f i l e , choose Tools | Templates
4 ∗ and open the temp la te in the e d i t o r .
5 ∗/
6 package i u t . TestBubblesort ;
7

8 import java . u t i l . Scanner ;
9

10 /∗∗
11 ∗
12 ∗ @author Aarantes
13 ∗/
14 class Bubblesort {
15

16 public void s o r t ( int [ ] array ) {
17 int n , c , d , swap ;
18 n = array . l ength ;
19

20 for ( c = 0 ; c < (n − 1) ; c++) {
21 for (d = 0 ; d < n − c − 1 ; d++) {
22 i f ( array [ d ] > array [ d + 1 ] ) /∗ For descending order

use < ∗/ {
23 swap = array [ d ] ;
24 array [ d ] = array [ d + 1 ] ;
25 array [ d + 1 ] = swap ;
26 }
27 }
28 }
29 }
30 }
31 // pu b l i c s t a t i c vo id main( S t r ing [ ] args ) {
32 // i n t n , c , d , swap ;
33 // Scanner in = new Scanner ( System . in ) ;
34 //
35 // System . out . p r i n t l n ( " Input number o f i n t e g e r s to s o r t " ) ;
36 // n = in . nex t In t ( ) ;
37 //
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38 // i n t array [ ] = new in t [ n ] ;
39 //
40 // System . out . p r i n t l n ( " Enter " + n + " i n t e g e r s " ) ;
41 //
42 // f o r ( c = 0; c < n ; c++) {
43 // array [ c ] = in . nex t In t ( ) ;
44 // }
45 //
46 // f o r ( c = 0; c < (n − 1) ; c++) {
47 // f o r (d = 0; d < n − c − 1 ; d++) {
48 // i f ( array [ d ] > array [ d + 1 ] ) /∗ For descending order

use < ∗/ {
49 // swap = array [ d ] ;
50 // array [ d ] = array [ d + 1 ] ;
51 // array [ d + 1] = swap ;
52 // }
53 // }
54 // }
55 //
56 // System . out . p r i n t l n ( " Sorted l i s t o f numbers " ) ;
57 //
58 // f o r ( c = 0; c < n ; c++) {
59 // System . out . p r i n t l n ( array [ c ] ) ;
60 // }
61 // }
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Code B.10 - Bubble Sort source code (Main class)

1 /∗
2 ∗ To change t h i s l i c e n s e header , choose License Headers in Pro jec t

Prope r t i e s .
3 ∗ To change t h i s t emp la te f i l e , choose Tools | Templates
4 ∗ and open the temp la te in the e d i t o r .
5 ∗/
6 package i u t . TestBubblesort ;
7

8 /∗∗
9 ∗

10 ∗ @author Aarantes
11 ∗/
12 public class Main {
13

14 public stat ic void main ( St r ing [ ] a rgs ) {
15

16 int n = 10 ;
17 int unsorted = 0 ;
18

19 int [ ] va lue s = new int [ n ] ;
20

21 for ( int i = 0 ; i < n ; i++) {
22 va lue s [ i ] = 1 + ( int ) (Math . random ( ) ∗ 100) ;
23 }
24

25 System . out . p r i n t l n ("Unsorted!" ) ;
26 for ( int i = 0 ; i < va lues . l ength ; i++) {
27 i f ( i > 0) {
28 i f ( va lue s [ i − 1 ] > va lue s [ i ] ) {
29 unsorted++;
30 }
31 }
32 System . out . p r i n t l n ( va lue s [ i ] ) ;
33 }
34

35 Bubblesort m = new Bubblesort ( ) ;
36 m. so r t ( va lue s ) ;
37

38 System . out . p r i n t l n ("Unsorted numbers: " + unsorted ) ;
39

40 unsorted = 0 ;
41

42 System . out . p r i n t l n ("" ) ;
43
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44 System . out . p r i n t l n ("Sorted!" ) ;
45 for ( int i = 0 ; i < va lues . l ength ; i++) {
46 i f ( i > 0) {
47 i f ( va lue s [ i − 1 ] > va lue s [ i ] ) {
48 unsorted++;
49 }
50 }
51 System . out . p r i n t l n ( va lue s [ i ] ) ;
52 }
53 System . out . p r i n t l n ("Unsorted numbers: " + unsorted ) ;
54 }
55 }
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B.6 Additional Information About Evaluation of Insertion Sort

Source Code B.11 and B.12 shows the source code used in evaluation of this case
study.

Code B.11 - Insertion Sort source code (Insertionsort class)

1 /∗
2 ∗ To change t h i s l i c e n s e header , choose License Headers in Pro jec t

Prope r t i e s .
3 ∗ To change t h i s t emp la te f i l e , choose Tools | Templates
4 ∗ and open the temp la te in the e d i t o r .
5 ∗/
6 package i u t . I n s e r t i o nSo r t ;
7

8 import java . i o . ∗ ;
9

10 class I n s e r t i o nSo r t {
11

12 public void s o r t ( long [ ] arrElements ) {
13

14 int max = arrElements . l ength ;
15

16 for ( int i = 1 ; i < max ; i++) {
17 int j = i ;
18 while ( j > 0) {
19 i f ( arrElements [ j − 1 ] > arrElements [ j ] ) {
20 long temp = arrElements [ j − 1 ] ;
21 arrElements [ j − 1 ] = arrElements [ j ] ;
22 arrElements [ j ] = temp ;
23 j−−;
24 } else {
25 break ;
26 }
27 }
28 }
29 }
30 }
31

32 // pu b l i c s t a t i c vo id main( S t r ing [ ] args ) {
33 //
34 // S t r ing i n p s t r i n g = " " ;
35 // InputStreamReader input = new InputStreamReader ( System . in ) ;
36 // BufferedReader reader = new BufferedReader ( input ) ;
37 //
38 // t r y {
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39 // System . out . p r i n t ( " Enter a Number Elements f o r INSERTION
SORT: " ) ;

40 // i n p s t r i n g = reader . readLine () ;
41 //
42 // long max = Long . parseLong ( i n p s t r i n g ) ;
43 // long [ ] arrElements = new long [ 1 0 0 ] ;
44 // f o r ( i n t i = 0 ; i < max ; i++) {
45 // System . out . p r i n t ( " Enter [ " + ( i + 1) + " ] Element : " )

;
46 // i n p s t r i n g = reader . readLine () ;
47 // arrElements [ i ] = Long . parseLong ( i n p s t r i n g ) ;
48 // }
49 //
50 // f o r ( i n t i = 1 ; i < max ; i++) {
51 // i n t j = i ;
52 // wh i l e ( j > 0) {
53 // i f ( arrElements [ j − 1 ] > arrElements [ j ] ) {
54 // long temp = arrElements [ j − 1 ] ;
55 // arrElements [ j − 1 ] = arrElements [ j ] ;
56 // arrElements [ j ] = temp ;
57 // j−−;
58 // } e l s e {
59 // break ;
60 // }
61 // }
62 //
63 // System . out . p r i n t ( " Af ter i t e r a t i o n " + i + " : " ) ;
64 // f o r ( i n t k = 0; k < max ; k++) {
65 // System . out . p r i n t ( arrElements [ k ] + " " ) ;
66 // }
67 //
68 // System . out . p r i n t l n ("/∗∗∗ " + i + " numbers from the

beg in ing o f the array are input and they are so r t ed ∗∗∗/") ;
69 // }
70 //
71 // System . out . p r i n t l n ( "The numbers in ascending orders are

g iven below : " ) ;
72 // f o r ( i n t i = 0 ; i < max ; i++) {
73 // System . out . p r i n t l n ( arrElements [ i ] ) ;
74 // }
75 //
76 // } catch ( Except ion e ) {
77 // e . pr in tS tackTrace () ;
78 // }
79 // }
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Code B.12 - Insertion Sort source code (Main class)

1 /∗
2 ∗ To change t h i s l i c e n s e header , choose License Headers in Pro jec t

Prope r t i e s .
3 ∗ To change t h i s t emp la te f i l e , choose Tools | Templates
4 ∗ and open the temp la te in the e d i t o r .
5 ∗/
6 package i u t . I n s e r t i o nSo r t ;
7

8 import i u t . TestQuicksort . Quicksort ;
9

10 /∗∗
11 ∗
12 ∗ @author Aarantes
13 ∗/
14 public class Main {
15

16 public stat ic void main ( St r ing [ ] a rgs ) {
17

18 int n = 10 ;
19 int unsorted = 0 ;
20

21 long [ ] va lue s = new long [ n ] ;
22

23 for ( int i = 0 ; i < n ; i++) {
24 va lue s [ i ] = 1 + ( int ) (Math . random ( ) ∗ 100) ;
25 }
26

27 System . out . p r i n t l n ("Unsorted!" ) ;
28 for ( int i = 0 ; i < va lues . l ength ; i++) {
29 i f ( i > 0) {
30 i f ( va lue s [ i − 1 ] > va lue s [ i ] ) {
31 unsorted++;
32 }
33 }
34 System . out . p r i n t l n ( va lue s [ i ] ) ;
35 }
36

37 I n s e r t i o nSo r t m = new I n s e r t i o nSo r t ( ) ;
38 m. so r t ( va lue s ) ;
39

40 System . out . p r i n t l n ("Unsorted numbers: " + unsorted ) ;
41

42 unsorted = 0 ;
43
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44 System . out . p r i n t l n ("" ) ;
45

46 System . out . p r i n t l n ("Sorted!" ) ;
47 for ( int i = 0 ; i < va lues . l ength ; i++) {
48 i f ( i > 0) {
49 i f ( va lue s [ i − 1 ] > va lue s [ i ] ) {
50 unsorted++;
51 }
52 }
53 System . out . p r i n t l n ( va lue s [ i ] ) ;
54 }
55 System . out . p r i n t l n ("Unsorted numbers: " + unsorted ) ;
56 }
57 }
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B.7 Additional Information About Evaluation of Fibonacci Series

Source Code B.13 shows the source code used in evaluation of this case study.

Code B.13 - Fibonacci Series source code
1 /∗
2 ∗ To change t h i s l i c e n s e header , choose License Headers in Pro jec t

Prope r t i e s .
3 ∗ To change t h i s t emp la te f i l e , choose Tools | Templates
4 ∗ and open the temp la te in the e d i t o r .
5 ∗/
6 package i u t . TestFibonacc i ;
7

8 /∗∗
9 ∗

10 ∗ @author Aarantes
11 ∗/
12 public class Fibonacc i {
13

14 public stat ic void main ( St r ing [ ] a rgs ) {
15 Fibonacc i f = new Fibonacc i ( ) ;
16 int n = In t eg e r .MAX_VALUE;
17 int r = 0 ;
18 r = f . c a l c u l a t e (n) ;
19 }
20

21 public int c a l c u l a t e ( int n) {
22 int proximo = 0 , a tua l = 0 , an t e r i o r = 1 ;
23 int r = 0 ;
24 while ( proximo <= n) {
25 proximo = atua l + an t e r i o r ;
26 //System . out . p r i n t l n ( a t ua l + " " + an t e r i o r ) ;
27 r = proximo ;
28 an t e r i o r = atua l ;
29 atua l = proximo ;
30 }
31 System . out . p r i n t l n ( r ) ;
32 return r ;
33 }
34 }
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B.8 Additional Information About Evaluation of Arithmetic Mean

Source Code B.14 and B.16 shows the source code used in evaluation of this case
study.

Code B.14 - Arithmetic Mean source code (Average class)

1 /∗
2 ∗ To change t h i s l i c e n s e header , choose License Headers in Pro jec t

Prope r t i e s .
3 ∗ To change t h i s t emp la te f i l e , choose Tools | Templates
4 ∗ and open the temp la te in the e d i t o r .
5 ∗/
6 package i u t . TestAverage ;
7

8 import java . u t i l . L i s t ;
9

10 /∗∗
11 ∗
12 ∗ @author Aarantes
13 ∗/
14 public class Average {
15

16 private double f i na lAverage ;
17 private boolean cond i t i on ;
18

19 public double getFinalAverage ( ) {
20 return f i na lAverage ;
21 }
22

23 public void ca l cu la teAr i thmet i cAverage ( Semester s ) {
24 //System . out . p r i n t l n ( " In ic iando o cÃ ¡ l u c l o . " ) ;
25 // i n t tamanho = pValores . s i z e ( ) ;
26 // f o r ( i n t i = 0 ; i < tamanho ; i++) {
27 //Semester s = pValores . g e t ( i ) ;
28 double pValor1 = s . getFi r s tGrade ( ) ;
29 double pValor2 = s . getSecondGrade ( ) ;
30 i f ( ( pValor1 >= 0) && ( pValor1 <= 10) ) {
31 i f ( ( pValor2 >= 0) && ( pValor2 <= 10) ) {
32 f i na lAverage = ( pValor1 + pValor2 ) / 2 ;
33 cond i t i on = true ;
34 } // FIM IF
35 // i f ( cond i t i on ) {
36 // System . out . p r i n t l n ( "MÃ c©dia: " + f ina lAverage ) ;
37 //} e l s e {
38 // System . out . p r i n t l n ( " Informe apenas Notas en t re 0 e
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10 ! " ) ;
39 //}
40 cond i t i on = fa l se ;
41 } // FIM FOR
42 //System . out . p r i n t l n ( "Fim do cÃ ¡ l cu l o . " ) ;
43 } // FIM METODO
44 //}
45 }
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Code B.15 - Arithmetic Mean source code (Main class)
1 /∗
2 ∗ To change t h i s l i c e n s e header , choose License Headers in Pro jec t

Prope r t i e s .
3 ∗ To change t h i s t emp la te f i l e , choose Tools | Templates
4 ∗ and open the temp la te in the e d i t o r .
5 ∗/
6 package i u t . TestAverage ;
7

8 /∗∗
9 ∗

10 ∗ @author Aarantes
11 ∗/
12 public class Main {
13

14 public stat ic void main ( St r ing [ ] a rgs ) {
15

16 double f i r s tGrade = 2 ;
17 double secondGrade = 3 ;
18 Semester s = new Semester ( ) ;
19 s . s e tF i r s tGrade ( f i r s tGrade ) ;
20 s . setSecondGrade ( secondGrade ) ;
21 Average a = new Average ( ) ;
22 a . ca l cu la teAr i thmet i cAverage ( s ) ;
23 double r e s u l t = 0 ;
24 r e s u l t = a . getFina lAverage ( ) ;
25 System . out . p r i n t l n ( r e s u l t ) ;
26 }
27 }
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Code B.16 - Arithmetic Mean source cod (Semester class)e
1 /∗
2 ∗ To change t h i s l i c e n s e header , choose License Headers in Pro jec t

Prope r t i e s .
3 ∗ To change t h i s t emp la te f i l e , choose Tools | Templates
4 ∗ and open the temp la te in the e d i t o r .
5 ∗/
6 package i u t . TestAverage ;
7

8 /∗∗
9 ∗

10 ∗ @author Aarantes
11 ∗/
12 public class Semester {
13

14 private double f i r s tGrade ;
15 private double secondGrade ;
16

17 public double getFi r s tGrade ( ) {
18 return f i r s tGrade ;
19 }
20

21 public void s e tF i r s tGrade (double f i r s tGrade ) {
22 this . f i r s tGrade = f i r s tGrade ;
23 }
24

25 public double getSecondGrade ( ) {
26 return secondGrade ;
27 }
28

29 public void setSecondGrade (double secondGrade ) {
30 this . secondGrade = secondGrade ;
31 }
32

33 }
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B.9 Additional Information About Evaluation of Threads

Source Code B.17, B.18, B.19, B.20, B.21, B.22, B.23 and B.24 shows the source
code used in evaluation of this case study.

Code B.17 - Threads source code (Buffer class)

1 package i u t . TestBandera . threads . synchron i zedBuf f e r ;
2

3 public class Buf f e r {
4

5 private int memory = −1;
6 private boolean occupied = true ;
7 private int s i z eBu f f e r ;
8 private int t imeSleep ;
9

10 public int g e tS i z eBu f f e r ( ) {
11 return s i z eBu f f e r ;
12 }
13

14 public void s e t S i z eBu f f e r ( int s i z eBu f f e r ) {
15 this . s i z eBu f f e r = s i z eBu f f e r ;
16 }
17

18 public void setTimeSleep ( int t imeSleep ) {
19 this . t imeSleep = timeSleep ;
20 }
21

22 public int getTimeSleep ( ) {
23 return t imeSleep ;
24 }
25

26 public synchronized void wr i t eBu f f e r ( int pValue ) {
27 while ( ! occupied ) {
28 try {
29 wait ( ) ;
30 } catch ( Inter ruptedExcept ion e ) {
31 e . pr intStackTrace ( ) ;
32 }
33 }
34 System . e r r . p r i n t l n (Thread . currentThread ( ) . getName ( ) + "

producing: " + pValue ) ;
35 this . memory = pValue ;
36 occupied = fa l se ;
37 no t i f y ( ) ;
38 }
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39

40 public synchronized int r eadBuf f e r ( ) {
41 while ( occupied ) {
42 try {
43 wait ( ) ;
44 } catch ( Inter ruptedExcept ion e ) {
45 e . pr intStackTrace ( ) ;
46 }
47 }
48 System . e r r . p r i n t l n (Thread . currentThread ( ) . getName ( ) + "

consuming: " + this . memory) ;
49 occupied = true ;
50 no t i f y ( ) ;
51 return this . memory ;
52 }
53

54 }
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Code B.18 - Threads source code (Connector class)
1 package i u t . TestBandera . threads . bandera ;
2

3 public class Connector {
4

5 public int queue = −1;
6

7 public synchronized int take ( ) {
8 int value ;
9 while ( queue < 0) {

10 try {
11 wait ( ) ;
12 } catch ( Inter ruptedExcept ion ex ) {
13 }
14 }
15 value = queue ;
16 queue = −1;
17 return value ;
18 }
19

20 public synchronized void add ( int o ) {
21 queue = 0 ;
22 no t i f yA l l ( ) ;
23 }
24

25 public synchronized void stop ( ) {
26 queue = 0 ;
27 no t i f yA l l ( ) ;
28 }
29

30 }
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Code B.19 - Threads source code (Consumer class)
1 package i u t . TestBandera . threads . synchron i zedBuf f e r ;
2

3 public class Consumer extends Thread {
4

5 private Buf f e r bu f f e r ;
6

7 public Consumer ( Buf f e r pBuf fer ) {
8 super ("Consumer" ) ;
9 bu f f e r = pBuf fer ;

10 }
11

12 public void run ( ) {
13 int value , t o t a l = 0 ;
14 do {
15 try {
16 Thread . s l e e p ( ( int ) (Math . random ( ) ∗ bu f f e r . getTimeSleep

( ) ) ) ;
17 } catch ( Inter ruptedExcept ion except ion ) {
18 System . e r r . p r i n t l n ( except ion . t oS t r i ng ( ) ) ;
19 }
20 value = bu f f e r . r eadBuf f e r ( ) ;
21 t o t a l += value ;
22 } while ( va lue != bu f f e r . g e t S i z eBu f f e r ( ) ) ;
23 System . e r r . p r i n t l n ( getName ( ) + " finished tasks. Total: " +

to t a l ) ;
24 }
25

26 }
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Code B.20 - Threads source code (Heap class)
1 package i u t . TestBandera . threads . bandera ;
2

3 public class Heap {
4 stat ic Connector c1 , c2 , c3 , c4 ;
5 }
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Code B.21 - Threads source code (Listener class)
1 package i u t . TestBandera . threads . bandera ;
2

3 public class L i s t en e r extends Thread {
4

5 public void run ( ) {
6 int tmp = −1;
7 while (tmp != 0) {
8 i f ( ( tmp = Heap . c4 . take ( ) ) != 0) {
9 System . out . p r i n t l n ("output is " + tmp) ;

10 }
11 }
12 }
13

14 }
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Code B.22 - Threads source code (Main class)
1 package i u t . TestBandera . threads . synchron i zedBuf f e r ;
2

3 import java . i o . FileNotFoundException ;
4

5 import java . i o . IOException ;
6

7 public class Main {
8

9 public stat ic void main ( St r ing args [ ] ) throws FileNotFoundException
, IOException {

10

11 Buf f e r umBuffer = new Buf f e r ( ) ;
12

13 int s i z e = 10 ;
14 int time = −3000;
15

16 int produced = 0 ;
17 int consumed = 0 ;
18

19 umBuffer . s e t S i z eBu f f e r ( s i z e ) ;
20 umBuffer . setTimeSleep ( time ) ;
21

22 Producer umProdutor = new Producer ( umBuffer ) ;
23 Consumer umConsumidor = new Consumer ( umBuffer ) ;
24

25 umProdutor . s t a r t ( ) ;
26 umConsumidor . s t a r t ( ) ;
27

28 produced = umBuffer . g e t S i z eBu f f e r ( ) ;
29 consumed = umBuffer . getTimeSleep ( ) ;
30

31 //System . out . p r i n t l n ( produced + " −> " + consumed ) ;
32 }
33

34 }
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Code B.23 - Threads source code (Producer class)
1 package i u t . TestBandera . threads . synchron i zedBuf f e r ;
2

3 public class Producer extends Thread {
4

5 private Buf f e r bu f f e r ;
6

7 public Producer ( Buf f e r pBuf fer ) {
8 super ("Producer" ) ;
9 bu f f e r = pBuf fer ;

10 }
11

12 public void run ( ) {
13 for ( int i = 1 ; i <= bu f f e r . g e t S i z eBu f f e r ( ) ; i++) {
14 try {
15 Thread . s l e e p ( ( int ) (Math . random ( ) ∗ bu f f e r . getTimeSleep

( ) ) ) ;
16 } catch ( Inter ruptedExcept ion except ion ) {
17 System . e r r . p r i n t l n ( except ion . t oS t r i ng ( ) ) ;
18 }
19 bu f f e r . w r i t eBu f f e r ( i ) ;
20 }
21 System . e r r . p r i n t l n ( getName ( ) + " finished tasks." ) ;
22 }
23

24 }
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Code B.24 - Threads source code (Stage class)
1 package i u t . TestBandera . threads . bandera ;
2

3 public class Stage extends Thread {
4

5 public void run ( ) {
6 int tmp = −1;
7 while (tmp != 0) {
8 i f ( ( tmp = Heap . c1 . take ( ) ) != 0) {
9 Heap . c2 . add (tmp + 1) ;

10 }
11 }
12 Heap . c2 . stop ( ) ;
13 }
14

15 }
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