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Abstract

The structural vibration-based damage identification can be formulated as an optimization prob-
lem. The objective functional is expressed by a least square difference between measured and com-
puted forward model displacements. The latter functional is minimized by using a hybrid scheme
combining Rotation-based sampling Multi-Particle Collision Algorithm with Hooke-Jeeves heuristic
(RMPCA-HJ).

Multi-Particle Collision Algorithm (MPCA) is a stochastic optimization method inspired by the
physics in the nuclear reactor, where absorption and scattering phenomena are represented. In the
MPCA algorithm, a set of particles (solutions) travels in the search space. After a certain number
of function evaluations, they share the best particle solution found. MPCA, working together with
the Rotation-Based Learning (RBL), is used as a first stage of the hybrid method performing a
global exploratory search. RBL is a novel extension of Opposition-based Learning (OBL). In RBL,
a rotated solution is calculated by applying a specific rotation angle to the original solution. Here,
the new Rotation-Based Sampling (RBS) solution projects a point between the original solution and
its rotated solution. RBS could be more flexible than RBL, and also OBL, to find the promising
candidate solutions. The intensification search stage of the hybrid metaheuristic is addressed by
the direct search Hooke-Jeeves (HJ) method. HJ consists of the repeated application of exploratory
searches for all dimensions around a base point. If the exploration has success finding a better
solution, a pattern move is performed.

The hybrid algorithm is tested to identify damages on a truss structure. Experimental data
was generated in silico, using time-invariant damages. Experiments with noiseless and noisy data,
under several levels of noise, were carried out. Good estimations of damage location and severity
are achieved.

Keywords: Vibration-based damage identification; hybrid metaheuristic algorithm; inverse problem;

1 Introduction

The field of System Identification includes important applications such as Structural Health Monitoring
(SHM). SHM performs a global damage identification for aerospace, civil and mechanical engineering
infrastructures, and it can be operated off-line as well as on-line. The capacity of early detection
of possible damages allows to repair or rehabilitate a structure before it has major damages. The
identification should be independent of changes in the operational and environmental conditions. The
methods used in damage identification should also be well suited to automation, and it should be
independent of human judgment and ability [1].

To have the capability of identifying damages in an accurate and a safe way is essential in critical
systems, such as aerospace structures. Damages which are not detected and, therefore, not repaired,
could produce catastrophic consequences, with human and economic losses.

The damage identification becomes a task computationally expensive when the structures are com-
plex, with a high number of degrees of freedom. In the inverse solution, it is necessary to develop a
method that could solve the problem with a low number of objective function evaluations.
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MPCA is a stochastic algorithm based on phenomena occurring inside a nuclear reactor. Particles
travel within the reactor and collide between them, being absorbed or scattered. In MPCA, some
solutions (called particles) travel in the search space and cooperate sharing the best candidate overall,
after reaching a specific number of function objective evaluations [2].

Recently, a hybrid algorithm using MPCA was used in the identification of damages in some simple
structures: a 10-DOF mass-spring-damper system, a beam and a three-bay truss [3, 4]. In this work,
new variants of this hybrid algorithm will be used to accelerate the convergence speed, reaching the same
results in less time. More details about the hybrid algorithm are found on Section 4.

The inverse solution is evaluated over a three-bay truss structure. Subsection 2.1 describes this
case study. Some results comparing the canonical version MPCA-HJ [3, 4] with the new variants are
presented in Section 5.

2 Equations of motion for modeling a forward problem of forced
vibration

The dynamic response of motion of a structure is given by a second order, non-homogeneous ordinary
differential equation, shown in Eq. (1). In the equation, M, C and K represent the d×d mass, damping
and stiffness matrices, respectively; d is the number of degrees of freedom of the structure. F and u are
the external force and the displacement vectors, respectively. The initial conditions for the model are
given by Eq. (2).

Mü(t) + Cu̇(t) + Ku(t) = F(t) ; (1)

u(0) = u
0
, u̇(0) = u̇

0
(2)

The numerical solution for this model is obtained using the Newmark method, since no analytical
solution exists for any arbitrary functions of M, C, K and F [5].

2.1 Case Study: Three-bay Truss Structure

The structure for our study is the same we used in previous works [3, 4]: a three-bay truss structure
modeled with 12 aluminum bars and 12 degrees of freedom, shown in Figure 1, with properties and
dimensions shown in Table 1.

Table 1: Truss Model Properties

Property Value
Element type Bars
Material Aluminium
Youngs modulus (E) 70 GPa
Material density (ρ) 2700 kg/m3

Square cross section area (A) 2.5× 10−5 m2

Non-diagonal elements length (lnon−diagonal ) 1.0 m

Diagonal elements length (ldiagonal ) 1.414 m

The damping in the structure is assumed proportional to the stiffness (Ci = 10−5Ki). External
forces in the positive diagonal direction over the nodes A and B are imposed.

Initial conditions for displacement and velocity are equal to zero (u(0) = 0 , u̇(0) = 0).

3 Vibration-based damage identification problem as an opti-
mization problem

In this work, we formulate the inverse problem of localizing and quantifying damages on the structure
as an optimization problem. An optimization algorithm will minimize the squared error between the

2
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Figure 1: Three-bay truss structure

computed displacements umod (obtained after running the structural model with a stiffness vector k)
and the measured displacements uobs (acquired from the vibration experiments), as follows:

J(k) =

dm∑
i=0

[
uobs
i (t)− umod

i (k, t)
]2
, (3)

where t represent the time, dm is the number of measured displacements, and k = (k1, k2, · · · , kn)
contains the values of the stiffness for each element, with n elements in total.

Figure 2 shows a graphical representation of the inverse solution for a generic problem.
Estimated damages Θd (in percent) are represented by the loss of stiffness:

Θd =

(
1− kd

ku

)
× 100% , (4)

where kd =
(
kd

1 , k
d
2 , · · · , kd

n

)
and ku = (ku

1 , k
u
2 , · · · , ku

n) are the estimated stiffness vector for the damaged
system, and the stiffness vector of the undamaged system, respectively.

4 Hybrid metaheuristic for the solution of the inverse problem

In this work, we present an extension of the hybrid algorithm MPCA-HJ [3, 4], using the Rotation-based
Learning (RBL) mechanism to improve the exploration of solution space. The algorithm acts as a multi-
stage structure [6]: a global search or exploration stage (performed by the variant of MPCA) followed
by a local search or intensification stage (using HJ).

Different mechanisms based on the Opposition-based Learning (OBL) are added to MPCA for in-
creasing the capacity of exploration. Specifically, in this work, the Center-based Sampling (CBS) will
be compared with the Rotation-based Sampling (RBS), described in the next subsections.

4.1 Multi-Particle Collision Algorithm

The creation of MPCA was inspired by the physics of nuclear particle collision reactions [7]. In the
nuclear reactor, some phenomena occur, including scattering (an incident particle is scattered by a
target nucleus) and absorption (an incident particle is absorbed by the target nucleus).

MPCA can be loosely described as an algorithm consisting of a set of particles traveling inside a
nuclear reactor. New particles are generated, and they can be absorbed or scattered, depending on their
fitness, and if the fitness is better, they will substitute the old particles.

3
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Figure 2: Vibration-Based Damage Identification as optimization problem

A parallel version of the MPCA is used, taking advantages of a high-performance environment, and
its pseudocode is shown in Algorithm 1. In each processor (of a total of Nprocessors), Nparticles candidate
solutions are set. This partition leads to a considerable reduction of computing time [2].

MPCA starts with initial particles randomly created spread all across the search space (Algorithm 1
– lines 3 and 4). After creating the initial set, a blackboard strategy is used for sharing the best particle
among all the particles (Algorithm 1 – lines 6 and 7). Later, the traveling process of particles is started,
involving three main functions: Perturbation, Exploitation, and Scattering [2, 7].

In the ending of each iteration, if a specified number of function evaluations (NFEblackboard) was
reached after the last blackboard updating, (computed as the difference between the Number of Function
Evaluations (NFEi) and the last Number of Function Evaluations when the blackboard was updated
(lastUpdatei), as seen in Algorithm 1 – line 19), then the mechanism of cooperation is triggered (Algo-
rithm 1 – lines 20-22). Again, the best particle is shared among all the particles in the set.

As stopping criterion, a maximum number of function evaluations (NFEmpca) is defined.
The current version of MPCA was implemented in FORTRAN 90, using the OpenMPI library, in a

multiprocessor architecture with distributed memory machine.

4.2 Opposition-Based Learning and variants

The OBL concept was introduced in 2005 by Tizhoosh[8]. The idea of OBL is to evaluate the opposite
of the candidate solution, that have a certain probability of being better. Then, a simple choose of the
better solution among them is done.

OBL and their extensions have been applied to improve the performance of various computational
intelligence methods, such as artificial neural networks, fuzzy logic, metaheuristic algorithms, and mis-
cellaneous applications [9].

Mathematically, the opposite number zo of a real number z ∈ [a, b] is defined by:

zo = a+ b− z . (1)

The opposite point Zo(zo1 , zo2 , · · · , zoD ) of a point Z(z
1
, z

2
, · · · , z

D
), with D dimensions, is completely

defined by its coordinates as show in equation (2).

zod = a
d

+ b
d
− z

d
(2)
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Algorithm 1 Multi-Particle Collision Algorithm

1: for i← 1 to Nprocessors do . Initial set of particles
2: NFEi = 0, lastUpdatei = 0
3: for j ← 1 to Nparticles do
4: newPi,j = RandomSolution
5: NFEi = NFEi + 1

6: for i← 1 to Nprocessors do . Initial blackboard
7: bestPi = UpdateBlackboard

8: while NFE < NFEmax do . Stopping criteria
9: for i← 1 to Nprocessors do

10: for j ← 1 to Nparticles do
11: newPi,j = Perturbation(newPi,j)
12: if f(newPi,j) < f(newPi,j) then
13: newPi,j = newPi,j

14: newPi,j = Exploration(newPi,j)
15: else
16: newPi,j = Scattering(newPi,j , newPi,j , bestPi)

17: if f(newPi,j) < f(bestPi) then
18: bestPi = newPi,j

19: if NFEi - lastUpdatei > NFEblackboard then
20: for i← 1 to Nprocessors do . Blackboard
21: bestPi = UpdateBlackboard
22: lastUpdatei = NFEi

23: for i← 1 to Nprocessors do . Final blackboard
24: bestPi = UpdateBlackboard

25: return bestP1

where z
d
∈ R, with a

d
≤ z

d
≤ b

d
∀d ∈ {1, 2, · · · , D}, A = (a1 , a2 , · · · , aD

) and B = (b1 , b2 , · · · , bD ) are
the lower and upper boundaries of the search space, respectively. The center of the search space in each
dimension is denoted by C = (c

1
, c

2
, · · · , c

D
) and c

d
= (a

d
+ b

d
)/2.

Other variants of this mechanism have been developed, giving more success in the explo-
ration/exploitation of the search space and improving the convergence [10]. Figure 3a shows a graphical
representation of these mechanisms, that are defined as follows:

• Quasi-opposition reflects a point to a random point between the center of the domain and the
opposite point (Zqo(zqo1 , zqo2 , · · · , zqoD ) | zqod = rand(cd, zod))

• Quasi-reflection projects the point to a random point between the center of the domain and itself
(Zqr(zqr1 , zqr2 , · · · , zqrD ) | zqrd = rand(cd, zd))

• Center-based sampling projects the point between itself and its opposite (Zcb(zcb1 , zcb2 , · · · , zcbD ) |
zcbd = rand(z

d
, zod))

4.2.1 Rotated-Based Learning and Rotated-Based Sampling

The RBL mechanism is another extension of the OBL [10]. In this strategy, each coordinate of the
rotation point Zr = (zr1 , zr2 , · · · , zrD ) can be calculated in two dimensions (2D), as represented in
Figure 3b.

Defining the quantity from the original point z
i

to the center (u
i

= z
i
− c

i
), and the lenght from the

original number to the corresponding intersection point l
i

on the circle (v
i

=
√

(zi − ai) (bi − zi)), each
i-th rotation number can be calculated as:

zri = c
i

+ u
i
× cosβ − v

i
× sinβ , (3)

The deflection angle β is a random value generated by a Gaussian distribution of mean equal β0 and
standard deviation δ, and it is defined in the equation (4).

β = β0 · N (1, δ) . (4)
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Figure 3: Concepts derivated from Opposition-based Learning

The Rotation-based Sampling (RBS) is a variant derived from the CBL and RBL mechanisms. As
shown in Figure 3b, a rotation-based sampled number zrbs is found with the projection of the number z
between itself and a rotation number found zr. Then, the Rotation-Based Sampling point is defined as

Zrbs(zrbs1 , zrbs2 , · · · , zrbsD ) | zrbsd = rand(z
d
, zrd). (5)

4.3 Hooke-Jeeves Direct Search Method

The direct search method of Hooke-Jeeves [11] consists of the repeated application of exploratory moves
about a base point which, if successful, is followed by pattern moves. Details about the algorithm of HJ
can be found in the literature [11].

5 Experimental results

The RMPCA-HJ is compared with results obtained using the hybrid algorithms MPCA-HJ and
CBMPCA-HJ. For the experiments, synthetic data were created running the forward model with sim-
ulated damages, reducing the stiffness value of some elements. Table 2 shows the stifness values of all
elements, and how much they were reduced. Damaged elements are represented on Figure 4 with dashed
lines.

Table 2: Stiffness values and assumed damage percentage

Element ku [N/m] kd [N/m] Θd

1, 3, 5, 6, 9, 11 1750000 1750000 0
2 1750000 1487500 15
4 1750000 1662500 5
7 1750000 1225000 30
8 1237440 1237440 0
10 1237440 1113696 10
12 1237440 989952 20

The final time for all the numerical simulations was assumed as tf = 5 × 10−2 s, with a time step
of 5× 10−4 s. Table 3 shows the stopping criteria and the control parameters of the hybrid algorithm.
For the HJ method, the iterative procedure stops if either the minimum step (hmin) or the maximum
number of function evaluations (NFEhj) are reached.

6
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Figure 4: Three-bay truss structure with damages represented with dashed lines. Numbers in the
parenthesis represent the damage percentage.

Table 3: Search space, control parameters and stopping criteria for the hybrid algorithm

Algorithm Parameter Value

MPCA

Nparticles 10
IL 0.7
SL 1.1
NFEblackboard 1000
NFEmpca 100000

RBL
β0 3.14 rad
δ 0.25

HJ
ρ 0.8
hmin 1 × 10−7

NFEhj 100000

Search space [0.5, 1.05]Ku

Figure 5 shows the results of the damage identification with noiseless data graphically. The upper
graph shows the results with the algorithms without the intensification stage (MPCA, CBMPCA or
RMPCA), while the graph at the bottom represents the achieved results with the hybrid algorithms
(MPCA-HJ, CBMPCA-HJ or RMPCA-HJ). Each column represents an element; the white bar represents
the value of the damage to be estimated, and each colored bar the result with a specific algorithm.
Negative damages, i.e. stiffness values greater than integral value, are not supported physically and
are represented as (−1). Without the HJ method, the results are far from the desired ones. When
the intensification is applied after the exploration performed by MPCA and their variants, the values
obtained are almost perfect for the data noise-free.

Figure 6 represents the bar graph for the results with noisy data. The noise was simulated mathe-
matically using a random error added to the node displacements along all the coordinates, as follows:

û(t) = u(t) +N (0, σ), (6)

where û(t) represents the noisy data to be obtained, and N (0, σ) is a normal distribution with mean
equal zero and standard deviation σ. In the experiments, three cases of noise are tested, with σ = 0.02,
σ = 0.05 and σ = 0.10.

When assumed noisy experimental data with σ = 0.02, good results were obtained. Almost all
damaged elements were well identified with a difference less than 2% of damage. The fourth element
had an error of 4% of damage. In the 6th element, a false damage appeared with a value of almost 4%.
The 8th, 9th and 11th elements presented a stiffness greater than the integral value.

7



For the cases with σ = 0.05 and σ = 0.10, worse results were obtained. All the estimated values
of damage were incremented, appearing false damages in the 1st and the 3rd elements, and becoming
worse in the 6th element. All the existing damages were well identified although their estimated values
are different from the real ones. Again, the 8th, 9th and 11th elements presented negative damages, and
for σ = 0.10 the 5th element also presented an increased stiffness.

Table 4 shows the mean of the NFE spent to reach the best solution found in all cases tested. In
the noiseless case, and noisy cases with σ = 0.02 and σ = 0.05, the RMPCA-HJ and the CBMPCA-HJ
arrived at the best value faster than the canonical MPCA-HJ, with a difference of more than 10,000
evaluations. In the noisy case with σ = 0.10, the difference in the convergence of the compared algorithms
is lesser.

Table 4: Mean of Number of Function Evaluations spent to reach the best solution found

Noise (σ) Variant NFE with MPCA NFE with HJ Total NFE

0.00
- 101417 73536 174953

CB 101024 40638 141662
RB 100658 37747 138405

0.02
- 100930 50516 151446

CB 100934 30111 131045
RB 101233 34742 135975

0.05
- 100716 39101 139817

CB 101301 20709 122010
RB 100921 27827 128748

0.10
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Figure 5: Damage identification with noiseless data
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6 Final Remarks

In this work, the inverse problem of structural damage identification was solved by using some variants
of the hybrid method MPCA-HJ. The addition of mechanisms based on the Opposition-based Learning
allowed converging to good damage estimates in a lower number of function evaluations, meaning that
it improves the speed of convergence.

The inverse solution using hybrid algorithms for identifying structural damages has achieved good
results.

6.1 Further works

In future works, the proposed hybrid method will be applied to more complex structures, with a high
number of degrees of freedom, such as a simplify model of the International Space Station [12]. Also, some
experiments with real data acquired in a laboratory will be performed. Another issue to be developed
is to couple the inverse solution with commercial CAEs, such as ANSYS or NASTRAN.
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Figure 6: Damage identification with noisy data
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