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Abstract

In the context of dynamical systems, time series analysis is frequently used to iden-
tify the underlying nature of a phenomenon of interest from a sequence of observations
and to forecast future outcomes. Recently, a map from time series to network has been
proposed [4], allowing the use of network statistics to characterize time series. In this
approach, time series quantiles are naturally mapped into nodes of a graph (here called
Quantile Graph - QG). Therefore, the proposed map (here called QG algorithm) is able
to capture and quantify features such as long range correlations or randomness present in
the underlying dynamics of the original signal, making it a powerful tool for the analysis
of nonlinear systems [4, 5]. As an illustration we applied the QG algorithm to the long
standing problem of detecting the differences between electroencephalographic time series
(EEG) of healthy and unhealthy subjects. The main goal is to find out how the differences
in dynamics are reflected in the corresponding networks. Our results show that resulting
networks display clear differences in topology, which are especially apparent on the small-
world behaviour in the network associated with the healthy subject.

1 Introduction

Epilepsy is a neurological disorder characterized by the presence of recurring seizures.
Like many other neurological disorders, epilepsy can be assessed by the electroencephalo-
gram technic. Visual inspection of the EEG data has not yet led to detection of all
characteristic changes preceding seizure onsets and detection of seizures by visual inspec-
tion of the EEG even by a trained neurologist is challenging for a variety of reasons such
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as excessive presence of myogenic artifacts. Hence, several studies have focused on the
detection of epilepsy from EEG signals using automatic analysis like methods that detect
and quantify non-linear mechanisms and thereby better reflect the characteristics of the
EEG signals [3]. Those methods are basically based on surrogate analysis [3] and phase-
space technics [2, 7]. So there is considerable research toward developing novel methods
to quantify or capture additional information in EEG time series in new ways [4].

In the last two decades, research on complex networks became the focus of widespread
attention, with developments and applications spanning different scientific areas, from
sociology and biology to physics [1]. One of the reasons behind the growing popularity of
complex networks is that almost any discrete structure can be suitably represented as a
graph, whose features may be then characterized, analyzed and, eventually, related to its
respective dynamics [6]. Recently an approach has been proposed for mapping a time series
into a complex network representation, based on the concept of transition probabilities [4].
This study has shown that distinct features of a time series can be mapped into networks
with distinct topological properties, opening the door to the analysis of discrete, time-
ordered data sets with mathematical tools usually used in the study of geometric shapes
and topological spaces. Here we show that the complex network theory can be efficiently
used in the problem of detecting differences in EEG signals of patients in different health
conditions.

This paper is organized as follows. After this Introduction, we describe in Section 2 the
QG method for mapping a time series into a network. Results are presented and discussed
in Section 3 while an overall conclusion is given in Section 4.

2 Methods

Let the range of values in a time series be coarse-grained into Q quantiles q1, . . . , qQ,
and let M be a map from a time series X ∈ T to a network g ∈ G, with X = {x(t)|t ∈
N, x(t) ∈ R} and g = {N ,A} being a set of nodes N and arcs A. Specifically, M assigns
each quantile qi to a node ni ∈ N in the corresponding network. Two nodes ni and nj

are connected with a weighted arc (ni, nj , wij) ∈ A whenever two values x(t) and x(t+ 1)
belong respectively to quantiles qi and qj , with t = 1, 2, . . . , T . An illustration of the QG
method can be found in Figure 1.

Weights wij are simply given by the number of times a value in quantile qi at time
t is followed by a point in quantile qj at time t + 1, normalized by the total number of
transitions. Repeated transitions through the same arc increase the value of the corre-
sponding weight. With proper normalization, the weighted adjacency matrix becomes a
Markov transition matrix Wk, with

∑Q
j wij . The resulting network is weighted, directed

and connected, with Q being typically much smaller than T [4].

Previous works have shown that time series with different properties are mapped into
complex networks with different topologies. For example, it was found an association be-
tween periodic time series and regular networks, random time series and random networks,
pseudo-periodic time series and small-world networks, Brownian motion and chain-like
networks [4, 5].
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Figure 1: Illustration of the QG method. A time series X with T = 40 is split into
Q = 4 quantiles (colored shading) and each quantile qi is assigned to a node ni ∈ N in the
corresponding network g. Two nodes ni and nj are then connected in the network with a
weighted arc (ni, nj , wij) ∈ A where the weight wij of the arc is given by the probability
that a point in quantile qi is followed by a point in quantile qj . Repeated transitions
between quantiles results in arcs in the network with larger weights (represented by thicker
lines) and therefore higher values in the corresponding transition matrix [4]. The resulting
network has 4 nodes, is weighted, directed and connected.

3 Results

We apply the QG algorithm to the long standing problem of detecting the subtle
differences between EEG time series of healthy and unhealthy subjects. The EEG data
used in this study was taken from the artifact free EEG time series obtained by the
Department of Epileptology, in the University of Bonn [3]. Specifically, we randomly
selected two EEG time series; one from a healthy subject and the other one from a epilepsy
subject within the epileptogenic zone. The EEG signals were recorded at a sampling rate
of 173.61 Hz and consist of 4.097 time points each. Usually, epileptic seizures are caused
by disturbed brain activity – which simply means that the normal activity of the brain
is suddenly interrupted and changes. The epileptic behavior is then characterized by the
presence of several aperiodic spikes in the EEG from the unhealthy subject in Figure 2.

We applied the QG in the healthy and unhealthy EEG time series using 40 quantiles
(Fig. 3). The resulting networks display clear differences in topology. The QG related
to the healthy subject presents a bulky structure due to the irregular pattern found in
the corresponding healthy EEG time series. On the other hand, the QG related to the
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unhealhty subject presents an elongated chain-like pattern due to the bursts present in
the corresponding time series.
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Figure 2: EEG time series with T = 4.097 from healthy and unhealty subjects, respectively.

Figure 3: QGs with Q = 40 obtained from healthy and unhealthy EEG time series,
respectively.

In unweighted networks the Clustering Coefficient (C) is a real number between zero
and one that is zero when there is no clustering, and one for maximal clustering, which
happens when the network consists of disjoint cliques. The Average Path Length (L) is
a measure of the efficiency of information on a network and it is defined as the average
number of steps along the shortest paths for all possible pairs of network nodes [6]. We
quantify the topology differences in the networks showed in Figure 3 by computing their
corresponding C and L. We also generate the randomized versions of those networks and
compute their corresponding Clustering Coefficient (Crandom) and Smallest Path Length
(Lrandom) (Table 1).

The “healthy” and “unhealthy networks” present different values of L and C. More
specifically, the value of L is much higher in the “unhealthy network” than in the “healthy
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network” since the chain-like pattern increases the distance between any pair of nodes
in the corresponding network. Moreover, the irregular behavior in the healthy network
decreases the value of C. Comparing L and C with their corresponding Lrandom and
Crandom we find out that the two networks belong to different well-known classes in the
network theory – the healthy network behaves like a small-world network [8] and unhealthy
one like a regular network.

Table 1: L, Lrandom, C and Crandom for the corresponding QGs.
L Lrandom C Crandom

healthy subject 3.1474 3.0288 0.4421 0.3739

unhealthy subject 12.2045 8.3731 0.5152 0.3031

4 Conclusions

We have shown that EEG time series of healthy and unhealthy subjects are mapped
through the QG method into networks whose topological characteristics are very different.
These results attest that the QG method is a useful tool for the analysis of nonlinear
dynamics and able to quantify features such as long-range correlations or randomness in
complex signal. Our analysis can be easily extended to detect differences in the data
structures of many real systems as interbeat interval time series of healthy and unhealthy
subjects.
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