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Abstract: Low-thrust power-limited transfers between given orbits in the presence of perturbations 
of different nature are considered. A simple method of obtaining the transfer trajectory is 
suggested; this method is based on the linearization of motion near reference orbits. A required 
calculation accuracy is reached by means of use of a proper number of the reference orbits. The 
method can be used in the case of a big number (up to several thousand) of revolutions around the 
attracting center without any averaging of motion. The following transfer types may be calculated 
using the method: from a given state to a given orbit with obtaining an optimal position of the entry 
into the orbit; from a given orbit to a given state with obtaining an optimal position of launch from 
the orbit; between two given orbits with obtaining optimal launch and entry positions. The 
suggested method also is applicable in the cases of partly given final orbit and of given constraints 
on the thrust direction. Due to the linearization the method does not give a globally optimal 
solution, the solution is locally optimal (i.e. optimal in each point of the transfer trajectory). This 
deficiency is compensated by the simplicity and wide applicability of the method. Numerical 
examples illustrating the method are given. 
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Nomenclature 

0, T = initial and final instants 
a = semi-major axis 
= ×c r v  = integral of areas 

c = c  
e = eccentricity 

rμ= × −e v c r  = eccentricity vector 
3

v rμ= −f r  = external forces 

( ) { }, v= =f f x v f  
2 2h v rμ= −  = integral of energy 

I = inclination 
I = unit matrix of third or sixth order 
M = mean motion 
n = number of time subintervals 
p = semi-latus rectum 

{ },r v=p p p  = vector of adjoint variables 

vp  = Lawden’s primer vector 

( 0 ,t=q q q )  = m-dimensional vector of instantaneous orbital elements, m ≤ 5 
qi, qf = vectors of instantaneous elements of the initial and final orbits 
r = position vector 
t = time 



1 1,..., nt t −  = instants dividing the subintervals 
v = velocity vector 
We = We (r, t) = effective electric power 

( )t=x x  = state vector of the transfer trajectory 

( ) ( ),i i f ft= =y y y y t  = state vectors of the initial and final orbits 
yj = yj (t) = state vector in the jth reference orbit 
α = jet acceleration vector 
α = α  = acceleration value 

f iΔ = −q q q  
ω = argument of periapsis 
Ω = longitude of the ascending node 
Subscripts “0”, “T” denote values of parameters at instants 0, T. 
Subscript “j” denotes values of parameters in jth reference orbit (j = 1,…, n). 
Superscript “t” denotes transposition. 
 
1. Introduction 

Low thrust power-limited transfers between two given orbits are considered in this paper. The only 
requirement to the force field is that the motion could be given by instantaneous orbital elements. 
An emphasis is laid on spiral transfers with a high number of orbits what makes transfer 
optimization difficult. This case takes place for example for the motion in a strong gravity field of 
the central attracting body where the jet acceleration is much smaller than the gravity acceleration. 
There are various methods for the multi-revolution transfer optimization [1–7]. However, most of 
the methods are rather complicated [3, 5] or have a limited application (in particular, are applicable 
only to circular or neighboring orbits [1, 6, 7] or to coaxial or coplanar orbits [2, 4]). 

A simple method for obtaining considered spiral transfer trajectory is suggested in this paper. The 
method is based on linearization of the motion near a set of short arcs of reference orbits. In this 
respect the method is similar to the modified method of transporting trajectory (MTT) [8–11] 
calculating power-limited transfers between two given positions. The main difference is that the 
instantaneous orbital elements of the reference orbits are taken as independent variables in the 
suggested method, whereas the MTT uses state vectors as independent variables. This is why the 
method described in this paper, contrary to the MTT, can be applied to the multi-revolution 
transfers between two given orbits. Any required accuracy may be reached using a suitable number 
of the reference orbits. 

The suggested method makes it possible obtaining three types of transfers, such as follows: 

– transfer from a given state vector to a given orbit with obtaining an optimal position of the 
entry into the final orbit; 

– transfer from a given orbit to a given state vector with obtaining an optimal position of the 
start from the initial orbit; 

– transfer between two given orbits with obtaining optimal initial and final positions of the 
transfer trajectory. 

All of the three transfer types are considered in the paper. The suggested method also is applicable 
for the case of partly given final orbit; for example, when only energy or semi-major axis and 
eccentricity of the final orbit are specified. Like MTT, this method can be used if a constraint on the 
thrust direction is given [12, 13]. 



The linear approach used in the method does not make it possible obtaining global optimum of the 
solution; it is optimal in each point of the transfer trajectory. Thus, the method may be called as 
locally optimal. This deficiency of the method is compensated by its simplicity and effectiveness: 
the method does not need any averaging used by most of the existing methods and works well in the 
case of a big difference between initial and final orbits. Numerical examples demonstrating high 
effectiveness and wide applicability of the suggested method are also given. 
 

2. Formulation of the Problem 

Equation of motion subject to low thrust is 

 ( )= +x f x g  (1) 

where 

 { },=g 0 α  (2) 

The performance index for the LP propulsion is 

 
2

0
2

T

e
J W

α= dt∫  (3)   

Minimum value of the performance index gives minimum propellant consumption. 

The problem is to find the thrust vector transferring the spacecraft between two orbits given by 
elements  in time T and minimizing the performance index (see Fig. 1).  ,i fq q
 

 

Figure 1. Transfer between given orbits 
 
The boundary values of the problem are 

 x0 = yi0,   xT = yfT. (4) 
 
3. Transfer from a Given State Vector to a Given Orbit 

Let us first assume that in Eq. (4) yi0 is given and yfT is not given. 
 
3.1. Neighboring Orbits 

Let us consider low-thrust transfer between two neighboring orbits and introduce vector 

 ( ) ( ) ( )it t= = −x yξ ξ t  (5) 



Due to the closeness of the initial and final orbits the equation of motion can be linearized near the 
initial orbit as follows 

 = F gξ ξ +  (6) 

where 

 
i

∂
=
∂

fF
y

 (7) 

(vector f and respectively matrix F in Eqs. (6, 7) are calculated in the initial orbit). Note that Eq. (6) 
is not autonomous because matrix F is a function of time. The Hamiltonian for Eq. (5) is 

 
2

2
t t

v
e

H
W
α

= − + +p F p tpξ α +  (8) 

where { },r v=p p p  is a vector of costate variables, vp  is Lawden’s primer vector, pt  is a costate 
variable corresponding to additional equation 1t =  making the system autonomous. Vector p 
satisfies the costate variational equation 

 
t

t H∂⎛ ⎞= − = −⎜ ⎟∂⎝ ⎠
p

ξ
tp F  (9) 

Let the 6-order matrix ( )tΨ = Ψ  be a general solution to Eq. (9) with initial value . Matrix 
Ψ can be represented by 

0 IΨ =

 [ ]r vΨ = Ψ Ψ  (10) 

where  are 6×3-dimensional sub-matrices. Then, the costate variables can be represented as 
follows 

,rΨ Ψv

t t
v v= =p pΨ β, Ψ β  (11) 

where β is a constant vector. Function (8) reaches its maximum if 

 t
e v e vW W= =pα Ψ β  (12)  

Solution to Eq. (6) is given by the Cauchy formula 

 ( ) ( )0
0

,
t

t t dτ τ= = + ∫ gξ ξ ξ Φ  (13) 

where ( ) ( ) ( )1 2 1 2, i it t t t= ∂ ∂y yΦ  is the state transition matrix. Due to Eqs. (4, 5)  in Eq. 
(13). Using equations 

0 = 0ξ

 ( ) ( ) ( ) ( ) ( ) ( )1, ,0 0, ,0 ,0 ,0t t t tτ τ τ 1− −Φ = Φ Φ = Φ Φ , Φ = Φ = Ψ  (14) 

and Eqs. (2, 11, 12) solution (13) may be represented in the form 

 Sξ = Φ β  (15) 



where 

  (16) ( )
0

t t
e v vt W= = ∫S S Ψ Ψ dt

is a 6-order symmetric matrix. Now in order to find optimal thrust vector and state vector given by 
(12, 15) it is sufficient to obtain vector β.  

Since the final state vector yfT of the transfer is not given it can be found from the transversality 
condition which in the considered case is 

 ( )
t

fT
T

fT
T

⎛ ⎞∂
= = ⎜ ⎟⎜ ⎟∂⎝ ⎠

q
p p

y
σ  (17) 

where σ is an arbitrary 5-dimensional constant vector. Due to the nearness of the initial and final 
orbits it can be taken f f∂ ∂ ≈q y U  where 

 ( ) ( ) ( )0, 0 ,i
T

i
t T∂

= = = =
∂
qU U U U U U
y

 (18) 

is 5×6-dimensional matrix. Then the transversality condition (17) may be written as follows 

 t
T T=p U σ  (19) 

Equations (11, 14, 19) give 

 ( )tT T= Uβ Φ σ  (20) 

The following linear equation will be used: 

 T fT iT TΔ = − =q q q U Tξ  (21) 

On the other hand 

 ( )0 0,TΔ = Δ Δ = Δq Q q q q 0  (22) 

where 

 
0

iT

i

∂
=
∂
qQ
q

 (23) 

Substituting Eqs. (15, 20) into Eq. (21) and using relations 

 1 0
0

0 0

i iT iT i
T T

iT iT i i

− 0∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂

q q y qQ U U
q y y y

Φ =  (24) 

equation (22) gives 

 ( )1
0

t t
T T T T T

−Δ = =q Q U S U WQΦ Φ σ σ  (25) 

where 



  (26) 0
t

T=W U S U0

is a 5th order matrix. Then 
1 1

0
t− − ΔQ W qσ =  and vector β can be found from Eqs. (20, 24) as 

follows 

 1
0
t −

0= ΔU W qβ  (27) 

Due to Eqs. (12, 15, 5, 27) the thrust vector and the state vector in the optimal transfer become 

 1
0

t t
e vW −

0= ΔU W qα Ψ  (28) 

 1
0
t

i
−

0Δx y SU W q= + Φ  (29) 

Equations (4, 29) give the state vector of the entry into the final orbit as follows 

 1
0
t

fT iT T T
−

0Δy y S U W q= +Φ  (30) 

Putting Eq. (28) into Eq. (3) and using Eqs. (16, 26) the performance index can be found as follows 

 1
0

1
2

tJ −
0= Δ Δq W q  (31) 

 
3.2. Arbitrary Orbits 

Here the low-thrust transfer between two arbitrary orbits is considered. Let us divide the time 
interval T into n subintervals defined by instants 0 1 10, ,..., ,n nt t t t T−= = ; also let us assume that n – 1 
intermediate reference orbits between the initial and final orbits are specified somehow and 

 are 5-dimentional vectors of elements of the reference orbits (see Fig. 2). These 
elements may be given, for instance, in the following way: 

( ) ( )1 ,..., nt −q q 1 t

 

 

Figure 2. Transfer between arbitrary orbits 
 

 ( ) ( ) ( ) ( )( )0 0 0 0 , 1,..., 1j i f i
j j n
n

= + − =q q q q −  (32) 

Designating ( ) ( )10 0 , 1,...,j j j j n−Δ = − =q q q  with 0 ,i n f= =q q q q , the following obvious 
equality is fulfilled: 

0
1

n

j
j=
Δ = Δ∑ q q  (33) 



Dividing the transfer trajectory into jth arc begins in the j–1st orbit and 
e ig enough to make the j–1st and jth orbits 

n arcs let us assume that the 
nds in the jth one. Also let us assume the number n b

close to each other for all j = 1,..., n. Then the results of the previous section may be applied to each 
of the arcs with linearization of motion in the jth transfer arc near the j–1st orbit. The problem is to 
find the reference orbits giving optimal transfer trajectory. 

Due to Eq. (31) the performance index for the jth arc is 

 11 t
j j j j2

J −Δ Δq W q=  (34) 

where, similarly to Eqs. (26, 16, 18) 

  t
j j j jW U S U ,   = dt ,    ( )

1

j

j

t
t

j j j e jv jv
t

t W
−

= = ∫S S Ψ Ψ
( )
( )

1
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0
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j

−

−

∂
=
∂

q
U

y
,  (35) 

te vector of the jth ref nce orbit, matrix Ψjv is calculated in the j–1 reference o
ance index of the whole problem is 

yj is sta ere st rbit. 
Perform

1

n
  j

j=
J J=∑  (36) 

In order to find the transfer traject inimum value of J, it is sufficient to find 
intermed  for Eq. (36). Thus, function (36) should be 

ory that gives the m
iate reference orbits that provide a minimum

minimized with respect to the vectors , 1,...,j j nΔ =q  taking into account Eq. (33). Let us 

=

⎛
Δ −Δ⎜⎜ ⎟

⎝ ⎠
∑ qλ

 is a Lagrange multiplier. Necessary conditions of a mi um of the functional (36) are 

introduce the helping function 

  L J
⎞

= − ⎟q  0
1

n
t

j
j

where λ nim

1  , 1,...,j j
j

t
L j n= Δ − =⎜ ⎟⎜ ⎟∂Δ⎝ ⎠

W q 0
q

λ =  (−⎛ ⎞∂ 37) 

  

Thus,  

, 1,...,j j j nΔ =q W= λ  (38) 

. (33, 38) give and Eqs

1
0

− Δqλ = Ω   (39) 

 

where  

1

n

j
j=

=∑WΩ  

Multiplying Eq. (37) by 
(3

Δqj and summing for all j = 1, …, n Eq. (36) can be transformed, using Eq. 
4), to 



  11 1t tJ −= Δ = Δ Δq q qλ Ω  (40) 0 0 02 2

  

Optimal thrust vector and the state vector of the transfer trajectory in the jth subinterval are 

( ) ( ) 1
0jv j

t tt N t −= ΔU qα Ψ Ω , (41) 

( ) ( ) ( ) 1
1 0

− Δ,0 t
j j j jt t t−= +x y S U q  Φ Ω

jt t j n≤ ≤ = . 

lculation Procedure

et

 (42) 

where 1jt −

 
, 1,..,

3.3. Ca  

 0 1,y yL j j

time subinterval (i.e. at times 
 be the state vectors of the jth reference orbit at the beginning and at the end of the jth 

tj–1, tj respectively). Then, the solution to the problem considered here 
may be obtained by means of the following iterative calculation procedure: 

1. n – 1 intermediate reference orbits are specified somehow, for example, using Eq. (32). A launch 
position in the initial orbit is specified (i.e. state ( )0

0 0i=y y  is given) and the respective initial 

state vector of the transfer trajectory is 0
0 0=x y . 

2. Vector 0
jy  is calculated for j = 1 using the following equation, similar to Eq. (30): 

t0 1 1 1  1j j j j j j j−= + Δ− −y y S U W qΨ  (43) 

re matrix ( )Ψ = Ψj jtwhe  is calculated in the j – 1st referenc

by Eq. (35). Since Eq. (43) is approximate, vectors 

e orbit and matrices Sj, Uj are given 

,j jΔq q  should be recalculated as 

( )0
1,j j −= Δq q j j j= −y q q q

3. Step 2 is repeated for j = 2, …, n – 1. 

4. Vector (39) is found and new vectors 

. 

jΔq  are calculated using Eq. (38). Then new reference 

orbits with elements ( )1 0,..., 1j j i j n+ = + Δq q q = −  are determined. 

40) and steps 2–4 are repeated until decrement J of 
x gets smaller than a  soon as

5. Performance index is calculated using Eq. ( Δ
the performance inde given parameter ε > 0. As  JΔ < ε  the thrust 

f subintervals. 

vector α and the state vector x of the transfer trajectory may be calculated at each time 
subinterval using Eqs. (41, 42). 

The suggested method is approximate, although any desired accuracy may be reached by means of 
selecting an appropriate amount n o
 



4. Other Transfer Types 

4.1. Transfer from a Given Orbit to a Given State Vector 

Now let us consider the case when the launch position can be selected in the initial orbit arbitrarily 
(i.e. state vector yi0 is not given in Eq. (4)) and the position of the entry into the final orbit is given 
(i.e. vector yfT is given in Eq. (4)). This case takes place, for example, for a transfer from any point 
situated in a low Earth orbit to a specified geostationary position. In this case the method described 
in Section 3 should be applied in the backward direction with retrograde time, i.e. vector 0

1n−y of the 
start from n – 1st reference orbit can be found for a given state vector yfT of the arrival to the final 
orbit etc., until vector yi0 is found. The equations to solve the problem considered here can be easily 
derived from the equations given in Section 3. 
 
4.2. Transfer between Two Given Orbits 

This is the classical case of interorbital transfer when the optimal launch and arrival positions in the 
initial and final orbits are to be found. This case may be solved using the suggested method in the 
following way: 

A first guess for the launch position should be given somehow. This position defines vector yi0 and, 
in the first iteration of the calculation procedure described in subsection 3.3 of section 3, the final 
state vector yfT may be found. In the second iteration of the calculation procedure for this state 
vector a new value of the vector yi0 may be found as described in section 4.1 etc., i.e. odd iterations 
of the calculation procedure use the case described in section 3 and even iterations use the case 
described in subsection 4.1. 
 
5. Partly Given Final Orbit 

The suggested method also can be used in the case of partly given elements of the final orbit, i.e. if 
vector qf has dimension m < 5. For instance, only energy of the final orbit (m = 1) or semi-major 
axis and eccentricity (m = 2) may be given. In this case vectors qj of the elements of the 
intermediate reference orbits also are m-dimensional with the same orbital elements as qf. Matrices 
Uj and Wj in Eq. (35) have dimension m×6 and order m respectively. Non-given orbital elements 
are determined by means of the transversality condition (17) and the respective conditions for 
vectors qj. 
 
6. Constrained Thrust Direction 

Let us assume that there is a constraint on the thrust vector α given by 

  B 0α =  (44) 

where  is a matrix of dimension 1×3 (B is a row) or 2×3 (i.e. the thrust direction is 
given). In this case, the suggested optimization method is also applicable with matrix Sj and vector 
αj from Eqs. (35, 41) replaced by 

( , t=B B x )

t  ,   ( )
j

t
t

j j e jv jv
t

t W d= = ∫S S PΨ Ψ 1t t
j e jv j jW −

jΔP U W qα = Ψ  

where third-order matrix  

  ( ) 1t t −
= −P I B BB B  (45) 



projects any vector onto the constraining set given by Eq. (44) (projective matrix) [13, 14]. 
 
7. Local Optimality of the Method 

The solution to the transfer problem described in section 3 is not globally optimal. It will be shown 
in this section that the solution gives an optimal direction of the thrust vector at each point of the 
transfer trajectory, i.e. gives a local optimum. Neighbouring initial and final orbits will be 
considered for simplicity. 

Let us consider the case when a given value of a unique orbital element is to be reached, i.e. m = 1 
and q = q is a given scalar element. Thus, Δq0 is a scalar as well. Then U0 given by Eq. (18) is a row 
and W in Eq (26) is a scalar. Then, equation (28) becomes 

 ( )1 0
0 0 0

0

t t
tt t i i i

e v v
i i i

qW q s s s− ⎛ ⎞ ⎛∂ ∂ ∂
= Δ = = =⎜ ⎟ ⎜∂ ∂ ∂⎝ ⎠ ⎝

yU W U q ⎞
⎟
⎠y v v

α Ψ Ψ  (46) 

where 0es W q= Δ W  is a scalar parameter, vi is the velocity vector in the initial orbit. An 
instantaneous change of the parameter q by means of the thrust during a small time interval Δt is  

 i

i

qqq t t∂∂
Δ = Δ ≈ Δ

∂ ∂v v
α α  (47) 

Thus, maximum value of Δq is reached when vector α in Eq. (47) is directed along iq∂ ∂vi . That 
means that vector (46) is optimal at time t, i.e. the suggested method gives locally optimal solution. 
 
8. Special Cases of the Gravity Field 

8.1. Transfers near an Oblate Planet 

A motion near an oblate planet is considered here under the assumption that there are no more 
perturbations. Taking into account only secular perturbations, five orbital elements defining orbit 
are 

 ( ) ( ) ( ) ( ) ( ) ( )0 , 0 , 0a t a e t e i t i= = = , 

 ( ) ( ) ( ) ( ) ( )
2 2

2
2 2

3 30 cos , 0 5cos 1
2 4

e eR Rt J n i t t J n i
p p

ω ω
⎛ ⎞ ⎛ ⎞

Ω = Ω − = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

t  

where Re, J2, n are equatorial radius of the planet, coefficient of the second zonal harmonic, and 
mean motion respectively. Mean anomaly necessary for calculation of motion in the reference 
orbits is 

 ( )
2

2 2
0 2

3 1 3cos 1 1
4

eRM M J e i
p

⎛ ⎞⎛ ⎞⎜ ⎟= + − − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
nt  

where M0 = M(0). 
 



8.2. Two Body Problem 

In the two body problem initial, final and reference orbits are Keplerian ones with state vectors 
( )t=y y  and 

 ( ) ( ) 00t = =q q q  (48) 

(subscripts i or j are skipped here and below for simplicity). The orbital elements are first integrals 
of the motion. Assuming vector q m-dimensional (i.e. { }1,..., , 5mq q m= ≤q ) let us consider an 
extended vector of orbital elements 

 { } { }1 6 1 6,..., , ,...,mq q q q+= =q q  

Besides matrix U given by Eq. (18) let us consider extended matrix 

 ( )t ∂
=
∂
qU
y

 

The state and costate transition matrices can be represented in the form [15, 16] 

 1 1
0 0

0
,− −∂

= =
∂

y U U U U
y

Φ = Ψ = Φ 1−  

Using Eqs. (16, 18, 48) and equation 0v = ∂ ∂y vΨ  matrix (26) may be found as follows 

 0 0

0 00 0

tt t

e e

t t

W d W dτ τ
⎛ ⎞∂ ∂∂ ∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫
y yq qW

y v v y v v
∂q q  (49) 

Matrices  in the two body problem are calculated in [15, 16] analytically1, ,−U U WΦ,Ψ, 1. Thus, 
the suggested method is analytical in the case of the two body problem. 
 
9. Numerical Examples 

This section illustrates the suggested method by examples of transfers in the Earth’s sphere of 
influence. Two body problem is considered. Orbits are given by the orbital elements  

  { }, , , ,r r iπ α ω= Ωq  

where rπ, rα are radii of perigee and apogee in thousands of kilometers (Mm), i is the orbital 
inclination, Ω is the longitude of the ascending node, ω is the argument of perigee. Angular 
elements are given in degree. The transfer time and number of subintervals are equal to T = 400 
hour and n = 5000 in all examples considered below. 
 
9.1. Transfer between Elliptical Orbits with High Mutual Inclination 

Transfer between two orbits given by 

  qi = {7, 30, 50, 80, –60}, qf = {40, 80, 80, –80, 70} 

                                                           
1 Matrices  and W are named as A and S respectively in [15, 16]. U



is considered. The transfer trajectory is shown in Fig. 3 in two projections onto the equator plane xy 
and the polar plane xz. The jet acceleration value divided by g = 9.8066 m/s2 is shown in Fig. 4. 
Performance index and total ΔV for the transfer are J = 46.91 m2s–3 and ΔV = 10.58 km/s. 

   
Figure 3. Transfer between two elliptic orbits with high mutual inclination 

 

 

Figure 4. Acceleration value for the transfer between two elliptic orbits 
with high mutual inclination 

 
9.2. Transfer to an Orbit with Given Perigee and Apogee Radii 

Transfer to a partly given orbit, namely to an orbit with given only perigee and apogee radii, is 
considered here. Optimal transfer is planar in this case. Only perigee and apogee radii of the initial 
orbit are specified, because the other initial orbital elements are not important and may be taken 
equal to zero. Elements of the initial and final orbits are taken as follows: 

  qi = {7, 20}, qf = {40, 80} 

Transfer orbit is shown in Fig. 5 and the respective propulsion acceleration value is given in Fig. 6. 
Performance index and total ΔV are J = 3.02 m2s–3 and ΔV = 2.81 km/s. As is seen in Fig. 5, the 
optimal attitude of the final orbit is coaxial with the initial one. 
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Figure 5. Transfer trajectory to an orbit with given perigee and apogee radii 
 

 

Figure 6. Acceleration value for the transfer to an orbit with given perigee and apogee radii 
 
9.3. Constrained Thrust Direction 

A transfer between the orbits given by the elements  

  qi = {7, 20, 0, 0, 0}, qf = {40, 80, 30, 60, 60}, 

is considered here. The transfer trajectory is shown in Fig. 7. The performance index and total ΔV 
are J = 5.77 m2s–3 and ΔV = 3.94 km/s. Now let us assume the thrust is always orthogonal to the 
spacecraft position vector, i.e.  in Eq. (44). The projective matrix (45) in this case is t=B r

  2

t

r
= −

rrP I  

The transfer trajectory for the constrained thrust direction visually does not differ from the one for 
the unconstrained direction shown in Fig. 7. Performance index and total ΔV in the case of the 
constrained thrust direction are J = 9.47 m2s–3 and ΔV = 4.53 km/s. Acceleration value versus time 
for the unconstrained and constrained thrust direction is shown in Fig. 8. 
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Figure 7. Transfer trajectory for the unconstrained thrust direction 
 

     

 a)  b) 

Figure 8. Acceleration values for the unconstrained (a)  
and the constrained (b) thrust direction 

 
10. Conclusions 

The suggested method has two disadvantages: it does not give a globally optimal solution and it is 
applicable only to the power-limited thrust, whereas the existing thrusters has characteristics close 
to the constant exhaust velocity. Although these disadvantages are compensated by the following 
advantages of the method: it is good for any gravity field and any number of orbits of the transfer 
trajectory. The method is semi-analytical in a general case, and analytical for the two body problem, 
what simplifies a qualitative analysis of the solution. The method is simple and fast; it can be 
applied to the state vector-to-orbit, orbit-to-state vector, and orbit-to-orbit transfers. Also the 
method is applicable to the cases of partly given final orbits and a constraint put on the thrust 
direction. The suggested method can be used at early phases of the mission design or for obtaining a 
first guess for an accurate solution. 
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